
Weighted Majorization Algorithms for Weighted

Least Squares Decomposition Models

Patrick J.F. Groenen∗ Patrizia Giaquinto †

Henk A. L. Kiers‡

March 10, 2003

Econometric Institute Report EI 2003-09

∗Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotter-
dam, The Netherlands (e-mail: groenen@few.eur.nl). We would like to thank Anton Béguin
and Norman Verhelst for their valuable remarks that have helped to improve this paper.

†Department of Statistical Sciences, University of Bari
‡Department of Psychology, University of Groningen

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6904792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

For many least-squares decomposition models efficient algorithms are
well known. A more difficult problem arises in decomposition models
where each residual is weighted by a nonnegative value. A special case is
principal components analysis with missing data. Kiers (1997) discusses
an algorithm for minimizing weighted decomposition models by iterative
majorization. In this paper, we propose a more efficient algorithm called
weighted majorization for computing a solution. We will show that the
algorithm by Kiers is a special case of our algorithm. Here, we will apply
weighted majorization to weighted principal components analysis, robust
Procrustes analysis, and logistic bi-additive models of which the two pa-
rameter logistic model in item response theory is a special case. Simula-
tion studies show that weighted majorization is generally faster than the
method by Kiers by a factor one to four and obtains the same or bet-
ter quality solutions. For logistic bi-additive models, we propose a new
iterative majorization algorithm called logistic majorization.

Keywords: Weighted principal component analysis, iterative majorization, ro-
bust Procrustes analysis, logistic bi-additive model, IRT, two parameter logistic
model.

1 Introduction

Many least-squares decomposition problems have standard solutions that can
be easily computed. A more difficult problem arises when nonnegative weights
are attached to each residual. Such a situation comes up in iterated weighted
least squares problems as a part in robust statistics and in generalized bi-additive
modelling. Kiers (1997) discusses an iterative majorization algorithm that trans-
forms the weighted least-squares problem in an unweighted least-squares prob-
lem. Especially in the case where one weight is much larger than the others, the
algorithm by Kiers (1997) may become slow. Even though computers become
faster over the time, accelerations are particularly welcome in applications to
large data sets, such as in data mining, or in iterative algorithms. The main
purpose of the current paper is to propose a weighted majorization algorithm
and compare it to the one by Kiers (1997). We shall also show that Kiers’ algo-
rithm is a special case of ours. Therefore, our proposed algorithm is is expected
to be faster than the one by Kiers.

To illustrate our central idea, we first need a least-squares decomposition
model for which we take weighted principal components analysis (WPCA). The
purpose of WPCA is to find a rank p subspace of the data that accounts for
as much variance of the data as possible. Let H be an n × k matrix of data
values, X an n× p matrix of object scores, and A a k× p matrix of component
loadings. Then unweighted PCA can be defined as the minimization of

LPCA(X,A) = ‖H−XA′‖2, (1)

2

where ‖B‖2 = tr B′B =
∑n

i=1

∑k
j=1 b2

ij denotes the usual sum of squares of B.
Then (1) can also be expressed as

LPCA(X,A) =
n∑

i=1

k∑

j=1

(hij − x′iaj)2 =
n∑

i=1

k∑

j=1

e2
ij , (2)

where xi and aj are column vectors of length p containing respectively the
elements of row i of X and of row j of A. A straightforward extension is to
define weighted PCA (WPCA) as

LWPCA(X,A) =
n∑

i=1

k∑

j=1

wij(hij − x′iaj)2 =
n∑

i=1

k∑

j=1

wije
2
ij (3)

for some given n × k matrix W of nonnegative weights wij . The weights can
be used to indicate missing values (wij = 1 indicates nonmissing value, wij = 0
indicates a missing value) or attach value to indicate the importance to the data
value hij . Thus, (3) can be seen as a weighted least-squares problem.

Kiers (1997) discussed an iterative majorization algorithm to minimize a
weighted least-squares problem. The basic idea behind iterative majorization
is that in each iteration, the original function L(X) is substituted by an aux-
iliary function µ(X,X0), the so called majorizing function, that meets several
requirements. First, the majorizing function should touch the original function
at the current estimate X0, that is, L(X0) = µ(X0,X0). Second, the majorizing
function should be larger than or equal to the original function everywhere, that
is, L(X) ≤ µ(X,X0). Usually, the majorizing function is chosen to be simple,
that is, linear or quadratic. Suppose that we can obtain the minimum X+ of the
majorizing function µ(X,X0). Then, the following chain of inequalities holds

L(X+) ≤ µ(X+,X0) ≤ µ(X0,X0) = L(X0). (4)

This chain of inequalities guarantees that a series of nonincreasing loss function
values is obtained. If L(X) is bounded below or is sufficiently constrained, it can
be proved that the iterations will stop at a stationary X that is not necessarily
at a local minimum. However, in all practical cases L(X) is at a local minimum
after the function values have converged. For more information on iterative
majorization, we refer to De Leeuw (1993), De Leeuw (1994), Heiser (1995),
Borg and Groenen (1997), and Kiers (2002, in press).

The application of iterative majorization by Kiers (1997) is based on the
following idea. Let e denote a column vector of the nk residuals and let DW be
an nk × nk diagonal matrix with elements wij . Then (3) can be expressed as

LWPCA(X,A) = e′DWe. (5)

Kiers (1997) applied a majorizing function proposed by Heiser (1987) and de-
veloped a quadratic majorizing function from the inequality

(e− e0)′(DW −mI)(e− e0) ≤ 0, (6)

3

where e0 is the vector of residuals from the previous iteration and m = wmax

is the maximum value of DW. Note that e0 contains estimates of X and A
that are currently known. Inequality (6) holds because the matrix DW −mI is
negative semi-definite, so that, e′(DW−mI)e ≤ 0 for any vector e. As required
for iterative majorization, (6) becomes an equality for e = e0. Expanding (6)
and rewriting gives

(e− e0)′(DW −mI)(e− e0) ≤ 0
(e− e0)′DW(e− e0) ≤ m(e− e0)′(e− e0)

e′DWe + e0′DWe0 − 2e′DWe0 ≤ me′e + me0′e0 − 2me′e0

e′DWe ≤ me′e− 2me′e0 + 2e′DWe0

−e0′DWe0 + me0′e0

e′DWe ≤ me′e− 2me′[e0 −m−1DWe0]

−e0′DWe0 + me0′e0. (7)

Let c1 = me0′e0 − e0′DWe0 and z = e0 −m−1DWe0. Then we may express
(7) as

LWPCA(X,A) = e′DWe ≤ m(e− z)′(e− z)−mz′z + c1

= µ1(X,A,X0,A0). (8)

From both (7) and (8) it can be seen that the weighted least squares function
in the residuals LWPCA(X,A) can be majorized by an unweighted least squares
function in the residuals. For the latter function, many standard numerical
methods are available to obtain an analytic solution. Therefore, we consider the
approach by Kiers (1997) to be a very powerful one that has a wide applicability.

One of the disadvantages of the algorithm by Kiers (1997) can be seen if the
majorizing function at the right hand side of (8) is examined more closely. The
only important part is (e − z)′(e − z), since the rest is constant. Note that zi

has elements

zij = e0
ij −

wij

m
e0
ij . (9)

We can write

(e− z)′(e− z) =
n∑

i=1

k∑

j=1

(eij − zij)2 =
n∑

i=1

k∑

j=1

(
eij − e0

ij +
wij

m
e0
ij

)2

=
n∑

i=1

k∑

j=1

(
hij − x′iaj − hij + x0

i
′
a0

j +
wij

m
(hij − x0

i
′
a0

j)
)2

=
n∑

i=1

k∑

j=1

([
1− wij

m

]
x0

i
′
a0

j +
wij

m
hij − x′iaj

)2

=
n∑

i=1

k∑

j=1

(rij − x′iaj)2 = tr (R−XA′)′(R−XA′), (10)

4

where

rij =
[
1− wij

m

]
x0

i
′
a0

j +
wij

m
hij . (11)

Several things can be said about (10). First, if all weights wij are equal, then
(10) simplifies into

∑n
i=1

∑k
j=1(hij − x′iaj)2 because wij/m = 1 for all i, j. In

this case, the majorizing function has simplified into the ordinary PCA model
(2) that can be solved by a singular value decomposition in one step. The
second observation touches one of the main topics of the current paper, that
is the slowness of the algorithm. In (10) it can be seen that for all i, j we
fit x′iaj to the convex combination [1 − wij/m]x0

i
′a0

j + (wij/m)hij . Because
0 ≤ wij ≤ m, we must have 0 ≤ wij/m ≤ 1. Now, if there is a single weight
wij that is much larger than all the other weights, then for most combinations
i, j we have that wij/m ¿ 1 so that x0

i
′a0

j dominates hij . In other words, when
updating the majorizing function, the x′iaj is fitted mostly to x0

i
′a0

j and only
to a minor extent to hij . The consequence is that the more deviant the largest
wij is from the other weights, the slower the algorithm will be. Slowness may
especially be a problem in large data sets. In this paper, we propose an iterative
majorization algorithm that is faster than the algorithm by Kiers (1997), and
has his algorithm as a special case.

The remainder of this paper is organized as follows. In the next section,
we discuss a weighted majorization algorithm that is faster or equally fast as
Kiers’ algorithm. The introduction of the algorithm is illustrated by weighted
principal component analysis. Then, we apply the weighted algorithm to robust
Procrustes analysis, and logistic bi-additive modelling. For each application of
our weighted majorizing algorithm, we present a simulation study that either
compares the speed of the algorithms or their quality. We end this paper with
some conclusions and a discussion.

2 A Weighted Iterative Majorization Algorithm
using Weighted Least Squares

In the previous section, we indicated that the larger the difference between the
largest value of W and the remaining weights, the slower the algorithm will
be. To improve the speed of the algorithm by Kiers (1997), it is important to
realize that the loss function is a sum of the loss per row. The basic idea of
our improvement is to develop a majorizing function for each row separately.
We shall see that minimizing this majorizing function becomes a weighted least-
squares problem in a diagonal metric instead of an unweighted least-squares.
The advantage is that the weighted majorizing function is generally closer to
the original function than the majorizing function in (8). For quite a few least-
squares problems, imposing a diagonal weight matrix does not make it more
difficult to solve. Without loss of generality, it is assumed throughout this paper
that the number of rows n is equal to or larger than the number of columns k.

5

To develop the weighted majorizing function, the methodology from the
previous section is applied in a row by row fashion. Let Dwi a k × k matrix of
the vector of weights wi corresponding to row i. Then LWPCA can be expressed
as

LWPCA(X,A) = e′DWe =
n∑

i=1

e′iDwiei, (12)

where ei is the column vector of errors corresponding to row i. To apply the
majorizing inequality (7) to a single row, define m as an n vector containing the
maximum row values of W, so that m has elements mi = maxjwij . Adding a
subscript for row i to (6) allows us to develop a majorizing inequality for each
row, that is,

(ei − e0
i)
′(Dwi −miI)(ei − e0

i) ≤ 0,

which holds since Dwi
−miI is negative semi-definite. Further expansions show

that

e′iDwiei + e0
i
′
Dwie

0
i − 2ei

′Dwie
0
i −miei

′ei −mie0
i
′
e0

i + 2miei
′e0

i ≤ 0.

Rearranging gives the row wise majorizing inequality

e′iDwiei ≤ miei
′ei − 2miei

′e0
i + 2ei

′Dwie
0
i + c2i, (13)

where c2i = mie0
i
′e0

i − e0
i
′Dwie

0
i . Thus, instead of a single majorizing function

for all error terms in the loss function, we have different majorizing functions
for each of the n rows. Summing (13) over all the rows gives the weighted
majorizing function at the right side of

LWPCA(X,A) =
n∑

i=1

ei
′Dwiei

≤
n∑

i=1

miei
′ei − 2

n∑

i=1

miei
′e0

i + 2
n∑

i=1

ei
′Dwie

0
i +

n∑

i=1

c2i.

=
n∑

i=1

miei
′ei − 2

n∑

i=1

miei
′[ei

0 −m−1
i Dwie

0
i] +

n∑

i=1

c2i

= µ2(X,A,X0,A0). (14)

Let Dm be the diagonal matrix with m on its diagonal. Also, let c3 =
∑n

i=1 c2i

and row i of Z be zi = e0
i −m−1

i Dwie
0
i . Then we may express µ2(X,A,X0,A0)

as

µ2(X,A,X0,A0) =
∑

i

(ei − zi)′Dm(ei − zi)−
∑

i

miz′izi + c3

= tr (E− Z)′Dm(E− Z)− tr Z′DmZ + c3, (15)

6

where the elements of zi are defined by

zij = e0
ij −

wij

mi
e0
ij . (16)

The main difference of the present method and the one by Kiers (1997) lies in
the difference between (16) and (9), that is, the denominator mi in (16) depends
on the largest weight per row, whereas the denominator m in (9) depends on
the overall largest weight.

Clearly, the only important part of (15) is tr (E−Z)′Dm(E−Z) that becomes

tr (E− Z)′Dm(E− Z)

=
n∑

i=1

mi

k∑

j=1

(eij − zij)2 =
n∑

i=1

mi

k∑

j=1

(
eij − e0

ij +
wij

mi
e0
ij

)2

=
n∑

i=1

mi

k∑

j=1

(
hij − x′iaj − hij + x0

i
′
a0

j +
wij

mi
(hij − x0

i
′
a0

j)
)2

=
n∑

i=1

mi

k∑

j=1

([
1− wij

mi

]
x0

i
′
a0

j +
wij

mi
hij − x′iaj

)2

=
n∑

i=1

mi

k∑

j=1

(rij − x′iaj)2 = tr (R−XA′)′Dm(R−XA′) (17)

with

rij =
[
1− wij

mi

]
x0

i
′
a0

j +
wij

mi
hij . (18)

It can be seen in (18) that rij is still a convex combination of the previous
estimates x0

i
′a0

j and the data hij . The main advantage of (17) above (10) is
that each row is majorized separately. This property means that influence of
a large weight is limited to its own row. For this row, x′iaj is mostly fitted to
x0

i
′a0

j and to minor extent to hij . The other rows remain unaffected. In rows
that have their weights close to the largest row weight, the x′iaj are mostly fitted
to the data hij and only partially to the previous estimates x0

i
′a0

j .
The final step in obtaining an update of the weighted majorizing function

µ2(X,A,X0,A0) is minimizing tr (R−XA′)′Dm(R−XA′) with respect to X
and A. This row-weighted loss function may be written as

tr (R−XA′)′Dm(R−XA′) = tr (D1/2
m R−D1/2

m XA′)′(D1/2
m R−D1/2

m XA′). (19)

It is well known that the right hand part of (19) is minimized by computing the
singular value decomposition KΛL′ of D1/2

m R, where K and L are orthonormal
and Λ is diagonal with nonnegative elements. The least squares solution of (19)
is obtained by setting

X = D−1/2
m Kp and A = QpΛp, (20)

7

where Kp,Qp, and Λp denote the first p columns (and rows for Λp) of K,L,
and Λ.

The weighted majorization algorithm for WPCA can be summarized as fol-
lows:

1. Initialize X0 and A0. Set iteration counter l = 0. Set convergence crite-
rion ε to some small value.

2. l := l + 1.

3. Compute R according to (18) where X0 = Xl−1 and A0 = Al−1.

4. Compute Xl and Al according to(20).

5. If LWPCA(Xl−1,Al−1)− LWPCA(Xl,Al) > (
∑

ij wijh
2
ij)ε then

go to Step 2.

6. Consider the algorithm converged.

The algorithm by Kiers (1997) differs from the weighted majorization algorithm
in the following aspects. First, in Step 3, R is not computed by (18) but by (11).
Clearly, if mi = m for all i, then (18) and (11) are equivalent. Second, Step 4
of Kiers’ algorithm is different to Step 4 of the weighted algorithm in that Dm

is chosen as mI by Kiers. Except for these two differences, both algorithms are
the same.

Some properties of our weighted algorithm can be derived. Firstly, the al-
gorithm by Kiers (1997) coincides with our algorithm when the largest value
of wij per row is the same for all rows, that is, mi = m for all i. This situa-
tion includes the important case of missing data imputation where wij is either
zero or one. For these cases, no improvement in computational efficiency can
be expected with our method. For unequal maximum row values, our method
will generally be faster. We expect the largest difference in efficiency whenever
there are just a few large weights and the remaining weights are more or less
of the same size. It is difficult to prove any results on how much faster our
algorithm will be. Therefore, we revert to a comparison in simulation studies in
subsequent sections.

Another property of weighted majorization is that its majorizing function is
always smaller than or equal to the one by Kiers (1997), that is,

L(X,A) ≤ µ2(X,A,X0,A0) ≤ µ1(X,A,X0,A0). (21)

This property can be proven as follows. Remember that mi is the largest weight
of row i and that m is the overall largest weight. Then, we must have mi ≤ m
or equivalently −m ≤ −mi for all i, and thus

(ei − e0
i)
′(Dwi −mI)(ei − e0

i) ≤ (ei − e0
i)
′(Dwi −miI)(ei − e0

i) ≤ 0.

8

Summing over i and rearranging gives

∑

i

eiDwiei −
∑

i

[
mei

′ei + me0
i
′
e0

i − 2mei
′e0

i + 2ei
′Dwie

0
i − e0

i
′
Dwie

0
i

]
≤

∑

i

eiDwi
ei −

∑

i

[
miei

′ei + mie0
i
′
e0

i − 2miei
′e0

i + 2ei
′Dwi

e0
i − e0

i
′
Dwi

e0
i

]
. (22)

Inequality (22) can be simplified into

L(X,A)− µ1(X,A,X0,A0) ≤ L(X,A)− µ2(X,A,X0,A0).

Subtracting L(X,A) from both sides of the inequality and multiplying by −1
gives

µ2(X,A,X0,A0) ≤ µ1(X,A,X0,A0), (23)

which proves that the weighted majorizing function is indeed always smaller
than or equal to the majorizing function used by Kiers (1997). Combining (23)
with the majorizing inequality (14) completes the proof of (21).

The use of the current algorithm is not limited to WPCA. The ideas of the
algorithm can be applied to any weighted least-squares model with differential
nonnegative weights for every residual. Of course, it makes only sense if the
minimum for the row weighted quadratic majorizing function such as (17) can
be easily obtained. The weighted algorithm will be more beneficial if the number
of rows is much larger than the number of columns, because the majorizing
function can stay closer to the original function. If the number of columns is
much larger than the number of rows, then more efficiency is gained by applying
majorization to each column instead of the row majorization discussed so far.
Of course, the principle remains equivalent.

2.1 A Comparison Study

In the previous section, we discussed the basic ideas behind our weighted ma-
jorization algorithm. We expect our improved algorithm to be faster, but still
have to study how much faster it is. For this purpose we have set up a simu-
lation study to observe the performance of the two algorithms. We decided to
include also the iterative criss-cross regression algorithm, proposed by Gabriel
and Zamir (1979), as it performed well in the study by Kiers (1997).

The dependent variables in this study are the speed and the quality of the
solutions. In the comparison of the algorithm by Kiers (1997) and our weighted
algorithm, we consider the ratio of the number of iterations used by Kiers’ algo-
rithm to the number of iterations used by our weighted algorithm. Such a direct
comparison is fair, as computationally about the same amount of operations is
needed to be performed per iteration, according to (11) and (18). In the com-
parison of our weighted majorization algorithm and criss-cross regression, the
ratio of CPU-time is used. The reason is that both algorithms are completely

9

different, so comparing numers of iterations would not be fair. All computations
where done in MatLab 6.5 running under Windows NT.

We varied the following factors in our study: the number of rows (n =
50, 100, 200, 500), the number of columns (k = 10, 20, 40), the number of
components (p = 2, 4, 8), and the type of weights using two levels (w = 0, 5).

For each combination of the factors, an n× k matrix H was generated ran-
domly from the uniform [0, 1] distribution. For level w = 0, W was also gen-
erated similar to H ensuring that all the weights are nonnegative as required.
For level w = 5, the same procedure was used, except that randomly 5% of
the elements W were multiplied by the factor five. This operation introduces a
small number of large weights.

Each of the 72 combinations of factor levels was replicated five times, yielding
a total number of 360 comparisons. For every comparison, the three algorithms
were started by the same random A and X. The convergence criterion ε was
fixed at 10−8, where the range of function values was between .03 and .89. In the
comparisons, we only took into account those runs that ended (approximately)
at the same local minimum, which was defined by both function values having
at least four decimal places equal. In the comparison with Kiers’ algorithm, this
was the case in 231 runs (64%). For criss-cross regression, both algorithms led
to the same local minimum in 156 runs (43%).

To see how the effects influence the speed, we did an analysis of variance
(ANOVA) on the two ratio’s (see Table 1). Instead of the ratio itself, we used
log10 of the ratio to satisfy the assumption of homogeneity of the variances
within the groups defined by the combinations of all factor levels. In the com-
parison of Kiers’ algorithm with our algorithm, the biggest effects were found for
the intercept and the main effect w, and these were also statistically significant
at all common significance levels (p < .001). In the comparison of criss-cross
and our algorithm, the effects for the intercept, the main effects w, n, and k were
the biggest, these were also statistically significant at all common significance
levels (p < .001, see Table 1).

To evaluate the interesting effects, the mean of log10 of the ratio was com-
puted for each level of each significant effect. To facilitate interpretation, those
values are transformed back to the scale of the ratio by using them as the ex-
ponent of 10, leading to a special kind of average of the ratios. The results are
displayed in Table 2. It can be seen that our method is on ‘average’ about 2.4
times as fast as the one by Kiers. As the number of columns increases (thus k
gets larger) the gain in speed reduces. If there is a small proportion of large
weights, our method is about three times faster than the one by Kiers.

In the comparison of the speed of our algorithm to criss-cross regression, we
have to interpret the ratio of CPU-time with some care as we cannot be sure
that both methods are implemented equally efficient in MatLab. The results
in Table 2 suggest that our method is overall on ‘average’ 1.8 times faster than
criss-cross regression. As n gets larger, the gain in speed of our method is larger.
For small k (k = 10) our method is on ‘average’ 3.3 times faster than criss-cross
regression, but for k = 40 our method is slower than criss-cross regression by
a factor .8. If there are some extreme weights and k is larger, then criss-cross

10

Table 1: The results of the analysis of variance (ANOVA) in a full factorial model
for the log of the ratio of iterations in Kiers’ algorithm (1997) and in the weighted
majorization and for the log of the ratio of CPU in Criss-Cross regression and
the weighted majorization. The test F is computed with the degrees of freedom
displayed and those of the relative error (200 and 124 respectively).

Comparison Kiers vs. Comparison Criss-Cross vs.
weighted majorization weighted majorization
log Ratio Iterations log Ratio CPU

Effect df F p η2
p df F p η2

p

Intercept 1 752.919 .000 .790 1 98.642 .000 .443
w 1 55.258 .000 .216 1 33.077 .000 .211
n 3 2.114 .100 .031 3 9.227 .000 .182
k 2 5.211 .006 .050 2 49.599 .000 .444
p 2 1.142 .321 .011 2 2.026 .136 .032
w × n 3 .617 .605 .009 3 .322 .809 .008
w × k 2 1.522 .221 .015 2 5.687 .004 .084
w × p 2 .065 .937 .001 2 .119 .888 .002
n× k 6 1.180 .319 .034 6 1.140 .343 .052
n× p 6 1.003 .424 .029 6 1.173 .325 .054
k × p 4 2.186 .072 .042 4 2.427 .051 .073
Error 200 124
Total 231 156

regression is two times faster than our method. Conversely, for no extreme
weights and small k, our method is faster by a factor 3.6. These results suggest
that our method is faster than criss-cross regression especially when k is small
or n is large.

To compare the quality of the solutions, we simply counted how often our
method obtained a higher loss, a lower loss, or approximately the same loss
(that is, the absolute difference in loss of the two methods is less than 10−4).
Note that in this comparison the loss is divided by nk to make it independent
of n and k. Our method obtained lower loss than the method by Kiers in 307
runs (85%), the same loss in 231 runs (64%), and higher loss in 53 runs (15%).
These results indicate that our method is not only faster than the one by Kiers,
but also yields the same or better quality solutions, although the difference in
terms of loss seems to be small. Comparing the loss of our method to criss-cross
regression, we found that in 131 runs (36%) our method obtained lower loss,
in 156 runs (43%) the same loss, and in 229 runs (63%) a higher loss. Thus it
seems that criss-cross regression often takes longer to compute a solution, but
also tends to find a lower loss. Again, the differences in loss seem to be small.

3 Robust Procrustes Analysis

In this section, the weighted majorization algorithm is applied to robust Pro-
crustes analysis. First, we discuss weighted Procrustes analysis and then we

11

Table 2: Significant effects in the ANOVA reported in Table 1. For the compar-
ison of the algorithm by Kiers (1997) and the weighted majorization algorithm,
the average ratio of iterations is reported. For the comparison of the criss-
cross regression and the weighted majorization algorithm, the ‘average’ ratio of
CPU-time is reported.

Effect
Comparison Kiers and weighted majorization
overall 2.4
w = 0 1.9
w = 5 3.0
k = 10 2.6
k = 20 2.5
k = 40 2.1

Comparison criss-cross and weighted majorization
overall 1.8 k = 10 k = 20 k = 40
w = 0 2.4 w = 0 3.6 3.0 1.5
w = 5 1.3 w = 5 3.4 1.4 0.5
k = 10 3.3
k = 20 2.1 k = 10 k = 20 k = 40
k = 40 0.8 p = 2 4.0 1.5 0.7
n = 50 1.2 p = 4 3.1 2.2 0.7
n = 100 1.5 p = 8 3.0 2.6 1.2
n = 200 2.0
n = 500 2.8

12

show how this problem comes up in the robust Procrustes analysis. Finally, we
compare the quality of the solutions obtained by both algorithms.

In Procrustes analysis, we deal with the problem of fitting a model XT
to a target data matrix Y. Here, X and Y are n × k known configuration
matrices, W is a matrix of weights of the same size and T is a k × k unknown
rotation matrix. The orthogonal Procrustes rotation problem allows to change
X through geometrical operations like rotation or reflection in order to match its
target Y as best as possible. Here, we include differential nonnegative weights
for each residual, which is a subproblem in robust Procrustes analysis, as we will
see later in this section. For the moment, we stick to the weighted Procrustes
problem defined as

LWProc(T) =
n∑

i=1

m∑

j=1

wij(yij − x′itj)2, (24)

under the constraint that T is orthonormal, that is, T′T = I. LWProc(T), too,
can be seen as a weighted least-squares problem with special constraints. We
can apply our method illustrated for LWPCA, and consider (24) in a row by row
fashion. Define the residual of element ij in the model as eij = yij − x′itj and
let e0

ij = yij − x′it
0
j . Similarly to (12), loss function (24) can be expressed as

LWProc(T) = e′DWe =
n∑

i=1

e′iDwiei. (25)

Using (15), LWProc(T) is majorized by the weighted function

µWProc(T,T0) = tr (E− Z)′Dm(E− Z)− tr Z′DmZ + c4,

with zij defined by (16) as before and c4 =
∑n

i=1(mie0
i
′e0

i − e0
i
′Dwie

0
i). The

first term can be expanded by

tr (E− Z)′Dm(E− Z) =
n∑

i=1

mi

k∑

j=1

(rij − x′itj)2

= tr (R−XT′)′Dm(R−XT′), (26)

where R is defined by

rij =
[
1− wij

mi

]
x0

i
′
t0
j +

wij

mi
yij . (27)

Expanding (26) and taking the constraint T′T = TT′ = I into account shows
that

tr (R−XT′)′Dm(R−XT′)
= tr R′DmR + tr TX′DmXT′ − 2tr T′XDmR

= tr R′DmR + tr X′DmX− 2tr T′XDmR

= c5 − 2tr T′XDmR.

13

Finally, we can majorize (24) by

LWProc(T) ≤ c4 + c5 − 2tr T′S = µWProc(T,T0), (28)

where S = XDmR. Looking at (28) one can easily realize that minimizing
µWProc(T,T0) over T is equivalent to maximizing the term tr T′S. Define
the singular value decomposition (SVD) of S as S = KΛL′ with K and L′

orthonormal matrices (that is, K′K = L′L = I) and Λ diagonal. According to
Ten Berge (1993), the upper bound of tr T′S is attained at T = KL′.

Above we considered the weighted Procrustes problem. Below we show how
this problem comes up in a robustified version of Procrustes analysis as pro-
posed by Verboon and Heiser (1992), see also Verboon (1994). It may happen
that X contains some outlying points giving rise to high residuals. In such
situations, functions which try to curb the influence of those outliers are desir-
able. The general idea is to down weight large residuals in the loss function.
Several possibilities for down weighting have been proposed in the literature,
see, for example, Huber (1964), Beaton and Tukey (1974) and Mosteller and
Tukey (1977). In this paper, we consider the absolute value of the residual as a
robustifier, so that the loss function becomes

LRProc(T) =
n∑

i=1

k∑

j=1

| yij − t′ixj |=
n∑

i=1

k∑

j=1

| eij | (29)

with eij defined just as before.
A majorizing function for (29) can be easily derived by applying the inequal-

ity

| eij |≤ 1
2

e2
ij

| e0
ij |

+ 1
2 | e0

ij |, (30)

see Heiser (1987). Note that when e0
ij = 0, then (30) is not defined. Therefore,

as suggested by Heiser (1987) in such cases, we replace e0
ij by a small ε. The

majorizing inequalities do not hold any more, but by making ε small enough,
the chain of inequalities (4) turns out to be still valid in practice. Summing (30)
over i and j gives:

LRProc(T) ≤ 1
2

n∑

i=1

k∑

j=1

1
| e0

ij |
e2
ij + 1

2LRProc(T0) = µRProc(T,T0). (31)

If we define wij =| e0
ij |−1, then the first term of µRProc(T,T0) equals LWProc(T).

This definition of the wij ’s means that it is possible to combine (28) and (31)
also in a different way as:

LRProc(T) ≤ 1
2LWProc(T) + 1

2LRProc(T0) ≤ 1
2µWProc(T,T0) + 1

2LRProc(T0).

This expression shows that LRProc(T) can be majorized by a constant plus one
half times the majorizing function of weighted Procrustes analysis µWProc(T,T0).

14

As noted below (28), a minimum of µWProc(T,T0) can be obtained in a single
step.

The weighted majorization algorithm for robust Procrustes analysis is similar
to the one for WPCA. Of course, R is computed by (27), the weights should be
chosen as wij =| e0

ij |−1, and the computation of the update for µWProc(T,T0)
is indicated above.

3.1 A Simulation Study

Above we described our weighted majorization algorithm used in the algorithm
for the robust Procrustes problem, in which in each step the weighted least
squares function LWProc is decreased. An alternative procedure for the latter can
be based on Kiers’ (1997) algorithm for minimizing LWProc. To see how well our
method compares to the one using Kiers’ (1997) procedure within the algorithm,
we did a simulation study for the robust orthogonal Procrustes problem. In the
algorithm, we stopped the iterations whenever the LWProc(Tl−1)−LWProc(Tl)
is smaller than 10−8

∑
ij |yij |.

The data were generated as follows. The data matrix X was drawn randomly
from the standard normal distribution. Then, we created a random rotation ma-
trix T and computed the target matrix as Y = XT. Since we are dealing with
robust Procrustes analysis, we added some errors and outliers to X. The pro-
cedure of Verboon and Heiser (1992) was followed to add error to the elements
in X, proportional to the standard deviations of the columns of X. They also
introduced outliers by selecting randomly p rows of X, and multiplying the
elements of the selected rows by −10.

Four experimental factors were used in our simulation: (a) the number
of rows of Y and X (n = 20, 40), (b) the number of columns in Y and X
(k = 2, 4, 8), (c) the proportion of error in X with values (0, .1, .5, 1), and (d)
the percentage of outliers in T (0%, 10%, 20%). In this way, 72 different com-
binations of data sets were obtained. We replicated each of them 100 times,
yielding a total of 7200 comparisons. Each comparison of the two algorithms
used the same Y, X and T.

In only 377 out of 7200 runs (5%), the two algorithms stopped at the same
local minimum (that was defined by both function values having the same loss
at least four equal decimal places). It seems that this form of robust Procrustes
analysis has a serious global minimum problem. Comparing the speed for these
377 runs showed that on average our algorithm is about 14 times faster than
the one using Kiers’ (1997) procedure. Of course, in 95% of the 7200 runs we
cannot compare the speed of the two algorithms.

We now turn to the quality of the solutions. Over all 7200 runs, our method
reached a lower loss value in all but two runs. As the problem seems to be
very prone to local minima, we consider the strategy of 100 random starts and
choosing the best solution as a single case. Then, we have 72 different cases
here. Our algorithm reached a better minimum in 98% of these cases. In the six
cases with zero error and no outliers, a zero loss solution exists. Our algorithm
found in two of such cases the zero loss solution, in two other cases a solution

15

with a slight nonzero loss (.03 and .05), and the two remaining cases were clearly
nonzero (.09 and .10). The method based on Kiers’ (1997) procedure only found
strongly nonzero solutions.

We may conclude that the weighted majorizing algorithm had superior qual-
ity solutions. If the two algorithms reach the same local minimum, then our
weighted algorithm reaches the solution much faster.

4 Logistic Bi-Additive Models

Logistic models are often used for the analysis of binary data. In this section, we
discuss the so-called logistic bi-additive models. For these models, we introduce
a new iterative majorization algorithm such that in each iteration a weighted
least-squares problem arises, similar to the weighted principal components anal-
ysis LWPCA defined in (3). We apply the method from Section 2 and compare
the quality and speed of the algorithms.

In our notation, we will follow a similar approach as McCullagh and Nelder
(1989) do for generalized linear models. As in principal component analysis,
we have data of n individuals on k items in the data matrix Y. The data
yij are binary and indicate, for example, whether a respondent i has given a
correct (yij = 1) or incorrect (yij = 0) response to item j. It is common
practice to assume that the probability pij of a correct response is binomially
distributed. The mean µij of this probability is often modelled by the logistic
function µij = (1+ e−γij)−1. The elements γij are gathered in the n× k matrix
Γ that will be restricted below to be of a special form containing bi-additive
terms. Then, the likelihood function becomes

L(Γ) =
∏

ij

µ
yij

ij (1− µij)1−yij . (32)

that needs to be maximized over Γ. Taking minus the log of (32) gives

− log L(Γ) = −
∑

ij

(yij log(µij) + (1− yij) log(1− µij))

=
∑

ij

(
yij log(1 + e−γij) + (1− yij)(γij + log(1 + e−γij)

)
.(33)

To find the estimates, it is more convenient to minimize minus the log likelihood
in (33) than to maximize the likelihood of (32).

It may be verified that minimizing (33) over the γij ’s amounts to choosing
γij = ∞ if yij = 1 and γij = −∞ if yij = 0 which is trivial. Therefore, a proper
model needs restrictions on the γij ’s. Here, they are restricted by bi-additive
models that may have the following effects:

• the overall mean c,

• main effects for the rows in the n vector a,

16

• main effects for the columns in the k vector b, and

• the bi-additive interaction effect between rows and columns estimated by
the rank p decomposition UV′ with U of size n× p and V of size k × p.

In bi-additive modelling, the final term is always present but any combination
of the other effects above can be used. The model with all these effects is given
by

Γ = δcc11′ + δaa1′ + δb1b′ + δUV′UV′, (34)

where the rank p of U and V has to be specified a priori, and δc, δa, δb, and δUV′

are indicators that have a value one when the effect is present in the model, and
zero otherwise. Whenever the bi-additive term UV′ is omitted (thus δUV′ = 0),
then any combination of the other terms leads to a logistic regression problem.
In this paper, we are only interested in models where UV′ is present in the
model.

Another special and important example of a bi-additive logistic model is
the two-parameter logistic item response model of Birnbaum (1968) in item
response theory (IRT). For a connection between generalized linear modelling
and IRT, see Mellenbergh (1994). In a two-parameter logistic IRT model, the
ability of an individual i is noted by θi, the discrimination of an item j by αj ,
and the difficulty of item j by βj . The probability that individual i gives a
correct answer to item j is equal to (1 + e−γij)−1 with

γij = αjθi − βj . (35)

The two parameter logistic model (35) is exactly equal to choosing δc = 0, δa =
0, δb = 1, and δUV′ = 1 with p = 1, that is, Γ = 1b′ + UV′. The equivalence
can be seen by expressing the elements of Γ = 1b′ + UV′ as

γij = bj + uivj (36)

which shows that by choosing αj = vj , θi = ui, and βj = −bj logistic bi-additive
modelling is equivalent to the two parameter logistic IRT model.

Consider a multidimensional version of the two parameter logistic model
(see, for example, Béguin & Glas, 2001)

γij =
p∑

s=1

αjsθis − βj . (37)

In a similar way, (37) can be modelled by bi-additive logistic models by Γ =
1b′ + UV′ with U and V rank p, or by

γij =
p∑

s=1

vjsuis + bj . (38)

Note that choosing Γ as in (34) does not give rise to unique estimates. As
in analysis of variance, when a main effect a or b is estimated alongside with an

17

Table 3: Overview of effects and degrees of freedom in bi-additive modelling.

Model Γ Degrees of freedom per effect
δc δa δb δUV′ c11′ a1′ 1b′ UV′

a. 1 0 0 0 1
b. 0 1 0 0 n
c. 0 0 1 0 k
d. 0 0 0 1 np + kp− p2

e. 1 1 0 0 1+ (n− 1)
f. 1 0 1 0 1+ (k − 1)
g. 1 0 0 1 1+ (np + kp− p2 − 1)
h. 0 1 1 0 1+ (n− 1)+ (k − 1)
i. 0 1 0 1 n+ np + (k − 1)p− p2

j. 0 0 1 1 k+ (n− 1)p + kp− p2

k. 1 1 1 0 1+ (n− 1)+ (k − 1)
l. 1 1 0 1 1+ (n− 1)+ np + (k − 1)p− p2

m. 1 0 1 1 1+ (k − 1)+ (n− 1)p + kp− p2

n. 0 1 1 1 1+ (n− 1)+ (k − 1)+ (n− 1)p + (k − 1)p− p2

o. 1 1 1 1 1+ (n− 1)+ (k − 1)+ (n− 1)p + (k − 1)p− p2

intercept c, unique main effects are only obtained by imposing additional restric-
tions on the main effects such as 1′a = 0 and 1′b = 0. Similar nonuniqueness
exists if the main effects are estimated alongside with the bi-additive term UV′.
If a is estimated, then we impose the restriction 1′V = 0 and when b is esti-
mated, the restriction 1′U = 0. Finally, there is always nonuniqueness in the
U and V, as UV′ = UTT−1V′ for any arbitrary p × p matrix T. By setting
U equal to n times the left singular vectors, we make U and V unique up to
a reflection per dimension. Table 3 shows the total degrees of freedom for all
models that can be combined from the individual terms of (34). Note that in
models (h) and (n) both main effects are estimated, without an explicit mean
c. However, implicitly, the main effects do estimate the mean c. Therefore, it
is better use (k) instead of (h) and (o) instead of (n). Below, we provide a new
majorization algorithm to estimate the terms of the bi-additive logistic model.

4.1 Logistic majorization

In this subsection, we discuss a new iterative majorization algorithm that can
be used to minimize minus log likelihood (33) of any logistic function while
assuming the binomial distribution. This algorithm yields a majorizing function
of the form of weighted PCA (3). Subsequently, we apply the results from
Section 2 and derive the updates that use the extra restrictions for the individual
terms as indicated in the previous section. Note, that the alternative iterative
majorization algorithm for logistic regression proposed by Lange, Hunter, and
Yang (2000) cannot be applied directly because it relies on the fact that Γ is
linear in the parameters to be estimated, which is not the case for bi-additive
models.

18

To derive the new majorization algorithm, consider the terms log(1 + e−γij)
for yij = 1 and γij + log(1 + e−γij) for yij = 0. Note that both terms are the
same up to a reflection of γij , that is,

γij + log(1 + e−γij) = log(eγij) + log(1 + e−γij)
= log(eγij)(1 + e−γij)
= log(eγij + 1).

Thus, it is enough to develop a majorizing inequality for the term log(1+e−γij)
only, see Figure 1. For notational convenience, we switch to f1(x) = log(1+e−x)
that needs to be majorized by a quadratic function g1(x, y) = a1x

2− 2b1x + c1,
with y supporting point, that is, the current estimate. Iterative majorization
requires touching at the supporting point, which implies f1(y) = g1(y, y) and
equal first derivatives f ′1(y) = g′1(y, y). These two restrictions are not enough
to estimate the three parameters a1, b1, and c1 of g1(x, y). Therefore, we shall
impose an additional restriction, that turns out to be convenient, that is, we
impose in addition an equal first derivative at −y, so that f ′1(−y) = g′1(−y, y).
Note that f ′1(y) = −(1 + ey)−1. From these requirements, we derive

f1(y) = g1(y, y) = a1y
2 − 2b1y + c1

f ′1(y) = g′1(y, y) = 2a1y − 2b1

f ′1(−y) = g′1(−y, y) = −2a1y − 2b1.

Solving for a1, b1, and c1 gives

a1 =
f ′1(y)− f ′1(−y)

4y
(39)

b1 = a1y − 1
2f ′1(y) (40)

c1 = f1(y)− a1y
2 + 2b1y. (41)

If y = 0, then a1 is not defined. To see what happens to a1 when y approaches
zero, we investigate limy→0(f ′1(y) − f ′1(−y))/(4y). To do so, we use l’Hôpital’s
rule, which states that if a limit of a ratio of functions becomes 0/0, then the
ratio of the derivatives of these functions can be used instead. We first rewrite
(f ′1(y)− f ′1(−y))/(4y) as

f ′1(y)− f ′1(−y)
4y

=
−(1 + ey)−1 + (1 + e−y)−1

4y

=
−(1 + ey)−1 + ey(1 + ey)−1

4y

=
(ey − 1)(1 + ey)−1

4y
. (42)

The derivative of (ey − 1)/(1 + ey) equals 2ey/(1+ ey)2 and that of 4y equals 4.
Applying l’Hôpital’s rule gives

lim
y→0

f ′1(y)− f ′1(−y)
4y

= lim
y→0

(2ey)(1 + ey)−2

4
= 1/8.

19

-10 -5 0 5 10

-2

0

2

4

6

8

10

12

x

f1(x)

y

f1(y)

-10 -5 0 5 10

-2

0

2

4

6

8

10

12

x

f1(x)

Figure 1: Left panel contains a plot of the function f1(x) = log(1 + e−x). The
right panel shows a f(x) together with the majorizing function g1(x, y) (dashed
line) and a quadratic function used by iterated weighted least squares (IWLS,
line with dashes and points).

Thus, for y = 0, we define a1 = 1/8. For a1 defined by (39), b1 can be simplified
into

b1 = a1y − 1
2f ′1(y) =

f ′1(y)− f ′1(−y)
4y

y − 1
2f ′1(y) =

f ′1(y)− f ′1(−y)
4

− 1
2f ′1(y)

= −f ′1(y) + f ′1(−y)
4

=
(1 + ey)−1 + (1 + e−y)−1

4

=
(1 + ey)−1 + ey(1 + ey)−1

4
=

1
4
. (43)

Also, at −y we have f1(−y) = g1(−y, y) because

g1(−y, y) = a1y
2 + 2b1y + c1 = a1y

2 + 2b1y + f1(y)− a1y
2 + 2b1y

= 4b1y + f1(y) = y + f1(y) = log ey + log(1 + e−y)
= log ey(1 + e−y) = log(ey + 1) = f1(−y).

Thus, the function g1(x, y) touches f1(x) at y and −y implying that the function
values and derivatives are equal at these points.

What remains to be done is to prove that g1(x, y) ≥ f1(x), or, equivalently,
g1(x, y) − f1(x) ≥ 0. Figure 2 shows the function g1(x, y) − f1(x). It can be
seen that g1(x, y)− f1(x) seems to be larger than or equal to zero and that it is
exactly zero at x = y and x = −y. A rigorous proof is given in the appendix. We
call this new approach for minimizing the logistic function logistic majorization.

From the results above, we can derive the coefficients of the majorizing
function g2(x, y) = a2x

2 − 2b2x + c2 for the term f2(x) = x + log(1 + e−x) =
log(ex + 1). We obtain

a2 =
f ′1(y)− f ′1(−y)

4y

b2 = a2y − 1
2f ′2(y)

c2 = f2(y)− a2y
2 + 2b2y.

20

-5 0 5
-0.2

0

0.2

0.4

0.6

x
-y y

g1(x,y)-f1(x)

Figure 2: Plot of the function g1(x, y) − f1(x). It can be seen that g1(x, y) −
f1(x) ≥ 0 and that g1(x, y)− f1(x) = 0 at x = y and x = −y.

Note that a1 = a2.
A majorizing function for each combination of ij can be obtained as follows.

First, we substitute γij for x to obtain that f1(γij) ≤ g1(γij , γ
0
ij) and f2(γij) ≤

g2(γij , γ
0
ij) where γ0

ij is the current known estimate of γij . Let the subscript ij

as in a1ij denote (39) evaluated at y = γ0
ij . Then (33) is majorized by

− log L(Γ) ≤
∑

ij

yij [a1ijγ
2
ij − 2b1ijγij + c1ij] +

∑

ij

(1− yij)[a2ijγ
2
ij − 2b2ijγij + c2ij]. (44)

This result can be re-expressed as

− log L(Γ) ≤
∑

ij

wij(hij − γij)2 + c = µbiadd(Γ,Γ0), (45)

where

wij = a1ij

hij = yijb1ij/a1ij + (1− yij)b2ij/a1ij

c =
∑

ij

[
yijc1ij + (1− yij)c2ij − wijh

2
ij

]
.

The majorizing function µbiadd(Γ,Γ0) in (45) is a weighted least-squares prob-
lem similar to the one for weighted principal components analysis in (3). Here,
too, we can either apply the method of Kiers (1997) directly, or apply the
weighted majorization of Section 2. We continue with the latter option. Then,
µbiadd(Γ,Γ0) can be majorized again by the quadratic function

tr (R− Γ)′Dm(R− Γ) + c, (46)

21

where c is a constant not depending on Γ and

rij =
[
1− wij

mi

]
γ0

ij +
wij

mi
hij . (47)

Finally, we need to specify how an update is obtained for each effect in the
bi-additive model. Let us express the quadratic part in (46) as

tr (R− Γ)′Dm(R− Γ) = tr (D1/2
m R−D1/2

m Γ)′(D1/2
m R−D1/2

m Γ).
= tr (D1/2

m R− Γt)′(D1/2
m R− Γt). (48)

In (48), we switch a least-squares problem in the diagonal metric Dm in the pa-
rameters Γ to an unweighted least-squares problem with parameters Γt. With-
out loss of generality, we impose the bi-additive model directly on Γt instead
of Γ to get the update for the individual terms. The loss is computed on
Γ = D−1/2

m Γt. After convergence, the effects are decomposed from Γ. During
the iterations, the updates are computed as follows. Let Z = D1/2

m R.

• If δc = 1 then c = 1′Z1/(nk) and Z = Z− c11′.

• If δa = 1 then a = Z1/k and Z = Z− a1′.

• If δb = 1 then b = Z′1/n and Z = Z− 1b′.

• If δUV′ = 1 then compute the singular value decomposition of Z by Z =
KΛL′. Again, Kp,Λp, and Lp denote the first p dimensions of the singular
value decomposition. Then, we define U = n1/2Kp and V = n−1/2LpΛp

so that the columns of U have variance one and are orthogonal.

These updates ensure that uniqueness restrictions outlined above are automat-
ically imposed. After convergence, we compute Γ = D−1/2

m Γt and reconstruct
the proper effects by the update procedure above using Z = Γ.

4.2 A small simulation study

Here, we give the results of a small simulation study. Again, we compare the
approach by Kiers (1997) in updating µbiadd(Γ,Γ0) with our weighted approach.
Remember that µbiadd(Γ,Γ0) was obtained by logistic majorization. A different
and standard way to minimize (45) is to apply iterated weighted least squares
(IWLS), that also yields a weighted least squares function similar to (45), but
with a different definition of wij (see, for example, McCullagh & Nelder, 1989).
IWLS chooses a1ij = e−γij /(1 + e−γij)2. For this choice of a1ij , b1ij and c1ij

can be computed by (40) and (41) respectively. The IWLS function is plotted
in Figure 1 by the line with dashes and dots. As the IWLS function crosses
f(x), the IWLS algorithm is not guaranteed to converge, although in practice
convergence may well be obtained.

Now we have four methods to compare:

1. logistic majorization with the approach by Kiers (1997),

22

2. logistic majorization with our weighted majorization approach,

3. IWLS with the approach by Kiers (1997), and

4. IWLS majorization with our weighted majorization approach.

In this simulation study, we consider the model with δc = 0, δa = 0, δb =
1, δUV′ = 1, and p = 1 or p = 2 so that Γ = 1b′+UV′. This model is equivalent
to the two parameter logistic IRT model for p = 1 and is a two-dimensional
extension for p = 2. The data were generated according to this model, that is,
we randomly draw U,V, and b from the standard normal distribution.

In this study, we varied the factors n (500, 1000), k (50, 100), and p (1,
2). For each combination of n, k, and p, we did five replications. In this way,
40 different data sets were obtained. Because the value of the log likelihood
generally will increase if the number of data values nk increases (because the
number of terms in the log likelihood increases), we average − log L(Γ) over
nk. In this way, for different combinations of n and k, we may expect similar
values of the average log likelihood, so that their comparison becomes easier.
The iterations were stopped whenever the difference in subsequent average log
likelihoods was less than 10−8 or the number of iterations exceeded 2000.

Preliminary experimentation with the algorithms showed that if k is small
or the number of parameters increases (for example, from p = 1 to p = 2)
then the algorithms may converge slowly. The reason for this to happen is
that the parameter space has such a shape that for certain data elements µij

can get increasingly closer to one (or zero) by letting γij tend to ∞ (or −∞).
The likelihood function asymptotically approaches zero if γij tend to ∞ (or
−∞). Thus, if k is too small or the dimensionality too high, then some of
the parameters may wander off to large values and the algorithm may require
thousands of iterations to obtain reasonable convergence of the parameters, if
it is reached at all. However, the changes in the parameter estimates are small
during most of the iterations. The early stages of the algorithms show most
of the difference. Therefore, we focus on this part and have set a limit to the
number of iterations of 2000.

For twelve of the forty data sets (30%) in our experiment, the maximum
number of iterations was reached for all of the four methods. Indeed, this
situation occurred more often in two dimensions than in one and when n is
smaller. For the other cases, there was no significant difference found in the
quality of the solution (the average log likelihood) for any of the four methods.
However, there was a difference in quality of the solution for the twelve data
sets that needed 2000 iterations. It turned out that after 2000 iterations there
is hardly any difference between the average log likelihood between the method
by Kiers (1997) and weighted majorization. However, a difference was found
between logistic majorization and IWLS in favor of the former. A plot of these
differences is presented in Figure 3, where the horizontal axis gives the data
set and the vertical axis represents the minus log likelihood in deviance of its
average for the data set over the four methods. The log likelihood for logistic
majorization is presented by a ‘*’ and is connected by a vertical line to the

23

-.0005

-.0010

.0000

.0005

.0010

Data set

-lo
g

lik
el

ih
oo

d
Figure 3: Difference in log likelihood between logistic majorization (*) and
IWLS (o) for 12 data sets in deviation of the mean log likelihood for the data
set. Because the method based on Kiers’ (1997) procedure and by weighted
majorization yielded very similar results, their average is taken so that every ‘o’
and ‘*’ represents the average of the runs for these two methods. The difference
is corrected for the average log likelihood of the data set. The dotted lines
indicate the averages for IWLS (upper line) and logistic majorization (lower
line).

value for IWLS presented by an ‘o’. In all twelve cases and after 2000 iterations,
logistic majorization finds lower values of minus the log likelihood. On average,
the average log likelihood was .00052 better for logistic majorization compared
to IWLS.

Thus, logistic majorization yields systematically lower values of − log L(Γ)
than IWLS. To see how the algorithms differ during the iterations, we show for
a single data set (n = 500, k = 20) in Figure 4 for logistic majorization (solid
line) and IWLS (dashed line) the difference in − log L(Γ) between the method
by Kiers (1997) and weighted majorization as a function of the first thousand
iterations. Note that the four different combinations were all started from the
same initial values. We can see that the difference is positive implying that
the method by Kiers (1997) is somewhat slower than weighted majorization.
Also, this difference falls between the sixth and third decimal of the average
log likelihood. After iteration 400, the lines are ascending indicating that the
difference in − log L(Γ) increases with the iterations.

For the 70% of the data sets that converged, there was again no difference in
the number of iterations of the method by Kiers (1997) and weighted majoriza-
tion. However, there was a significant difference in the number of iterations
between logistic majorization and IWLS: the former is on average 1.8 times
faster than the latter with a minimum of 1.4 and maximum of 2.0. The mean
number of iterations for logistic majorization was 133 (with standard devia-
tion 103) and for IWLS 232 (standard deviation 150). This comparison shows
that whenever logistic bi-additive models converge, logistic majorization reaches
convergence about 1.8 times faster than IWLS.

From these experiments several conclusions can be drawn. First, the log
likelihood function can be flat in cases with too many parameters, yielding a
high number of iterations. In those cases, logistic majorization yields better

24

0 200 400 600 800 1000
10

−7

10
−6

10
−5

10
−4

10
−3

Iteration

D
iff

er
en

ce

Figure 4: Graph of the difference in −[log L(Γ)]/(nk) between logistic majoriza-
tion based on Kiers’ (1997) procedure and weighted majorization (solid line) and
difference between IWLS using Kiers’ (1997) procedure and weighted majoriza-
tion (dashed line).

likelihood values than IWLS. Second, if the algorithms converge, then logistic
majorization is about 1.8 times faster than IWLS. There is hardly any difference
in quality or speed between weighted majorization and the method by Kiers
(1997).

5 Discussion and Conclusions

In this paper, we have proposed a weighted iterative majorization algorithm
that improves upon the majorization algorithm by Kiers (1997). Our approach
is suited when we are dealing with weighted least-squares decomposition models.
We have applied our method to weighted principal components analysis, robust
Procrustes analysis, and logistic bi-additive models. Several simulation studies
indicate that weighted majorization improves upon the method by Kiers in
that it converges faster to a solution (factor 1 to 4 faster) and obtains better
quality solutions. In addition, we have proposed a new iterative majorization
algorithm for logistic bi-additive models, that yields better quality solutions
faster in comparison to iterated weighted least-squares.

Our weighted majorization algorithm only improves for those problems where
a diagonally weighted least-squares solution can be easily obtained.

Appendix A: A proof for g1(x, y)− f1(x) ≥ 0

In this appendix, we provide a proof that g1(x, y) − f1(x) ≥ 0. Define the
function h(x, y) as

h(x, y) = g1(x, y)− f1(x) = a1x
2 − 2b1x + c1 − log(1 + e−x). (49)

25

In the sequel, we use results from Section 4.1. In addition, we need

f1(x) = log(1 + e−x) = log
1 + ex

ex
= log(1 + ex)− x (50)

Figure 2 suggests that h(x, y) is symmetric around the point x = 0. Here,
we provide a mathematical proof for the symmetry of h(x, y), that is,

h(−x, y) = g1(−x, y)− f1(−x) = a1x
2 + 2b1x + c1 − log(1 + ex)

= a1x
2 +

1
2
x + c1 − log(1 + ex) = a1x

2 +
1
2
x + c1 − f1(x)− x

= a1x
2 − 1

2
x + c1 − f1(x) = a1x

2 − 2b1x + c1 − f1(x) = h(x, y),(51)

which uses (43) and (50).
The outline of the proof that h(x, y) ≥ 0 is as follows. First, we investigate

what happens to h(x, y) if x tends to ∞ or −∞. Below it is shown that in such
cases h(x, y) tends to ∞. Then, we check where h(x, y) has its derivative equal
to zero. Two such points are already known, that is, x = y and x = −y. Finally,
the lowest function values will be attained at a point where h′(x, y) = 0. We
will prove that this is also at x = y and x = −y.

We continue to prove that limx→∞ h(x, y) = +∞ and for this we need to
prove that a1 > 0. Equation (42) showed that a1 can be alternative be repre-
sented as

a1 =
(ey − 1)(1 + ey)−1

4y
. (52)

For y > 0, we have ey−1 > 0, 1+ey > 0, and 4y > 0, so that a1 is positive. For
y < 0, we have ey − 1 < 0, 1 + ey > 0, and 4y < 0, so that again a1 is positive.
Since at y = 0, we defined a1 = 1/8, we have positivity of a1 for all y. Now,
consider

lim
x→∞

h(x, y) = lim
x→∞

(a1x
2 − 2b1x + c1)− lim

x→∞
log(1 + e−x)

= lim
x→∞

a1x
2 − lim

x→∞
log(1)

= lim
x→∞

a1x
2 = ∞, (53)

which uses the fact that a1 > 0. Because of the symmetry of h(x, y) around
x = 0, we also have that limx→−∞ h(x, y) = ∞.

Next, we turn to the derivative of h(x, y) to see where the minima and
maxima are attained. Note that the first derivative of h(x, y) equals

h′(x, y) = g′1(x, y)− f ′1(x) = 2a1x− 2b1 − −1
1 + ex

. (54)

In Section 4.1, it was proved that for x = −y and x = y we have that f1(x) =
g1(x, y) and f ′1(x) = g′1(x, y), so that h′(y, y) = h′(−y, y) = 0 and h(y, y) =
h(−y, y) = 0.

26

-10 -5 0 5 10
-3

-2

-1

0

1

2

x
y-y

g1'(x,y)

f1'(x)

Figure 5: Graph of g′1(x, y) (solid line) and f ′1(x) (dashed line), which are the
two components of the first derivative of h(x, y). At x = y, x = −y, and x = 0
the two derivatives are equal.

We now investigate if there are more than the two stationary points. Ana-
lyzing h′(x, y) shows that it is the difference of the straight line 2a1x− 2b1 and
f ′1(x) = −(1 + ex)−1. Note that f ′1(x) can also be written as (1 + e−x)−1 − 1
that is equal to the logistic function minus one. Figure 5 shows a graph of the
two parts of h′(x, y). We know that the logistic function is concave for x > 0
and convex for x < 0. As f ′1(x) = g′1(x, y) at x = y and x = −y and g′1(x, y)
defines a straight line, g′1(x, y) intersects the shifted logistic curve f ′1(x) at least
at those two points. Because of the concavity of the logistic curve for x > 0, we
can have at most two intersections of the straight line with the curve. Because
of the symmetry of h(x, y) around zero, the intersection other than x = y must
occur at x = 0. This proves that there are at most three stationary points, two
at x = y and x = −y, the third one at x = 0.

We can study the positivity of h(x, y) through h′(x, y) = g′1(x, y)− f ′1(x) as
follows.

• For x in the interval (−∞,−y), h′(x, y) < 0 because the shifted logistic
function f ′1(x) is located above the line g′1(x, y), so that the difference
g′1(x, y)− f ′1(x) < 0 . At x = −y, h′(x, y) = 0 because of the majorization
requirements in Section 4.1.

• If x lies in the interval (−y, 0), then h′(x, y) > 0 because the linear function
g′1(x, y) is located above the logistic function f ′1(x), so that their difference
g′1(x, y)− f ′1(x) > 0. At x = 0, we have h′(x, y) = 0, the second touching
point.

• Reverse results occur in the right side of the graph, where h′(x, y) < 0 in
the interval (0, y), h′(x, y) > 0 for x in the interval (y, +∞), and h′(x, y) =
0 at the third stationary point x = y.

These properties of the derivatives imply that at x = y and x = −y, h(x, y)
has a local minimum and at x = 0 a local maximum. Because h(x, y) tends

27

to infinity for y = −∞ and y = ∞ and the results on the first derivatives of
h(x, y), the global minimum is attained at one of the local minima at x = y or
x = −y. As h(y, y) = h(−y, y) = 0, the global minimum of h(x, y) equals zero,
so that h(x, y) ≥ 0 for all x, which completes the proof.

References

Beaton, A. E., & Tukey, J. W. (1974). The fitting of power series, meaningful
polynomials, illustrated on band-spectroscopic data. Technometrics, 16,
147–185.

Béguin, A. A., & Glas, C. A. W. (2001). MCMC estimation and some model-fit
analysis of multidimensional IRT models. Psychometrika, 66, 541–562.

Birnbaum, A. (1968). Some latent trait models and their use in inferring
an examinee’s ability. In F. M. Lord & M. R. Novick (Eds.), Statistical
theories of mental test scores. Reading, MA: Addison-Wesley.

Borg, I., & Groenen, P. J. F. (1997). Modern multidimensional scaling: Theory
and applications. New York: Springer.

De Leeuw, J. (1993). Fitting distances by least squares (Tech. Rep. No. 130).
Los Angeles, California: Interdivisonal Program in Statistics, UCLA.

De Leeuw, J. (1994). Block relaxation algorithms in statistics. In H.-H. Bock,
W. Lenski, & M. M. Richter (Eds.), Information systems and data analysis
(pp. 308–324). Berlin: Springer.

Gabriel, K. R., & Zamir, S. (1979). Lower rank approximation of matrices by
least squares with any choice of weights. Technometrics, 21, 489–498.

Heiser, W. J. (1987). Correspondence analysis with least absolute residuals.
Computational Statistics and Data Analysis, 5, 337–356.

Heiser, W. J. (1995). Convergent computation by iterative majorization: Theory
and applications in multidimensional data analysis. In W. J. Krzanowski
(Ed.), Recent advances in descriptive multivariate analysis (pp. 157–189).
Oxford: Oxford University Press.

Huber, P. J. (1964). Robust estimation of a location parameter. Annals of
Mathematical Statistics, 35, 73–101.

Kiers, H. A. L. (1997). Weighted least squares fitting using iterative ordinary
least squares algorithms. Psychometrika, 62, 251–266.

Kiers, H. A. L. (2002, in press). Setting up alternating least squares and iterative
majorization algorithms for solving various matrix optimization problems.
Computational Statistics and Data Analysis, ?, ??–??

28

Lange, K., Hunter, D. R., & Yang, I. (2000). Optimization transfer using
surrogate objective functions. Journal of Computational and Graphical
Statistics, 9, 1–20.

McCullagh, P., & Nelder, J. A. (1989). Generalized linear models. London:
Chapman and Hall.

Mellenbergh, G. J. (1994). Generalized linear item response theory. Psycholog-
ical Bulletin, 115, 300–307.

Mosteller, F., & Tukey, J. W. (1977). Data analysis and regression. Mas-
sachusetts: Addison-Wesley.

Ten Berge, J. M. F. (1993). Least squares optimization in multivariate analysis.
Leiden: DSWO Press, Leiden University.

Verboon, P. (1994). A robust approach to nonlinear multivariate analysis.
Leiden: DSWO Press, Leiden University.

Verboon, P., & Heiser, W. (1992). Resistant orthogonal Procrustes analysis.
Journal of Classification, 9, 237–256.

29

