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Logarithmic residues and sums of idempotents

in the Banach algebra generated by the com-

pact operators and the identity

H. Bart, T. Ehrhardt and B. Silbermann

Abstract. A logarithmic residue is a contour integral of the (left or right)
logarithmic derivative of an analytic Banach algebra valued function. Loga-
rithmic residues are intimately related to sums of idempotents. The present

paper is concerned with logarithmic residues and sums of idempotents in the
Banach algebra generated by the compact operators and the identity in the
case when the underlying Banach space is in�nite dimensional. The situation

is more complex than encountered in previous investigations. Logarithmic
derivatives may have essential singularities and the geometric properties of
the Banach space play a role. The set of sums of idempotents and the set of

logarithmic residues have an intriguing topological structure.

1. Introduction

Let B be a complex Banach algebra with unit element. A logarithmic residue in B
is a contour integral of a logarithmic derivative of an analytic B-valued function F .
There is a left version and there is a right version of this notion. The left version

corresponds to the left logarithmic derivative F 0(�)F (�)�1 , the right version to

the right logarithmic derivative F (�)�1F 0(�).

The �rst to consider integrals of this type in a vector valued context, was L.

Mittenthal [Mi]. His goal was to generalize the spectral theory of a single Banach

algebra element (i.e., the case where F (�) = �e�b with b 2 B and e being the unit

element in B). He succeeded in giving suÆcient conditions for a logarithmic residue
to be an idempotent. The conditions in question, however, are very restrictive.

Logarithmic residues also appear in the paper [GS1] by I.C. Gohberg and

E.I. Sigal. The setting there is B = L(X) { the Banach algebra of all bounded

linear operators on a complex Banach space { and F is a Fredholm operator

valued function. For such functions Gohberg and Sigal introduced the concept of

algebraic (or null) multiplicity. It turns out that the algebraic multiplicity of F with

respect to a given contour is equal to the trace of the corresponding (left/right)

logarithmic residues (see also [BKL2] and [GGK]). For analytic matrix functions,

such a result was obtained in [MS].
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Further progress was made in [BES2]{[BES6]. In these papers, logarithmic

residues are studied from di�erent angles and perspectives. The issues dealt with

are of the following type.

Issue 1. If a logarithmic residue vanishes, does it follows that F takes invertible

values inside the integration contour?

This question was �rst posed in [B2]. The answer turns out to depend very much

on the underlying Banach algebra (see [BES2]). For certain important classes it is

positive, for other (equally relevant) classes it is negative. A positive answer is also

implied by the results obtained in [GS1] on the basis of the additional assumption

that the function F is Fredholm operator valued (cf. [BES5]).

Issue 2. What kind of elements are logarithmic residues?

Here a strong connection with (sums of) idempotents appears (see [BES1]). As is

the case for Issue 1, the answer here too depends on the Banach algebra under

consideration or on special properties of the function F (cf. [BES2]{[BES6]).

Issue 3. How about left versus right logarithmic residues?

In all situations where a de�nite answer could be obtained, the set of left logarith-

mic residues coincides with the set of right logarithmic residues. In some situations

it was possible to identify the pairs of left and right logarithmic residues associ-

ated with one single function F and the same integration contour. For details, see

[BES4]{[BES6].

Issue 4. What can be said about the topological properties of the set of logarithmic

residues?

When the underlying Banach algebra is commutative, this set is discrete but in

general it is not. For matrix and, more generally, Fredholm operator valued func-

tions, it was possible to identify its connected components. The results exhibit an

intriguing connection with Issue 3 (see [BES4] and [BES5]).

The present paper is concerned with logarithmic residues and sums of idem-

potents in the Banach algebra LC(X) generated by the compact operators and the

identity operator on a (complex) Banach space X . This important Banach subal-

gebra of L(X) has been touched upon in [BES2], Example 4.4, where Issue 1 was

already settled in an aÆrmative fashion. Here we study it in a more systematic

way, focusing on Issues 2, 3 and 4. There is an essential di�erence between the

case when the dimension of X is �nite and that where it is in�nite. The �rst case

(i.e., the matrix case B = C n�n ), has been studied in [BES4]. In this paper we

concentrate on the in�nite dimensional situation.

Let X be an in�nite dimensional complex Banach space, and let F be an

analytic function with values in the Banach algebra LC(X). This means that F

can be written in the form

F (�) = f(�)I + C(�)
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where f (the scalar part of F ) is an analytic scalar function and C (the compact

part of F ) takes compact values. Since X is in�nite dimensional, the functions f

and C are uniquely determined and F (�) is a Fredholm operator if and only if

f(�) 6= 0. We are now ready to give an outline of the paper.

Section 2 is partly of a preliminary nature in the sense that it contains de�ni-

tions and notations. Also it gives a somewhat sharpened formulation of the theorem

in [E] on the representation of sums of idempotents as logarithmic residues of entire

Banach algebra valued functions. The formulation is such that it is appropriate

for the application of the theorem in Sections 4 and 7. In another part, Section 2

deals with Issues 1 and 2 in the situation where the scalar part f of F has no zeros.

The values of F are then Fredholm operators and the results of [BES5] apply.

The rest of the paper is concerned with the case where f is allowed to have

zeros and F does take compact (non-Fredholm) values. This case is considerably

more complicated, as can already be guessed from the possible presence of essential

singularities for the logarithmic derivatives. In this connection, the reader is re-

minded of the role of the origin in the spectral theory of a single compact operator

T (i.e., the case where F (�) = �I � T ).

Section 3 deals with sums of idempotents in the Banach algebra LC(X) under

consideration. It is �rst observed that these idempotents are just the projections

on X for which either the range or the null space has �nite dimension. The sums

of idempotents of this type are then characterized in terms of conditions involving

ranks, traces and dimensions of null spaces. We also describe the closure of the set

of sums of idempotents. As a result the connected components of the set of sums

of idempotents in LC(X), of its closure and of the set of logarithmic residues in

LC(X) are identi�ed. The arguments depend crucially on the assumption that the

dimension of X is in�nite. The section ends with a remark about Issue 3 which

suggests that for the speci�c Banach algebra considered here, there is a connection

with Issue 4 too.

In Section 4, the study of sums of idempotents in the Banach algebra gener-

ated by the compact operators and the identity is continued. The sums of idem-

potents are now characterized as the logarithmic residues of those functions F for

which the values of the compact part C are �nite rank operators on X . In other

words, of analytic operator functions F with values in the subalgebra of LC(X)

generated by the identity and the �nite rank operators on X .

Section 5 is concerned with operator valued polynomials with compact non-

leading coeÆcients. It is proved that the logarithmic residues of such operator

polynomials are sums of idempotents in LC(X), i.e., sums of projections for which

either the range or the null space has �nite dimension. This generalizes a well

known theorem from the spectral theory of a single compact operator. The result

on operator polynomials is sharp in the sense that a counterexample is given

involving a monic operator polynomial of degree two for which precisely one of

the non-leading coeÆcients is non-compact. The example also shows that for the

Banach algebra LC(X), the set of sums of idempotents may be strictly contained
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in the set of logarithmic residues even when the underlying space X is a separable

Hilbert space.

In that case { more generally, when X has the approximation property (that

is: each compact operator on X is the limit of a sequence of �nite rank operators

on X) { the logarithmic residues do belong to the closure of the set of idempotents.

Without that additional condition on the underlying space X , this need not be

true. A counterexample is given in Section 6 which also contains some additional

observations on this issue.

Section 7 elaborates on the remark made at the end of Section 3. Its main

result contains a necessary and suÆcient condition in order that two bounded

linear operators on X can be represented as the left and right logarithmic residue

with respect to a given Cauchy domain D and one single function F of the type

studied in Section 4 (i.e., for which the values of the compact part C are �nite rank

operators on X). The condition is that after subtracting an appropriate multiple

of the identity operator, the resulting �nite rank operators should have the same

trace.

There are still several unresolved problems concerning logarithmic residues

in LC(X). Some of them will be indicated in Sections 3, 5 and 6 .

2. Preliminaries and �rst results

Throughout this section, B will be a (complex) Banach algebra with unit element.

If F is a B-valued function with domain �, then F�1 stands for the function

given by F�1(�) = F (�)�1 with domain the set of all � 2 � such that F (�)

is invertible. If � is an open subset of the complex plane C and F : � ! B is

analytic, then so is F�1 on its domain. The derivative of F will be denoted by F 0.

The left, respectively right, logarithmic derivative of F is the function given by

F 0(�)F�1(�), respectively F�1(�)F 0(�), with the same domain as F�1.

Logarithmic residues are contour integrals of logarithmic derivatives. To make

this notion more precise, we shall employ bounded Cauchy domains in C and their

positively oriented boundaries. For a discussion of these notions, see, for instance

[TL].

Let D be a bounded Cauchy domain in C . The (positively oriented) boundary

ofD will be denoted by @D. We write A@(D;B) for the set of all B-valued functions
F with the following properties: F is de�ned and analytic on a neighborhood of

the closure D = D [ @D of D and F takes invertible values on all of @D (hence

F�1 is analytic on a neighborhood of @D). For F 2 A@(D;B), one can de�ne the

contour integrals

LRleft(F ;D) =
1

2�i

Z
@D

F 0(�)F�1(�)d�; (1)

LRright(F ;D) =
1

2�i

Z
@D

F�1(�)F 0(�)d�: (2)
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The elements of the form (1) or (2) are called logarithmic residues in B. More

speci�cally, we call LRleft(F ;D) the left and LRright(F ;D) the right logarithmic

residue of F with respect to D.

It is convenient to introduce a local version of these concepts too. Given a

complex number �0, we let A(�0;B) be the set of all B-valued functions F with

the following properties: F is de�ned and analytic on an open neighborhood of �0
and F takes invertible values on a deleted neighborhood of �0. For F 2 A(�0;B),
one can introduce

LRleft(F ;�0) =
1

2�i

Z
j���0j=%

F 0(�)F�1(�)d�; (3)

LRright(F ;�0) =
1

2�i

Z
j���0j=%

F�1(�)F 0(�)d�; (4)

where % is a positive number such that both F and F�1 are analytic on an open

neighborhood of the punctured closed disc with center �0 and radius %. The orien-

tation of the integration contour j�� �0j = % is, of course, taken positively, that

is counterclockwise. Note that the right hand sides of (3) and (4) do not depend

on the choice of %. In fact, (3) and (4) are equal to the coeÆcient of (� � �0)
�1

in the Laurent expansion at �0 of the left and right logarithmic derivative of F

at �0; respectively. Obviously, LRleft(F ;�0), respectively LRright(F ;�0), is a left,

respectively right, logarithmic residue of F in the sense of the de�nitions given in

the preceding paragraph (take for D the open disc with radius % centered at �0).

We call LRleft(F ;�0) the left and LRright(F ;�0) the right logarithmic residue of

F at �0.

In certain cases, the study of logarithmic residues with respect to bounded

Cauchy domains can be reduced to the study of logarithmic residues with respect

to single points. The typical situation is as follows. Let D be a bounded Cauchy

domain, let F 2 A@(D;B) and suppose F takes invertible values on D except in a

�nite number of distinct points �1; : : : ; �n 2 D. Then

LRleft(F ;D) =

nX
j=1

LRleft(F ;�j); (5)

LRright(F ;D) =

nX
j=1

LRright(F ;�j): (6)

This occurs, in particular, when F�1 is meromorphic on D with a �nite number

of poles in D, a state of a�airs that we will encounter occasionally in what follows.

Sums of idempotents in a Banach algebra with unit element are always loga-

rithmic residues (cf. [BES2]). This is easy to see when one allows Cauchy domains

with an arbitrary number of connected components. Things are considerably more

complicated when the Cauchy domains are required to be connected. The following
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theorem, which is a conclusion of a result due to the second author [E], covers this

case. It is formulated here in a way appropriate for our needs later in this section.

A Banach algebra valued function is called entire when it is de�ned and

analytic on all of C . A pole is said to be simple when it has order one.

Theorem 2.1. Let B be a complex Banach algebra with unit element e and let

B0 be a subalgebra of B (possibly non-closed and not necessarily containing e).

Let p1; : : : ; pn be non-zero idempotents in B and let �1; : : : ; �n be distinct (but

otherwise arbitrary) points in C . Assume that for each j = 1; : : : ; n, either pj or

e� pj belongs to B0. Then there exists an entire function F : C ! B such that the

following is satis�ed:

(i) F takes invertible values on C , except in the points �1; : : : ; �n, where F
�1

has simple poles;

(ii) LRleft(F ;�j) = LRright(F ;�j) = pj for all j = 1; : : : ; n;

(iii) F admits a representation F (�) = f(�)e + F0(�), where f : C ! C and

F0 : C ! B are entire while, moreover, F0 takes its values in B0.
In case all idempotents p1; : : : ; pn belong to B0, the scalar function f can be chosen

to be constant with value 1.

The theorem is stated in terms of logarithmic residues at points. In combi-

nation with (5) and (6) it can be used to obtain results about logarithmic residues

with respect to bounded Cauchy domains. We shall apply Theorem 2.1 in a sit-

uation where e =2 B0. A decomposition of F into f and F0 as indicated in (iii) is

then unique.

Proof. Let p1; : : : ; pn be non-zero idempotents in B and let �1; : : : ; �n be distinct

(but otherwise arbitrary) points in C . By [E], there exists an entire B-valued
function F such that (i) and (ii) are satis�ed. The function F as constructed in [E]

is a (possibly non-commutative) product of 3n functions of the type e�p+�(�)p,

where p 2 fp1; : : : ; png and � is an entire scalar function. Now

e� p+ �(�)p = e+ (�(�) � 1)p = �(�)e + (1� �(�))(e � p)

and either p or e� p is in B0. So each of the functions in the product representing

F has the form �(�)e+�(�)q, where � and � are entire scalar functions and q 2 B0
is an idempotent. But then F can be written as a (non-commutative) product

F (�) =

3nY
k=1

�
�k(�)e+ �k(�)qk

�
involving entire scalar functions �k; �k and idempotents qk from B0. For � 2 C ,
write

f(�) =

3nY
k=1

�k(�); F0(�) = F (�)� f(�)e:
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Then f is an entire scalar function. Since B0 is a subalgebra of B and q1; : : : ; qn
belong to B0, the function F0 takes its values in B0 and is entire too. Thus (iii) is

satis�ed.

The last statement of the theorem follows by observing that, in case all

idempotents p1; : : : ; pn belong to B0, one can take �1(�) = � � � = �3n(�) = 1.

This paper is concerned with the special Banach algebra

LC(X) = f�I + C j � 2 C ; C 2 C(X)g :
Here X is a complex Banach space, C(X) denotes the set of all compact bounded

linear operators on X and I = IX is the identity operator on X . Recall that C(X)

is a closed ideal in L(X), the Banach algebra of all bounded linear operators on

X . Hence LC(X) is a Banach subalgebra of L(X) which contains C(X) as a closed

ideal. Note that LC(X) is inverse closed with respect to L(X). This can most easily

be seen from the formula (�I + C)�1 = ��1I � ��1C(�I + C)�1.

If X has �nite dimension n, then L(X), C(X) and LC(X) coincide and can

be identi�ed with C n�n . In [BES4] the logarithmic residues in this Banach algebra

are identi�ed as the sums of idempotent n� n matrices. Here we shall investigate

the Banach algebra B = LC(X) under the standing assumption that X is in�nite

dimensional.

Because of the in�nite dimensionality of X , the unit element I = IX of

LC(X) is not in C(X). Hence C(X) is a complemented closed subspace of LC(X)

of codimension 1. In fact, for T 2 LC(X) the representation T = �I + C with

� 2 C and C 2 C(X) is unique. Moreover, the mapping �I +C 2 LC(X) 7! � 2 C
is Banach algebra homomorphism with kernel C(X).

Let F : �! LC(X) where � is a subset of C . Then, as was already indicated

in the introduction, there exist unique functions f : � ! C and C : � ! C(X)

such that

F (�) = f(�)I + C(�); � 2 �:

We call f the scalar and C the compact part of F . If � is an open subset of C

and F is analytic on �, then so are f and C. Indeed, for each � in the domain �

of F , we obtain that f(�) is the canonical image of F (�) in LC(X)=C(X) where

this quotient algebra is identi�ed with C .

Recall that a bounded linear operator T : X ! X is said to be a Fredholm

operator if its null space KerT has �nite dimension and its range space ImT has

�nite codimension in X (and is therefore closed). The di�erence of the last and

the �rst number is called the index of T . It is well known that if A 2 L(X) is

invertible and C 2 C(X), then A + C is a Fredholm operator with index zero.

With F , f and C as is the preceding paragraph, we have that the set of zeros of

f in � coincides with the essential spectrum of F in �, i.e., with the set of all �

in � for which F (�) is not a Fredholm operator.

Now let D be a bounded Cauchy domain in C and F 2 A@(D;LC(X)). Write

f for the scalar part of F . Then f 2 A@(D; C ). Since X is in�nite dimensional and
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F takes invertible values on @D, the function f has no zeros on @D. Consequently,

f has only a �nite number of zeros (multiplicities counted) in D. The following

observation is rather basic.

Proposition 2.2. Let D be a bounded Cauchy domain in C , let F 2 A@(D;LC(X))

and let f be the scalar part of F . Write q for the number of zeros of f in D,

multiplicities counted. Then LRleft(F ;D)�qI and LRright(F ;D)�qI are compact.

In cases as these where it is immaterial whether one considers left or right

logarithmic residues, we allow ourselves to suppress the labels left and right. The

conclusion in Proposition 2.2 is then simply written as follows: Then LR(F ;D)�qI
is compact. As a rule, proofs will be given for the left version.

Proof. Let f and C be the scalar and compact part of F , respectively. Since

X is (assumed to be) in�nite dimensional, f does not vanish on the domain of

F�1, the set of all � in the domain of F such that F (�) is invertible. Writing

F (�) = f(�)G(�), we see that the function G, which is given by

G(�) = I +
1

f(�)
C(�);

is analytic and invertible on the domain of F�1, so on an open neighborhood of

the boundary @D. As f is a scalar function, it follows that the left logarithmic

derivative of F has the form

F 0(�)F�1(�) =
f 0(�)

f(�)
I +G0(�)G�1(�): (7)

Now observe that the function G(�)�I has compact values. Since C(X) is a closed

subspace of L(X), the same holds for the derivative G0(�)� I . It follows that the

left logarithmic derivative G0(�)G�1(�) is an analytic function on a neighborhood

of @D taking compact values. The statement for the left logarithmic residue of F

now follows by integrating the left logarithmic derivative of F given in the form (7)

along @D. Mutatis mutandis, the same argument works for the right logarithmic

residue.

Theorem 2.3. Let D be a bounded Cauchy domain in C and let F 2 A@(D;LC(X)).

Write F in the form

F (�) = f(�)I + C(�);

with f and C the scalar and the compact part of F , respectively. Then the following

statements are equivalent:

(i) F is Fredholm operator valued on D;

(ii) f has no zeros in D;

(iii) LR(F ;D) is compact;

(iv) LR(F ;D) is of �nite rank;

(v) LR(F ;D) has �nite rank and rankLR(F ;D) � traceLR(F ;D) 2 Z;
(vi) LR(F ;D) is a sum of �nite rank projections on X;

(vii) LR(F ;D) is a sum of rank one projections on X.
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A projection on X is an idempotent bounded linear operator on X .

Proof. Clearly, (vii))(vi) and (v))(iv))(iii). The implication (vi))(v) follows

from the additivity of the trace, the subadditivity of the rank and the fact that

for projections rank and trace coincide. From the observations made in Section

2, it is obvious that (ii))(i). For various proofs of the (non-trivial) implications

(i))(v))(vii), we refer to [BES4] and [BES5] (cf. also [HP] and [Wu] for the

implication (v))(vii) in the matrix case). It remains to show that (iii) implies

(ii). Let q be the number of zeros (multiplicities counted) of f in D. According to

Proposition 2.2, we have that LR(F ;D)�qI is compact. By assumption, LR(F ;D)

is compact. Hence qI is compact. Since X is in�nite dimensional, this can only

happen when q = 0 which means that f has no zeros in D.

In the situation of Theorem 2.3 and when the (equivalent) conditions

(i){(vii) are satis�ed, the trace of the �nite rank operator LR(F ;D) is equal to the

total algebraic multiplicity of F with respect to D. In other words, it is equal to

the number of zeros of F in D counted according to their algebraic multiplicities.

Here the notion of algebraic (or null) multiplicity is taken in the sense of [GS1]

(cf. [BKL2] and [GGK]). The following corollary is now immediate, taking into

account that LC(X) is an inverse closed Banach subalgebra of L(X).

Corollary 2.4. Let D be a bounded Cauchy domain in C , let F 2 A@(D;LC(X))

and suppose LR(F ;D) = 0. Then F takes invertible values on all of D.

There are proofs of this result not using the notion of algebraic multiplicity.

Indeed, if LR(F ;D) = 0, then Theorem 2.3 guarantees that the function F is

Fredholm operator valued onD and one can apply [BES2], Theorem 3.1, or [BES5],

Corollary 3.3. The proof of [BES2], Theorem 3.1, is an application of the state

space method in analysis (cf. [BGK1] and [BGK2]); that of [BES5], Corollary 3.3,

is based on a factorization result for the function F , partly contained in and partly

inspired by [T] and [GS2]. For still another argument, see [BES2], Example 4.4,

where a connection is made with Banach algebras of a speci�c type introduced by

S. Roch and B. Silbermann [RS].

Corollary 2.5. The Banach algebra LC(X) has only non-trivial zero sums of idem-

potents.

Thus, if P1; : : : ; Pn are idempotents in LC(X) and P1 + � � � + Pn = 0, then

Pj = 0 for all j = 1; : : : ; n.

Proof. Combine Corollary 2.3 with [BES2], Theorem 5.1.

A more direct proof will be given in the next section where we study sums

of idempotents in LC(X).

Corollary 2.5 makes it possible to introduce a partial ordering on the set of

idempotents in LC(X). For S1 and S2 sums of idempotents in LC(X), we write

S1 � S2 if S2 � S1 is again a sum of idempotents in LC(X). A straightforward
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argument shows that � is a partial ordering indeed. In Section 5, this partial

ordering will be used to clarify the situation with respect to logarithmic residues

of operator polynomials with compact non-leading coeÆcients.

3. The set of sums of idempotents in LC(X): characterization and

topological properties

We now turn to the study of sums of idempotents in the Banach algebra LC(X),

where X is again an in�nite dimensional (complex) Banach space. An idempotent

in LC(X) is a fortiori an idempotent in L(X). In other words, the idempotents in

LC(X) are projections on X . Recall that a projection on X is compact if and only

if it is of �nite rank.

Proposition 3.1. The idempotents in LC(X) are the projections on X for which

either the range or the null space has �nite dimension.

In other words, P 2 LC(X) is an idempotent if and only if either P itself or

the complementary projection I � P is a �nite rank projection on X .

Proof. Suppose P is an idempotent in LC(X) and write P = �I + C with � 2 C
and C 2 C(X). Now

�I + C = (�I + C)2 = �2I + 2�C + C2; (8)

so �(� � 1)I is compact. Since X is in�nite dimensional, it follows that � = 0 or

� = 1. In case � = 0, the identity (8) reduces to C2 = C. But then P = C is a

compact projection on X , hence of �nite rank. In the situation where � = 1; we

have I � P = �C and the identity (8) becomes C2 = �C; thus I � P = �C is a

compact and therefore a �nite rank projection on X .

It is now possible to give a very simple and direct proof of Corollary 2.5.

Suppose we have a zero sum of idempotents in LC(X). Then there exist non-

negative integers n and m and �nite rank projections P1; : : : ; Pn+m on X such

that

nX
j=1

(I � Pj) +

n+mX
j=n+1

Pj = 0: (9)

Clearly, nI is of �nite rank and, as X is in�nite dimensional, it follows that n = 0.

But then (9) comes down to

mX
j=1

Pj = 0:

Taking traces and using that for �nite rank projections trace and rank coincide,

we see that Pj = 0 for all j = 1; : : : ;m. This concludes the argument.
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From Proposition 3.1 we see that a bounded linear operator S on X is a sum

of idempotents in LC(X) if and only if it can be written in the form

S =

nX
j=1

(I � Pj) +

n+mX
j=n+1

Pj = nI �
0@ nX

j=1

Pj �
n+mX
j=n+1

Pj

1A (10)

with n and m non-negative integers and P1; : : : ; Pn+m �nite rank projections on

X . Motivated by the last part of (10), we consider the set P(X) of all bounded

linear operator on X of the form T = V �W where V and W are sums of �nite

rank projections on X . The operators in P(X) are of �nite rank and therefore

belong to LC(X).

For given n = 0; 1; 2; : : : , let Pn(X) be the set of all operators T on X that

can be written as

T = �
0@ nX

j=1

Pj �
n+mX
j=n+1

Pj

1A (11)

withm a (non-�xed) non-negative integer and P1; : : : ; Pm+n �nite rank projections

on X . Clearly P0(X) � P1(X) � P2(X) � : : : and P(X) is the union of the sets

Pn(X). Write S(X) for the set of sums of projections on X with �nite dimensional

null space or range. In other words, S(X) is the set of sums of idempotents in

LC(X). Clearly, a bounded linear operator S on X belongs to S(X) if and only

if it can be written in the form S = nI + T with n a non-negative integer and

T 2 Pn(X). Since X is in�nite dimensional, the non-negative integer n in this

expression is uniquely determined by S. So,

S(X) =

1[
n=0

n
nI + T j T 2 Pn(X)

o
(12)

and this union is disjoint.

This discussion suggests that we deal with the sets Pn(X) �rst. We begin by

considering P0(X). By de�nition, this is the set of sums of �nite rank projections

or { what amounts to the same { the set of sums of rank one projections on X . For

� = 0; 1; 2; : : : , let P0;� (X) denote the set of all T 2 P0(X) for which traceT = � .

Obviously, P0(X) is the disjoint union of the sets P0;� (X).

The following result is Theorem 4.3 from [BES5], slightly reformulated (cf.

also the earlier papers [HP]and [Wu] for the matrix case). As before, X will be an

in�nite dimensional complex Banach space.

Proposition 3.2. The following statements are true:

(i) P0(X) consists of all �nite rank operators T on X for which

rankT � traceT 2 Z;
(ii) The sets P0(X) and P0;� (X) are closed subsets of LC(X)and have empty

interior;
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(iii) The zero operator on X is the unique isolated point of P0(X); in fact, for

non-zero � , the set P0;� (X) has no isolated points;

(iv) For � and � non-negative integers, not both zero,

dist (P0;� (X);P0;�(X)) � j� � �j
� + �

where the left hand side in this inequality stands for the distance between

P0;� (X) and P0;�(X);

(v) The (arcwise) connected components of P0(X) are the (di�erent) sets

P0;� (X); � = 0; 1; 2; : : : .

It is worthwhile to note that the trace is a continuous function on P0(X).

For a proof of this (and an even more general result), see [BES5].

Next we turn to Pn(X) for n � 1, thereby distinguishing between the cases

n = 1 and n � 2. The closure of the set of �nite rank operators in L(X) will be

denoted by CF(X). Note that CF (X) is a (closed) ideal in L(X) and LC(X), which

is contained in C(X). For many important Banach spaces X , the ideals CF(X) and

C(X) coincide.

Proposition 3.3. The following statements are true:

(i) P1(X) consists of all �nite rank operators T on X for which

� dimKer(I + T ) � traceT 2 Z;
(ii) P1(X) has empty interior and no isolated points;

(iii) P1(X) is arcwise connected;

(iv) P1(X) is not closed; its closure coincides with CF (X) and is a connected

(even convex) subset of LC(X).

With regard to (i) we note that the dimension of Ker(I + T ) is �nite and

equal to the codimension of Im(I + T ) in X . Indeed, as T is of �nite rank, I + T

is a Fredholm operator of index zero.

Proposition 3.4. The following statements are true:

(i) Pn(X) = P2(X) = P0(X)�P0(X) = P(X) for all n = 2; 3; 4 : : : ;

(ii) P(X) consists of all �nite rank operators T on X for which traceT 2 Z;
(iii) P(X) has empty interior and no isolated points;

(iv) P(X) is arcwise connected;

(v) P(X) is not closed; its closure coincides with CF (X) and is a connected

(even convex) subset of LC(X).

It is convenient to prepare for the proofs of Propositions 3.3 and 3.4 with a

lemma. In this lemma the (standing) assumption that X is in�nite dimensional is

essential.

Lemma 3.5. Let V be a subset of CF(X) containing all �nite rank operators on X

with zero trace. Then V is arcwise connected.
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An immediate consequence is that V is dense in CF (X).

The lemma can be reformulated as follows: Given A 2 CF (X), there exists a

continuous function � : [0; 1]! L(X) such that

(i) For all t in the half open interval [0; 1), the operator �(t) has �nite rank

and zero trace;

(ii) �(0) = 0 and �(1) = A.

Proof. Take A in CF(X) and let A1; A2; A3; : : : be a sequence of �nite rank oper-

ators on X converging to A. For n = 1; 2; 3; : : : , put �n = traceAn and let mn be

a positive integer larger than n2�2
n
. From [KS] { see also [Wo], Ch.3.B { we know

that there exists a projection Pn on the (in�nite dimensional) Banach space X

such that tracePn = rankPn = mn and kPnk � p
mn. Introduce

Bn = An � �n

mn

Pn:

Then traceBn = 0 and Bn ! A for n!1.

We now de�ne � : [0; 1] ! L(X) as follows. First we put �(1) = A, so that

the second part of (ii) in the reformulation of the lemma is met. Next we de�ne �

on the half open intervals�
1� 1

2k�1
; 1� 1

2k

�
; k = 1; 2; 3 : : : : (13)

The de�nition is

�

�
1� 1 + x

2k

�
= xBk�1 + (1� x)Bk ; x 2 (0; 1]; k = 1; 2; 3 : : : ;

where B0 = 0. Then �(1� 1
2k�1

) = Bk�1 for k = 1; 2; 3; : : : ; in particular �(0) =

B0 = 0. Thus (ii) is satis�ed. Clearly, (i) holds too. It remains to prove that � is

continuous.

Taking limits (from the left) in the right end points of the intervals (13), one

sees that � is continuous on the half open interval [0; 1). To deal with the right

end point of the interval [0; 1], we note that, for k = 1; 2; 3 : : : and x 2 (0; 1],

�

�
1� 1 + x

2k

�
�A = x(Bk�1 �A) + (1� x)(Bk �A):

Hence, for k = 1; 2; 3 : : : ,

k�(t)�Ak � kBk�1 �Ak+ kBk �Ak; 1� 1

2k�1
� t < 1� 1

2k
:

But then �(t)! A for t! 1 (from the left), and the proof is complete.

Proof of Proposition 3.3. Let T 2 P1(X) and write T as

T = S � P0; S =

mX
j=1

Pj



14 H. Bart, T. Ehrhardt and B. Silbermann

with P0; : : : ; Pm projections of �nite rank (see (11)). Taking traces and using that

for �nite rank projections trace and rank coincide, we see that the trace of T is an

integer.

To prove that traceT is larger than or equal to � dimKer(I + T ), we argue

as follows. With respect to an appropriately chosen decomposition X = eX � bX;

involving a �nite dimensional subspace eX of X and a closed subspace bX of X , the

�nite rank projections P0; : : : ; Pm have the form

Pj =

� ePj 0
0 0

�
:

Here the restrictions eP0; : : : ; ePm to eX of P0; : : : ; Pm, respectively, are projections

on eX . Now

T =

� eT 0

0 0

�
;

where

eT = eS � eP0; eS =

mX
j=1

ePj ;
Clearly, traceT = trace eT and dimKer(I + T ) = dimKer(eI + eT ), where eI is the

identity operator on eX. So it is suÆcient to consider eT and eS in place of T and

S. This has the advantage that the underlying space eX has �nite dimension. Put

d = dim eX. Then we get from eI + eT = eS + eI � eP0 that
d� dimKer(eI + eT ) = rank(eI + eT )

� rank eS + rank(eI � eP0)
= rank eS + d� rank eP0

and so � dimKer(eI + eT ) � rank eS � rank eP0. Now eS is a sum of (�nite rank)

projections on eX, hence rank eS � trace eS. It follows that
� dimKer(eI + eT ) � trace eS � rank eP0 = trace(eS � eP0) = trace eT ;

as desired.

Conversely, assume T has �nite rank, integer trace and

� dimKer(I + T ) � traceT:

Write eX = Ker(I +T ). Since I + T is a Fredholm operator (of index zero), eX is a

�nite dimensional space. Let bX be a closed complement of eX in X . With respect

to the decomposition X = eX � bX , the operator T has the form

T =

 
�eI A
0 bT

!
with eI the identity operator on eX, bT 2 L( bX) and A : bX ! eX a bounded lin-

ear operator. Obviously, along with T , the operator bT has �nite rank. Moreover
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traceT = �d+trace bT , where d = dim eX = dimKer(I+T ). It follows that trace bT
is a non-negative integer. Besides bT , the operator A, having its range in eX, is of

�nite rank as well. Hence KerA\Ker bT is a closed subspace of bX with �nite codi-

mension in bX. Let bP be a projection of bX along KerA\Ker bT . Then bP is of �nite

rank, A = A bP and bT = bT bP . De�ne the �nite rank projection P on X = eX � bX
by

P =

 eI 0

0 bP
!
:

We claim that T + P is a sum of �nite rank projections on X , in other words

T + P 2 P0(X). This is the argument.

From

T + P =

�
0 A

0 bT + bP
�
=

 
0 A bP
0 bT bP + bP

!
=

�
0 A

0 bT + bI
��

0 0

0 bP
�
;

where bI is the identity operator on bX, it is clear that T + P has �nite rank not

exceeding that of bP . Further
trace(T + P ) = trace( bT + bP ) = trace bT + trace bP = trace bT + rank bP :

Now trace bT is a non-negative integer, so we may conclude that T +P has integer

trace and

trace(T + P ) � rank bP � rank(T + P ):

Thus T + P 2 P0(X) as desired. This �nishes the proof of (i).

The trace takes only integer values on P1(X). Hence P1(X) has empty interior

(in the topological space LC(X)). This covers the �rst part of (ii). From (i) it is

clear that P1(X) contains all �nite rank operators on X with zero trace. The

second part of (ii), (iii) and the �rst part of (iv) now follow from Lemma 3.5. As

the second part of (iv) is obvious, the proof is complete.

Proof of Proposition 3.4. Mutatis mutandis, the argument for (iii), (iv) and (v) is

the same as that for (ii), (iii) and (iv) of Proposition 3.4. Note that again Lemma

3.5 { valid only in an in�nite dimensional context { is used. It remains to establish

(i) and (ii). For this, we argue as follows.

Take n � 2. Then, as we observed already, P2(X) � Pn(X). From the de�ni-

tions it is clear that Pn(X) � P0(X)�P0(X) = P(X). If T belongs to the latter

set, then T is of �nite rank and it follows from Proposition 3.2(i) and the linearity

of the trace that traceT is an integer. Now suppose that T ful�lls these conditions

on the rank and the trace by assumption. We shall prove that T 2 P2(X). With

this (i) and (ii) is established.

Let r be the largest of the integers 0 and rankT � traceT . Then r is a non-

negative integer and rankT � r + traceT . Choose a projection of X having rank

(and hence also trace) equal to r. Note that the possibility to do this { regardless
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of the value of r { stems from the in�nite dimensionality of X . Put H = T + 2P .

Then H has integer trace. Also

rankH � r + rankT � 2r + traceT = traceH:

So H 2 P0(X) on account of Proposition 3.2(i). Hence T = H � 2P 2 P2(X), as

desired.

Elaborating on Propositions 3.2{3.4, we note that

P0(X) � P1(X) � P2(X) = P3(X) = � � � = P(X) = P0(X)�P0(X) (14)

and that the two inclusions in (14) are strict. In fact, P1(X)�P0(X) consists of

all �nite rank operators T on X for which traceT is an integer satisfying

� dimKer(I + T ) � traceT < rankT

and P2(X)�P1(X) is the set of all �nite rank operators T on X such that traceT

is an integer and

traceT < � dimKer(I + T ):

So, for instance, when Q is any non-zero �nite rank projection on X , then �Q 2
P1(X)�P0(X) and �2Q 2 P2(X)�P1(X).

We now return to S(X), the set of sums of idempotents in LC(X). To facilitate

the discussion, we rewrite (12) as

S(X) =

1[
n=0

Sn(X); (15)

where Sn(X) = fnI + T j T 2 Pn(X)g. Recall that the union in (15) is disjoint.

In fact, for n and m non-negative integers,

dist (Sn(X);Sm(X)) = jn�mj : (16)

the left hand side in this identity standing for the distance of Sn(X) and Sm(X).

To prove (16), we argue as follows. As X is in�nite dimensional, there are no �nite

rank operators T on X such that kT � Ik < 1. This implies that the right hand

side of (16) does not exceed the left hand side. On the other hand it is obvious

that the left hand side of (16) does not exceed the right hand side, for nI 2 Sn(X)

and mI 2 Sm(X).

Since S0(X) = P0(X), the identity (15) can be rewritten as

S(X) =

 
1[
�=0

P0;� (X)

!
[
 

1[
n=1

fnI + T j T 2 Pn(X)g
!

which, with the help of Propositions 3.3 and 3.4, can be transformed into

S(X) =

 
1[
�=0

P0;� (X)

!
[ fI + T j T 2 P1(X)g [

 
1[
n=2

fnI + T j T 2 P(X)g
!
:
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To make the picture complete, we mention that, for n = 1; 2; 3 : : : ,

dist (Sn(X);P0;� (X)) = n:

This one veri�es without diÆculty, using that for each T in P0;� (X), the operator

nI + T belongs to Sn(X) = fnI + T j T 2 Pn(X)g.
The next result is now an immediate consequence of Propositions 3.2{3.4.

Theorem 3.6. A bounded linear operator S on X is a sum of idempotents in LC(X)

if and only if one of the following three mutually exclusive conditions is satis�ed:

(i) S is a sum of �nite rank projections or { what amounts to the same { rank

one projections on X; equivalently, S has �nite rank and

rankS � traceS 2 Z;
(ii) S � I has �nite rank and

� dimKerS � trace(S � I) 2 Z;
(iii) There exists an integer n, n � 2, such that S � nI has �nite rank and

integer trace; equivalently, there exists an integer n, n � 2, such that

S � nI is the di�erence of two operators on X that both can be written as

sums of �nite rank projections on X.

Moreover, the zero operator on X is the unique isolated point of S(X), and S(X)

has empty interior. Finally, the (arcwise) connected components of S(X) are the

(di�erent) sets P0;� (X) and Sn(X), where � = 0; 1; 2 : : : and n = 1; 2; 3; : : : .

A few comments are in order. The conditions (i){(iii) are mutually exclusive,

indeed. This corresponds to the fact that the union in (12), written also as (15),

is disjoint. With regard to (ii) we note that, since in this case S is a Fredholm

operator of index zero, the dimension of KerS is �nite and equal to the codimension

of ImS in X . For operators on �nite dimensional spaces, the conditions (i) and

(ii) would amount to the same: in that situation trace(S � I) = traceS � d and

� dimKerS = rankS� d. For underlying �nite dimensional spaces, condition (iii)

would mean nothing else than that traceS is an integer. So the validity of (iii)

depends crucially on the assumption that X is in�nite dimensional.

In this paper, we are concerned not only with sums of idempotents, but

also with logarithmic residues in LC(X). Therefore, as we shall soon see, it is also

relevant to look at the closure S(X) of S(X). From (15) and (16), one immediately

derives that

S(X) =

1[
n=0

Sn(X)

and

dist
�
Sn(X);Sm(X)

�
= jn�mj :
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Now Sn(X) = fnI+T j T 2 Pn(X)g. It follows from Propositions 3.3 and 3.4 that

Sn(X) = fnI + T j T 2 CF (X)g, n = 1; 2; 3 : : : , where, as before, CF (X) stands

for the closure of the ideal of all �nite rank operators on X . Also, P0(X) is closed,

so S0(X) = S0(X) = P0(X). Thus

S(X) = P0(X) [
1[
n=1

fnI + T j T 2 CF (X)g

=

 
1[
�=0

P0;� (X)

!
[
 

1[
n=1

fnI + T j T 2 CF(X)g
!
:

For completeness we note that, for n = 1; 2; 3 : : : and � = 0; 1; 2 : : : ,

dist
�
Sn(X);P0;� (X)

�
= n:

The following theorem is now obvious.

Theorem 3.7. A bounded linear operator S on X belongs to the closure S(X) of

the set S(X) of sums of idempotents in LC(X) if and only if one of the following

two mutually exclusive conditions is satis�ed:

(i) S is a sum of �nite rank projections or { what amounts to the same { rank

one projections on X; equivalently, S has �nite rank and

rankS � traceS 2 Z;
(ii) There exists an integer n; n � 1; such that S � nI 2 CF(X), i.e., S � nI

is a limit of �nite rank operators on X.

Moreover, the zero operator on X is the unique isolated point of S(X) and S(X)

has empty interior. Finally, the (arcwise) connected components of S(X) are the

(di�erent) sets P0;� (X) and fnI + T j T 2 CF(X)g, where � = 0; 1; 2 : : : and n =

1; 2; 3; : : : .

Note that the sets fnI + T j T 2 CF (X)g are even convex.

We now make a �rst connection with logarithmic residues. This connection

will be further elaborated on in the subsequent sections.

To facilitate the discussion, we introduce LRC(X) as the set of all logarithmic

residues in LC(X). Thus L 2 LRC(X) if and only if there exist a bounded Cauchy

domain D in C and a function F 2 A@(D;LC(X)) such that L = LR(F ;D).

Recall from the paragraph between Proposition 2.2 and its proof that we can read

L = LR(F ;D) as the left but also as the right variant of the logarithmic residue.

So there is a left version and a right version of LRC(X). We do not yet know

whether these two versions coincide. A positive answer would be in line with the

results obtained in [BES4] and [BES5].

In each complex Banach algebra (with unit element), the sums of idempotents

are logarithmic residues (cf. [BES2] and [E]). As a particular case of this result we

have S(X) � LRC(X). This inclusion may be strict and, in general, LRC(X) need
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not even be contained in S(X) (see Examples 5.4 and 6.3 below). The inclusion

LRC(X) � S(X) does hold, however, when X has the approximation property, by

which we mean here that C(X) = CF (X), that is: each compact operators on X

is the limit of a sequence of �nite rank operators on X . This follows immediately

from Proposition 2.2, Theorem 2.3 and Theorem 3.7 (cf. also Theorem 6.1 below).

In the remainder of this section, we will assume that the Banach space X has

the approximation property. Then we can rewrite the expressions for S(X) given

just before Theorem 3.7 as

S(X) =

 
1[
�=0

P0;� (X)

!
[
 

1[
n=1

fnI + T j T 2 C(X)g
!
: (17)

For n = 0; 1; 2 : : : , let LRC;n(X) be the set of all logarithmic residues L such that

L � nI 2 C(X). In view of Theorem 2.3, we have LRC;0(X) = P0(X) = S0(X).

Combining this with Proposition 2.2, one gets

LRC(X) =

1[
n=0

LRC;n(X)

= P0(X) [
1[
n=1

LRC;n(X)

=

 
1[
�=0

P0;� (X)

!
[
 

1[
n=1

LRC;n(X)

!
and these unions are disjoint. In fact,

Sn(X) � LRC;n(X) � Sn(X); n = 0; 1; 2 : : :

(where the second inclusion is based on the present assumption that X has the

approximation property), and hence

dist (LRC;n(X);LRC;m(X)) = jn�mj ; n;m = 0; 1; 2 : : :

dist (LRC;n(X);P0;� (X)) = n; n; � = 0; 1; 2 : : :

while, as we saw already in Proposition 3.2,

dist (P0;� (X);P0;�(X)) � � � �

� + �
; �; � = 0; 1; 2 : : : ; � > �:

From Proposition 2.2 we also see that if a logarithmic residue L is given in the

form (1), i.e.,

L = LRleft(F ;D) =
1

2�i

Z
@D

F 0(�)F�1(�)d�;

then L belongs to LRC;n(X) if and only if the scalar part f of F has precisely n

zeros in the Cauchy domain D, multiplicities counted. The analogous remark for

right logarithmic residues (i.e., those of the form (2)) is, of course, valid too.
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Theorem 3.8. Suppose X has the approximation property. Then LRC(X) � S(X),

the zero operator on X is the unique isolated point in LRC(X), and LRC(X) has

empty interior. Moreover, the (arcwise) connected components of LRC(X) are the

(di�erent) sets P0;� (X) and LRC;n(X), where � = 0; 1; 2 : : : and n = 1; 2; 3; : : : .

Proof. Given the remarks made prior to the theorem, we only need to show that,

for n = 1; 2; 3; : : : , the set LRC;n(X) is arcwise connected. Put

Vn = fT � nI j T 2 LRC;n(X)g :
Since Sn(X) � LRC;n(X), we have Pn(X) � Vn. In particular, LRC;n(X) contains

all �nite rank operators on X with zero trace (see Propositions 3.3 and 3.4). By

assumption, X has the approximation property, that is C(X) = CF(X). So, as

observed already above, LRC;n(X) � Sn(X) = fnI + T j T 2 CF (X)g. Hence Vn
is a subset of CF(X). Now apply Lemma 3.5.

Theorem 3.8 remains true when LRC(X) is thought of as the set of all log-

arithmic residues in LC(X) { left or right { and LRC;n(X) is de�ned accordingly.

In that case, for each bounded Cauchy domain D and each F 2 A@(D;LC(X)),

the logarithmic residues

LRleft(F ;D) =
1

2�i

Z
@D

F 0(�)F�1(�)d�

and

LRright(F ;D) =
1

2�i

Z
@D

F�1(�)F 0(�)d�

belong to the same connected component of LRC(X). This is clear from Proposi-

tion 2.2 and the results obtained in [BES5], Section 5. Since these components are

arcwise connected, this amounts to saying that LRleft(F ;D) and LRright(F ;D)

can be connected via a continuous curve lying completely inside LRC(X).

It is an open question whether or not two operators L and R from LRC(X)

that can be connected via a continuous curve lying completely inside LRC(X) can

be written in the form L = LRleft(F ;D) and R = LRright(F ;D) for a suitable (or

given) Cauchy domain D and F 2 A@(D;LC(X)). A positive answer would be in

line with results obtained in [BES4] and [BES5]. A partial solution, dealing with

the type of functions considered in the next section, will be given in Section 7.

4. Sums of idempotents in LC(X): a characterization as logarithmic

residues

We continue the study of sums of idempotents in the Banach algebra LC(X),

elaborating on the connection with logarithmic residues. Notations are as before

and { as all the time in this paper { the Banach space X is assumed to be in�nite

dimensional.

We shall now prove that the set S(X) of sums of idempotents in LC(X)

coincides with the set of logarithmic residues of functions taking their values in
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the subalgebra of LC(X) generated by the identity operator and the �nite rank

operators on X .

Theorem 4.1. Let D be a bounded Cauchy domain in C and let S be a bounded lin-

ear operator on the in�nite dimensional Banach space X. The following statements

are equivalent:

(i) S is a sum of idempotents in L(X), in other words S 2 S(X);

(ii) S is the left logarithmic residue with respect to D of a function F in

A@(D;LC(X)) whose values on D belong to the subalgebra of LC(X) gen-

erated by the identity operator and the �nite rank operators on X;

(iii) S is the right logarithmic residue with respect to D of a function F in

A@(D;LC(X)) whose values on D belong to the subalgebra of LC(X) gen-

erated by the identity operator and the �nite rank operators on X.

In this result the Cauchy domain D is given. It may or may not be connected.

In connection with this, we note that the proof of the implications (i))(ii) and

(i))(iii) will provide additional information about the freedom one has in choosing

the function F . Among other things it will become clear that F can always be

chosen to be an entire function such that F�1 has only a �nite number of poles

which are all simple.

We prepare for the proof with the following simple lemma in which B is a

complex Banach algebra with unit element and �0 is a complex number.

Lemma 4.2. Let F 2 A(�0;B) and assume F�1 has a pole at �0 of (positive)

order p. Let G be a B-valued function which is de�ned and analytic on an open

neighborhood of �0, and suppose that F �G has a zero at �0 of order at least 2p.

Then G 2 A(�0;B), G�1 has a pole at �0 of order p and LR(F ;�0) = LR(G;�0).

The logarithmic residues LR(F ;�0) and LR(G;�0) are the coeÆcients of the

term (� � �0)
�1 in the Laurent expansion at �0 of the appropriate left or right

logarithmic derivative of F or G. In fact, as we shall see, under the assumptions

of the lemma, the principal parts of the Laurent expansion at �0 of the left,

respectively right, logarithmic derivatives of F and G coincide.

Proof. We denote the unit element in B by e. For � in a deleted neighborhood

of �0, put H(�) = e � (F (�) � G(�))F�1(�) and write H(�0) = e. Then H is

analytic on a neighborhood of �0 and the function H(�) � e has a zero at �0 of

order at least p. Hence, for � in a neighborhood of �0, H(�) is invertible and the

function H(�)�1 � e also has a zero at �0 of order at least p. From the identity

G(�) = H(�)F (�) it is now clear that G 2 A(�0;B) and that the principal part of

the Laurent expansion of G�1 at �0 coincides with that of F�1. So, in particular,

G�1 has a pole at �0 of order p. Observe that F 0 � G0 has a zero at �0 of order

at least 2p� 1. It follows that the principal parts of the Laurent expansion at �0
of the left logarithmic derivatives of F and G coincide and the same conclusion

holds for the right logarithmic derivatives. With this, the proof is complete.
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Proof of Theorem 4.1. We begin by proving the implications (i))(ii) and (i))(iii).

The complexity of the argument depends on the \shape" of D.

Let P1; : : : ; Pn be idempotents in LC(X) and let D1; : : : ; Dk be the connected

components of D. When k � n, the situation is rather simple and the argument is

just a slight modi�cation of the proof of [BES3], Proposition 2.1. Indeed, choose

distinct points �1; : : : ; �n in D1; : : : ; Dn respectively, and let F 2 A@(D;B) be

such that

F (�) =

�
I � Pj + (�� �j)Pj ; � 2 Dj ; j = 1; : : : ; n;

I; � 2 Dj ; j = n+ 1; : : : ; k:

Then one veri�es without diÆculty that

LRleft(F ;�j) = LRright(F ;�j) = Pj ; j = 1; : : : ; n

and hence, see (5) and (6),

LRleft(F ;D) = LRright(F ;D) =

nX
j=1

Pj : (18)

For each j, either the projection Pj or the complementary projection I � Pj is of

�nite rank. Consequently, the function F has its values in the subalgebra of LC(X)

generated by the identity operator and the �nite rank operators on X .

Things are considerably more complicated when k < n. The key to the so-

lution is then Ehrhardt's theorem as formulated in Section 2. Indeed, applying

Theorem 2.1 to the situation where B = LC(X) and B0 is the subalgebra of LC(X)

consisting of all �nite rank operators on X , one immediately gets the following

result. Let P1; : : : ; Pn be non-zero idempotents in LC(X) and let �1; : : : ; �n be dis-

tinct (but otherwise arbitrary) points in C . Then there exists an entire function

F : C ! LC(X) with the following properties:

(a) F takes invertible values on C , except in the points �1; : : : ; �n, where F
�1

has simple poles;

(b) LRleft(F ;�j) = LRright(F ;�j) = Pj , for all j = 1; : : : ; n;

(c) The values of F on C belong to the subalgebra of LC(X) generated by the

identity operator and the �nite rank operators on X.

Taking into account (5) and (6) and choosing the points �1; : : : ; �n in the given

Cauchy domain D, one gets the identities (18). This settles the implications

(i))(ii) and (i))(iii).

Next we prove that (ii) implies (i). Let S = LRleft(F ;D) be the left logarith-

mic residue with respect to D of a function F 2 A@(D;LC(X)) whose values on

D belong to the subalgebra of LC(X) generated by the identity operator and the

�nite rank operators on X . Write f and C for the scalar and the compact part of

F , respectively. Then f 2 A@(D; C ) and C(�) is of �nite rank for each � 2 D: The

function f does not vanish on @D and so f has only a �nite number of zeros in D.

We denote these zeros by �1; : : : ; �k. Since X is in�nite dimensional, the operators
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F (�1); : : : ; F (�k) are not invertible. For � satisfying f(�) 6= 0; de�ne H(�) by

H(�) =
1

f(�)
F (�) = I +

1

f(�)
C(�)

and put D0 = D� f�1; : : : ; �kg. Then H is analytic on D0 and has poles or

removable singularities at the points �1; : : : ; �k: We shall prove that there exist

�k+1; : : : ; �l 2 D0 such that H(�) is invertible for � in D0� f�k+1; : : : ; �lg =

D� f�1; : : : ; �lg and that the function H�1 has poles or removable singularities

at the points �1; : : : ; �l. The argument { which draws heavily on and [Ho] and [B1]

(cf. also [BKL1], Section 7) { is as follows.

By assumption, C(�) is a �nite rank operator for each � 2 D. Maybe some-

what surprising at �rst sight, this implies that there exists a �nite upper bound

for the rank of C(�) when � ranges through D. To be precise, this holds on each

connected component of D. The extension to all of D follows by noting that D,

being a Cauchy domain, has only a �nite number of connected components. As a

consequence of the boundedness of the rank (and using the lower semi-continuity

of the rank), we have that for each � 2 D, the values C 0(�) of the derivative

of C are of �nite rank again and the same conclusion holds for the higher order

derivatives of C.

Thus the coeÆcients in the Taylor expansions of C at points of D are always

of �nite rank. It follows that the Laurent expansion of H at a point in D has a

constant term which is a Fredholm operator of index zero while all other coeÆcients

are of �nite rank. In particular, H is what is called �nitely meromorphic on D (cf.

[GGK]). Along with F , the function H takes invertible values on the boundary

of D; and hence also on a neighborhood of @D. Such a neighborhood has a non-

empty intersection with each component of D. Thus we may conclude that H�1

is also �nitely meromorphic on D and that H�1 has a �nite number of poles in

D (see [GGK], Section XI.8). In particular there exist �k+1; : : : ; �l in D0 with the

properties indicated above.

Let us return to the function F . Clearly

F (�) = f(�)H(�); � 2 D� f�1; : : : ; �kg
and the scalar function f does not vanish on D� f�1; : : : ; �kg. Further H takes in-

vertible values on D� f�1; : : : ; �lg which is a subset of D� f�1; : : : ; �kg. It follows
that F takes invertible values on D� f�1; : : : ; �lg and

F�1(�) =
1

f(�)
H�1(�); � 2 D� f�1; : : : ; �lg :

As H�1 has poles or removable singularities at the points �1; : : : ; �l, so does F
�1.

The upshot of all of this is that F takes invertible values on D except in a

�nite number of distinct points �1; : : : ; �n where F�1 has poles. In view of the

identities (5) and (6), things can now be reduced to the case n = 1, where D

contains only one point �0 at which F is not invertible and S = LRleft(F ;�0).

This also means that f has at most one zero in D which is then located at �0.
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If f does not vanish at �0, then F is Fredholm operator valued on D and we

know from Theorem 2.3 that S is a sum of �nite rank projections; in particular,

S is sum of idempotents in LC(X). It remains to tackle the (more interesting)

situation where f(�0) = 0 and F (�0) is of �nite rank. We shall �rst show that it

suÆces to consider the case when F is a function of polynomial type.

Let p be the order of �0 as a pole of F�1 and let q be the order of �0 as a

zero of f . Since X is in�nite dimensional, a compact operator can not cancel the

identity. Hence q � p. Introduce

G(�) =

2p�1X
k=0

(�� �0)
kFk;

where Fk stands for the coeÆcient of (� � �0)
k in the Taylor expansion of F at

�0. So G is the (2p� 1)-th order approximation of F at �0. The scalar part of G

is then the (2p� 1)-th order approximation of f at �0 and has therefore a zero at

�0 of order q where q � 2p � 1. Obviously, the function F � G has a zero at �0
of order at least 2p. Thus, by Lemma 4.2, G takes invertible values in a deleted

neighborhood of �0, G
�1 has a pole at �0 of order p and

LRleft(G;�0) = LRleft(F ;�0) = S:

So, as claimed above, we may assume F to be a function of polynomial type.

Now, if F is a function of polynomial type, then so are its scalar and compact

part. Write the compact part C as

C(�) =

mX
k=0

(�� �0)
kCk;

where C0; : : : ; Cm are of �nite rank. Let X = bX� eX be a direct sum decomposition

of X , with bX �nite dimensional and eX closed, such that the operators Cj have a

representation of the form

Cj =

�� 0
0 0

�
: bX � eX ! bX � eX:

Then F can be written as

F (�) =

 bF (�) 0

0 f(�)eI
!
: bX � eX ! bX � eX;

where eI is the identity operator on eX and bF 2 A(�0;L( bX)). It follows that

LRleft(F ;�0) =

 
LRleft( bF ;�0) 0

0 qeI
!
: bX � eX ! bX � eX;

where q is the order of �0 as a zero of f . Since bX is �nite dimensional (hence bF may

be identi�ed with a matrix function), we know from [BES4] that LRleft( bF ;�0) is
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a sum of projections on bX, say

LRleft( bF ;�0) = kX
j=1

bPj :
But then, with respect to the decomposition X = bX � eX, the left logarithmic

residue of F at �0 has the matrix representation

LRleft(F ;�0) = q

�
0 0

0 eI
�
+

nX
j=1

� bPj 0
0 0

�
:

On account of Proposition 3.1, we may now conclude that S = LRleft(F ;�0)

is a sum of idempotents in LC(X). As was to be expected (cf. Proposition 2.2),

precisely q of these idempotents have a �nite rank complementary projection.

With this we have established the implication (ii))(i). Mutatis mutandis,

the same argument can be used for (iii))(i).

5. Logarithmic residues in LC(X): operator polynomials with

compact non-leading coeÆcients

The material in the previous section suggests that we should look at the simplest

instances of entire operator functions, the operator polynomials. We begin with

some rather straightforward observations.

Let A be an operator polynomial with coeÆcients in L(X) where, as before,

X is an in�nite dimensional complex Banach space. By the spectrum of A, written

SpA, we mean the set of all � 2 C such that A(�) is not invertible. Clearly, SpA

is a closed subset of C .

Proposition 5.1. Let A be an operator polynomial with coeÆcients in L(X) and

suppose SpA is not all of C . Assume, in addition, that the non-leading coeÆcients

of A are compact. Then the leading coeÆcient of A is a Fredholm operator of

index zero and SpA is either a �nite set or a countable set with zero as its only

accumulation point.

In particular, SpA is a compact subset of C .

Proof. Write A in the form

A(�) = �mAm + �m�1Am�1 + � � �+ �A1 +A0

and suppose A0; : : : ; Am�1 are compact. Then �
mAm is a Fredholm operator with

index zero whenever A(�) is invertible. Since the complement of SpA of in C is

open and { by assumption { non-empty, it follows that, for some non-zero � in C ,

the operator �mAm is Fredholm with zero index. But then so is Am. Consider the

reversed polynomial B, given by

B(�) = �mA0 + �m�1A1 + � � �+ �Am�1 +Am:
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The values of B are all Fredholm operators (of index zero) and SpB is not all of

C . Hence the theory of analytic Fredholm operator valued functions guarantees

that each compact subset of C contains only a �nite number of points at which

A takes a non-invertible value (see [GGK], Section XI.8). This means that either

SpB is a �nite set or a countable set with in�nity as its only accumulation point.

The conclusion of the proposition is now immediate from the identity A(�) =

�mB(��1).

Let A be as in Proposition 5.1. Then Am is Fredholm with index zero. Hence

there exists a �nite rank operator F on X such that Em = Am �Fm is invertible.

Thus A is of the form

A(�) = �mEm + �mFm + �m�1Am�1 + � � �+ �A1 +A0

with Em invertible. PuteA(�) = �mI + �mFmE
�1
m

+ �m�1Am�1E
�1
m

+ � � �+ �A1E
�1
m

+A0E
�1
m
;

bA(�) = �mI + �mE�1
m
Fm + �m�1E�1

m
Am�1 + � � �+ �E�1

m
A1 +E�1

m
A0:

Then eA and bA are operator polynomials with coeÆcients in LC(X) and scalar part

given by �m. Both these operator polynomials are monic, i.e., as leading coeÆcient

they have the identity operator.

Suppose D is a bounded Cauchy domain in C . Then

LRleft(A;D) = LRleft( eA;D); (19)

LRright(A;D) = LRright( bA;D); (20)

provided that at least one of these { and hence all these { expressions make sense.

Note that the right hand sides of (19) and (20) may be viewed as logarithmic

residues in LC(X), which allows us to invoke the analysis presented in Sections 2

and 3. For that reason, from now on, we shall consider operator polynomials with

coeÆcients in LC(X).

Theorem 5.2. Let A be an operator polynomial of degree m with coeÆcients in

LC(X) and suppose A 2 A@(D;LC(X)) where D is a bounded Cauchy domain in

C . Assume, in addition, that the non-leading coeÆcients of A are compact. Then

the (left or right) logarithmic residue LR(A;D) of A with respect to D is a sum

of idempotents in LC(X) and LR(A;D) � mI. Moreover,

(i) if 0 =2 D, then LR(A;D) 2 P0(X),

(ii) if 0 2 D, then mI � LR(A;D) 2 P0(X).

Recall from the last paragraph of Section 2 that the partial ordering on the

set S(X) of sums of idempotents in LC(X) is de�ned as follows: if S1 and S2 are

in S(X), then S1 � S2 if and only if S2 � S1 is in S(X) again.

We prepare for the proof of Theorem 5.2 with some remarks and a proposi-

tion. For the degree zero case, Theorem 5.2 is trivial; we then have LR(A;D) = 0.
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In view of Theorem 3.6, one may expect that the degree one case, although non-

trivial, is somewhat exceptional too. It is indeed, as the following proposition

shows. The proposition is a slight reformulation of material from [S].

Proposition 5.3. Let T and S be bounded linear operators on X and consider the

pencil E given by E(�) = �S � T . Suppose D is a bounded Cauchy domain in C

such that E 2 A@(D;L(X)). Assume, in addition, that T is compact. Then the

following statements are true:

(i) If 0 =2 D, then LR(E;D) is a �nite rank projection on X;

(ii) If 0 2 D, then I � LR(E;D) is a �nite rank projection on X.

Proof of Theorem 5.2. As was already observed, the case of zero degree is trivial

and the degree one situation is covered by Proposition 5.3. So we assume m � 2.

Since A 2 A@(D;LC(X)), the sets @D and SpA are disjoint. In particular,

SpA is not all of C . So, by Proposition 5.1, the leading coeÆcient of A is Fredholm

(with index zero). By assumption, the non-leading coeÆcients of A are compact.

Hence A(�) is Fredholm for all non-zero �. We also see from Proposition 5.1 that

SpA is either a �nite set or a countable set with zero as its only accumulation

point. In particular, SpA is a compact subset of C .

Suppose 0 =2 D. Then A is Fredholm operator valued on D and { taking for

LR(A;D) the left variant of the logarithmic residue { we know from Theorem 2.3

that

LR(A;D) =
1

2�i

Z
@D

A0(�)A�1(�)d�

is a sum of �nite rank projections onX . So LR(A;D) 2 P0(X) � S(X). Sincem �
2, it also follows from Theorem 3.6 that mI � LR(A;D) is a sum of idempotents

in LC(X) and so LR(A;D) � mI .

Next we consider the (more challenging) case when 0 2 D. So at (precisely)

one point in D, namely the origin, A has a compact (non-Fredholm) value and

the logarithmic derivative of A possibly has an essential singularity there. First we

shall deal with the situation where A is monic. An approximation argument will

then be used to cover the general situation. For the monic case we choose to follow

an approach which avoids the use of Proposition 5.1 and which is interesting in its

own right. The approach in question is suggested by [Ha] (cf. also [Ma]) and uses

linearization involving operator companion matrices.

Write

A(�) = �mI + �m�1Am�1 + � � �+ �A1 +A0;
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with A0; : : : ; Am�1 compact, and let X = X � � � � � X be the direct sum of m

copies of X . Introduce

L =

0BBBBB@
0 : : : 0 0 �A0

I 0 : : : 0 �A1

0 I �A2

...
. . .

...

0 : : : 0 I �Am�1

1CCCCCA :X !X ;

i.e., L is the (second) companion operator matrix associated with the monic op-

erator polynomial A. It is well-known that L is a linearization of A in the sense

of, for example, [BGK1] and [GKL]. In fact,0BBBBBB@

L(�) 0 0 : : : 0

0 I 0 : : : 0

0 0 I
...

...
. . . 0

0 0 : : : 0 I

1CCCCCCA = E(�)(�IX �L)F (�) (21)

where E and F are operator polynomials taking invertible values on all of C . Thus,

for each � 2 C
dimKerA(�) = dimKer(�IX �L); codim ImA(�) = codim Im(�IX �L):

It follows that A(�) is invertible if and only if �IX �L is invertible, so the set of

all � 2 C for which A(�) is not invertible coincides with the spectrum of the single

operator L. In other words, SpA = �(L). Also A(�) is a Fredholm operator if and

only if the same is true for �IX �L.
Now compute L2 :

L
2 =

0BBBBBBBB@

0 : : : : : : 0 �A0 A0Am�1

0 �A1 �A0 +A1Am�1

I �A2 �A1 +A2Am�1

0 I
...

...
...
. . .

. . . �Am�2 �Am�3 +Am�2Am�1

0 : : : 0 I �Am�1 �Am�2 +A2
m�1

1CCCCCCCCA
:X !X:

Clearly, the last two columns in this matrix representation contain compact oper-

ators only. Proceeding in this way (and as a matter of fact by �nite induction),

one sees that all operator entries in Lm are compact. It follows that Lm itself is a

compact operator onX. Hence Lm belongs to the class of the so called Riesz oper-

ators. These are the operators with quasi-nilpotent canonical image in the Calkin

algebra (in fact that of L is even nilpotent). As is well known, such operators have

the same spectral properties as compact operators. But then we can draw a sim-

ilar conclusion for A. In particular we recover what was already observed before,

namely that A(�) is Fredholm for all non-zero � 2 C and that SpA is either a
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�nite set or a countable set with zero as its only accumulation point. As A(0) = A0

is a compact operator on an in�nite dimensional Banach space, it is not invertible

and so 0 2 SpA.

In spite of the promising expression (21), the relationship of linearization

that exists between A and L is not well behaved with respect to the logarithmic

residues of the operator polynomial A and the spectral projections of the single

operator L. It is on this point that we now proceed.

Let r = r(L) be the spectral radius of L. Then SpA is contained in the

closed disc j�j � r. Hence A has a Laurent expansion on j�j > r. This expansion

is readily seen to have the form

A0(�)A�1(�) =
m

�
I +

1

�2
L1 +

1

�3
L2 + � � �

and it follows that

1

2�i

Z
j�j=R

A0(�)A�1(�)d� = mI:

Here R is any real number larger than r.

Now take R > r so large that D is contained in the open disc � with center

the origin and radius R. Clearly, A takes invertible values on ��D except in a

�nite number of (di�erent) points, �1; : : : ; �n, say. For % positive and suÆciently

small, we now have

1

2�i

Z
@D

A0(�)A�1(�)d� +

nX
j=1

1

2�i

Z
j���j j=%

A0(�)A�1(�)d�

=
1

2�i

Z
j�j=R

A0(�)A�1(�)d�:

In other words

LR(A;D) +

nX
j=1

LR(A;�j) = mI:

Since 0 2 D, the operator polynomial A is Fredholm operator valued on ��D.

Hence the logarithmic residues LR(A;�j) are sums of �nite rank projections and

have integer trace (cf. Theorem 2.3). But then the same is true formI�LR(A;D).

Since m � 2, Theorem 3.6(iii) applies and we see that LR(A;D) belongs to S(X)

and LR(A;D) � mI .

This covers the monic case. Let us now deal with the general (possibly) non-

monic situation. The approach will be based on an approximation argument.

Let F1; F2; F3; : : : be a sequence of �nite rank operators on X , converging

to the zero operator on X , such that all operators Am + Fk are invertible. For

k = 1; 2; 3 : : : , introduce the operator polynomial Ak by

Ak(�) = �m(Am + Fk) + �m�1Am�1 + � � �+ �A1 +A0:
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Then Ak(�) ! A(�) and A0(�) ! A0(�) uniformly on compact subsets of C .

A routine argument yields that, for k suÆciently large { and hence without

loss of generality for all k { the operator polynomial Ak 2 A@(D;LC(X)) and

A�1
k
(�)! A�1(�), where the convergence is uniform on @D. Thus A0

k
(�)A�1

k
(�)!

A0(�)A�1(�) uniformly on @D and so LR(Ak;D) ! LR(A;D) for k ! 1. Con-

sidering, as usual, the left version of the logarithmic residue, we have LR(Ak;D) =

LR( eAk;D) where eAk, given by eAk(�) = Ak(�)(Am + Fk)
�1, is a monic operator

polynomial with compact non-leading coeÆcients. Let Dk be a bounded Cauchy

domain such that Dk is disjoint from D and Sp eAk is contained in D [Dk. Then,

as we saw above,

LR( eAk;D) + LR( eAk;Dk) = mI:

Since 0 2 D, we have 0 =2 Dk and LR( eAk;Dk) 2 P0(X). Also

LR( eAk;Dk) = mI � LR( eAk;D)! mI � LR(A;D)

for k ! 1. As P0(X) is closed (see [BES5] and Proposition 3.2), it follows that

mI �LR(A;D) is in P0(X). But then LR(A;D) 2 S(X) by Theorem 3.6(iii) and

LR(A;D) � mI . With this, the proof is complete.

Elaborating on the proof of Theorem 5.2, we note that if A is a degree m

monic operator polynomial, D1; : : : ; Dn are pairwise disjoint Cauchy domains in

C and A takes invertible values on the boundaries @D1; : : : ; @Dn of D1; : : : ; Dn,

respectively, then

nX
j=1

LR(A;Dj) = mI (22)

provided that D1 [ � � � [ Dn contains all points � for which A(�) is not invert-

ible. Under the additional assumption that the non-leading coeÆcients of A are

compact, the converse of this is also true, as can be easily seen from Corollary 2.4.

What happens when we drop the condition that A is monic, but instead

impose the conditions of Proposition 5.1. Then SpA is compact and we can de�ne

LRmax(A) by LRmax(A) = LR(A; �), where � is a disc centered at the origin

which is so large that SpA is contained in it. Obviously, this de�nition does not

depend on the choice of such a �, so LRmax(A) is well-de�ned. Now the statements

of the preceding paragraph remain true if one replaces the left hand side of (22)

by LRmax(A). With respect to the partial ordering �, LRmax(A) is the (unique)

maximal element of the set of all logarithmic residues of A (where one should

keep in mind that there may be a di�erence between the left version and the right

version). Also LRmax(A) � mI . This inequality may be strict. For instance, when

A is given by A(�) = �m(I �P ) +P , where P is a non-zero �nite rank projection

on X , then LRmax(A) = m(I � P ).

Further elaborating on the situation of Theorem 5.2, we observe that the con-

clusion LR(A;D) � mI means a serious restriction. It implies that not every sum
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of idempotents in LC(X) can be obtained as a logarithmic residue of an operator

polynomial with coeÆcients in LC(X) and compact non-leading coeÆcients. To see

this, let k be a positive integer, let R be a rank one projection on X and consider

T = kI + R. Clearly T belongs to S(X) and kI � T . Suppose T is a logarithmic

residue of an operator polynomial A with coeÆcients in LC(X) and compact non-

leading coeÆcients, say T = LR(A;D) for some bounded Cauchy domain D. Then

T � mI , where m is the degree of A. As T is not of �nite rank, the origin must

belong to D and mI � T is of �nite rank. Since mI � T = (m � k)I � R and X

is in�nite dimensional, it follows that m = k. So T � kI . But this is incompatible

with kI � T and the fact that R 6= 0.

Write Q(X) for the set of all projections Q on X with �nite dimensional null

space. From the material presented above it is clear that the set of logarithmic

residues { left or right { of operator polynomials with coeÆcients in LC(X) and

compact non-leading coeÆcients is contained in the set

P0(X) [ Q(X) [
1[

m=2

fmI � T j T 2 P0(X)g ; (23)

where this union is disjoint. We can rewrite (23) as 
1[
�=0

P0;� (X)

!
[
 

1[
r=0

�
I � P j P 2 = P; rankP = r

	!

[
 

1[
m=2

1[
�=0

fmI � T j T 2 P0;� (X)g
!
:

This union is again disjoint. As a matter of fact, it exhibits the decomposition of

the set (23) in its connected components (cf. [BES5], Theorem 4.3 and its proof).

We do not know whether or not each operator T 2 S(X) which belongs to the

set (23) can be written as a logarithmic residue of an operator polynomial with

compact non-leading coeÆcients.

The second term in the union (23) is the set Q(X). At �rst sight, one might

have expected the set fI � T j T 2 P0(X)g there instead. In this context it is

illustrative to note that the intersection of the latter set with S(X) is precisely

the set Q(X). The point to show is that T 2 P0(X) and I � T 2 S(X) implies

I � T 2 Q(X). Given that I � T is in S(X) and that T is of �nite rank, we can

write I � T as

I � T = I � P +

kX
j=1

Pj

where P; P1; : : : ; Pk are �nite rank projections on X (see Proposition 3.1). The

operator T , being a member of P0(X), can be expressed as a sum of �nite rank
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projections on X , say T = Pk+1 + � � �+ Pm. It follows that

P =

mX
j=1

Pj ;

so here we have a sum of �nite rank projections which is a (�nite rank) projection

again. In the �nite dimensional (matrix) case, it is an amusing exercise to show that

this implies that P1; : : : ; Pm are mutually disjoint, i.e., PiPj = PjPi = 0 for i 6= j.

The in�nite dimensional case can be reduced to the �nite dimensional situation in

the standard way by employing a suitable decomposition of the underlying spaceX

(cf. the proof of Proposition 3.3). It follows that T itself is a �nite rank projection

and so I � T 2 Q(X) as desired.

The assumption in Theorem 5.2 concerning the non-leading coeÆcients of A

is essential. This appears from the following example which also shows that the

set S(X) of sums of idempotents in LC(X) can be a proper subset of LRC(X),

the set of logarithmic residues in LC(X), even when the underlying space X is a

Hilbert space. In the latter case { more generally when X has the approximation

property { we do have the inclusion LRC(X) � S(X) (see Theorems 3.8 and 6.1),

but is is not known whether equality holds.

Example 5.4. Let Y be an in�nite dimensional Banach space and suppose N 2
L(Y ) is a compact operator on Y for which N3 = 0 and N2 has in�nite rank.

Concrete instances of such situations involving the sequence spaces `p, 1 � p � 1,

are easy to produce (see below). Put X = Y � Y and introduce

A(�) = �2I + �A1 +A0

where A0; A1 : Y � Y ! Y � Y are given by

A0 =

�
0 0

N 0

�
; A1 = �

�
IY N

N IY

�
:

Then A is a monic operator polynomial with coeÆcients in LC(X) and

A(�) =

�
�(�� 1)IY ��N
�(�� 1)N �(�� 1)IY

�
: (24)

Note that A0 is compact but A1 is not. In fact A1 is a Fredholm operator with

index zero. The operators A(0) and A(1) are compact, hence not invertible. For �

di�erent from 0 and 1, the operator A(�) is invertible with inverse

A(�)�1 =

 
1

�(��1)
IY + 1

�2(��1)2
N2 1

�(��1)2
N

1
�2(��1)

N 1
�(��1)

IY + 1
�2(��1)2

N2

!
:

A straightforward computation now yields the following expressions for the loga-

rithmic derivatives of A:

A0(�)A�1(�) =

 
2��1
�(��1)

IY + 1
�(��1)2

N2 1
(��1)2

N
1
�2
N 2��1

�(��1)
IY + 1

�2(��1)
N2

!
;



Logarithmic residues and sums of idempotents 33

A�1(�)A0(�) =

 
2��1
�(��1)

IY + 1
�2(��1)

N2 1
(��1)2

N
1
�2
N 2��1

�(��1)
IY + 1

�(��1)2
N2

!
:

For the left and right logarithmic residues of A at 0 it follows that

LRleft(A; 0) =
1

2�i

Z
j�j= 1

2

A0(�)A�1(�)d� =

�
IY +N2 0

0 IY �N2

�
;

LRright(A; 0) =
1

2�i

Z
j�j= 1

2

A�1(�)A0(�)d� =

�
IY �N2 0

0 IY +N2

�
:

So LRleft(A; 0)�I and LRright(A; 0)�I are compact but not of �nite rank. Hence
these logarithmic residues do not belong to S(X).

To make this example more explicit, we specialize to the case when the un-

derlying Banach space Y is the Hilbert space `2 or, more generally, the sequence

space `p with 1 � p � 1 (so X = `p�`p can be identi�ed with `p). Let N : `p ! `p
be de�ned by

N(x1; x2; x3; x4; x5; x6; : : : ) =
�x2
2
;
x3

3
; 0;

x5

5
;
x6

6
; 0;

x8

8
;
x9

9
; : : :

�
:

Then, indeed, N3 = 0 and N2 has in�nite rank. Also N is compact. This is

clear from the fact that N is the limit of the sequence of �nite rank operators

N1; N2; N3; : : : , where Nk is given by

Nk(x1; x2; x3; x4; x5; x6; : : : ) =

�
x2

2
;
x3

3
; 0;

x5

5
;
x6

6
; : : : ; 0;

x3k�1

3k � 1
;
x3k

3k
; 0; 0; : : :

�
:

In this concrete case we can extract some additional information. Let Ak be

the monic operator polynomial determined by the right hand side of (24) with N

replaced by Nk. As N
3
k
= 0, one can repeat the argument presented above. Hence

LRleft(Ak; 0) =

�
IY +N2

k
0

0 IY �N2
k

�
;

LRright(Ak ; 0) =

�
IY �N2

k
0

0 IY +N2
k

�
:

The compact part of Ck of Ak is given by

Ck(�) =

�
0 ��Nk

�(�� 1)Nk 0

�
:

From this we see that the values of Ck are of �nite rank. It follows from Theorem

4.1 that LRleft(Ak; 0) and LRright(Ak; 0) belong to S(X), something which can

also be obtained from Theorem 3.6(ii) by observing that LRleft(Ak ; 0) � I and

LRright(Ak ; 0) � I have �nite rank and zero trace. The sequence N1; N2; N3; : : :

converges to N . Thus, for k !1,

LRleft(Ak; 0)! LRleft(A; 0); LRright(Ak; 0)! LRright(A; 0)
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and we may conclude that the logarithmic residues LRleft(A; 0) and LRright(A; 0)

belong to the closure of S(X). Since Hilbert spaces have the approximation prop-

erty, this conclusion corroborates Theorem 3.8 (cf. also Theorem 6.1). �

Note that Example 5.4 involves a monic operator polynomial of degree two

with one non-compact and one compact non-leading coeÆcient. In fact, the con-

stant term is compact and the coeÆcient of � is not. It is easy to adapt the example

in such a way that the coeÆcient of � is compact and the constant term is not

(replace � by �+1
2
).

6. Logarithmic residues and the closure of the set of sums of

idempotents in LC(X)

There exist Banach algebras B allowing for logarithmic residues that do not belong

to the closure of the set of sums of idempotents in B. For an example involving a

subalgebra of C 3�3 , see [BES6], Example 4.5. The example in question shows that

a logarithmic residue need not even belong to the closure of the algebra generated

by the idempotents in B. This is in sharp contrast to the existence of situations

where the logarithmic residues can be identi�ed as the sums of idempotents (cf.

[BES3], [BES4] and [BES5]).

In this section, we consider the case B = LC(X) and address the following

question: Under what conditions (on X or F ) is a logarithmic residue in LC(X)

contained in the closure of S(X)?

We begin with a simple observation. Write LF (X) for the Banach subalgebra

of L(X) generated by the �nite rank operators on X and the identity operator

on X . So LF(X) = f�I + C j � 2 C ; C 2 CF (X)g where, as before, CF(X) is

the closed ideal generated by the �nite rank operators on X . Note that CF(X)

is a complemented (closed) subspace of LF (X) with codimension 1 and LF (X)

is inverse closed with respect to L(X). As is easily veri�ed, the results in the

preceding sections remain true when LC(X) is replaced by LF (X). From the thus

modi�ed version of Theorem 3.6 it is clear that S(X) is not only the set of sums

of idempotents in LC(X), but also the set of sums of idempotents in LF (X).

The following theorem now results from Theorem 3.7 and the modi�ed version of

Proposition 2.2.

Theorem 6.1. Let D be a bounded Cauchy domain in C and let F 2 A@(D;LF (X)).

Then the left and right logarithmic residues of F with respect to D belong to S(X),

the closure of the set of idempotents in LF(X).

Note that LF(X) = LC(X) if and only if C(X) = CF(X); i.e., if and only if X

has the approximation property, that is each compact operator on X is the limit

of a sequence of �nite rank operators on X . Thus, for Banach spaces X with this

property (and so in particular for Hilbert spaces X), Theorem 6.1 is true when

LF (X) is replaced by LC(X), a fact which was already revealed in Section 3.
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Next, we present a necessary and suÆcient condition for the logarithmic

residues in LC(X) to belong to S(X). It is formulated in terms of certain speci�c

operator polynomials. We will say that an operator polynomial with coeÆcients

in L(X) is pseudo monic with compact secondary coeÆcients if all its coeÆcients

are compact, except one, which is equal to the identity operator on X . Monic

operator polynomials with compact non-leading coeÆcients are pseudo monic with

compact secondary coeÆcients. So are co-monic operator polynomials (this means

that the constant term is the identity operator) such that the coeÆcients of the

non-constant terms are compact. For both these \extreme" cases, the logarithmic

residues belong to S(X). An operator polynomial which is pseudo monic with

compact secondary coeÆcients automatically has its coeÆcients in LC(X).

Theorem 6.2. The following two statements are equivalent:

(i) The logarithmic residues in LC(X) belong to S(X);

(ii) The logarithmic residues of pseudo monic operator polynomials with com-

pact secondary coeÆcients are in S(X).

Note that there are two versions of the theorem, depending on whether one

deals with the left or with the right variant of the logarithmic residue.

In the context of Theorem 6.2, only those logarithmic residues of pseudo

monic operator polynomials with compact secondary coeÆcients are relevant that

are associated with Cauchy domains containing the origin. Indeed, if D is a Cauchy

domain not containing the origin and A is a pseudo monic operator polynomial

with compact secondary coeÆcients, then A is Fredholm operator valued on D.

Hence a logarithmic residue of A with respect to D is in this case a sum of �nite

rank idempotents (see Theorem 2.3) and therefore belongs to S(X).

Proof. The implication (i))(ii) is trivial. So we will concentrate on (ii))(i). As

usual, we will work with the left version of the logarithmic residue.

Let D be a bounded Cauchy domain in C and let F 2 A@(D;LC(X)). Write

f and C for the scalar and compact part of F , respectively. Then f 2 A@(D; C )

and C(�) 2 C(X) for each � 2 D. The function f does not vanish on @D and so

f has only a �nite number of zeros in D. We denote these by �1; : : : ; �k. Since

X is in�nite dimensional, the operators F (�1); : : : ; F (�k) are not invertible. Put

D0 = D� f�1; : : : ; �kg. Then D0 is an open subset of C and f does not vanish on

D0. Hence F is Fredholm operator valued on D0.

The connected components of D0 are just the connected components of D;

possibly with a �nite number of points deleted. The function F takes invertible

values on the boundary of D; and hence even on a neighborhood of @D. Such a

neighborhood has a non-empty intersection with each connected component of D0.

Thus each connected component of D0 contains points where F takes invertible

values. It follows that F�1 is (�nitely) meromorphic on D0 ([GGK], Section XI.8).

In particular, the set � of points in D0 where F takes non-invertible values has

no accumulation point in D0: Clearly, � has no accumulation point on @D. So the



36 H. Bart, T. Ehrhardt and B. Silbermann

only accumulation points � can have are the zeros �1; : : : ; �k of f in D: From here

on we shall assume that �1; : : : ; �k are distinct.

Choose a positive real number % such that all closed discs j�� �j j � %; j =

1; : : : ; k are contained in D and F takes invertible values on their boundaries

j�� �j j = %. This can be done because � is at most countable. Denote the union

of the open discs j�� �j j < %; j = 1; : : : ; k by D1. Then � has only a �nite number

of distinct points �k+1; : : : ; �l in D0�D1. We may assume that % has been taken

so small that the closed discs j�� �j j � %; j = 1; : : : ; k are mutually disjoint.

Things being arranged this way, we have

LRleft(F ;D) =

kX
j=1

1

2�i

Z
j���j j=%

F 0(�)F�1(�)d� +

lX
j=k+1

LRleft(F ;�j): (25)

Since F is Fredholm operator valued on D0; the terms LRleft(F ;�j) in the second

sum are sums of �nite rank projections on X (see Theorem 2.3). In particular this

second sum belongs to S(X). It remains to prove that, subject to (ii), the terms

in the �rst sum in (25) are in the closure of S(X). For this, we argue as follows.

It is suÆcient to consider only one term, say

L =
1

2�i

Z
j���0j=%

F 0(�)F�1(�)d�

where �0 is one of the complex numbers �1; : : : ; �k, so f(�0) = 0. Take R > % such

that the open disc j�� �0j < R is contained in D and contains no zeros of F other

than �0. Let p be the order of �0 as a zero of f and write f(�) = (� � �0)
pg(�)

where g is analytic and does not vanish on j�� �0j < R. De�ne G on j�� �0j < R

by G(�) = g(�)�1F (�). Then

L =
1

2�i

Z
j���0j=%

F 0(�)F�1(�)d�

=

 
1

2�i

Z
j���0j=%

g0(�)

g(�)
d�

!
I +

1

2�i

Z
j���0j=%

G0(�)G�1(�)d�

=
1

2�i

Z
j���0j=%

G0(�)G�1(�)d�

because the logarithmic residue of the scalar function g with respect to the Cauchy

domain j�� �0j < R vanishes. The scalar part of G is given by g(�)�1f(�) =

(�� �0)
p.

Consider

G(�) =

1X
n=0

(�� �0)
nGn;

the Taylor expansion of G on j�� �0j < R. Since the scalar part of G is given by

(� � �0)
p, the coeÆcients Gn with n 6= p are compact. Also Gp is the sum of a

compact operator and the identity operator, hence Fredholm with index zero. Let

F1; F2; F3; : : : be a sequence of �nite rank operators on X , converging to the zero
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operator on X , such that all operators Gp + Fk are invertible. For k = 0; 1; 2; : : : ,

we now introduce the operator polynomials Gk and eGk as follows:

Gk(�) =

kX
n=0

(� � �0)
nGn;

eGk(�) = (�� �0)
pFk +Gk(�) = (�� �0)

pFk +

kX
n=0

(�� �0)
nGn:

Note that Gk is the k-th order approximation of G at �0. Thus Gk(�) ! G(�)

and G0
k
(�) ! G0(�) uniformly on j�� �0j � %. As Fk ! 0 for k ! 1, it follows

that eGk(�) ! G(�) and eG0
k
(�)! G0(�) uniformly on j�� �0j � % too. A routine

argument shows that for k suÆciently large, eGk (along with G) takes invertible

values on j�� �0j = % and on this circle eG�1
k
(�)! G�1(�) where the convergence

is again uniform. But then eG0
k
(�) eG�1

k
(�)! G0(�)G�1(�) uniformly on j�� �0j =

%. Hence

1

2�i

Z
j���0j=%

eG0
k
(�) eG�1

k
(�)d�! 1

2�i

Z
j���0j=%

G0(�)G�1(�)d� = L (26)

for k !1.

Take k so large that eGk takes invertible values on j�� �0j = % and, in

addition, k � p. The latter means that eGk(�) can be written as

eGk(�) =

 
p�1X
n=0

(�� �0)
nGn

!
+ (�� �0)

p(Gp + Fk) +

 
kX

n=p+1

(�� �0)
nGn

!
:

Recall that (Gp + Fk) is invertible and write

Ak(�) = eGk(�+ �0)(Gp + Fk)
�1:

Then Hk, along with eGk, takes invertible values on j�j = % and, with Lk given by

the left hand side of (26),

Lk =
1

2�i

Z
j���0j=%

eG0
k
(�) eG�1

k
(�)d� =

1

2�i

Z
j�j=%

A0
k
(�)A�1

k
(�)d�:

Now

Ak(�)) =

 
p�1X
n=0

�nGn(Gp + Fk)
�1

!
+ �pI +

 
kX

n=p+1

�nGn(Gp + Fk)
�1

!
:

So the operator polynomials Ak are pseudo monic with compact secondary coeÆ-

cients. Thus, assuming (ii), the operators Lk belong to S(X). But then it follows

from (26) that L belongs to the closure of S(X) too, as desired.
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The following example shows that in general the logarithmic residues in

LC(X) are not contained in the closure of S(X). The example is a modi�cation

of Example 5.4 and { as is to be expected on the basis of the material presented

in Section 3 { involves a Banach space that does not have the approximation

property.

Example 6.3. Let Y be a Banach space and suppose N 2 L(Y ) is a compact

operator on Y such that N3 = 0 and N2 is not the limit of a sequence of �nite

rank operators in L(Y ). That such a situation can occur will be made clear later

on.

We now could follow the path taken in Example 5.4. This then would lead

to an example featuring logarithmic residues not belonging to the closure of S(X)

and involving a degree 2 monic operator polynomial with one compact and one

non-compact leading coeÆcient. In light of Theorem 6.2, however, we prefer a

slightly di�erent approach which results in an example involving a pseudo monic

operator polynomial with compact secondary coeÆcients. All we have to do is to

adapt Example 5.4 along the lines suggested by the proof of Theorem 6.2.

Put X = Y � Y and introduce the operator polynomial A with coeÆcients

in LC(X) by stipulating that

A(�) = �2C2 + �I + C0

where C0; C2 : Y � Y ! Y � Y are given by

C0 =

�
N2 0

�N 0

�
; C2 =

�
0 N

0 0

�
:

Then A is pseudo monic with compact secondary coeÆcients. It is convenient to

present A also in the form

A(�) =

�
�IY +N2 �2N

�N �IY

�
:

The operator A(0) = C0 is compact, hence not invertible. For � 6= 0, the operator

A(�) is invertible with inverse

A(�)�1 =

�
1
�
(IY �N2)� 1

�2
N2 �N

1
�2
N 1

�
(IY �N2)

�
:

A straightforward computation now yields the following identities for the logarith-

mic derivatives of A:

A0(�)A�1(�) =

�
1
�
(IY +N2)� 1

�2
N2 N

1
�2
N 1

�
(IY �N2)

�
;

A�1(�)A0(�) =

�
1
�
(IY �N2)� 1

�2
N2 N

1
�2
N 1

�
(IY +N2)

�
:
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For the left and right logarithmic residues of A at 0 it follows that they are given

by the same expressions as we had in Example 5.4, namely

LRleft(A; 0) =
1

2�i

Z
j�j= 1

2

A0(�)A�1(�)d� =

�
IY +N2 0

0 IY �N2

�
;

LRright(A; 0) =
1

2�i

Z
j�j= 1

2

A�1(�)A0(�)d� =

�
IY �N2 0

0 IY +N2

�
:

Clearly, LRleft(A; 0) � I and LRright(A; 0) � I are compact. However these op-

erators do not belong to CF(X), the closure of the set of �nite rank operators in

L(X). Indeed, otherwise the operator N2 would appear as the limit of a sequence

of �nite rank operators in L(Y ). On account of Theorem 3.7(ii), we may conclude

that LRleft(A; 0) and LRright(A; 0) do not belong to the closure of S(X).

One thing remains. We still have to produce a situation as was indicated in

the �rst paragraph of this example. So we have to come up with a Banach space

Y and a compact operator N 2 L(Y ) such that N3 = 0 and N2 is not the limit

of a sequence of �nite rank operators on Y . The construction will make use of

a factorization result for compact operators which was brought to our attention

by A. Pietsch, whose help is hereby gratefully acknowledged (cf. [P], Subsection

3.1.7.).

Let W be a complex Banach space that fails to have the approximation

property. Then there is a complex Banach space U and a compact bounded linear

operator H : W ! U such that H is not the limit of a sequence of bounded

linear �nite rank operators acting from W into U . By the factorization result

referred to above, there exist a complex Banach space V and compact operators

E : V ! U and F : W ! V such that H = EF . Put Y = U � V �W and de�ne

N : U � V �W ! U � V �W by

N =

0@0 E 0

0 0 F

0 0 0

1A :

Then N 2 L(Y ) and

N2 =

0@0 0 EF

0 0 0

0 0 0

1A =

0@0 0 H

0 0 0

0 0 0

1A :

So, in view of our choice of H , the operator N2 can not be the limit of a sequence

of �nite rank operators in L(Y ). Since obviously N3 = 0, we have arrived at the

desired situation. �

We conclude this section by indicating some open problems with regard to

the relationships between the sets S(X);LRC(X) and S(X).

Recall that LRC(X) denotes the set of logarithmic residues in LC(X). As

mentioned in Section 3, three versions of LRC(X) can be distinguished, depending

on whether one works with left logarithmic residues, with right logarithmic residues
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or with all (left or right) logarithmic residues. We do not know how these versions

are related to each other. For what follows, it is immaterial which interpretation

one chooses.

The inclusion S(X) � LRC(X) is just a special case of a general Banach

algebra result. Example 5.4 shows that for the speci�c Banach algebra investigated

here the inclusion may be strict, even when X is a Hilbert space. In view of the

actual form of the example, we conjecture that there are no (in�nite dimensional)

Banach spaces for which S(X) and LRC(X) coincide.

We do not know whether LRC(X) is always closed. A positive answer would

imply that S(X) � LRC(X), an inclusion which so far we have not been able to

prove. We have reasons to believe, however, that when X is a separable Hilbert

space, one even has LRC(X) = S(X). Indeed, in that situation, we have been able

to show that the sets fnI + T j T 2 L(X); T compactg are contained in LRC(X)

whenever n � 16. The latter restriction can probably be removed which, in light

of (17) and Theorem 3.8, would give the desired equality of the two sets. It is our

intention to return to this point in the future.

Regardless of the outcome on this point, in the Hilbert space case or, more

generally, when X has the approximation property, LRC(X) is contained in S(X).

This is part of Theorem 3.8. Here the extra condition on X is essential, as is seen

from Example 6.3. It is an intriguing question whether or not in an example of

this type any Banach space lacking the approximation property could serve as the

underlying space X . In other words: Theorem 3.8 and Example 6.3 suggest the

following problem: does LRC(X) � S(X) imply that X has the approximation

property?

7. Left versus right logarithmic residues in LC(X)

We now return to the problem posed at the end of Section 3. More speci�cally, we

shall deal with the following question. Under what circumstances can two operators

L and R in S(X), the set of sums of idempotents in LC(X), be represented in the

form

LRleft(F ;D) =
1

2�i

Z
@D

F 0(�)F�1(�)d�

LRright(F ;D) =
1

2�i

Z
@D

F�1(�)F 0(�)d�

where D is a bounded Cauchy domain in C and F is a function in A@(D;LC(X))

whose values on D belong to the subalgebra of LC(X) generated by the identity

operator and the �nite rank operators on X .
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We begin with a further analysis of the sets Pn(X) introduced and studied

in Section 3. Write Pn(X) as a union

Pn(X) =

1[
�=�1

Pn;� (X);

where, for n = 0; 1; 2 : : : and � 2 Z, Pn;� (X) = fT 2 Pn(X) j traceT = �g. Note
that for non-negative � , the expression P0;� (X) has the same meaning as before,

while P0;� (X) is empty whenever � is negative.

It is convenient to have the following lemma.

Lemma 7.1. Let P and Q be rank one projections on X. Then there exists a �nite

rank operator E on X such that Q = exp(�E)P exp(E).

Since exp(�E) = exp(E)�1, the identity Q = exp(�E)P exp(E) comes down

to a similarity between P and Q of a speci�c type. From the series expansion of

exp(E), one sees that the range of exp(E) � I is contained in that of E, hence

exp(E)� I is of �nite rank and exp(E) belongs to LC(X).

Proof. The lemma is a slightly sharpened reformulation of [BES5], Lemma 4.2.

The proof of that lemma shows that P and Q are similar and that there exists

a similarity operator S { with Q = S�1PS { which is the sum of the identity

operator and a �nite rank operator on X . With respect to an appropriately chosen

decomposition X = eX � bX, involving a �nite dimensional subspace eX of X and a

closed subspace bX of X , S has the form

S =

 eS 0

0 bI
!
;

where bI is the identity operator on bX . Clearly, eS is an invertible operator on the

�nite dimensional space eX, so eS has a logarithm. In other words, eS can be written

as an exponential, eS = exp( eE) say. With

E =

� eE 0

0 0

�
;

we have exp(E) = S, where F is of �nite rank, as desired.

Proposition 7.2. The sets Pn;� (X) are arcwise connected.

Here n = 0; 1; 2 : : : and � 2 Z.
Proof. Take S and T in Pn;� (X), and write these operators as

S = �
nX

j=1

Sj +

kX
j=1

Pj ; T = �
nX

j=1

Tj +

lX
j=1

Qj ;

where all Sj ; Pj ; Tj ; Qj appearing in the right hand side of these expressions are

�nite rank projections on X . Here k and l are non-negative integers and we may

assume that the projections Pj and Qj have rank one.
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With respect to an appropriately chosen decompositionX = eX� bX, involving

a �nite dimensional subspace eX ofX and a closed subspace bX ofX , the projections

Sj and Tj have the form

Sj =

� eSj 0

0 0

�
; Tj =

� eTj 0

0 0

�
:

Denote the projection of X onto eX along bX by P . Then P is of �nite rank and

looks like

P =

� eI 0

0 0

�
;

where eI is the identity operator on eX. But then the operators

P � Sj =

� eI � eSj 0

0 0

�
; P � Tj =

� eI � eTj 0

0 0

�
are �nite rank projections on X which can be written as a sum of rank one pro-

jections on X . Also

S = �nP +

nX
j=1

(P � Sj) +

kX
j=1

Pj ;

T = �nP +

nX
j=1

(P � Tj) +

lX
j=1

Qj :

Thus we obtain S and T in the form

S = �nP +

sX
j=1

Pj ; T = �nP +

tX
j=1

Qj ;

where s and t are non-negative integers and P1; : : : ; Ps; Q1; : : : ; Qt are rank one

projections on X . Taking traces, we get

traceS = s� n traceP; traceT = t� n traceP

and it follows that s = t. So

S = �nP +

rX
j=1

Pj ; T = �nP +

rX
j=1

Qj

where r = s = t is a non-negative integer, P is a �nite rank projection on X and

P1; : : : ; Pr; Q1; : : : ; Qr are rank one projections on X .

For j = 1; : : : ; r, choose �nite rank operators Fj such that

Qj = exp(�Fj)Pj exp(Fj):
Lemma 7.1 guarantees that this is possible. Now de�ne 	 : [0; 1]! L(X) by

	(u) = �nP +

rX
j=1

exp(�uFj)Pj exp(uFj):
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Then 	(0) = S and 	(1) = T . Also 	 has its values in Pn;� (X). Finally, 	 is

continuous, and the proof is complete.

Recall that

S(X) =

1[
n=0

Sn(X)

where Sn(X) = fnI + T j T 2 Pn(X)g. With the help of the sets Pn;� (X), we can

rewrite this as

S(X) =

1[
n=0

1[
�=�1

Sn;� (X) (27)

with Sn;� (X) = fnI + T j T 2 Pn;� (X)g. For � < 0, the set S0;� (X) = P0;� (X) is

empty. By virtue of the results obtained in Section 3, the other sets Sn;� (X) can

be described as follows:

n = 0; � � 0:

S0;� (X) = fS 2 L(X) j S of �nite rank; rankS � traceS = �g,

n = 1; � < 0:

S1;� (X) = fS 2 L(X) j S � I of �nite rank; � dimKerS � trace(S � I) = �g,

n = 1; � � 0:

S1;� (X) = fS 2 L(X) j S � I of �nite rank; trace(S � I) = �g,

n � 2; � 2 Z:

Sn;� (X) = fS 2 L(X) j S � nI of �nite rank; trace(S � nI) = �g.

Along with the sets Pn;� (X), the sets Sn;� (X) are arcwise connected. So (27)

is a disjoint union of arcwise connected sets.

Theorem 7.3. Let D be a bounded Cauchy domain in C and let L and R be bounded

linear operators on X. The following statements are equivalent:

(i) There exists a function F in A@(D;L(X)), whose values on D belong to

the subalgebra of LC(X) generated by the identity operator and the �nite

rank operators on X, such that L is the left and R is the right logarithmic

residue of F with respect to D, i.e.,

L = LRleft(F ;D) =
1

2�i

Z
@D

F 0(�)F�1(�)d�;

R = LRright(F ;D) =
1

2�i

Z
@D

F�1(�)F 0(�)d�;

(ii) There exist integers n and � , n � 0, such that L and R both belong to the

(arcwise connected) set Sn;� (X).
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Loosely speaking, (ii) says that L and R belong to one and the same (arcwise

connected) \constituent" in the decomposition (27) of S(X).

The proof, especially the part dealing with the implication (ii))(i) will pro-

vide additional information about the freedom one has in choosing the function

F . As we shall see, F can be chosen to be an entire function such that F�1 has

only a �nite number of poles which are all simple.

Proof. Suppose we have (i) and let f be the scalar part of F . Write n for the

number of zeros of F in D, multiplicities counted. Then L � nI and R � nI are

compact by Proposition 2.2. Also L and R are in S(X) by Theorem 4.1. Hence

L� nI and R� nI belong to Pn(X). It remains to prove that L� nI and R� nI

have the same trace. Introduce

H(�) =
1

f(�)
F (�) = I +

1

f(�)
C(�):

As we saw in the proof of Theorem 4.1, the function H is �nitely meromorphic on

D. Also, the constant terms in the Laurent expansions of H at the points of D are

Fredholm (with index zero). Finally, in each connected component of D there are

points at which H takes invertible values. It follows that the integrals

1

2�i

Z
@D

H 0(�)H�1(�)d� (28)

and

1

2�i

Z
@D

H�1(�)H 0(�)d� (29)

are of �nite rank. Comparing Laurent expansions and using the commutativity

property of the trace, one sees that (28) and (29) have the same trace. Actually,

these coinciding traces are equal to the total algebraic multiplicity of the meromor-

phic Fredholm operator valued function H with respect to D (see [GS1], [GGK]

and [BKL2]). The desired result is now clear from the fact that (28) and (29) are

equal to L� nI and R � nI , respectively. This settles the implication (i))(ii).

Assume L and R satisfy (ii). We shall prove the following more elaborate

version of (i). There exists an entire function F : C ! LC(X) with the following

properties:

(a) F takes invertible values on all of C , except in a �nite number of points,

all lying in D, where F�1 has simple poles;

(b) The values of F on C belong to the subalgebra of LC(X) generated by the

identity operator and the �nite rank operators on X.

(c) L is the left and R is the right logarithmic residue of F with respect to D.

The argument is a modi�cation of a part of the proof of [BES5], Theorem 5.1.

With n and � as in (ii), put S = L � nI and T = R � nI . Then S and T

belong to Pn;� (X). From the proof of Proposition 7.2, we know that S and T can



Logarithmic residues and sums of idempotents 45

be written in the form

S = �nP +

rX
k=1

Pk ; T = �nP +

rX
k=1

Qk

where r is a non-negative integer, P is a �nite rank projection onX and P1; : : : ; Pr;

Q1; : : : ; Qr are rank one projections on X . Hence

L = n(I � P ) +

rX
k=1

Pk; R = n(I � P ) +

rX
k=1

Qk

and in this way, both L and R are written as a sums of r+n non-zero idempotents

in LC(X).

Choose distinct points �1; : : : ; �r+n in D and apply Theorem 2.1 to the

situation where B = LC(X) and B0 is the subalgebra of LC(X) consisting of all

�nite rank operators on X . One then obtains an entire L(X)-valued function G

such that G takes invertible values on C , except in the points �1; : : : ; �r+n where

G�1 has simple poles,

LRleft(G;�k) = LRright(G;�k) =

�
Pk; k = 1; : : : ; r;

I � P; k = r + 1; : : : ; r + n;

while, in addition, the values of G on C belong to the subalgebra of LC(X)

generated by the identity operator and the �nite rank operators on X . Clearly,

G 2 A@(D;L(X)) and, taking into account (5) and (6),

LRleft(G;D) = LRright(G;D) = n(I � P ) +

rX
k=1

Pk = L:

We shall now modify G in such a way that the left residue of the resulting function

remains L, but the right logarithmic residue becomes R. For this we shall use an

interpolation argument.

By Lemma 7.1, there exist �nite rank operators F1; : : : ; Fr such that

Qk = exp(�Fk)Pk exp(Fk); k = 1; : : : ; r:

Choose scalar polynomials r1; : : : ; rr+n with

rj(�k) = Æjk ; r0
j
(�k) = 0; j; k = 1; : : : ; r + n

(Æjk is the Kronecker delta) and, for j = 1; : : : ; r, put

Hj(�) = exp(rj(�)Fj):

Then Hj : C ! L(X) is analytic and takes invertible values on all of C . Also

Hj(�k) = I; j = 1; : : : ; r; k = 1; : : : ; r + n; j 6= k;

Hj(�j) = exp(Fj); j = 1; : : : ; r;

H 0
j
(�k) = 0; j = 1; : : : ; r; k = 1; : : : ; r + n:

From the de�nition of Hj and the power series expansion of the exponential func-

tion, it is obvious that the ranges of the operators Hj(�)� I are contained in the
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range of Fj . Thus the functions H1; : : : ; Hr have their values in the subalgebra of

LC(X) generated by the identity operator and the �nite rank operators on X .

Write H(�) = H1(�) � � �Hr(�). Then H : C ! LC(X) is analytic and takes

invertible values on all of C . Also

H(�k) = exp(Fk); k = 1; : : : ; r;

H(�k) = I; k = r + 1; : : : ; r + n;

H 0(�k) = 0; k = 1; : : : ; r + n:

Finally, along with H1; : : : ; Hr, the function H takes its values in the subalgebra

of LC(X) generated by the identity operator and the �nite rank operators on X .

Put F (�) = G(�)H(�). Then F : C ! LC(X) clearly has the properties (a)

and (b). It remains to prove that (c) is satis�ed too. For this, we argue as follows.

For % positive and suÆciently small, we have

LRleft(F ;�k) = LRleft(G;�k) +
1

2�i

Z
j���kj=%

G(�)H 0(�)H�1(�)G�1(�)d�:

The �rst term in the right hand side is equal to Pk when k = 1; : : : ; r and to I�P

when k = r + 1; : : : ; r + n. The second vanishes because G�1 has a simple pole at

�k and H 0(�k) = 0. So

LRleft(F ;�k) =

�
Pk; k = 1; : : : ; r;

I � P; k = r + 1; : : : ; r + n:

Thus LRleft(F ;D) = P1 + � � �+ Pk + n(I � P ) = L.

Analogously we have

LRright(F ;�k) = LRright(H ;�k) +
1

2�i

Z
j���kj=%

H�1(�)G�1(�)G0(�)H(�)d�:

The �rst term in the right hand side vanishes. The second is equal to

H�1(�k)LRright(G;�k)H(�k):

Now H(�k) is equal to exp(Fk) for k = 1; : : : ; r and to I for k = r + 1; : : : ; r + n.

Further, LRright(G;�k) is equal to Pk when k = 1; : : : ; r and to I � P when

k = r + 1; : : : ; r + n. Hence

LRright(F ;�k) =

�
Qk; k = 1; : : : ; r;

I � P; k = r + 1; : : : ; r + n;

It follows that LRright(F ;D) = Q1 + � � � + Qk + n(I � P ) = R and the proof is

complete.
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