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Abstract: In this paper we analyse the optimal claim behaviour of a risk sensitive policy holder having a vehicle damage insurance. 

It is proved that the optimal decision is of the form: to claim for damages only if its amount exceeds a certain limit. Moreover, we 

also derive the optimal stopping rule to terminate the insurance. Finally, some computational results are presented. 
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1. Introduction 

An important feature of premium rating systems for vehicle insurance is the no-claim or bonus-malus 
principle. This principle is meant to reward policy holders for not making claims during a year; that is, to 
grant a bonus to a careful driver. 

A bonus principle affects the policy holder’s decision whether to claim or not in a particular instance. 
An example of a bonus-malus scheme operative in the netherlands [cf. Goudse Verzekeringen (1988>3 is 
given in Table 1. 

In Dellaert et al. (1990) the optimal claim behaviour of a policy holder having a third-party liability car 
insurance operative under a given bonus-malus scheme is discussed. In the same paper a detailed 
overview of the literature on this topic is presented. By similar techniques as used in Dellaert et al. 
(1990) we will analyse in this paper the optimal behaviour of a policy holder having a vehicle damage 
insurance. Sometimes the vehicle damage insurance and the third-party liability insurance are combined 
in a so-called all-risk insurance. The vehicle damage insurance only covers damages on the policy 
holder’s car and operates under the same bonus-malus table as a third-party liability insurance [cf. 
Goudse Verzekeringen (1988)l. However, there are some differences. 

First of all, contrary to a third-party liability insurance, the vehicle damage insurance is not made 
obligatory. This implies that the policy holder has the option to join or terminate the insurance and 
hence in the analysis of the decision process one has to take account of the policy holder’s risk sensitivity. 
For simplicity it is assumed that all insurance companies apply the same rates and so the policy holder 
does not have the opportunity to terminate the insurance and take a cheaper vehicle damage insurance 
with another insurance company. 
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Table 1 

Percentages of the basic premium by bonus-malus class. 

Bonus-malus Premium as a per- New bonus-malus class after . claims 

class centage of the 

basic premium 
0 1 2 r3 

14 30.0 14 9 5 1 

13 

12 

11 

10 

8 

6 

5 
4 

2 

32.5 

35.0 

37.5 

40.0 

45.0 

50.0 

55.0 

60.0 

70.0 

80.0 

90.0 
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120.0 

14 

13 

12 

11 

10 

9 

8 

6 

5 

4 

2 

8 4 
8 4 
7 3 
7 2 
6 1 

5 1 

4 1 

3 1 

2 1 

1 1 

1 1 

1 1 

1 1 

Secondly, if a total loss occurs and a claim is submitted, the indemnity paid by the insurance company 
depends on the age of the car. Hence the older the car gets, the less attractive it will be for the policy 
holder to be insured, since at the same time the bonus-malus scheme with its basic premium does not 
change. These two major differences complicate the analysis of the decision process. 

In the next section the assumptions and the mathematical model describing the decision process will 
be introduced and analysed. Moreover, in Section 3 some computational results for an existing vehicle 
damage insurance will be presented. 

2. The model 

In this section we introduce a discrete Markov decision process to model the vehicle damage 

insurance. However, before discussing the model, we specify the following assumptions. Some of the used 
notions will be defined and explained in detail later in this section. 

_ A policy holder always buys a new car of approximately the same list price and with approximately the 
same damage distribution if his present car is a ‘total loss’ or if it reaches a given age U. 

- A policy holder faces a deduction of size f. This means, if he claims for a damage, he has to pay the 
amount f himself. 

Clearly the second assumption is realistic. To discuss the first assumption we first observe that the 
decision of buying another car and which type of car is not determined within the model. This decision 
clearly depends on other factors such as the wealth and preference of the policy holder. However, in 
order to determine the policy holder’s optimal behaviour with respect to his vehicle damage insurance we 
need to know in advance under which replacement rule the policy holder operates. As an example of 
another replacement rule we mention the rule that a policy holder always buys a second-hand car 
belonging to a certain category after a ‘total loss’ or after the present car reaches a certain age. In 
principle, all replacement rules which uniquely determine the future bonus-malus class and its corre- 
sponding premium, given the present premium, can be incorporated into the model. Also, since the 
model determines an average optimal decision based on random information about the sizes of future 
damages and appearances of future accidents we need to know in advance the so-called damage 
distribution of the (future) policy holder’s car. Clearly the repair costs and damage characteristics of cars 
belonging to a different category might be completely different. Finally, in order to decide whether a car 
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is a ‘total loss’ we must know an estimate of the current value of the car before an accident and its 
demolition value after the accident. These estimates also depend on the type of car. The first assumption 
was introduced to keep the model simple with respect to the necessary information. Roughly this 
assumption implies that we only need to know one function for the current value, one list price and one 
damage distribution. However, if in some cases this assumption deviates too much from the replacement 
rule of an arbitrary policy holder we can introduce this more specific replacement rule. In general the 
model can handle more accurate rules at the cost of computational efficiency and a more complicated 
notation. Having in mind that a model is always an inaccurate description of reality we might argue that 
a possible advantage does not offset the complications and so we should use only very simple 
replacement rules like the one mentioned above. Finally, the authors believe that a more severe 
restriction of this model is its incompetence to handle different competing insurance companies and to 
model the ‘shopping’ behaviour of policy holders to different companies. To model this a somewhat 
different model is needed and this will be the topic of future research. 

Now, in order to derive the Markov decision model we need to define the set of decision moments, 
the decision space, the state space and the transition probabilities. 

Let the decision process continue T years (T < m> and start at the beginning of a certain year. We 
divide an insurance period, generally a year, into N equal subperiods. We assume that there can only be 
one accident during a subperiod and that the decision to claim or not to claim for a particular damage 
has to be taken at the end of a subperiod. Then the set of decision moments is defined as 

Y:=(tlt=l,2 ,..., H} where H=NT. 

A policy holder has to take two kinds of decisions. The first is whether he claims for a damage or not. 
This decision is modelled by the variable d, (d, = 0, l), where 1 denotes to claim and 0 denotes not to 

claim. 
The second decision deals with the opportunity to continue or to terminate the insurance. Only at the 

end of each insurance year, a policy holder can decide whether he terminates the insurance at the end of 
that year or not. Moreover, if the policy holder is not insured at the end of a certain subperiod, he can 
always decide to join the insurance. Consequently, he only pays a part of the premium, accordant with 
that part of the year during which he is insured. This second decision is given by the variable d, 
(d, = 0, 1, 2), where 0 denotes no transition, 1 denotes terminating the insurance at the end of the year 
and 2 denotes effecting an insurance at the end of a subperiod. By these observations it is clear that the 
decision space is given by 

9 := {(d,, d2) Id, = 0, 1; d, = 0, 1, 2). 

At each decision moment, the policy holder faces a state E,. This state consists of six components, of 
which some will be explained in the remainder. These components are: 

j = the policy holder’s bonus/ malus combination (r&j), m,(j)), j = 1,. . . , J; 
i = the index defining a year, 0 _< i I T - 1; 
n= the index defining a subperiod, 1 I n I N; 
I= the car’s age, 1 2 1 I U with U representing the total time the policy holder keeps his car; 
c= (0, 11, where 0 denotes not being insured, and 1 denotes being insured; 
x= the amount of damage resulting from an accident occurring in subperiod n. Clearly x equals 0 if no 

accident occurs; 

and so every state E, at time t is given by the following vector: 

E, = (j, i, n, 1, c, x). 

We are now going to look at the components j, c and 1 more closely. The variable x will be treated 
later on, when stating the transition probabilities. 
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The component j = (ra( j), rri( j)) consists of 

1. the premium r&j) to be paid next year by the policy holder when he does not claim for a damage 
during the rest of the current year, 

2. the premium r,(j) to be paid next year by the policy holder when he claims for exactly one damage 
during the rest of the current year. 

As will appear below, the premium that he would pay when he would claim two or more times during the 
rest of the current year, does not play any role. 

We can elicit every possible combination of premiums to be paid from the transition table of the 
bonus-malus scheme; let there be J such combinations. We denote a particular combination with j, 
where j= l,...,J. 

We consider two cases where j changes. 

1. The policy holder files a claim in one of the subperiods 1,. . . , N - 1. Observe, if he does not file a 
claim, the component j = (rc( j), x1( j>) will not change. However, if a claim is filed, we denote by a( j> 
the number of the new combination when his present combination is j and so he moves to the new 
combination a(j) = (r&u(j)), rr,(a( j))> with +rrJu( j>) = n-J j). 

This transition can be represented schematically by 

j no claims 
j -+ 

u(j) one claim . 

It follows that it is not necessary to keep record of the number of filed claims, because the next year 
premium is adapted immediately after a claim is filed. 

2. A new insurance year takes effect. The policy holder pays the premium at the beginning of each 
insurance year. This premium is equal to rri( j) or rt,( j>, depending on whether he has or has not filed a 
claim in state (j, i, N, 1, c, x). When he does not file a claim during the new insurance year, he moves to a 
higher bonus-malus class (unless he is already in the highest class), and for the year thereafter he pays a 
lower premium than for the starting new year. This corresponds to a different combination j of 
premiums to be paid. 

Consequently, for each j there are two transitions between the subperiods II = N of any year and 
it = 1 of the next year: 

j -j + b(j) if no claim is filed 

j+u(j)-+b(u(j)) if aclaimisfiled ’ 

where b(j) is defined as the number of the new combination as a result of the transition to the new year. 
Given a transition mechanism, as presented in Table 1, we can determine the values of j, u(j), b( j> and 
of the corresponding premiums. Table 2 contains these values for the 17 different combinations which 
can be formed from Table 1, starting with (1, 1) corresponding with j = 1 until (14, 9) for j = 17. For 
simplicity the components of the vector do not denote the premiums to be paid but the numbers of the 
corresponding bonus-malus classes. We notice that different values will result when a different 
bonus-malus system is effective. 

The component c of the state space, denoting whether the policy holder is insured or not, can assume 
the values 0 or 1. Some changes on c are possible, dependent on the decision moment t. Let t = Ni + n, 
0 I i I T - 1 and 1 5 n I N. We distinguish the following situations: 
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Table 2 

Bonus/malus combinations. a 

j PO(j) p,(j) a(j) b(j) 

1 120.0 120.0 1 2 

2 100.0 120.0 1 3 

3 90.0 120.0 1 4 

4 80.0 120.0 1 5 

5 70.0 120.0 1 7 

6 60.0 120.0 1 9 

7 60.0 100.0 2 9 

8 55.0 100.0 2 10 

9 55.0 90.0 3 10 

10 50.0 80.0 4 11 

11 45.0 70.0 5 12 

12 40.0 60.0 6 13 

13 37.5 55.0 8 14 

14 35.0 55.0 9 15 

15 32.5 50.0 10 16 

16 30.0 50.0 10 17 

17 30.0 45.0 11 17 

a The functions p&i) and pl( j) equal p,(j) and vr,( j) as a percentage of the basic premium. 

(a) Ori<T-1, IlnlN-1. At the end of any subperiod the policy holder can make the 
transition of not being insured to being insured. However, he cannot terminate his insurance. Schemati- 
cally: 

(b) O_<iIT-2, n=N. At the end of a year, which is not the last year the policy holder is driving a 
car, the policy holder can decide whether he will or will not be insured during the next year. 
Schematically: 

o-o,1 
l+l,O’ 

Before discussing the component 1 of the state space, we first need to consider the probability 
distributions of the number of accidents and the amount of damage. We assume that the size of N, the 
number of subperiods in which the total insurance year is divided, is such that the probability of two or 
more accidents in any subperiod is negligible. Moreover, we assume that the probability of one accident 
in a certain subperiod may vary from one subperiod to another and that the appearances of accidents in 
the different subperiods are independent. 

We define the probability 

p,, := Pr( ‘one accident in subperiod n’} , n = 1,. . . , N, 

and a random variable z,, where 

_z, := 
i 

0 if no accidents occur in subperiod n 

1 if one accident occurs in subperiod TZ . 

Observe that in this paper random variables are denoted by underlined capitals and so by definition we 
have 

I+{& = O} = 1 -pn 

Pr{_z, = I} =p, 
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Accidents generally imply damage. We define _Y, as the amount of damage resulting from an accident in 
subperiod n and assume the positive random variables _Y, to be stochastically independently distributed. 
Since the amount of damage is equal to the cost of repair which is of course bounded from above by the 
value of a new car, we define 

where L denotes the list price of a new car. 
Clearly, if & denotes the total amount of damage in subperiod 12, we obtain 

&?I = 
i 

4=, if _Z, = 1 

0 if _Z,=O’ 

and hence with F,(x) := Pr{_Y, IX} satisfying F,(L) = 1 and F,(O) = 0 the distribution G, of the random 

variable & is given by 

G,(X) =Pr{& IX} 

It is now possible to discuss the component 1. This component, denoting the car’s age determines the 
current value of the car. This current value plays an important role in the decision to continue or to 
terminate an insurance at the end of the insurance year, and to determine whether a car is a ‘total loss’ 
or not. We denote the current value of the car by the decreasing function h(l), 1 = 1,. . . , U of which an 
example is presented in Figure 1. The age 1 is reproduced in subperiods. 

To define a ‘total loss’ we first give an estimate of the demolition value of a car involved in an 

accident. 
Since this demolition value demu(1, x> clearly depends on the age I of the car and the amount of 

damage x 2 L with L the list price of a new car and this value is decreasing in x and 1 we have chosen 

the following simple estimate: 

demu(f, x) := C/z(l) 

with C < 1 some fixed constant. 
If an accident occurs with damage x > 0 and the car involved has age I it is declared a ‘total loss’ if 

x+demu(l, x) k/z(Z). 

This implies that the threshold value k(l) for a total loss is given by 

x 2 tr( I) := 
Lh(l)(l -C) 

L-a(z) . 

Although the cost of buying a new car is a direct consequence of a ‘total loss’ we do not assign these 
costs to the unexpected loss. Due to the accident the value depreciation of the car is given by 

w(l, x) := h(l) - demu(l, x) (1) 

and so in case of a ‘total loss’ and no claiming the policy holder’s direct costs assigned to the unexpected 
loss equals w(l, x). Similarly, in case of no ‘total loss’ and no claiming these costs are given by x. Hence, 
if no claiming occurs, the policy holder’s direct costs assigned to the unexpected loss equals c(Z, x) with 

c(l, x) := ( x 
if x <P(l) 

w(Z, x) if xrtr(l)’ 
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On the other hand, if claiming occurs, the policy holder’s direct costs equal f. This concludes our 
discussion of the direct costs assigned to an accident and the definition of a ‘total loss’. 

With the probability distribution function for & we can derive the transition probabilities for all 
possible combinations of states and decisions. That is, we must determine the probability density 

function for entering state E, + I, g iven that the policy holder was in state E, at the previous point of time 
t and had taken decisions d, and d,. This function is denoted by h(E,+, I E,, d,, d,) and equals g,+,(x) 
at subperiods 1 to N - 1 and g,(x) at subperiod N. The function g,(.> is the probability density function 
belonging to the random variable &. 

Furthermore we define c(E,, d,, d,) as the direct cost when decisions d, and d, have been taken in 
the current period and the policy holder is in state E,. The values of the direct cost are given in Table 3 
in the case of no ‘total loss’. Notice, in case of ‘total loss’ that the corresponding table is identical except 
that I* := I(mod U) + 1 is replaced by 1 since in that case the policy holders buys a new car. Also 
observe, if a policy holder decides to join the vehicle damage insurance and he used to be in combination 
j that it is assumed that he will continue in j within one insurance year or start in b(j) at the end of an 
insurance year. However, depending on the policy of the insurance company he might also move to 
another combination (e.g. bonus is lost after two years without vehicle damage insurance). This policy 
can also be incorporated by adapting every time the component j according to the company’s policy in 
case of no vehicle damage insurance. Since this requires a specific knowledge of a company’s policy we 
take for simplicity the first option. 

Since the policy holder can decide not to join the insurance we have to introduce risk sensitivity into 
the model. In the Markov decision model we will therefore use an exponential disutility function V(x), 
describing the risk aversion of a person, as discussed by Howard and Matheson (1972). The disutility 
function V(x) = ea* ((Y > 0), measuring the discomfort of a policy holder, is monotone increasing, convex 
and satisfies the delta-property [cf. Howard and Matheson (197211. That means, the policy holder is 
risk-averse and decides independent of his wealth or income. Howard and Matheson prove that the 

Table 3 

c(E,, d,, d,) for all E,, I?,+~, d,, d, and no ‘total loss’. a 

4 4 
E, = (j, i, n, 1, 0, x) 0 0 

n=l,...,N-1 0 2 

i=O,...,T-I 

E, = (j, i, n, 1, 1, XI 1 0 
n=l ,...,N-1 0 0 

i=O,...,T-1 

E, = (j, i, N, 1, 0, x) 0 0 

il=N 0 2 

i=O,...,T-2 

E, = (j, i, N, 1, 1, X) 1 0 

II = N 1 1 
i=O,...,T-2 0 0 

0 1 

E,=(j,T-1, N,I,O,x) 0 0 
n=N 

i=T-I 

E, = (j, T - 1, N, I, 1, x) 1 1 
n=N 0 1 
i=T-1 

E 1+1 

(j,i,n+l,l*,O,y) 
(j, i, n + 1, I*, 1, y) 

cc&, d,, d,) 

CR x) 
ccl, x)+ srO(jX(N - n)/N) 

(a(j), i, n + 1, I*, 1, y) 

(j, i, n +l, I*, 1, y) 
f 
cu, x) 

(j,i+l,l,l*,O,y) 
(b(j), i+l, l,l*, 1, Y) 

cu, x) 
41, x)+ 7r& j) 

(b(a(j)), i + 1, 1, I*, 1, y) f + P,(a(j)) 

(a(j), i + 1, 1, I*, 0, y) f 
(b(j), i + 1, 1, I*, 1, Y) ccl, xl+ 55-J j) 

(j,i+l,l,l*,O,y) cu, XI 

(j, T, 1, l*, 0, Y) CCL XI 

(a(j), T, 1, I*, 0, y) 

(j, T, 1, I*, 0, Y) 

f 
41, x) 

a For the other transitions the transition probabilities equal zero. 
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optimal strategy (T exists and satisfies 

l;,,(E,) = info,(&), 
Y 

where u,(E,J equals the total expected disutility for the policy holder if his initial state is given by E,, 
and the strategy y is used, i.e. 

with c(_E,, y) the direct costs in period t if the random state _E, is observed and y is the used strategy 
while E denotes the mathematical expectation symbol. Observe that the index of absolute risk aversion is 
given by (Y and that the direct cost occurring during the decision process is discounted by a discount 
factor p 5 1. 

In order to illustrate risk aversion, imagine an individual who faces two possible results of a game: 

- he wins Dfl.14 with probability 0.5, 
- he loses Dfl.2 with probability 0.5. 

The expected value E[X] of this game is Dfl.6. When someone asks him to choose between the 
certainty equivalent Dfl.6 and the game, the individual is risk-loving if he plays, risk-neutral if he is 
indifferent, risk-averse if he accepts the Dfl.6. By means of a risk-aversion index LY in the disutility 
function, it is possible to give shape to the degree of risk aversion. 

Given the above definitions we are now able to formulate the optimality equations. Introduce 
thereforeforevery1~i~T-1,1~n~N,1~1~U,c=0,1,x~Oanda>0: 

V;( (Y, j, II, 1, c, x) := minimal expected total discounted disutility from subperiod Ni + n 

through subperiod NT when the risk-aversion index equals cr and the 

policy holder is in state ( j, i, n, 1, c, x) at the end of subperiod Ni + n, 

and 

I/;(a, j, Iz, 1, c) := E[ Y(a, j, n, 1, c, &>I. 

In order to derive the optimality equations we consider six possible situations (see Table 4). 
Although in each situation a similar reasoning can be applied to derive the optimality equation we 

distinguish these six different cases to avoid a complicated notation. Observe, since in case of a total loss 
the policy holder always buys a new car that we need to introduce for the age component I of the state 
space the function 

if x < tr(l) 

if x2tr(l)’ 

Case I. If this holds (0 5 i 5 T - 1, 1 5 n I N - 1, 1 I U, c = 0) the policy holder, not being insured, 
pays in case of an accident the direct costs c(f, x) himself. He only has to decide whether he will or will 
not be insured during the remaining part of the insurance year. This implies that the optimality equation 

Table 4 

Possible situations. 

c=o 

hot insured) 

c=l 

(insured) 

OliST-l,llnlN-1 I II 

OsisT-2,n=N III IV 

i=T-l,n=N V VI 
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has the following form: 

I/;(@, j, n + 1, L(f, x), 0) 

I/~((Y, j, iz, I, 0, X) = exp(ac(l, x)) min 
r’;(@, j, n + 1, L(l, x), 1) 

. (3) 

Case II. If this holds (0 I i 5 T - 1, 1 5 n 5 N - 1, 1 s U, c = 1) the policy holder claims for a damage 

or not. This implies 

v(a, j, n, E, 1, x) =min 
exp(af)F(@, a(j), n + 1, L(l, x), 1) 

exp(c-uc(f, x))F(cxP, j, n + 1, L(l, x), 1). 
(4) 

Case III. If this holds (0 5 i 2 T - 2, II = N, I I U, c = 0) the policy holder has to pay in case of an 
accident the direct costs c(Z, X) himself. He only has to decide whether he will or will not be insured 

during the next insurance year. As such this situation is similar to case I and so we obtain 

<((Y, j, N, 1,0, x) = exp( (-Yc( Z, ,K)) min 
I/;+t(Q, j, 1, L(l, x), 0) 

exp(ar,(j))K+,(@, b(j), 1, L(l, x), 1) ’ 
(5) 

Case lV. If this holds (0 < i I T - 2, n = N, 15 U, c = 1) the policy holder, being insured, decides 
whether to claim his damage and whether he should continue his insurance. This implies 

I 
exp( af) min 

i 

exp(~~a(a(j)))I/;+,(G, b(a(j)), 1, L(l, x), 1) 

vl,+,(@, a(j), 1, L(l, x), 0) 
I 

I/;(a, j, N, I, 1, X) = mint 

exp( ac( I, x)) min 
exp(~~,(j))Y+,(ap, b(j), 1, L(l, x), 1) 

\ Y+t(aP, j, 1, L([, x),0> 

(6) 

Case V. If this holds (i = T - 1, n = N, c = 0) the policy holder pays in case of an accident his direct 
costs c(l, x). Since this is the last subperiod he is driving a car he does not have to pay after this 

subperiod and hence 

I/T_t(a, j, N, 1,0, x) = exp(ac(l, x)). (7) 

Case VI. If this holds (i = T, n = N, c = 1) the policy holder does not have to pay after this subperiod 

and so he claims if and only if ccl, X) >f. This implies 

Vr_t((~, j, N, I, 1, X) = min (8) 

The above case concludes the analysis of the claim behaviour of a policy holder. For the cases II, IV 
and VI, to which the question ‘to claim or not to claim’ is relevant, we are now able to derive the critical 
claim sizes. The following expressions can be interpreted as such and this interpretation will be proved in 
Theorem1.IntroduceforO~i~T-l,l~n~N-1,c=1,x>OandZ~U, 

Di(a, j, n, E, 1, x) := dlog 
i 

vi(M, a(j), n + 1, L(I, x), 1) 

K(aP, j, n + 1, L(Z, x), 1) 1 . 
(9) 
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Moreover,forO<i<T-2,n=N,Z<U,c=l,x>O,let 

min 
exp(cu~o(a(j)))Vl+l(ap, b(a(j)), 1, L(l, x>, 1) 

Di(~, j, N, 1, 1, x) := llog I i F+,(cG, a(j), 1, UZ, x), 0) 

ff J (10) 
. 

m1n 1 

exp(~~o(j>)K+l(~P~ b(j), 1, L(l, x), 1) 

\ V;+,(aP, j, 1, L(l, x), 0) I 

and finally for i = T - 1, IZ = N, 1~ U, c = 1 and x > 0 introduce 

DT_,(~, j, N, 1, 1, x) := 0. (11) 

Although these critical claim sizes depend on x they assume at most two different values, i.e. one for 
x 2 tr(Z> and one for x < P(Z). 

We are now able to prove the following result. 

Theorem 1. Consider an insured policy holder with a risk-aversion index (Y and a deduction f being in state 
(j, i, n, 1, 1, x) at the end ofperiod Ni + n with 0 I i 5 T - 1 and 1 I n IN. Then the optimal claim policy 
for this policy holder is given by the following rule: 

Claim for a damage ifand only ifc(1, x) -f rDi(o, j, n, 1, 1, x) 

Proof. Since the proof of this result is similar for the cases II, IV and VI we only give the proof for II. 
A policy holder always decides what is most profitable for him and so he only claims if claiming 

provides him with less disutility than not claiming. This yields for case II using equation (4) that a policy 
holder will claim if and only if 

exp(af )I/;(@, a(j), n + 1, L(1, x), 1) 5 exp(oc(l, x))l/;(oP, j, n + 1, L(1, x), 1). 

By rewriting the above inequality and the definition of DJcY, j, n, 1, 1, x) the desired result now follows. 
0 

Observe, if a ‘total loss’ occurs, i.e. x 2 tr(l>, that by (2) and (1) 

L-x 
~(1, x) =w(l, x) =h(l) -Ch(l)L = (1 - C)h(l) + ;h(l), 

and so by Theorem 1 the policy holder claims if and only if 

, x 2 L(Q(a, j, n, 1, 1, x) +f - (I - C)h(l)) 

Ch(1) 
(12) 

Also for the cases I, III and IV, the policy holder has the opportunity to decide whether he will or will 
not be insured during the next period. Similarly as in the proof of Theorem 1 an optimal policy dictates 
the policy holder to decide the following: 

Case I (0 I i 2 T - 1, 1 I n I N - 1, c = 0). Applying equation (3) it follows almost immediately to 
effect an insurance if and only if 

K(c@, j, n + 1, L(1, x), 1) 2 I/;(@, j, n + 1, L(1, x), 0). (13) 

Case III (0 5 i I T - 2, n = N, c = 0). Applying equation (5) it follows almost immediately to effect an 
insurance if and only if 

exp(ar,(j))Y+,(c-uP, b(j), 1, L(Z, x), I) 5 VI+~((YP, j, I, L(Z, x), 0). (14) 
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Case IV (0 I i 5 T - 2, n = N, c = 1). Applying equation (6) it follows almost immediately to effect an 

insurance in the case of having claimed for a damage x if and only if 

cxp((Y~TTO(a(j)))~+,(~up, b(a(j)), 1, L(l, x), 1) 5 Y+i(aP, a(j), 1, L(l, x), 0). 

Moreover, if it is optimal not to claim, the policy holder should effect the insurance if and only if 

exp(a~O(j))Y+,(aP, b(j), 1, L(I, x), 1) I Y+,(aP, j, 1, L(l, x), 0). 

Observe the above inequalities also yield an upper bound on the premium a policy holder is willing to 
pay to effect or continue the vehicle damage insurance. 

Up to now we have only given a description of the optimal claim behaviour of a policy holder. In the 
last part of this section we will derive a fast procedure to calculate this optimal policy. This will be 
illustrated by the calculations for case I. The calculations for the other cases can be performed similarly 
and are shown in Van Rijsoort (1990). 

Observe first that for the last insurance year and 1 5 n I N, c = 1, 1s U and j 5 J, the policy holder 
claims every damage that is larger than or equal to his deduction f; as this is the last year he is insured 
he will not be troubled with a premium rise as a result of his claiming. So, we obtain for every 1 5 n I N 
that 

D,_,(a, j, n, I, 1, X) =O. 

In order to calculate the constants DJLY, j, n, I, 1, X) given by (9) and (10) for i I T - 2 we consider the 
cases shown in Table 4. 

Before considering these cases we define the random variable _W(I) as the ‘total loss’ cost resulting 
from an accident with a car that is 1 subperiods old: 

Or_W(I) <h(l). 

In equation (1) we presented the realization ~(1, x) of random variable g(l). By this equation we obtain 

F_v(l) =h(l) 1 -c ( [?I). 
By the above definitions we can now write out the following expressions for case I. 

Case I. If this holds (0 I i 5 T - 1, 1 5 yt 4 N - 1, c = 01, we obtain 

I/;(a, j, n, l,O> = E(K(a, j, n, l,O, &J1txn',trcl,l)+ E(K(a, j, n, l,O, XJ~IK~;,~~(~))). 

Clearly by (3) and (2), 

E(Y(a, j, 12, 1, 0, &)lt~~_,~~(l)l) 

i 

I/;(aP, j, n + 1, I*, 0) 

= iE(exp(cu~~)l(~~<,,(,,~)*min 
exp(~~~(j,(~j)~(~~,i, n+l, I*, 1)' 

with 1* = /(mod U) + 1. Applying again (2) and (3) it follows that 

E(Y(c-u, j, n, 1, 0, Zn)llx,Zrr(l)l) 

i 

5(+, j, n + 1, 1, 0) 
= [E(exp(a_W(E))l~~~,,.(I,~ *min 

) exp(ua,(j)(~))~(~~,j,n+l,1,1) 

and combining these two recurrent relations we obtain I$cr, j, n, 1, 0). Observe for a fast computation of 
I/;(a, j, n, I, 0) we need to have an analytical formula for the expectations. A way to achieve this is 
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shown in Section 3. Similarly one can derive recurrent relations for the other cases shown in Table 4 but 
due to the same nature of these computations [cf. Van Rijsoort (199O)I they are omitted. 

To conclude this section, we spend a few words on the way in which the values of I/(a, j, II, I, c) and 
the critical claim sizes can be found. We will compute them iteratively, using the above equations, 
starting at time NT and ending at time 1. That is, for 1 I j 5 J, 1 _< 1 I U and c = 0,l the values will be 
obtained in the following order: 

This algorithm computing the critical claim sizes uses 2(T - 1)JNU steps and therefore operates in a 

I/r_l(a, j, N, 1, c) +D r_r((~, j, N-l, I, 1, x),x<tr(f) &x>tr(Z), 

VT_l(a, j, N- 1, 1, c) + . . . +D,(a, j, 1, 1, 1, x), x <k(Z) & x k@(l), 

I/da, j, 1, 1, c). 

time of O(TJNU). 
In the next section we will analyse a vehicle damage insurance operative in the Netherlands. 

value (thousands) 
35 

30 
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20 
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0 I I I 1 

0 12 24 36 48 

car’s age (months) 

Fig. 1. Current values. 
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3. Results 

In this section we will present the results obtained by applying the model of Section 2 to the 
bonus-malus system given in Table 2. Before showing the tables containing these results we will shortly 
discuss the distribution function and the parameters underlying the model. 

We divide an insurance year in N = 12 months and we assume that the probability p, of having an 
accident during period II equals A/N. For an automobile insurance a value of A = 0.1 accidents per year 
is reasonable. 

Moreover, let the amount of damage _Y, have a truncated hyperexponential distribution [cf. Tijms 
(1986)]. As 0 I _Y, I listprice, we truncate the distribution function at the listprice L. 

The truncated hyperexponential distribution is a ,mixture of two truncated exponentials with different 
means. That is, _Y, is distributed with probability q1 (respectively 1 -q,) as a truncated exponential 
variable with parameter p, (respectively ~~1 and truncation parameter L, i.e. 

F,(x) = P{_r, 5x) =q1 
1 - exp( -I-QX) 1 - exp( -kx) 
1 - exp( -kL) 

+ (1 - SI> 1 - exp( -plL) . 

Also the normalization q,/pl = (1 - qI)/pz is used. 
The reason for choosing this distribution is that it is easy to calculate the expectations derived in 

Section 2 and that it can fit the first two moments of a truncated distribution function with coefficient of 
variation bigger than 1. The values of the chosen parameters are as follows: 

q, := 0.723894318, l/p1 := 1243.338025, l//+ := 3259.785616, L := 30000, 

which corresponds to a mathematical expectation of Dfl.1800 and a squared coefficient of variation equal 
to 1.5. We assume the parameters ql, pl, pcLz and L to be constant throughout the entire duration of the 
decision process. 

For reasons of simplicity we have taken the discount rate per period p equal to 1. The risk-aversion 
index (Y is chosen to be 0.0003. With this (Y, the policy holder will remain insured during the first two or 
three years that he owns his car. We assume that the policy holder keeps his car until a maximum age of 
U = 48 periods (= 4 years). The basic premium and the deduction respectively equal Dfl.lOOO and 
Dfl.300. The constant C equals 0.5. 

Table 5 
Optimal critical claim sizes (in Dfl.) for a horizon of 10 years, I= 24 (for n = 1,. . ,12), i = 0 and no ‘total loss’. (For comparison: 

h(24) := Dfl.24349 and tr(24) := Dfl.20489.) 

L n 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 0 
3 24 0 0 0 0 0 0 0 1 11 26 58 
4 317 298 283 270 257 243 234 261 291 320 348 374 
5 647 639 630 625 622 620 622 629 638 648 678 715 
6 957 954 951 953 962 972 985 997 1011 1026 1042 1061 
7 957 954 951 953 962 972 985 997 1011 1026 1042 1061 
8 1223 1230 1239 1249 1259 1269 1282 1298 1316 1336 1356 1378 
9 1201 1230 1239 1249 1259 1269 1282 1297 1314 1325 1330 1319 

10 1183 1209 1233 1256 1281 1306 1329 1317 1303 1293 1285 1280 
11 1083 1100 1118 1134 1149 1164 1175 1181 1187 1194 1182 1166 
12 955 966 978 986 989 991 991 992 992 992 992 990 
13 812 814 814 814 815 815 815 812 807 801 795 789 
14 904 907 909 909 910 911 911 909 905 900 894 890 
15 704 705 705 704 702 700 698 695 692 687 682 676 
16 742 743 743 743 741 740 738 735 732 727 722 717 
17 526 524 523 520 518 515 512 508 505 501 496 490 
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Table 6 
Optimal critical claim sizes (in Dfl.) for a horizon of 25 years, I= 24 (for n = 1,. ,12), i = 0 and no ‘total loss’ 

i, n 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 0 0 0 0 0 0 
2 850 856 862 867 873 878 884 
3 1568 1578 1588 1597 1606 1616 1625 
4 2233 2246 2258 2271 2283 2296 2308 
5 2833 2849 2863 2878 2893 2908 2922 
6 3326 3343 3359 3375 3392 3408 3425 
7 2508 2516 2524 2532 2540 2548 2555 
8 2889 2898 2907 2917 2926 2935 2944 
9 2199 2203 2206 2209 2211 2214 2217 

10 1879 1878 1877 1875 1874 1872 1870 
11 1557 1552 1547 1542 1537 1531 1526 
12 1275 1267 1259 1251 1242 1234 1225 
13 1005 997 989 981 972 954 956 
14 1078 1073 1068 1063 1058 1053 1047 
15 815 810 805 800 794 789 784 
16 856 851 846 841 836 831 826 
17 595 590 585 580 575 570 564 

0 

890 
1635 
2321 
2937 
3441 
2563 
2953 
2219 
1869 
1520 
1216 
947 

1042 

778 
821 
559 

0 0 0 0 
896 901 907 912 

1644 1654 1663 1672 
2333 2346 2358 2369 
2952 2966 2981 2994 
3457 3474 3490 3504 
2571 2578 2586 2592 
2962 2971 2980 2988 
2222 2224 2226 2228 
1867 1865 1863 1860 
1514 1509 1503 1496 
1208 1199 1190 1180 
938 930 921 912 

1037 1031 1026 1020 
773 767 762 756 
816 810 805 800 
554 549 544 539 

The function h(Z) denoting the car’s value at age 1 is defined by the following rules: 

1:= 1,. . . ) 12: no depreciation; h(l) := listprice; 
1 := 13,. . . ,36: 1,5% depreciation a month of the amount up to Dfl.15000, 

2% depreciation a month of the amount above Dfl.15000; 
I:= 37 , . . . ,48; linear depreciation until a residual value of Dfl.lOOO at the age of 10 years [that is: 

Ml201 = Dfl.10001. 

An illustration of the function h(l) is given by Figure 1. 
We now state the results. 
In Tables 5 and 6 the optimal critical claim sizes D are given in the case of no ‘total loss’ for horizons 

of 10 and 25 years. Since it is impossible to show them for all ages in one table the claim sizes are only 
given for a car of age 24 months in every period n in the first year of the insurance, i.e. i = 0. In the case 
of a ‘total loss’, the formula given by (12) will be negative. Therefore, in this case, the policy holder 
always claims. 

If we consider Table 5 in combination with Table 8, in which we describe whether or not a policy 
holder will be insured, we notice some remarkable observations. With the horizon of 10 years the car will 
no longer be insured if the policy holder finds himself in one of the bonus-malus class combinations 1 or 
2. The critical claim sizes of these combinations (all equal to 0) are no longer important. In Table 5 we 
can also observe identical claim sizes for the combinations 6 and 7. Claiming damages while being in one 
of these combinations implies a transition to combination 1 or 2 and therefore leaving the insurance. Not 
claiming implies a transition to combination 9, regardless whether we are in combination 6 or in 7. With 
a longer horizon, for instance 25 years like in Table 6, these resemblances disappear, because now all 
policy holders will insure themselves for at least some years. 

To give an idea of the course of the optimal critical claim sizes in relation to age I Table 7 shows the 
mean critical claim sizes D for various values of 1 and for a horizon of 10 years. We calculated these 
mean critical claim sizes in the following way: For example, consider Table 5. It shows the critical claim 
sizes for I = 24. We obtain the mean critical claim size 5 for I = 24 and j = 7 by adding the claim sizes of 
the periods 1 to 12 of bonus-malus combination 7 and dividing this total amount by 12. 

For the bonus-malus combinations 5, 9, 13 and 17 Figure 2 gives an illustration of the connection 
between the optimal critical claim sizes and the age I of the car at the first insurance period in the case 
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of no ‘total loss’. Figure 3 shows this optimal critical claim size in relation to the ultimate lower bound of 
a ‘total loss’ at age I: tr(l). 

Looking at the results with regard to the optimal critical claim sizes we make the following remarks: 

(1) 

(2) 

(3) 

(4) 
(5) 

When the horizon increases the optimal critical claim size also increases; due to the longer period 
during which he pays premium, it is important to the policy holder to be in a favourable bonus-malus 
class. 
In general, the bonus-malus combinations 3 to 11 have a higher critical claim size than the other 

bonus-malus combinations; Table 2 shows that claiming in these bonus-malus combinations gives 
rise to a relative high increase in the premium to be paid next year. 
The claim sizes increase with II for j = 1 , . . .,,9, and decrease with 12 for j = 10,. . . ,17; in the 

beginning of a year, the probability of having more than one accident during that year is more 
alarming to the higher bonus-malus combinations than to the lower. The other way round, at the 
end of the year, not having claimed pays off better for the lower bonus-malus combinations (cf. 
Table 2). 
In the case of a ‘total loss’ the policy holder always claims. 
The critical claim sizes decrease with I for I = 1,. . . ,24. This corresponds with the decrease of the 

car’s current value. On the other hand, for the ages 25 to 48 the critical claim sizes show a rather 
strange course. This is imputed to the fact that the policy holder is no longer insured and pays for the 
damage, if any, himself. Therefore these claim sizes have no impact on the model. 

Apart from the decision whether to claim or not the policy holder also has to choose between being 
and not being insured. 

We distinguish between four starting-situations: 

(a) The policy holder is insured and has a ‘total loss’; 
(b) The policy holder is not insured and has a ‘total loss’; 
Cc> The policy holder is insured and has no ‘total loss’; 
(d) The policy holder is not insured and has no ‘total loss’; 

Table 7 

Mean optimal critical claim sizes (in Dfl.) for a horizon of 10 years and no ‘total loss’. 

i 1 

1=4 8 12 16 20 24 28 32 36 40 44 48 

1 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 0 
3 86 49 20 9 9 10 16 20 58 117 152 143 
4 471 399 342 314 295 291 301 345 419 497 547 533 
5 872 795 732 684 654 643 655 709 798 902 956 941 
6 1244 1169 1100 1046 1010 989 995 1050 1152 1266 1324 1312 
7 1244 1169 1100 1046 1010 989 995 1050 1152 1266 1324 1312 
8 1551 1478 1410 1355 1315 1286 1287 1341 1448 1568 1627 1617 
9 1467 1429 1390 1346 1306 1276 1272 1322 1392 1455 1479 1477 

10 1362 1359 1347 1321 1299 1273 1261 1269 1303 1348 1360 1365 
11 1194 1195 1190 1183 1172 1153 1138 1136 1156 1176 1186 1192 
12 1003 1003 1002 1000 995 985 975 974 981 991 997 1001 
13 818 817 814 813 811 809 805 803 806 812 816 818 
14 914 914 912 910 908 905 900 898 900 904 909 913 
15 704 704 703 701 698 696 694 695 697 700 702 704 
16 743 744 742 740 738 735 733 734 736 739 741 743 
17 518 518 517 516 514 512 510 510 511 513 515 517 
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Fig. 2. Claim size D for different BM-combinations at t = 0 and n = 1. 

Table 9 

Optimal claim policy in the case of no ‘total loss’, being insured and a horizon of 10 years. 

j t = 0, Iz = 12,1= 12 t=l,n=12,1=24 t = 2, n = 12,1= 36 t = 3, n = 12, I= 48 

to not to to not to to not to to not to 
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Fig. 3. Ratio D/w(l) for different BM-combinations at t = 0 and n = 1 

In the situations (a) and (b) the choice whether to insure or not is easy. Since his car is a ‘total loss’, 
the policy holder buys a new one. Unless he is in one of the most unfavourable bonus-malus 
combinations (that is: j = 1, 2 or 31, the optimal insurance policy will always be to effect the insurance. 

Assumed the policy holder does not have a ‘total loss’ [situations (c) and (d)] Tables 8 and 9 show the 
optimal insurance policy for the four years the policy holder is driving his car under the assumption that 
he buys his car at the first period and faces a horizon of 10 years. Remark that, if the policy holder is 
insured, he is only allowed to change his state of insurance at the end of the insurance year. 

Table 8 shows the insurance policy in the case that he is at year t, period IZ, owns a car of age 1, is in 
bonus-malus combination j faces a no ‘total loss’ accident and is not insured; Table 9 shows the 
insurance policy in the case that he is insured. 

With regard to the optimal insurance policy we make the following remarks: 

(1) The older a car gets, the less it will be insured by the policy holder. 
(2) In the case of a ‘total loss’ or when his car is 48 periods old the policy holder almost always effects an 

insurance. This is logical because he buys a new car the next period. 
(3) The higher the bonus-malus combination, the longer a policy holder remains insured due to the 

lower cost of his premium. 
(4) It is more favourable to insure at the end of a year and pay for the whole premium than to insure in 

the middle of a year and pay a partial premium. 

To conclude we spend a few words on the sensitivity of the results in relation to the following five 
input parameters: (Y, the basic premium, the deduction, the horizon, the listprice. 
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When (Y increases, the policy holder is more afraid to take risks. Therefore, he remains insured up to 
a higher age 1 and the optimal critical claim sizes increase. 

The result of an increase of the basic premium is a policy holder who is less inclined to insure due to 
the higher cost of insurance. Moreover, the optimal critical claim sizes increase. 

If the deduction increases, the optimal critical claim sizes decrease and the policy holder remains 
insured up to a lower age 1. However, these changes are very small. 

An increase of the horizon only gives rise to a change in results if it concerns a rather short period, for 
example from 10 to 25 years. In this case, the policy holder remains insured up to lower age I and the 
optimal critical claim sizes increase; the policy holder is more careful because he looks upon a longer 
period of insurance. For horizons longer than about 2.5 years, the results stabilise. 

Finally, when we increase the listprice, the policy holder insures up to a higher age I (the basic 
premium did not change) and the optimal critical claim sizes increase (the cost of a damage, if any, is 
also increased). 
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