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Abstract
Subjective probabilities play an important role in marketing re-

search, for example where individuals rate the likelihood that they
will purchase a new to develop product. The tau-equivalent model
can describe the joint behaviour of multiple test items measuring the
same subjective probability. It improves the reliability of the subjec-
tive probability estimate by using a weighted sum as the outcome of
the test rather than an unweighted sum. One can choose the weights
to obtain maximal reliability.

In this paper we stress the use of confidence intervals to assess
maximal reliability, as this allows for a more critical assessment of
the items as measurement instruments. Furthermore, two new confi-
dence intervals for the maximal reliability are derived and compared
to intervals derived earlier in Yuan and Bentler (2002); Raykov and
Penev (2006). The comparison involves coverage curves, a methodol-
ogy that is new in the field of reliability. The existing Yuan-Bentler
and Raykov-Penev intervals are shown to overestimate the maximal
reliability, whereas one of our proposed intervals, the stable interval,
performs very well. This stable interval hardly shows any bias, and
has a coverage for the true value which is approximately equal to the
confidence level.

1 Introduction and motivation

Marketing researchers often conduct tests to learn about individuals’ prefer-
ences, opinion and attitudes. Opinions may often be expressed by subjective
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probabilities. A person’s subjective probability is the degree of belief a per-
son holds regarding a statement or an event, that is, it is a person’s personal
judgment about how likely a particular statement is or how likely a partic-
ular event is to occur. Subjective probabilities play a role in marketing, for
example when potential consumers are asked how likely it is that they will
purchase a new to develop product.

Most subjective probability scales are similar to psychological measure-
ment scales, see Wallsten and Budescu (1983). In line with classical test
theory, in subjective probability theory it is assumed that observed uncer-
tainty is given by the sum of the true score and a random error. Typically,
a test is composed of multiple items, where each item is an independent at-
tempt to measure the same construct of interest T . The outcome of the test
U is usually the unweighted sum of the individual item outcomes Yj. We
shall refer to T , U and Yj as the true score, the test score, and the jth item
score, respectively.

The amount of agreement between the test score U and the true score
T , as captured by the squared correlation between U and T , is defined to
be the reliability of the test. However, as T cannot be observed, we are
unable to estimate the reliability of a test directly. Fortunately, we may use
the dependence between the individual item scores in order to evaluate the
reliability of a test indirectly.

The most widely used indirect technique for assessing reliability, Cron-
bach’s coefficient alpha, see (Cronbach, 1951), compares the variance of the
test score with the sum of the variances of the individual item scores. Cron-
bach’s alpha should be regarded as a lower bound of the reliability of a test,
and in certain special situations it coincides with reliability.

Despite its popularity, the interpretation of Cronbach’s alpha in practice
is quite arbitrary. Nunnally’s thresholds, see Nunnally and Bernstein (1994),
are often taken as recommendations regarding minimally acceptable reliabil-
ity, although one may argue that it is rather subjective to compare alpha to
an arbitrary threshold.

Moreover, such an approach does not take into account the accuracy of the
estimated alpha. In this paper we advocate the use of confidence intervals to
assess reliability, as the additional information included in the interval allows
for a more critical assessment of the statistic.

In the literature we find two types of intervals for Cronbach’s alpha. The
first type is derived under the so-called parallel model. In the parallel model
each of the item scores Yj is assumed to be the sum of the true score T
and a measurement error εj with population mean zero and common popu-
lation variance ψ. Moreover, the random variables T, ε1, . . . , εk are assumed
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to be independent. As a consequence, the parallel model imposes strong
restrictions on the population covariance matrix of the item scores. In the
parallel model, Cronbach’s alpha coincides with reliablity. Thus, confidence
intervals for Cronbach’s alpha may be viewed as confidence intervals for reli-
ability itself rather than confidence intervals for a lower bound to reliability.
The statistical theory needed to derive confidence intervals for Cronbach’s
alpha in the parallel model appeared in Kristof (1963); Feldt (1965), but it
remained relatively unnoticed. The coverage of this theory in van Zyl et al.
(2000) revived the attention for confidence intervals for Cronbach’s alpha,
see (Iacobucci and Duhachek, 2003; Duhachek et al., 2005).

The second type of intervals for Cronbach’s alpha relies on the so-called
saturated model. This model does not impose any restriction on the popu-
lation covariance matrix of the item scores.

It should be stressed that between the extremely restrictive parallel model
on the one hand, and the extremely permissive saturated model on the other
hand, other models exist. As both extreme cases have their problems, in this
paper we restrict ourselves to a plausible intermediate model, the so-called
tau-equivalent model. The tau-equivalent model can be obtained from the
parallel model by relaxing the assumption that the measurement errors εj
have common population variance ψ. Thus, the respective population vari-
ances ψ1, . . . , ψk of the measurement errors ε1, . . . , εk may differ. In other
words, the tau-equivalent model allows nonhomogeneous error variances. By
measuring the probability that a same event will occur with different meth-
ods, one can say something about the quality of the measured probability.
Hence, one can understand that in case of subjective probabilities, a tau-
equivalent model is more plausible than the extremely restrictive parallel
model and also more informative than the extremely permissive saturated
model. In this paper we propose new methods to establish confidence bounds
for this tau-equivalent model.

Several methods allow for improving reliability by using a weighted sum
W rather than an unweighted sum U as the outcome of the test. One may
show that choosing the weight for Yj equal to 1/ψj yields a test score W =∑k
j=1 Yj/ψj which has maximal reliability, which is

ϕ = 1− 1

1 +
∑k
`=1 λ

2/ψ
.

The quantity ϕ is referred to as the maximal reliability of Y1, . . . , Yk.
We remark that under the parallel model the optimal weights have a

common value 1/ψ, which implies that the unweighted sum U yields maximal
reliability. Thus, in the parallel model maximal reliability coincides with
reliability and Cronbach’s alpha.

3



In Yuan and Bentler (2002); Raykov and Penev (2006) different expres-
sions for the standard deviation of the maximum likelihood estimator ϕ̂ of
the maximal reliability ϕ are given, from which confidence intervals for ϕ are
readily derived. In this paper we compare the Yuan-Bentler and Raykov-
Penev intervals to each other, and to our two newly proposed intervals.

The structure of this paper is as follows. In Section 2 we present the four
confidence intervals, and show that their coverage is asymptotically equal
to the requested confidence level. Proofs are relegated to the Appendix. In
Section 3 we apply the four confidence intervals to real data involving mea-
sures of subjective probability. Section 4 discusses the results of an extensive
simulation experiment. In Section 5 conclusions are drawn.

2 Confidence intervals for the tau-equivalent

model

Let ψ̂j and λ̂2 be the maximum likelihood estimators of ψj and λ2 in the
tau-equivalent model. Then, the maximum likelihood estimator of ϕ is given
by

ϕ̂ = 1− 1

1 + ζ̂
,

with

ζ̂ =
k∑
j=1

λ̂2/ψ̂j.

The confidence intervals for ϕ involve

s2 = 2 + 2
ζ̂ + 1

ζ̂ − 1

Q̂

1 + Q̂
,

with

Q̂ =
ζ̂ − 1

ζ̂2

k∑
j=1

{
λ̂2/ψ̂j

}2

1 + ζ̂ − 2λ̂2/ψ̂j
.

Choose 0 < γ < 1, and determine z(1−γ)/2 so as to satisfy

P
(
−z(1−γ)/2 < Z < z(1−γ)/2

)
= γ.

We next present several asymptotic 100γ% confidence intervals for the max-
imal reliability coefficient ϕ.
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2.1 Available results

The first interval is proposed in general terms in Yuan and Bentler (2002). 1

By taking their computations for the tau-equivalent model, this yields that
the endpoints of the Yuan-Bentler interval are given by

ϕ̂± z(1−γ)/2 (1− ϕ̂)
s√
n

(1)

In Raykov and Penev (2006) a “second-order” alternative to the Yuan-
Bentler interval is proposed. In the tau-equivalent model, the endpoints of
the Raykov-Penev interval are given by

ϕ̂± z(1−γ)/2 (1− ϕ̂)
s√
n

√
1 + 2

s2

n
. (2)

Note that the Yuan-Bentler interval is always contained in the Raykov-Penev
interval.

2.2 The unstable interval

The unstable confidence interval has endpoints

1− 1− ϕ̂

1± z(1−γ)/2
s√
n

(3)

In the Appendix it is shown that

√
n

ζ̂ − ζ

(1 + ζ)
√

2 + 2 ζ+1
ζ−1

Q
1+Q

→d N (0, 1) , (4)

as n tends to infinity. Here

ζ =
k∑
j=1

λ2/ψj, (5)

1It is critized in Raykov and Penev (2006) because it is “(a) rather laborious and tedious
in routine behavioral research in need of interval estimation of maximal reliability, (b)
involves taking by the researcher of multiple partial derivatives of this reliability coefficient
with respect to model parameters, (c) has the inconvenient property that the number of
these derivatives increases with increasing length k of the initial composite of interest (as
could be repeatedly the case when one is involved in scale development and revision),
and (d) can be viewed as based on a first-order approximation of maximal reliability as a
function of model parameters.”
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Q =
ζ − 1

ζ2

k∑
j=1

{λ2/ψj}2

1 + ζ − 2λ2/ψj
. (6)

Note that s2 is a consistent estimator of
√

2 + 2 ζ+1
ζ−1

Q
1+Q

. As

ϕ = 1− 1

1 + ζ
,

it follows from (4) that

lim
n→∞

P

(
−z(1−γ)/2

s

(1− ϕ̂)
√
n
< ζ̂ − ζ < z(1−γ)/2

s

(1− ϕ̂)
√
n

)
= γ,

which implies that

ζ̂ ± z(1−γ)/2
s

(1− ϕ̂)
√
n

are the endpoints of an asymptotic 100γ% confidence interval for ζ. As ϕ is
a monotone function of ζ, we obtain that

1− 1

1 + ζ̂ ± z(1−γ)/2
s

(1−ϕ̂)
√
n

= 1− 1
1

(1−ϕ̂)
± z(1−γ)/2

s
(1−ϕ̂)

√
n

= 1− 1− ϕ̂

1± z(1−γ)/2
s√
n

are the endpoints of an asymptotic 100γ% confidence interval for ϕ. This
interval coincides with our unstable interval in (3).

The unstable interval is related to the Yuan-Bentler interval and Raykov-
Penev interval. As the derivative of 1 − (1 + ζ)−1 with respect to ζ equals
(1 + ζ)−2, combining (4) with the delta method yields that

√
n

ϕ̂− ϕ

(1− ϕ)
√

2 + 2 ζ+1
ζ−1

Q
1+Q

→d N (0, 1) . (7)

It follows that

lim
n→∞

P

(
−z(1−γ)/2 (1− ϕ̂)

s√
n
< ϕ̂− ϕ < z(1−γ)/2 (1− ϕ̂)

s√
n

)
= γ,

which implies that

ϕ̂± z(1−γ)/2 (1− ϕ̂)
s√
n

are the endpoints of an asymptotic 100γ% confidence interval for ϕ. This
interval coincides with the Yuan-Bentler interval in (1).
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In Raykov and Penev (2006) properties of the normal distribution and
the second order approximation

ϕ̂− ϕ =
ζ̂ − ζ

(1 + ζ)2 −

(
ζ̂ − ζ

)2

(1 + ζ)3 ,

are used to obtain an asymptotic confidence interval for ϕ̂− ϕ. This yields

lim
n→∞

P

−z(1−γ)/2 (1− ϕ̂)
s√
n

√
1 + 2

s2

n
< ϕ̂− ϕ < z(1−γ)/2 (1− ϕ̂)

s√
n

√
1 + 2

s2

n

 = γ,

which implies that

ϕ̂± z(1−γ)/2 (1− ϕ̂)
s√
n

√
1 + 2

s2

n

are the endpoints of an asymptotic 100γ% confidence interval for ϕ. This
interval coincides with the Raykov-Penev interval in (2).

2.3 The stable interval

The stable confidence interval, which we wish to advocate in the present
paper, has endpoints

1− (1− ϕ̂) exp

{
±z(1−γ)/2

s√
n

}
(8)

We believe that there is a serious drawback to the direct use of (4) in con-
structing confidence intervals for ϕ. Although we know that the left hand
side of (4) converges in distribution to a standard normal random variable as
the number of observations n becomes large, it may well have a very different
distribution for a given value of n. Figure 1 illustrates that this is indeed the
case.

In order to motivate our remedy for this problem, we assume in a first
instance that the items of the test are drawn at random from a large test
battery. That is, the values ψ1, . . . , ψk are drawn independently from the
distribution of some non-negative random variable, say E. In addition, we
shall assume that the variance of E−1 is finite. It follows by (5) and (6) that
the quantities ζ and Q depend on the number k of items drawn. One may
show that

lim
k→∞

ζ + 1

ζ − 1

Q

1 +Q
= 0. (9)
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It follows by (4) that the asymptotic variance of
√
n
(
ζ̂ − ζ

)
is approximated

by 2 (1 + ζ)2 for large k. Thus, the variance of ζ̂ depends on ζ, and this
dependence does not disappear when k tends to infinity. That is, the variance
of ζ̂ is not stable. As the variance is proportional to (1 + ζ)2 for k sufficiently
large, the theory of variance stabilizing transformations suggests the use of
ln
(
1 + ζ̂

)
for constructing confidence intervals.

It can be shown that

√
n

ln
(
1 + ζ̂

)
− ln (1 + ζ)√

2 + 2 ζ+1
ζ−1

Q
1+Q

→d N (0, 1) . (10)

Figure 2 illustrates that the standard normal distribution provides a far bet-
ter fit to the distribution of the left hand side of (10) than to the distribution
of the left hand side of (4).

It follows from (10) that

lim
n→∞

P

(
−z(1−γ)/2

s√
n
< ln

(
1 + ζ̂

1 + ζ

)
< z(1−γ)/2

s√
n

)
= γ,

which implies that

(
1 + ζ̂

)
exp

{
±z(1−γ)/2

s√
n

}
− 1

are the endpoints of an asymptotic 100γ% confidence interval for ζ. As ϕ is
a monotone function of ζ, we obtain that

1−
exp

{
±z(1−γ)/2

s√
n

}
1 + ζ̂

= 1− (1− ϕ̂) exp

{
±z(1−γ)/2

s√
n

}

are the endpoints of an asymptotic 100γ% confidence interval for ϕ. This
interval coincides with our stable interval in (8).

3 Illustration

In Wallsten and Budescu (1983) it is assumed that measures of subjective
uncertainty can be written as the sum of two independent random variables,
a fixed true measure and a variable error. Thus, if the subjective probability
of a given event is measured by different methods, then a tau-equivalent
model seems plausible.

In Ofir and Reddy (1996) the psychometric properties of three measures
of subjective uncertainty are investigated. The 117 respondents were asked
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StckP StckL StckC
StckP 638.790
StckL 562.214 620.501
StckC 509.735 501.765 619.956

Table 1: Covariance matrix of a zero-to-hundred subjective prob-
ability scale and two seven point rating scales measuring the sub-
jective probability of the event “The stock market will rise during
1991 by at least 10%”, compiled from Appendix A in Ofir and
Reddy (1996). There are 117 respondents.

to express the subjective probability of the event “The stock market will rise
during 1991 by at least 10%” on each of the following measurement scales:

StckP a seven-point “probable” rating scale with categories Highly Improba-
ble, Improbable, Somewhat Improbable, Equally Probable, Somewhat
Probable, Probable and Highly Probable;

StckL a seven-point “likelihood” rating scale with categories Very Unlikely,
Unlikely, Somewhat Unlikely, Equal Likelihood, Somewhat Likely, Likely,
Very Likely.

StckC a subjective probability scale ranging from zero to one hundred.

The rating scales StckP and StckL were transformed to 0-100 scales by using
the transformation 100(x − 1)/6, where x is the value on the seven-point
scale.

Table 1 reports the covariance matrix of these three measures of the
subjective probability of the event “The stock market will rise during 1991
by at least 10%.” Indeed, the tau-equivalent model fits the data [χ2 = 3.161,
df = 2, P = 0.206]. However, the parallel model is clearly rejected [χ2 =
14.679, df = 4, P = 0.005]. In the tau-equivalent model, the estimated true
variance is 541.563, and the estimated error variances are 72.454, 67.065 and
162.962. Thus,

StckP

72.454
+

StckL

67.065
+

StckC

162.962
is an estimate of the weighted composite of StckP, StckL and StckC yielding
maximal reliability.

The corresponding 95% confidence intervals for maximal reliability ϕ are
found in Table 2. Note that the Yuan-Bentler and the Raykov-Penev inter-
vals are symmetric around ϕ̂, whereas the stable and the unstable interval
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Interval Lower Upper
Unstable 0.9248181 0.9621855

YuanBentler 0.9330400 0.9663209
RaykovPenev 0.9325728 0.9667881

Stable 0.9299584 0.9638492

Table 2: Asymptotic 95% confidence intervals for maximal relia-
bility ϕ, derived from the data in Tabel 2. The estimator ϕ̂ takes
the value 0.9496805.

are not. Moreover, the Raykov-Penev interval contains the Yuan-Bentler in-
terval. The lower endpoint of the unstable interval is smaller than the lower
endpoint of the stable interval, which in turn is smaller than the lower end-
point of the Raykov-Penev interval. Similarly, the upper endpoint of the
unstable interval is smaller than the upper endpoint of the stable interval,
which in turn is smaller than the upper endpoint of the Raykov-Penev inter-
val.

4 Simulation results

The above illustration for actual data showed that there are differences be-
tween confidence intervals, but these do not necessarily have to be very large.
To further our understanding of the differences between the four confidence
bounds, we rely on simulation, to be discussed in this section.

In the simulations, we let k take the values 2, 3, 4, 5, 10, 15, and n take
the values 25, 50, 100, 200, 400. We expect that the simulation results largely
depend on the quantities µ1 and µ2, where

µ1 =
1

k

k∑
i=1

1

ψi
, µ2 =

1

k

k∑
i=1

(
1

ψi
− µ1

)2

. (11)

In order to be able to confirm this expectation, we generate the ψi’s using
various patterns. In particular, we choose

1

ψi
= a+ bg

(
i

k + 1

)
,

where g is one of the three following functions:

g1 (s) = s− 1
2
,

10



g2 (s) = s2 − 1
3
,

g3 (s) =

{
−1 for s < 1

2
,

+1 for s ≥ 1
2
,
.

Here a and b are chosen so as to satisfy (11) for given µ1 and µ2. Throughout
the simulations we set λ2 equal to 1. As µ1 = (1/k)

∑k
`=1 1/ψ`, we may show

that µ1 = (kλ2)−1ϕ/(1 − ϕ). In our simulations we set µ1 equal to values
which correspond to maximal reliability 0.60, 0.75, 0.90 and 0.95. Finally,
we set µ2 equal to 1

2
µ2

1, µ
2
1 and 2µ2

1.
First, we investigate the extent in which the standard normal approxi-

mations (10) and (4) are valid for small to moderate sample sizes n. As Fig-
ure 3 illustrates, these approximations are truly asymptotic in nature when
the number of test items k is equal to 2. When k = 3, the approximations
are reasonably accurate, except for the sample size n = 25. Recall that the
standard normal approximations (10) and (4) provide the probabilistic basis
for all confidence intervals discussed in this paper. Hence, in the remainder
of this section we shall restrict ourselves to situations in which k ≥ 3 and
n ≥ 50.

Next, we examine the simulated coverage curves of the four intervals. The
coverage of a confidence interval for a given hypothetical value of ϕ is defined
as the probability that this hypothetical value is contained in the interval.
The coverage curve is the curve that the coverage follows as the hypothetical
value of ϕ ranges through an interval of possible values of ϕ. The ideal shape
of the coverage curve is as follows:

• if the hypothetical value of ϕ equals the true value, then the coverage
should be equal to the confidence level;

• if the hypothetical value of ϕ differs from the true value, then the
coverage should be as low as possible. In particular, the coverage should
be lower than the confidence level.

There are various ways in which a coverage curve may deviate from the
ideal shape. In our examination of the performance of the confidence interval,
we shall in particular consider the unbiasedness of a confidence interval. A
confidence interval is called unbiased if for every hypothetical value of ϕ the
coverage of the interval does not exceed the coverage for the true value of ϕ.

If an interval is unbiased, the next issue to consider is whether the cov-
erage for the true value equals the confidence level. If this coverage is larger
than the confidence interval, the unbiased confidence interval is called conser-
vative; if this coverage is smaller than the confidence interval, the unbiased
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confidence interval is called anti-conservative. Being conservative is consid-
ered less harmful than being anti-conservative.

Statistical testing theory yields an alternative way to interpret coverage
curves. Note that for every confidence interval for ϕ, there exists a related
statistical test of the null hypothesis H0 : ϕ = ϕ0; this test does not reject the
null hypothesis if the hypothetical value ϕ0 lies inside the confidence interval,
and rejects the null hypothesis if the hypothetical value ϕ0 is outside the
confidence interval. Now, if the true value of ϕ differs from the hypothetical
value ϕ0, then the coverage of the hypothetical value ϕ0 is equal to the
probability of a type II error of the related statistical test of H0 : ϕ = ϕ0.
Thus, by subtracting the coverage curve from 1, we in fact obtain the power
curve of the related test. In fact, the description of the ideal shape of the
coverage curve given above is a direct translation of generally accepted rules
involving the ideal shape of the power curve.

Evaluating the coverage not only under the null hypothesis, but also under
the alternative hypothesis provides a much more comprehensive view of the
behaviour of the various confidence intervals.

The simulated coverage curves depend on the sample size n, the true value
of the maximal reliability ϕ, the number of items k and on the quantities µ1

and µ2.

• For fixed values of n, ϕ, k, µ1 and µ2, there is little difference between
the coverage curves.

• The sample size n has a positive effect on the performance of all confi-
dence intervals, see Figure 4. That is, the confidence intervals perform
better for large n.

• The true value of the maximal reliability has a positive effect on the
coverage of all confidence intervals, see Figure 5. That is, the cover-
age of the confidence intervals becomes higher when the true value of
ϕ approaches 1. If the true value of the maximal reliability is small,
the confidence intervals are anti-conservative. When the true value of
ϕ approaches 1, the coverage of the true value increases. As a result,
the anti-conservatism diminishes in most situations. However, in some
situations (especially k = 3) the anti-conservatism turns into conser-
vatism.

• The number of items k has a positive effect on the performance of all
confidence intervals, see Figure 6. That is, the confidence intervals
perform better for large k.
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The simulated coverage curves yield the following general findings with re-
spect to the differences in performance between the four confidence intervals.

• There is little difference between the Yuan-Bentler and the Raykov-
Penev interval. Both intervals show a positive bias, and thus overesti-
mate the the true maximal reliability.

• The unstable interval shows a negative bias, and thus underestimates
the true maximal reliability.

• Except for extreme conditions (that is, a combination of a small sample
size, a small number of items k and a high true value of the maximal
variability), the stable interval hardly shows any bias, and has a cover-
age for the true value which is approximately equal to the confidence
level.

Finally, we remark that we could not have detected the positive bias of
the Yuan-Bentler and the Raykov-Penev without the construction of coverage
curves, that is, evaluating the coverage under the null hypothesis as well as
under the alternative hypothesis. We highly recommend the use of coverage
curves in other studies on confidence intervals.

5 Conclusion

We have shown that a tau-equivalent model is plausible when measuring
subjective probabilities, which play an important role in marketing research.
To improve the reliability of the test we use a weighted sum of individual
item scores rather than an unweighted sum. In principle, the weights may
be chosen so as to obtain maximal reliability, and these optimal weights may
be estimated from the data.

Next, we discussed the issue of estimating the maximal reliability. We
stressed the use of confidence intervals rather than point estimators to assess
maximal reliability, as the additional information included in the interval al-
lows for a more critical assessment of the quality of the items as measurement
instruments of the underlying subjective probability.

We have derived two new confidence intervals for maximal reliability and
compared the performance of these intervals with earlier proposed intervals
in Yuan and Bentler (2002) and Raykov and Penev (2006). To compare these
intervals, we have used coverage curves, a methodology that seems new in
the field of reliability. That is, we have not only considered the coverage of
the true maximal reliability, but the coverage of hypothetical values which
differ from the true maximal reliability as well.
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It turns out that the Yuan-Bentler and the Raykov-Penev intervals are
closely related to each other. In fact, the Yuan-Bentler interval is always
contained in the alternative interval proposed in Raykov and Penev (2006).
Both intervals show a positive bias. Interestingly, the similarity in behaviour
of the two intervals is in contrast with the fierce criticism in Raykov and
Penev (2006) with regard to the Yuan-Bentler interval. Moreover, it seems
that the additional complexity of the Raykov-Penev interval does not pay off,
as a clear advantage of using this interval over the Yuan-Bentler is lacking.

We have also examined the performance of the two new intervals proposed
in this article. Though the unstable interval shows a considerable negative
bias, the stable interval performs considerably well. Except for extreme con-
ditions the stable interval hardly shows any bias, and has a coverage for the
true value which is approximately equal to the confidence level. This shows
the advantage of the use of a stabilization technique in constructing confi-
dence intervals. In further applications in marketing we therefore recommend
the use of this new stable confidence interval.

The advantage of stabilization should not only hold in the tau-equivalent
model. This raises the issue whether variance stabilization is of use in the
parallel model as well. In the parallel model an unstable interval is given in
van Zyl et al. (2000), see also Iacobucci and Duhachek (2003). It would be
interesting to compare those intervals using coverage curves.
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A Proofs

Proof of (4). The tau-equivalent model implies that the population covari-
ance matrix of Y1, . . . , Yk is given by

λ2ιιT + Ψ,

where ι is the k-dimensional vector with each element having value 1, and Ψ
the diagonal matrix with diagonal elements ψ1, . . . , ψk.

Let θ denote the k + 1-dimensional parameter vector (ψ1, . . . , ψk, λ
2)
T
,

and let θ̂ denote the maximum likelihood estimator of θ. It follows from the
theory of covariance structures, see (Browne, 1984; Kano et al., 1990), that

√
n
(
θ̂ − θ

)
→d Nk (0,Ω) , (12)

with

Ω =

(
Ωuu Ωuc

Ωcu Ωcc

)
.

Here, the 1× k matrix Ωuc and the k × 1 matrix Ωcu are given by

Ωuc = Ωcu
T = −Ωuu

(
k∑
`=1

(1/ψ`)

)−2

Ψ−2ι,

the 1× 1 matrix Ωcc is given by

Ωcc = 2

(
1 + ζ∑k

`=1 (1/ψ`)

)2

+

(
k∑
`=1

(1/ψ`)

)−4

ιTΨ−2ΩuuΨ
−2ι,

and the k × k matrix Ωuu is given by

Ωuu = 2Ψ
(
D + vvT

)−1
Ψ,

with

D =

(
I− 2λ2

1 + ζ
Ψ−1

)
, v =

λ2

ζ

√
ζ − 1

ζ + 1
Ψ−1ι. (13)

The Sherman-Morrison-Woodbury formula, see Hager (1989), yields(
D + vvT

)−1
= D−1 −

(
1 + vTD−1v

)−1
D−1vvTD−1.

It follows that

vTD−1v =
ζ − 1

ζ2

k∑
`=1

{λ2/ψ`}2

1 + ζ − 2λ2/ψ`
= Q. (14)

17



Now, note that we may view ζ as a function h of ψ1, . . . , ψk, λ
2. Define the

vector ḣ as (ḣTψ , ḣ
T
λ2)

T
, where

ḣψ =


∂h
∂ψ1
∂h
∂ψ2

...
∂h
∂ψk

 =


−λ2 (ψ1)

−2

−λ2 (ψ2)
−2

...

−λ2 (ψk)
−2

 = −λ2Ψ−2ι,

ḣλ2 =
∂h

∂λ2
=

k∑
`=1

1

ψ`
.

The delta method yields
√
n
(
ζ̂ − ζ

)
→d N

(
0, ḣTΩḣ

)
, (15)

with

ḣTΩḣ = (1 + ζ)2

{
2 + 2

ζ + 1

ζ − 1

vTD−1v

1 + vTD−1v

}
, (16)

where D and v are defined in (13). The combination of (14), (15) and (16)
yields (4). 2

Proof of (9). We have that the values 1/ψ1, . . . , 1/ψk are drawn indepen-
dently from the distribution of the non-negative random variable E−1, which
has finite variance. Hence, the limits

m1 = lim
k→∞

1

k

k∑
`=1

1

ψ`
, (17)

m2 = lim
k→∞

1

k

k∑
`=1

{
1

ψ`
− 1

k

k∑
i=1

1

ψi

}2

(18)

exist, and are finite. Moreover, one may show

lim
k→∞

max
i=1,...,k

1/ψi∑k
`=1 1/ψ`

= 0. (19)

It immediately follows from (17) that

lim
k→∞

1

k
ζ = m1.

Moreover, it follows from (17)–(19) that

lim
k→∞

1

k

k∑
`=1

{λ2/ψ`}2

1 + ζ − 2λ2/ψ`
= m2 + (m1)

2.

Now, (9) readily follows.
2
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Figure 1: Normal probability plot of simulated values of the left
hand side of (4) with k = 6, ϕ = 0.6, n = 25. The plot approaches
the line with intercept 0 and slope 1 only in the center, there is
a marked deviation in the tails.
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Figure 2: Normal probability plot of simulated values of the left
hand side of (10), with k = 6, ϕ = 0.6, n = 25. The plot
approaches the line with intercept 0 and slope 1, even in the
tails.
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Figure 3: Normal probability plot of simulated values of the left
hand side of (10), with k = 2, ϕ = 0.95, n = 400. Although the
sample size n is large, the plot clearly deviates from the line with
intercept 0 and slope 1.
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Figure 4: Coverage curves for ϕ = 0.90, k = 3 and n = 25, 50, 100, 200.
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Figure 5: Coverage curves for ϕ = 0.60, 0.75, 0.90, 0.95, k = 3 and n = 50.
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Figure 6: Coverage curves for ϕ = 0.90, k = 2, 3, 4, 5, 10, 15 and n = 50.
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