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Abstract. Multidimensional scaling aims at reconstructing dissimilarities between
pairs of objects by distances in a low dimensional space. However, in some cases the
dissimilarity itself is not known, but the range, or a histogram of the dissimilarities
is given. This type of data fall in the wider class of symbolic data (see Bock and
Diday (2000)). We model three-way two-mode data consisting of an interval of
dissimilarities for each object pair from each of K sources by a set of intervals of
the distances defined as the minimum and maximum distance between two sets
of embedded rectangles representing the objects. In this paper, we provide a new
algorithm called 3WaySym-Scal using iterative majorization, that is based on an
algorithm, I-Scal developed for the two-way case where the dissimilarities are given
by a range of values ie an interval (see Groenen et al. (2006)). The advantage of
iterative majorization is that each iteration is guaranteed to improve the solution
until no improvement is possible. We present the results on an empirical data set
on synthetic musical tones.

Keywords: Multidimensional scaling, Three-way data, Interval data, Sym-
bolic data analysis, 3WaySym-Scal.

1 Introduction

Classical multidimensional scaling (MDS) models the dissimilarities among a
set of objects as distances between points in a low dimensional space. The aim
of MDS is to represent and recover the relationships among the objects and to
reveal the dimensions giving rise to the space. To illustrate: the goal in many
MDS studies, for example, in psychoacoustics or marketing is to visualize
the objects and the distances among them and to discover and reveal the
dimensions underlying the dissimilarity ratings, that is, the most important
perceptual attributes of the objects.

Often, the proximity data available for the n objects consist of a single
numerical value for the dissimilarity δij between each object pair. Then, the
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data may be presented in a single dissimilarity matrix with the entry for
the i-th row and the j-th column being a single numerical value represent-
ing the dissimilarity between the i-th and j-th object (with i = 1, . . . , n and
j = 1, . . . , n). Techniques for analyzing this two-way, one-mode data have
been developed (see, e.g., Kruskal (1964), Winsberg and Carroll (1989), or
Borg and Groenen (2005)). Sometimes proximity data are collected from K
sources, for example, a panel of K judges or under K different conditions,
yielding three-way two-mode data and an n×n×K array of single numerical
values. Techniques have been developed to deal with this form of data permit-
ting the study of individual or group differences underlying the dissimilarity
ratings (see, e.g., Carroll and Chang (1972), Winsberg and DeSoete (1993)).

All of these above mentioned MDS techniques require that each entry of
the dissimilarity matrix, or matrices be a single numerical value. However,
the objects in the set under consideration may be of such a complex nature
that the dissimilarity between each pair of them is better represented by a
range, that is, an interval of values, or a histogram of values rather than a
single value. For example, if the number of objects under study becomes very
large, it may be unreasonable to collect pairwise dissimilarities from each
judge and one may wish to aggregate the ratings from many judges where
each judge has rated the dissimilarities from a subset of all the pairs. Then,
rather than using an average value of dissimilarity for each object pair one
would wish to retain the information contained in the interval or histogram
of dissimilarities obtained for each pair of objects. Or, it might be useful to
collect data reflecting the imprecision or fuzziness of the dissimilarity between
each object pair. Then, the ij-th entry in the n× n data matrix, that is, the
dissimilarity between objects i and j, is either an interval or an empirical
distribution of values (a histogram). In these cases, the data matrix consists
of symbolic data.

By now, MDS of symbolic data can be analyzed by several techniques.
The case where the dissimilarity between each object pair is represented by
a range or interval of values has been treated by Denœux and Masson (2000)
and Masson and Denœux (2002). They model each object as alternatively a
hyperbox (hypercube) or a hypersphere in a low dimensional space and use
a gradient descent algorithm. Groenen et al. (2006) have developed an MDS
technique for interval data which yields a representation of the objects as
hyperboxes in a low-dimensional Euclidean space rather than hyperspheres
because the hyperbox representation is reflected as a conjunction of p prop-
erties where p is the dimensionality of the space. We shall follow this latter
approach here.

The hyperbox representation is interesting for two reasons. First a hyper-
box is more appealing because it allows a strict separation between the units
of the dimensions it uses. For example, the top speed of a certain type of car
might be between 170 and 190 km/h and its fuel consumption between 8 and
10 liters per 100 km. These aspects can be easily described alternatively as
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an average top speed of 180 km/h plus or minus 10 km/h and an average fuel
consumption of 9 liters per 100 km plus or minus 1. Both formulations are
in line with the hyperbox approach. However, the hypersphere interpretation
would be to state that the car is centered around a top speed of 180 km/h
and a fuel consumption of 9 liters per 100 km and give a radius. The units
of this radius cannot be easily expressed anymore. A second reason for using
hyperboxes is that we would like to discover relationships in terms of the
underlying dimensions. The use of hyperboxes leads to unique dimensions,
whereas the the use of hyperspheres introduces the freedom of rotation so
that dimensions are not unique anymore.

Groenen and Winsberg (2006) have extended the method developed by
Groenen et al. (2006) to deal with the case in which the dissimilarity between
object i and object j is an empirical distribution of values or, equivalently, a
histogram.

All of the methods described above for MDS of symbolic data treat the
two-way one-mode case. That is, they deal with a single data matrix. Here, we
extend that approach to deal with the two-mode three-way case. We consider
the case where each of K judges denote the dissimilarity between the i-th and
j-th object pair as an interval, or a histogram thereby giving a range of values
or a fuzzy dissimilarity. So, the accent here will be on individual differences.
Of course, the method also applies to the case where data is collected for K
conditions, where for each condition the dissimilarity between the i-th and
j-th pair is an interval, or a histogram.

In the next section, we review briefly the I-Scal algorithm developed by
Groenen et al. (2006) for MDS of interval dissimilarities based on iterative
majorization. Then, we present an extension of the method to the three-way
two-mode case and analyze an empirical data sets dealing with dissimilar-
ities of sounds. The paper ends with some conclusions and suggestions for
continued research.

2 MDS of Interval Dissimilarities

We now review briefly the case of two-way one-mode MDS of interval dissim-
ilarities. In this case, an interval of a dissimilarity will be represented by a
range of distances between the two hyperboxes of objects i and j. This ob-
jective is achieved by representing the objects by rectangles and approximate
the upper bound of the dissimilarity by the maximum distance between the
rectangles and the lower bound by the minimum distance between the rect-
angles. An example of rectangle representation is shown in Figure 1. It also
indicates how the minimum and maximum distance between two rectangles
is defined.

By using hyperboxes, both the distances and the coordinates are ranges.
Let the coordinates of the centers of the rectangles be given by the rows of
the n × p matrix X, where n is the number of objects and p the dimen-
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Fig. 1. Example of distances in MDS for interval dissimilarities where the objects
are represented by rectangles.

sionality. The distance from the center of rectangle i along axis s, denoted
by the spread, is represented by ris which is by definition nonnegative. The
maximum Euclidean distance between rectangles i and j is given by

d
(U)
ij (X,R) =

(
p∑

s=1

[|xis − xjs|+ (ris + rjs)]2
)1/2

(1)

and the minimum Euclidean distance by

d
(L)
ij (X,R) =

(
p∑

s=1

max[0, |xis − xjs| − (ris + rjs)]2
)1/2

. (2)

This definition implies that rotation of the axes changes the distances be-
tween the hyperboxes because they are always parallel to the rotated axes.
This sensitivity for rotation can be seen as an asset because it makes a so-
lution rotational unique, which is not true for ordinary MDS. In the special
case of R = 0, the hyperboxes become points and the rotational uniqueness
disappears as in ordinary MDS.

Symbolic MDS for interval dissimilarities aims at approximating the lower
and upper bounds of the dissimilarities by minimum and maximum distances
between rectangles. This objective is formalized by the I-Stress loss function

σ2
I (X,R) =

n∑

i<j

wij

[
δ
(U)
ij − d

(U)
ij (X,R)

]2

+
n∑

i<j

wij

[
δ
(L)
ij − d

(L)
ij (X,R)

]2

,

where δ
(U)
ij is the upper bound of the dissimilarity of objects i and j, δ

(L)
ij is

the lower bound , and wij is a given nonnegative weight. σ2
I (X,R) can be

minimized by iterative majorization (see Groenen et al. (2006)).
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Iterative majorization has the advantage that I-Stress is guaranteed to
reduce in each iteration from any starting configuration until a stationary
point is obtained. In practice, the algorithm stops at a stationary point that
is a local minimum. Another important property for the purpose of this paper
is that, in each iteration, the algorithm operates on a quadratic function in X
and R. Groenen et al. (2006) have derived the quadratic majorizing function
for σ2

I (X,R) as the one at the right hand side of

σ2
I (X,R) ≤

p∑
s=1

(x′sA
(1)
s xs − 2x′sB

(1)
s ys)

+
p∑

s=1

(r′sA
(2)
s rs − 2r′sb

(2)
s ) +

p∑
s=1

∑

i<j

(γ(1)
ijs + γ

(2)
ijs), (3)

where xs is column s of X, rs is column s of R, ys is column s of Y (the pre-
vious estimate of X). The matrices A(1)

s ,B(1)
s ,A(2)

s , vectors b(2)
s , and scalars

γ
(1)
ijs , γ

(2)
ijs all depend dependent on previous estimates of X and R, hence

they are known at the present iteration. Their exact definition can be found
in Groenen et al. (2006). For our purposes, it is important to realize that the
majorizing function at the right of (3) is quadratic in X and R, so that an
update can be readily derived by setting the derivatives equal to zero.

Another important feature of the majorizing function being quadratic is
that it becomes easy to impose the constraints that we will need for the
extension to two-mode three-way symbolic MDS proposed in this paper. For
more details on iterative majorization and its use in three-way MDS, see, for
example, De Leeuw and Heiser (1980) and Borg and Groenen (2005).

3 Two-Mode Three-Way MDS of Interval Data

The I-Scal algorithm developed by Groenen et al. (2006) can be extended
quite easily to two-mode three-way interval data. In this case, we have an
interval available of the dissimilarities available for replication ` = 1, . . . , L.
Then, δ

(L)
ij` and δ

(U)
ij` are the lower and upper boundary of the interval of δij for

replication `. Of course, a normal I-Scal solution could be computed for every
replication separately. However, here we impose restrictions of the weighted
Euclidean model similar to the Indscal approach of Carroll and Chang (1972).

The main idea is to have a single common space of hyperboxes and allow
each replication ` to stretch or shrink the dimensions to fit its ranges of
dissimilarities as good as possible. Let X and R denote here the centers
and spreads of the hyperboxes in the common space. Then, the weighted
Euclidean model restrictions imply that the hyperboxes for the individual
replication ` are modelled as

X` = XV` (4)
R` = RV`, (5)
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where V` is a p×p diagonal matrix with dimension weights for replication `.
This objective can be obtained by minimizing the 3Way-IStress loss function

σ2
3Way(X,R,V1, . . . ,VL) =

∑

`

n∑

i<j

wij

[
δ
(U)
ij` − d

(U)
ij (XV`,RV`)

]2

+
∑

`

n∑

i<j

wij

[
δ
(L)
ij` − d

(L)
ij (XV`,RV`)

]2

. (6)

Note that without loss of generality, we may require that all diagonal weights
in V` are nonnegative. The reason is that a negative element only reflects an
individual axis, but it does not change the distances between the hyperboxes.
As the X and R are both multiplied by V`, there is nonuniqueness between
the scale of the s-th column of X and R and the s-th diagonal value of the
V`s denoted by vss`. To identify them, we impose the restriction

∑
` v2

ss` = L
to (6), although it is sufficient to impose these restrictions after the algorithm
has converged.

To find an algorithm for minimizing 3Way-IStress, we use the majoriza-
tion results obtained for I-Stress. The first step is to apply the majorizing
inequality of (3) to (6). Let Y` and Y be the previous estimates of X` and
X. Then,

σ2
3Way(X,R,V1, . . . ,VL) ≤

p∑
s=1

(∑

`

x′s`A
(1)
s` xs` − 2

∑

`

x′s`B
(1)
s` ys`

)

+
∑

`

p∑
s=1

(
r′s`A

(2)
s` rs` − 2r′s`b

(2)
s`

)
+

∑

`

p∑
s=1

∑

i<j

(γ(1)
ijs` + γ

(2)
ijs`). (7)

To find updates it is convenient to substitute X` = XV`, R` = RV`, and
γ =

∑
`

∑p
s=1

∑
i<j(γ

(1)
ijs` + γ

(2)
ijs`) in (7), that is,

σ2
3Way(X,R,V1, . . . ,V`) ≤

p∑
s=1

(∑

`

v2
ss`x

′
sA

(1)
s` xs − 2

∑

`

vss`x′sB
(1)
s` ys`

)

+
∑

`

p∑
s=1

(
v2

ss`r
′
sA

(2)
s` rs − 2vss`r′sb

(2)
s`

)
+ γ. (8)

The latter majorizing inequality shows that for fixed V`, the updates of X
and R are independent because there is no cross product of elements of X and
R in the quadratic majorizing function (8). The 3WaySym-Scal algorithm
defined later updates X and R for fixed V` followed by updating V` for fixed
X and R both using the majorizing function at the right of (8).
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We start with deriving the update for X. Rewriting the terms of (8) that
are dependent on X gives

p∑
s=1

(
x′s

[∑

`

v2
ss`A

(1)
s`

]
xs − 2x′s

[∑

`

vss`B
(1)
s`

]
ys

)
. (9)

Setting the derivatives equal to zero yields the linear system
[∑

`

v2
ss`A

(1)
s`

]
xs =

[∑

`

vss`B
(1)
s`

]
ys

Axs = b

for all s where the second line is used for notational simplicity. As each matrix
A(1)

s` (and B(1)
s` ) has the matrix 11′ in its null-space, it follows that A is not

of full rank and b is column centered. Therefore, solving Axs = b is the same
as solving

(A + 11′)x+
s = b or x+

s = (A + 11′)−1b, (10)

for each dimension s, where x+
s denotes the update.

For the update for R, we rewrite the terms of (8) that are dependent on
R as

p∑
s=1

(
r′s

[∑

`

v2
ss`A

(2)
s`

]
rs − 2r′s

[∑

`

vss`b
(2)
s`

])
. (11)

Setting the derivatives of (11) equal to zero yields the update

r+
s =

[∑

`

v2
ss`A

(2)
s`

]−1 [∑

`

vss`b
(2)
s`

]
(12)

for each dimension s that is easily computed as each A(2)
s` is diagonal.

For an update of V` for fixed X and R, consider rewriting the terms of
(8) as

p∑
s=1

∑

`

(
v2

ss`

[
x′sA

(1)
s` xs + r′sA

(2)
s` rs

]
− 2vss`

[
x′sB

(1)
s` ys` + r′sb

(2)
s`

])

for which the update becomes

v+
ss` =

[
x′sA

(1)
s` xs + r′sA

(2)
s` rs

]−1 [
x′sB

(1)
s` ys` + r′sb

(2)
s`

]
(13)

for all ` and s.
The 3WaySym-Scal algorithm for minimizing σ2

3Way(X,R,V1, . . . ,VL)
using iterative majorization is shown in Figure 2.
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1 Initialize X(0), R(0), and V
(0)
` = I for all `.

Set k := 0, X(−1) := X(0), R(−1) := R(0), and V
(−1)
` = V

(0)
` for all `.

Set ε to a small positive value.
2 While k = 0 or σ2

3Way(k − 1)− σ2
3Way(k) ≤ ε

3 k := k + 1.
4 For s = 1 to p
5 Compute the update of xs by (10).
6 Compute the update of rs by (12).
7 For ` = 1 to L
8 Compute the update of vss` by (13).
9 End for

10 End for

11 Set X(k) := X, R(k) := R, and V
(k)
` = V`.

12 End

Fig. 2. The 3WaySym-Scal algorithm.

Instead of reporting σ2
3Way, we shall report σ2

3Way/η2 with

η2 =
∑

`

∑

i<j

wij([δ
(U)
ij` ]2 + [δ(L)

ij` ]2)

because σ2
3Way/η2 will be between 0 and 1 at a local minimum and is in-

dependent of the number of objects, the size of the dissimilarities, or the
weights.

4 Synthesized Musical Instruments

To illustrate our method, we consider an empirical data set where the entries
in each of two dissimilarity matrices are an interval of values. These two
dissimilarity matrices represent dissimilarities among the same set of objects,
given by the same expert on two different occasions; thus combined these two
dissimilarity matrices to form a three-way two-mode array. The objects in the
study are ten sounds differing with respect to only two physical parameters:
the spectral center of gravity and the log attack time. Many previous studies
of musical timbre have demonstrated that these two physical parameters
are highly correlated with the perceptual axes uncovered when dissimilarity
judgments are collected for sounds from different musical instruments playing
the same note with the same loudness for the same duration of time.

Until some 35 years ago timbre was considered to be a perceptual param-
eter of sound that was complex and multidimensional, defined primarily by
what it was not, that is what distinguishes two sounds presented in the same
manner equal in pitch, subjective duration and loudness (see Plomp, 1970).
MDS studies have shown that these two attributes of sound, namely spectral
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center of gravity and log attack time explain the factors we use to distinguish,
say, middle C on the piano from middle C on some other instrument when
they are played at the same loudness and the same duration of time (see,
for example, McAdams, Winsberg, Donnadieu, DeSoete & Krimphoff, 1995;
McAdams & Winsberg, 1999). So, when middle C is played on the piano the
sound has some unidimensional attributes such as pitch, corresponding to
the fequency of the fundamental, loudness, and duration. In addition, it is
characterized by its timbre, that is, a note played by a piano and not some
other musical instrument. This last attribute, timbre, is perceptually multidi-
mensional with two important underlying perceptual dimensions relating to
spectral center of gravity and log attack time. The spectral center of gravity
is the weighted average of the harmonics generated when a note is sounded
averaged over the duration of the tone with a running time window of, say,
12ms, and is higher for the harpsichord than for the piano, for example. The
log attack time is the logarithm of the rise time measured from the time the
amplitude envelope reaches a threshold of 2% of the maximum amplitude to
the time it takes to reach the maximum amplitude, and is longer for a wind
instrument like the trumpet than for a string instrument like the harp. The
ten sounds in this study were generated artificially to represent the range of
values found in natural instruments according to the design in Figure 3. The
data represents dissimilarity judgments from the same expert listener taken
on two occasions. The data are given in Table 2 of Groenen et al. (2006).
On each occasion the expert listened to each pair of sounds and indicated
a range of dissimilarity for each pair on a calibrated slider scale going from
very similar to very different.
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Fig. 3. Design of the ten sounds according to spectral center of gravity (vertical
axis) and log attack time (horizontal axes).
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The data were analyzed by 3WaySym-Scal for both occasions simul-
taneously. To reduce the probability of a bad local minimum we have used
100 random starts and chose the best one. The resulting solution with Stress
0.05194421 is shown in Figure 4. Here, the common space with X and R is
shown in the left panel. The right panel shows the weights for the two oc-
casions. We see that at Occasion 1, the first dimension is emphasized more
than the second, whereas this situation is reversed at Occasion 2. Another
representation of this very same solution can be obtained by showing the
individual spaces for each of the occasions, thus using the XV1 and RV1 for
the first occasion and XV2 and RV2 for the second occasion. This represen-
tion of the individual spaces is shown in Figure 5. We also present the results
obtained analyzing the data from occasion one and occasion two separately
using the I-Scal algorithm that is two separate two-way analyses in Figure
6.
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Fig. 4. Common space and dimension weights for the 3WaySym-Scal solution for
judgements on synthesized musical instruments for judgements on two occasions by
a single professional judge.

It is informative to examine and compare the three-way solution treating
the two data matrices simultaneously obtained with 3WaySym-Scal with
the solutions obtained for each occasion separately using the two-way I-Scal
algorithm. In each case, the horizontal axis represents log attack time and
the vertical axes the spectral center of gravity. Without imposing any restric-
tions, each version of SymScal seems to be able to reconstruct the physical
space. The results for the 3WaySym-Scal in Figure 4 indeed reflect the
physical space. Notice the groupings 10, 9, 4, 1 and 2, 5, 7 and 3, 6, 8 reflect
how these stimuli are grouped in the physical space. Moreover, the relation
of these groups to one another approximates their disposition in the physical
space reasonably well. The results for the second occasion analyzed alone
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a. Occasion 1 b. Occasion 2
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Fig. 5. Three-way interval MDS solution for judgements on synthesized musical
instruments for judgements on two occasions by a single professional judge.
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Fig. 6. Unconstrained I-Scal solutions for the sound data obtained by Groenen et
al. (2006). Panel (a) gives the results for Occasion 1 with I-Stress .02861128 and
Panel (b) for Occasion 2 with I-Stress .04893295.

reflect the physical space the best, and the solution from the first occasion
alone shows the most deviations from the physical space: 8, 3, 6 are too far
to the left, 3 is too low, 7 is too far to the left, and 1 is too far to the right.
Note that these differences from one occasion to another are greater than the
range of uncertainty reflected in the solutions. Analyzed alone without look-
ing at the three-way solution one might want to conclude that the improved
results on the second occasion indicate that the task is better performed with
some practice and with greater familiarity with the group of sounds. How-
ever, the expert spent much time familiarizing himself with the sounds before
undertaking the task. The results of the three-way analysis combined with
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the two-way solutions point to the much more interesting idea that greater
attention to the spectral center of gravity was necessary to better reproduce
the physical space. This additional most interesting information about sound
perception could only be teased out by examining all the results. Of course,
it also appears from the figures that sounds with long attack times are more
difficult to localize, than those with short attack times (with exception to
sound number 10).

5 Discussion and Conclusions

We have presented an MDS technique for symbolic data that deals with three-
way two-mode fuzzy dissimilarities consisting of a interval of values observed
for each pair of objects, for each source. In this technique, each object is rep-
resented as a series of hyperboxes in a p dimensional space. By representing
the objects as hypercubes, we are able to convey information contained when
the dissimilarity between the objects or for any object pair needs to be ex-
pressed as a interval of values not a single value, and when one has data from
more than one source. It may be so, moreover, that the precision inherent
in the dissimilarities is such that the precision in one recovered dimension is
worse than that for the other dimensions. Our technique is able to tease out
and highlight this kind of information.

The 3WaySym-Scal algorithm for MDS of interval dissimilarities is
based on iterative majorization, and the I-Scal algorithm created to deal
with the case when dissimilarities are two-way, one-mode data and are given
by a range or interval of values. The advantage is that each iteration yields
better 3Way-IStress until no improvement is possible. Simulation studies have
shown that I-Scal and Hist-Scal upon which this algorithm is based, com-
bined with multiple random start and a rational start yields good quality
solutions.

Denœux and Masson (2000) discuss an extension for interval data that
allows the upper and lower bounds to be transformed. Although it is techni-
cally feasible to do so in our case, we do not believe that transformations are
useful for symbolic MDS with interval or histogram data. The reason is that
by having the available information of a given interval for each dissimilarity,
it seems unnatural to destroy this information. Therefore, we recommend
applying symbolic MDS without any transformation.

The present model can be extended along at least two lines. First, one
could allow for individual rotations of the common space. It remains to be
studied how this could be implemented. For example, one could only rotate
X and not R or one could do both. A second line of extensions could study
the use of intervals for V` as well. The consequences also rquire further study.
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