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Abstract

NP{hard cases of the single{item capacitated lot{sizing problem have been the topic of ex-

tensive research and continue to receive considerable attention. However, surprisingly few

theoretical results have been published on approximation methods for these problems. To

the best of our knowledge, until now no polynomial approximation method is known which

produces solutions with a relative deviation from optimality that is bounded by a constant.

In this paper we show that such methods do exist, by presenting an even stronger result:

the existence of fully polynomial approximation schemes. The approximation scheme is �rst

developed for a quite general model, which has concave backlogging and production cost func-

tions and arbitrary (monotone) holding cost functions. Subsequently we discuss important

special cases of the model and extensions of the approximation scheme to even more general

models.

Subject classi�cation: Analysis of algorithms, suboptimal algorithms: fully poly-

nomial approximation schemes. Dynamic programming/optimal control: lot{sizing

models. Inventory/production: single{item capacitated lot{sizing.

In the single{item capacitated economic lot{sizing problem we consider a production

facility which manufactures a single product to satisfy known integer demands over

a �nite planning horizon of T periods. At each period, the production and holding{

backlogging cost functions are given, and the amount of production is subject to a
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capacity limit. The problem is that of determining the amounts to be produced in

each period such that all demand is satis�ed and the total cost is minimized.

Florian, Lenstra and Rinnooy Kan (1980) and Bitran and Yanasse (1982) have shown

that the single{item capacitated lot{sizing problem is NP{hard, even for many special

cases. For notable exceptions, we refer to Florian and Klein (1971), Bitran and Yanasse

(1982), Rosling (1993), Chung and Lin (1988) and Van Hoesel and Wagelmans (1996).

NP{hard cases of the problem have been the topic of extensive research and continue

to receive considerable attention. The proposed solution methods are typically based

on dynamic programming (for instance, Kirca 1990; Chen, Hearn and Lee 1994a, 1994b;

Shaw and Wagelmans 1995), branch{and{bound (for instance, Baker et al. 1978; Eren-

guc and Aksoy 1990), or a combination of the two (for instance, Chung, Flynn and Lin

1994; Lofti and Yoon 1994).

It should also be mentioned that a lot of research has been devoted to �nding a

(partial) polyhedral description of the set of feasible solutions of lot{sizing problems;

see, for example, Pochet (1988) and Leung et al. (1989), Pochet and Wolsey (1993,

1995) and Constantino (1995). The main motivation for studying the polyhedral struc-

ture of capacitated single{item models is to use the results to develop branch{and{cut

methods for more complicated problems, such as multi{item problems, that contain

this model as a substructure. However, the branch{and{cut approach has not (yet)

resulted in competitive algorithms for the capacitated single{item problems themselves.

Surprisingly, very few theoretical results have been published on approximation

methods for capacitated single{item problems. The only notable exceptions are Bitran

and Matsuo (1986) and Gavish and Johnson (1990). The �rst article considers ap-

proximation formulations which are solvable in pseudo{polynomial time. The optimal

solution of an approximation formulation can be used as an approximate solution of

the actual problem. For special cases of the problem, it can be shown that the rela-

tive error of the approximate solution value can be bounded by an expression which

depends on the input data. The authors argue that this bound will be satisfactory

for practical purposes. Gavish and Johnson present a fully polynomial approxima-

tion scheme which is applicable to a large class of capacitated single{item scheduling

problems. Their approach, however, appears to be more suitable for continuous time

models, than for discrete times models, such as those considered in this paper. The

reason is that in calculating an approximate solution, the discrete nature of the prob-

lem is ignored. Therefore, \the translation from this solution back to an equivalent

discrete{time model may be di�cult" (p. 74). Another drawback of the approach is

that the error of the approximate solution is not measured as the usual relative error

with respect to the optimal value, but as ratio of the value of the approximate solution

and an upperbound on value of any feasible solution. (The ratio of this upperbound
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and the optimal value may be arbitrarily large.) Gavish and Johnson justify the alter-

native error measure by pointing out that the usual relative error is inadequate for a

minimization problem if there is a possibility that the optimal value is zero. Although

this is true in general, we will explain in Section 1 why this is not a relevant argument

for the lot{sizing problems considered in this paper.

To summarize the above discussion: to the best of our knowledge, until now no

polynomial approximation method is known for the single{item capacitated lot{sizing

problem which produces solutions with a relative deviation from optimality that is

bounded by a constant. In this paper we will show that such methods do exist, by

presenting an even stronger result: the existence of fully polynomial approximations

schemes. Recall that such algorithms determine for any � > 0 and any problem in-

stance, a solution of which the relative deviation from optimality is at most �, in a

running time which is polynomial in both 1=� and the size of the problem instance.

This paper is organized as follows. In Section 1, we �rst de�ne the model for which

the approximation scheme will initially be developed. It assumes concave backlogging

and production functions. The holding cost functions are only assumed to be non{

decreasing. In Section 2 we present an exact dynamic programming procedure for this

model. This algorithm di�ers from | and is more complicated than | the standard

DP approach presented by Florian, Lenstra and Rinnooy Kan (1980). Two approxima-

tion methods, one of which is based on the DP algorithm, are described in Section 3,

and in Section 4 we show how these methods can be combined to yield a fully poly-

nomial approximation scheme. In Section 5 we discuss two important special cases,

namely the model without backlogging (which allows the concavity assumption on the

production cost functions to be dropped) and the model in which all cost functions are

pseudo{linear (which allows an improved complexity). Furthermore, we will show in

this section that our results can be extended to models with features such as bounds

on the inventory levels, piecewise concave cost functions and start{up and reservation

costs. Section 6 contains concluding remarks.

1 Problem de�nition

In this section we de�ne the model for which the approximation scheme will initially

be developed. Let T denote the length of the planning horizon. For each period

t 2 f1; . . . ; Tg we de�ne:

dt: demand in t;

xt: production level in t;

ct: production capacity in period t;
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It: inventory level at the end of t;

pt(xt): production costs in t, a function of xt;

ht(It): holding{backlogging costs in t, a function of It.

Furthermore, I0 is de�ned to be 0 and we make the following assumptions:

All demands, capacities, production and inventory levels are integer.

The production cost function pt is non{decreasing and concave in the integers of

the interval [0; ct], t 2 f1; 2; . . . ; Tg. Furthermore, pt(0) = 0.

The holding{backlogging cost functions are non{decreasing on [0;1) and non{

increasing and concave on (�1; 0]. If backlogging is not allowed, then the costs

are equal to 1 for all negative inventory levels. Furthermore, ht(0) = 0 for all

t 2 f1; 2; . . . ; Tg.

All cost functions can be evaluated in polynomial time at any value in their

domain and are scaled such that they are integer valued.

The objective is to satisfy all demand at minimal cost, subject to the capacity con-

straints. Hence, the problem can be formulated as

z� = min
P

T

t=1(pt(xt) + ht(It))

s.t. It = It�1 + xt � dt t = 1; 2; . . . ; T

xt � ct t = 1; 2; . . . ; T

I0 = 0

xt � 0 integer t = 1; 2; . . . ; T

It integer t = 1; 2; . . . ; T

The assumptions ht(0) = 0 and pt(0) = 0 for all periods t, imply that we are

only considering the costs which depend on the production plan, i.e., constant costs

are ignored. Although adding the same positive constant to the cost of every feasible

solution does not change the cost ordering of the solutions, it would decrease the relative

error of every solution. Hence, the assumptions can be viewed as a normalization of

the problem. With respect to the issue of zero cost solutions, as raised by Gavish and

Johnson (1990), we note the following. In Subsection 3.2, it will be shown that under

very mild conditions (monotonicity of the cost functions) it is possible to determine in

polynomial time whether or not there exists a zero cost solution of a given instance of

the single{item capacitated lot{sizing problem. Moreover, if it exists, such a solution is

found. Hence, the issue of polynomial approximation is only relevant for those problem

instances for which we do not �nd a zero cost solution. Of course, for these problem
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instances the relative error with respect to the optimal value is a meaningful measure

for the quality of approximate solutions.

In the next section, we will describe an exact solution method for the above problem.

2 A dynamic programming algorithm

In the standard dynamic programming approach to the capacitated dynamic lot siz-

ing problem, one computes (in a forward or backward fashion) for every period t 2
f1; 2; . . . ; Tg and all possible inventory levels in t the minimal cost of achieving that

level. The running time of this approach is proportional to
P

T

t=1 ct �
P

T

t=1 dt (see

Florian, Lenstra and Rinnooy Kan, 1980). It is not easy to base an approximation

scheme on this DP approach, since the running time can only be decreased if both

cumulative capacity and cumulative demand are rescaled, which means that the set of

feasible solutions is changed. As a consequence, it may not be trivial to translate an

optimal solution of a rescaled problem instance into a feasible solution of the original

instance. It may even be possible that one instance is feasible while the other is infea-

sible. Therefore, we will present a di�erent, more complicated, dynamic programming

approach of which the running time mainly depends on an upperbound on the opti-

mal value z�. This approach can be viewed as being \dual" to the standard dynamic

programming approach. i.e., the ending inventory is maximized subject to a budget

constraint.

2.1 Preliminaries

To facilitate the exposition, we will assume from now on that it takes constant time to

evaluate any of the cost functions which we de�ned in the previous section. The reader

will have no problem in verifying that every polynomial running time obtained in this

paper, will remain polynomial if the function evaluations take polynomial time instead.

Furthermore, we will assume from now on that all capacities are strictly positive. The

adaption of our algorithms for zero capacities is straightforward.

The following lemmas are well{known, and will be frequently used in our exposition.

Lemma 1 If two functions f and g are both non{decreasing, then f + g is also non{

decreasing.

Lemma 2 If two functions f and g are both concave, then f + g is also concave.
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Lemma 3 If a function f de�ned on the interval of integers [a; b], is non{decreasing

and can be evaluated in constant time, then we can �nd for any number y the values

min
a�x�b

ff(x) � yg and max
a�x�b

ff(x) � yg;

and the corresponding values of x, in O(log(b� a)) time by applying binary search.

Lemma 4 If a function f de�ned on the interval of integers [a; b], is concave and can

be evaluated in constant time, then we can �nd for any number y the values

min
a�x�b

ff(x) � yg; max
a�x�b

ff(x) � yg; min
a�x�b

ff(x) � yg and max
a�x�b

ff(x) � yg

and the corresponding values of x, in O(log(b� a)) time by binary search.

2.2 The recursion formulas

Let B be any integer upperbound on z�. For t 2 f1; 2; . . . ; Tg and b 2 f0; 1; . . . ; Bg we
de�ne Ft(b) as the maximum value of It which can be achieved by production in the

�rst t periods if the total cost incurred in these periods is at most b. Hence, b can be

viewed as the total budget that we are allowed to spend in the �rst t periods. Ft(b) is

de�ned to be �1 if there does not exist any value of It with a corresponding feasible

production plan costing at most b. Note that z� is equal to the smallest value of b for

which FT (b) � 0.

By de�nition, the following holds for t = 1:

F1(b) = max
0�x1�c1

fx1 � d1 j p1(x1) + h1(x1 � d1) � bg for b = 0; . . . ; B (1)

For any b 2 f0; 1; . . . ; Bg the value of F1(b) can be calculated as follows. De�ne

m1 = minfd1; c1g. The function p1(x1) + h1(x1� d1) is concave on the interval [0;m1],

and on the interval [m1; c1] it is non{decreasing. Therefore, we can �nd

maxfx1 2 f0; 1; . . . ;m1g j p1(x1) + h1(x1 � d1) � bg (2)

and

maxfx1 2 fm1;m1 + 1; . . . ; c1g j p1(x1) + h1(x1 � d1) � bg

in timeO(log(c1)), by Lemmas 3 and 4. If both maxima exist, we take the second, i.e.,

the maximum of the two; if none exists we set F1(b) = �1.

We have shown the following.

Proposition 5 Determining the values of F1(b) for all b 2 f0; 1; . . . ; Bg can be done

in O(B log c1) time.

6



Now consider a period t 2 f2; 3; . . . ; Tg and a �xed budget b 2 f0; 1; . . . ; Bg. A

correct recursion formula which links Ft(b) to the values Ft�1(a), a 2 f0; 1; . . . ; Bg, is
not trivial. Consider a �xed value of a, 1 � a � b, and suppose we want to determine

the maximum value of It such that the total cost incurred in the �rst t� 1 periods is

at most a and the cost incurred in period t is limited by b � a. We �rst discuss two

situations between which we will distinguish.

By de�nition, with the given budget the maximum ending inventory of the �rst t�1

periods is It�1 = Ft�1(a). The remainder b�a of the budget is available for production

and inventory costs in period t. The �rst situation is the one in which it is possible to

extend the production plan corresponding to It�1 = Ft�1(a), to a plan also including

period t, i.e., there exists an xt 2 f0; 1; . . . ; ctg such that

pt(xt) + ht(Ft�1(a) + xt � dt) � b� a

We will show that in this case It�1 can be assumed to be Ft�1(a). In the second situation

we can not extend a plan corresponding to It�1 = Ft�1(a), i.e., for all xt 2 f0; 1; . . . ; ctg
we have

pt(xt) + ht(Ft�1(a) + xt � dt) > b� a

For this case we can show that xt may be assumed to be 0. Thus, in both situations,

we can restrict the value of one of the variables xt and It�1. This is proved in the

following two propositions, which are valid even if the backlogging and production cost

functions are not concave, but only monotone.

Proposition 6 If there exists an xt 2 f0; 1; . . . ; ctg such that

pt(xt) + ht(xt + Ft�1(a)� dt) � b� a

then only production plans with It�1 = Ft�1(a) need to be considered when computing

the maximum value of It, given budget a for the �rst t� 1 periods.

Proof. Let x̂t be the maximum feasible production level in period t given It�1 =

Ft�1(a), i.e.,

x̂t = maxfxt 2 f0; 1; . . . ; ctg j pt(xt) + ht(Ft�1(a) + xt � dt) � b� ag (3)

Suppose that y < Ft�1(a) and that there also exists a feasible production plan with

It�1 = y; let �xt be the corresponding maximum production level in period t, i.e.,

�xt = maxfxt 2 f0; 1; . . . ; ctg j pt(xt) + ht(y + xt � dt) � b� ag

To prove the proposition, it su�ces to show that Ft�1(a) + x̂t� dt � y + �xt� dt, since

this means that taking It�1 = Ft�1(a) is always at least as good as It�1 = y < Ft�1(a).
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De�ne ~xt = �xt � Ft�1(a) + y. Thus, ~xt < �xt � ct, since y < Ft�1(a). We will prove

that x̂t � ~xt, which immediately impliesFt�1(a)+x̂t�dt � Ft�1(a)+~xt�dt = y+�xt�dt.
The proof is by contradiction. Suppose that ~xt > x̂t, then 0 � x̂t < ~xt < �xt � ct.

Furthermore, ~xt is a feasible production level for It�1 = Ft�1(a). To see this, we note

that pt(~xt) � pt(�xt) by the monotonicity of pt, and ht(Ft�1(a)+~xt�dt) = ht(y+�xt�dt),
since the arguments are equal. Hence,

pt(~xt) + ht(Ft�1(a) + ~xt � dt) � pt(�xt) + ht(y + �xt � dt) � b� a

Thus, xt = ~xt, and It�1 = Ft�1(a) satisfy the budget constraint. We now have a

contradiction with the de�nition of x̂t in (3). Hence, x̂t � ~xt, which completes the

proof.

2

Proposition 7 If for all xt 2 f0; 1; . . . ; ctg

pt(xt) + ht(xt + Ft�1(a)� dt) > b� a (4)

then only production plans with It�1 2 fdt; dt + 1; . . . ; Ft�1(a)� 1g and xt = 0 need to

be considered when computing the maximum value of It, given budget a for the �rst

t� 1 periods.

Proof. Let y < Ft�1(a) and �xt be such that taking It�1 = y and production in period

t equal to �xt is feasible, and y + �xt is maximal.

If y + �xt � Ft�1(a), then | because of the monotonicity of pt | it is also feasible

to take It�1 = Ft�1(a) and production in period t equal to ~xt = �xt�Ft�1(a) + y. Note

that 0 � ~xt < �xt � ct. However, (4) states that such a feasible plan does not exist.

Hence, we have a contradiction, which implies y + �xt < Ft�1(a).

Now assume that Ft�1(a) � dt. Then, pt(�xt) + ht(y + �xt � dt) � ht(y + �xt � dt) �
ht(Ft�1(a)� dt) > b� a, where the second inequality follows from the fact that ht(It)

is non{increasing on (�1; 0], while the last inequality is (4) for the case xt = 0. Again

we have a contradiction. So, besides y + �xt < Ft�1(a), we may assume Ft�1(a) > dt in

the sequel.

Any level of It�1 in the interval [dt; Ft�1(a)] can be attained at total cost at most a

in the �rst t� 1 periods. To see this, take a production plan for the �rst t� 1 periods

with It�1 = Ft�1(a) and total cost at most a. Change this production plan by lowering

the production level in the last production period until the desired value of It�1 is

reached or the production level becomes 0. In the latter case, repeat the procedure

with the new production plan. Iterate until a production plan with the desired value
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of It�1 is obtained. This production plan has cost at most a, because in the process of

changing the production plan, both the production and holding costs do not increase.

Hence, in particular, we have that It�1 = dt can be attained at cost at most a. In

combination with zero production in period t we get It = 0. Clearly, this is feasible,

because there are no additional costs in period t. Hence, the maximum value of It is

non{negative, which implies y + �xt � dt. We now have derived that dt � y + �xt <

Ft�1(a). But this means that also It�1 = y + �xt can be attained at cost at most a. In

combination with zero production in period t, we get a production plan with total cost

in period t equal to ht(y+ �xt� dt) � pt(�xt) + ht(y+ �xt� dt) � b� a. Since this means

that the production plan is feasible, we now have shown that it su�ces to consider

only production plans with dt � It�1 < Ft�1(a) and zero production in period t.
2

The above two propositions lead to the following recursion formula for b = 0; . . . ; B

and t = 2; . . . ; T :

Ft(b) =

max
0�a�b

max

8>>><
>>>:

max
0�xt�ct

fFt�1(a) + xt � dt j pt(xt) + ht(Ft�1(a) + xt � dt) � b� ag;

max
0�It<Ft�1(a)�dt

fIt j ht(It) � b� ag

9>>>=
>>>;

or, equivalently,

Ft(b) =

max

8>><
>>:

max
0�a�b

max
0�xt�ct

fFt�1(a) + xt � dt j pt(xt) + ht(Ft�1(a) + xt � dt) � b� ag;

maxfIt � 0 j 9 a 2 f0; 1; . . . ; bg : It < Ft�1(a)� dt; ht(It) � b� ag

9>>=
>>; (5)

Once more, we would like to mention that we have used the monotonicity, but not the

concavity of the cost functions to derive the above recursion formula.

2.3 Complexity

Using (5), Ft(b) can be computed from the values Ft�1(a); a 2 f0; 1; . . . ; bg, as follows.
For the evaluation of the �rst expression we propose a procedure similar to the pro-

cedure for t = 1, described at the beginning of the preceding subsection. Consider a

�xed value of a 2 f0; 1; . . . ; bg and de�ne

ma

t
=

8><
>:

0 if dt � Ft�1(a) < 0

dt � Ft�1(a) if 0 � dt � Ft�1(a) � ct

ct if dt � Ft�1(a) > ct
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Now pt(xt)+ht(Ft�1(a)+xt�dt) is concave on [0;ma

t
] and non{decreasing on [ma

t
; ct].

Thus, because of Lemmas 3 and 4, the largest achievable value of It = Ft�1(a)+xt�dt

can be determined by binary search in O(log ct) time for each a 2 f0; 1; . . . ; bg. Hence,
the �rst expression can be evaluated in O(b log ct) time.

For the second expression, we �rst note that there is no value of It satisfying the

conditions in this expression if Ft�1(b) � dt, since Ft�1(a) is non{decreasing in a. Let �ab

be the smallest value of a in f0; 1; . . . ; bg such that Ft�1(�ab) > dt and ht(Ft�1(�ab)�dt) >
b��ab. The value of �ab is non{decreasing in b, since for any a the value minfIt j ht(It) >
b� ag is non{decreasing in b. Therefore, the total computational e�ort for �nding �ab

is O(B) for all b 2 f0; 1; . . . ; Bg simultaneously, i.e., we can compute �ab in constant

amortized time per b 2 f0; 1; . . . ; Bg. To evaluate the second expression once �ab is

known, we note that for each a 2 f0; 1; . . . ; bg there are two functions that bound

the inventory It, namely It < Ft�1(a) � dt and ht(It) � b � a. Now Ft�1(a) � dt is

non{decreasing in a, and maxfIt j ht(It) � b� ag is non{increasing in a. Therefore, if

the value of It that we are looking for exists, it belongs to the interval [Ft�1(�ab � 1)�
dt; Ft�1(�ab)�dt). To be more precise, it is the largest non{negative value in the interval

for which ht(It) � b � �ab. Hence, this value can be determined by binary search in

O(log(Ft�1(�ab))) = O(log(
P

t�1
�=1 c�)) time. To summarize, the evaluation of the second

expression takes O(log(Pt�1
�=1 c� )) amortized time for all b 2 f0; 1; . . . ; Bg.

We have now derived the main result of this section.

Theorem 8 The complexity of the dynamic programming algorithm based on formulas

(1) and (5) is O(B2
P

T

t=1 log ct +B
P

T

t=1 log(
P

t�1
�=1 c� )).

3 Two approximation algorithms

In this section we discuss two approximation algorithms. The �rst one is based on the

dynamic programming algorithm presented in the preceding section. It yields a feasible

solution whose absolute deviation from optimality is bounded, but dependent on T .

The second approximation algorithm is quite simple and yields a feasible solution whose

relative deviation from optimality is less than 2T . Both approximation algorithms

are part of our approximation scheme to be presented in the next section. The �rst

algorithm forms the basis of the approximation scheme, the second algorithm merely

provides an appropriate upperbound B on the optimum value z�.
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3.1 Approximation based on DP algorithm

This approximation algorithm is based on scaling, an idea which is often used in ap-

proximation schemes. However, instead of scaling the cost functions, we are going to

scale the budgets of the periods. Cost scaling is not a good idea, since it destroys con-

cavity, i.e., functions such as bpt(xt)=Kc, where K is a positive integer, are in general

not concave.

As before, let B be any integer upperbound on z�. Furthermore, let K be a positive

integer such that 1 � K � B. For t 2 f1; 2; . . . ; Tg and b 2 f0;K; 2K; . . . ; (bB=Kc +
T )Kg we de�ne Gt(b) as the maximal value of It which can be achieved by production

in the �rst t periods under the restriction that the total budget for these periods is at

most b and the budget allocated to each individual period is a multiple of K. From the

preceding section it should be clear that we can compute Gt(b) for all t 2 f1; 2; . . . ; Tg
and all b 2 f0;K; 2K; . . . ; (bB=Kc + T )Kg in a total computational e�ort which is

O((B=K + T )2
P

T

�=1 log c� + (B=K + T )
P

T

t=1 log(
P

t�1
�=1 c� )). The idea is to take the

smallest value of b 2 f0;K; 2K; . . . ; (bB=Kc+ T )Kg for which GT (b) � 0 as the value

of the approximate solution of the lot sizing problem. We will show the existence of

such a solution and give a bound on the absolute di�erence between the value of the

approximate solution and the optimal value in the following proposition.

Proposition 9 There exists a b 2 f0;K; 2K; . . . ; (bB=Kc + T )Kg with GT (b) � 0.

Moreover, the smallest such value is less than or equal to z� + TK.

Proof. Consider an optimal solution and let rt denote the associated cost incurred

in period t, t 2 f1; 2; . . . ; Tg. Clearly, the solution is feasible if we would allocate a

budget of (brt=Kc + 1)K to each period t 2 f1; 2; . . . ; Tg. Because these budgets are
multiples of K, this implies that GT (

P
T

t=1(brt=KcK +K)) � 0. The proposition now

follows from
P

T

t=1(brt=KcK + K) � bPT

t=1 rt=KcK + TK) � (bz�=Kc + T )K and

the fact that the last expression is bounded from above by both (bB=Kc + T )K and

z� + TK.
2

3.2 A simple polynomial approximation algorithm

We will now show how to compute an upperbound on z� which is at most 2Tz�. This

approximation algorithm is quite simple and it can also be used if the cost functions

are not concave, but only monotone. It is based on the fact that there are 2T di�erent

cost functions. The idea of the algorithm is to �nd the smallest value L for which there

11



exists a feasible solution if all cost functions are restricted to contribute at most L to

the total cost. Hence, such a feasible solution has cost at most 2TL. Clearly, in any

optimal solution of the original problem, each cost function contributes not more than

z�. Therefore, it holds that L � z�. This implies that �B � 2TL is an upperbound on

z� such that �B � 2Tz�.

To show that L can be found in polynomial time, we �rst show that it is possible

to determine in polynomial time whether or not there exists a feasible solution if the

contribution of each cost function is at most some given value l. For each period t we

de�ne an upperbound on the production level by �ct = maxfx � ct j pt(x) � lg, and
a lower and upperbound on the inventory level by ut = minfI � 0 j ht(I) � lg and

vt = maxfI � 0 j ht(I) � lg, respectively. These bounds can be determined using

binary search.

A feasible solution in which each cost function contributes at most l exists if and

only if there exists a feasible solution which satis�es the above upper and lowerbounds

on the production and inventory levels. We can use dynamic programming to check

this. Let Mt denote the largest value of It, achievable by production in the �rst t

periods by a production plan satisfying all upper and lowerbounds. In particular, we

have M1 = minf�c1 � d1; v1g. If M1 < u1, then there does not exist a feasible solution.

Otherwise, we proceed using the recursion formula

Mt = minfMt�1 + �ct � dt; vtg for t = 2; . . . ; T

and we stop as soon as we �nd a t for which Mt < ut. There exists a feasible solution

if and only if we reach T and MT � 0.

Clearly, L is non{negative and a trivial upperbound on L is given by

U � max
1�t�T

f(pt(ct); ht(�
t�1X
i=1

di); ht(

TX
i=t+1

di)g

(or max1�t�Tf(pt(ct); ht(
P

T

i=t+1 di)g if backlogging is not allowed). Now it should be

clear how L can be determined using binary search. Note, however, that the value

of any feasible solution is also an upperbound on L. Suppose such a value, say ~B, is

known (for instance, ~B could be the value of any heuristic solution), then we can do

the following. We �rst check whether there exists a feasible solution in which each cost

function contributes at most d ~B=2T e. If this is not the case, then d ~B=2T e < L � z�.

Hence, ~B < 2Tz�, and we are done. Otherwise, we carry out the binary search for L

on [0; ~B].

The running time of the above heuristic is easily seen to be O(T log2 U). Note that

this heuristic can also be used to check in polynomial time whether there exists an

optimal solution with zero cost.

12



4 The fully polynomial approximation scheme

We will �rst describe a straightforward version of our approximation scheme, and then

discuss possible ways to improve its complexity.

4.1 Description and correctness

Our fully polynomial approximation scheme consists of two steps and combines the

approximation algorithms discussed in the preceding section. Let � > 0 be given.

1. Use the simple approximation algorithm to calculate in polynomial time an up-

perbound B which satis�es B � 2Tz�.

2. Apply the DP based approximation algorithm; use the calculated B as the up-

perbound and K = maxfb�B=2T 2c; 1g.

We now state the main result of this paper.

Theorem 10 The above procedure has a complexity which is polynomial in both the

size of the problem instance and 1=�, and determines a feasible solution with a value

not larger than (1 + �)z�.

Proof. For the �rst part of the proposition, we only have to analyze the complexity

of Step 2. As already mentioned in Subsection 3.1, its running time is O((B=K +

T )2
P

T

�=1 log c� + (B=K + T )
P

T

t=1 log(
P

t�1
�=1 c� )). Clearly, this is a polynomial bound

if B=K � T . Therefore, let us assume B=K > T . If �B=2T 2 > 1, then K > �B=4T 2;

otherwise, K � �B=2T 2. In both cases, it is easily veri�ed that the running time is

O(T 4
P

T

�=1 log c�=�
2 + T 2

P
T

t=1 log(
P

t�1
�=1 c� )=�), which is polynomial in the size of the

problem instance and 1=�.

If K = 1, then a solution with value z� is found in Step 2. If K = b�B=2T 2c, we
can use the fact that this step yields a solution whose value exceeds z� by at most KT ,

which is less than or equal to �B=2T � �z�. This completes the proof.
2

4.2 Complexity

In the proof of Theorem 10, we mentioned the complexity boundO(T 4
P

T

�=1 log c�=�
2 +

T 2
P

T

t=1 log(
P

t�1
�=1 c�)=�) for Step 2 of the approximation scheme. There are several

ways to improve this bound. An obvious approach is to apply the DP based approxi-

mation algorithm not once, but twice. First it is applied with K = maxfb�̂B=2T 2c; 1g,
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where �̂ is a relatively large error. This yields an upperbound, say B̂. Subsequently,

the approximation algorithm is applied with K = maxfb�̂B̂=T (1 + �̂)c; 1g, yielding a

solution with the required quality guarantee. A good choice for �̂ is one for which the

complexity of the �rst and second execution of the approximation algorithm is about

the same. For instance, if we take �̂ =
p
T�, the overall complexity, including Step 1,

is O(T log2 U + (T + T
p
T�)2

P
T

�=1 log c�=�
2 + (T + T

p
T�)
P

T

t=1 log(
P

t�1
�=1 c� )=�).

Another way to improve the complexity is due to Kovalyov (1995), to whom we refer

for details. Given the lowerbound L, the upperbound B and the fact that B=L � 2T , it

can be shown that a lowerbound L̂ and an upperbound B̂ with B̂=L̂ � 3 can be found in

O(log T (T 2
P

T

�=1 log c� + T
P

T

t=1 log(
P

t�1
�=1 c�))) time. The idea is to iteratively apply

the DP based approximation algorithm with K = maxfbL0=T c; 1g, starting with L0 =

L. If the approximation algorithm does not �nd a feasible solution, the value of L0 is

doubled and the algorithm is repeated. When a feasible solution is found, the procedure

terminates. B̂ is equal to the value of the feasible solution and L̂ is equal to the current

value of L0. Since B̂ � 3z�, we can subsequently apply the DP based approximation

algorithm with K = maxfb�B̂=3T c; 1g to obtain a solution with the desired accuracy.

The overall complexity of this approach is O(T log2 U + log T (T 2
P

T

�=1 log c� +

T
P

T

t=1 log(
P

t�1
�=1 c� )) + T 2

P
T

�=1 log c�=�
2 + T

P
T

t=1 log(
P

t�1
�=1 c� )=�).

Further improvements of the complexity may be achieved for certain special cases

of the cost functions, as discussed in the next section.

5 Special cases and extensions

The model for which we have developed the approximation scheme in the preceding

sections, is quite general. On one hand, stronger results can be obtained for interesting

special cases. On the other hand, our results can be extended to even more general

capacitated lot sizing problems encountered in the literature.

5.1 No backlogging

In our exposition, we have only used the concavity of the production cost functions to

evaluate (2) in Subsection 2.2 and the �rst expression in (5) in Subsection 2.3 e�ciently.

To be more precise, the assumption is used to deal e�ciently with the possibility of

backlogging. Hence, in case backlogging is not allowed, it is not necessary to assume

that the production cost functions are concave. Therefore, we have the following result.

Theorem 11 If backlogging is not allowed, the approximation scheme is still correct

if the production cost functions are only non{decreasing and not concave.
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5.2 Pseudo{linear cost functions

An important special case is the one in which all cost functions are pseudo{linear, as

is often assumed in the literature (see, for instance, Baker et al. 1978; Lambrecht and

Vander Eecken 1978; Bitran and Yanasse 1982; Chung and Lin 1988; Chung, Flynn

and Lin 1994; Chen, Hearn and Lee 1994a). In the appendix we show that in this case

the dynamic programming algorithm can be adapted to run in O(TB) time. Also, the

simple polynomial heuristic of Section 3.2 runs in O(T log U) time, because each of the

bounds �ct; ut and vt can now each be calculated analytically in constant time. Hence,

a straightforward version of the approximation scheme runs in O(T logU +T 3=�) time.

Using Kovalyov's complexity improvement idea, we obtain the following result.

Theorem 12 If all cost functions are pseudo{linear, then the fully polynomial approx-

imation scheme runs in O(T logU + T 2 log T + T 2=�) time.

5.3 Piecewise concave or convex cost functions

Love (1973) and Swoveland (1975) consider the problem in which the cost functions

are piecewise concave (see also Chen, Hearn and Lee 1994b). Let us �rst discuss how

our approximation scheme should be adapted if the backlogging cost functions are

piecewise concave (and non{increasing) instead of simply concave. Our DP algorithm

is only a�ected with respect to the evaluation of (2) and the �rst expression in (5), since

these are the only steps in the algorithm where concavity is used. If the backlogging

cost function of period 1 consists of n1 concave pieces, it is easily seen that evaluating

(2) can be done by performing at most n1 binary searches, instead of just one. The

evaluation of the �rst expression in (5) can be adapted in a similar way. Hence, if each

backlogging function consists of at most n concave pieces, then the complexity of the

dynamic programming algorithm, as given in Theorem 8, is increased by at most a

factor n. The following result is now obvious.

Theorem 13 If the backlogging cost functions are piecewise concave and the number

of pieces is polynomially bounded in the size of the problem instance, then there exists

a fully polynomial approximation scheme.

Also note that lower and upperbounds on the inventory levels can easily be incor-

porated in our approximation scheme, since these bounds can be modeled by de�ning

the holding{backlogging costs to be in�nite outside the feasible range.

Now suppose that the production cost functions are piecewise concave and mono-

tone. Again we only have to discuss how this a�ects the evaluation of (2) and the
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�rst expression in (5). Let us consider the latter. If pt(xt) is concave on some interval

[xl; xu] � [0; ct], then for any a, 0 � a � b, we have

max
x
l
�xt�x

ufFt�1(a) + xt � fdt j pt(xt) + ht(Ft�1(a) + xt � dt) � b� ag =
max0��xt�x

u
�x

lfFt�1(a)+x
l+�xt�dt j pt(xl+�xt)+ht(Ft�1(a)+x

l+�xt�dt) � b�ag.
It is obvious that the value of �xt which maximizes this expression can again be

found by binary search. Hence, to evaluate the �rst expression of (5), it su�ces to

perform a number of binary searches which is at most the number of concave pieces

of pt(xt). A similar remark holds for the evaluation of (2). This implies the following

result.

Theorem 14 If the production cost functions are piecewise concave and the number

of pieces is polynomially bounded in the size of the problem instance, then there exists

a fully polynomial approximation scheme.

Finally, it is worth mentioning that Veinott (1964) and Erenguc and Aksoy (1990)

consider models in which the cost functions are (piecewise) convex instead of concave.

We just note that if both the backlogging and production cost functions are piecewise

convex (and monotone), our fully polynomial approximation scheme can be applied,

since we can still use binary search to evaluate (2) and the �rst expression in (5)

e�ciently.

5.4 Start{up and reservations costs

Karmarkar, Kekre and Kekre (1987) have introduced the dynamic lot{sizing problem

with start{up and reservation costs. In this model a start{up cost St is incurred if

the production facility is switched on in period t, and a separate reservation cost Rt is

charged for keeping the facility on whether or not it is used for production. These costs

are incurred in addition to the the production cost pt(xt). To handle this cost structure,

the DP algorithm should be modi�ed. For t = 1; 2; . . . ; T and b = 0; 1; . . . ; B, we de�ne

Ft(b) as before. Furthermore, F 0
t
(b) is de�ned as the maximum value of It which can

be achieved by production in the �rst t periods if the total cost is at most b and the

production facility is o� in period t. Finally, we de�ne F 1
t
(b) as the maximum value

of It achievable in the �rst t periods if the total cost is at most b and the production

facility is on in period t. Hence, Ft(b) = maxfF 0
t
(b); F 1

t
(b)g.

Let us assume that there is no production in period 0. Then, we have, for b =

0; 1; . . . ; B,

F 0
1 (b) =

(
�d1 if h1(�d1) � b

�1 otherwise
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F 1
1 (b) = max

0�x1�c1
fx1 � d1 j S1 +R1 + p1(x1) + h1(x1 � d1) � bg

The latter formula can be evaluated analogously to (2). Let us now consider the

recursion formulas for t � 2. The formula for F 0
t
(b), i.e., xt = 0, is trivial:

F 0
t
(b) = maxfIt � 0 j 9 a 2 f0; 1; . . . ; bg : It � Ft�1(a)� dt; ht(It) � b� ag

This recursion formula can be evaluated in a similar way as the second expression in

(5). Furthermore, we have

F 1
t
(b) = max

0�a�b
max

8>>>>>>>>>>>><
>>>>>>>>>>>>:

max
0�xt�ct

fF 0
t�1(a) + xt � dt j pt(xt) + ht(F

0
t�1(a) + xt � dt) � b� a� St �Rtg;

maxfIt � 0 j 9 a 2 f0; 1; . . . ; bg : It < F 0
t�1(a)� dt; ht(It) � b� a� St �Rtg;

max
0�xt�ct

fF 1
t�1(a) + xt � dt j pt(xt) + ht(F

1
t�1(a) + xt � dt) � b� a�Rtg;

maxfIt � 0 j 9 a 2 f0; 1; . . . ; bg : It < F 1
t�1(a)� dt; ht(It) � b� a�Rtg

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(6)

Of course, this recursion formula resembles (5). Its correctness is based on properties

similar to those stated in Propositions 6 and 7, which can be proven analogously.

The only di�erence is that we have to distinguish between the two possible states

of the production facility in period t � 1. E�cient evaluation of (6) can be done

analogously to the evaluation of (5). It follows that the model with start{up and

reservation costs can be solved by a dynamic programming algorithm based on the

above formulas with complexityO(B2
P

T

t=1 log ct+B
P

T

t=1 log(
P

t�1
�=1 c�)). Because the

simple polynomial approximation algorithm described in Subsection 3.2 can trivially be

adapted to incorporate start{up and reservation costs (distinguish again between the

two possible states in every period and de�ne corresponding variables and parameters),

we have the following result.

Theorem 15 If there are start{up and reservation costs in addition to the usual pro-

duction costs, then there exists a fully polynomial approximation scheme.

6 Concluding remarks

We have developed the �rst fully polynomial approximation schemes for single{item

capacitated lot{sizing problems, where the error is measured in the usual way, i.e., as
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the relative deviation form optimality. To the best of our knowledge, even polynomial

approximation methods which produce solutions with a relative error bounded by a

constant were previously unknown. We have shown that our approach is applicable to

many single{item capacitated lot{sizing models encountered in the literature.

The most important idea in our the approximation schemes is the non{trivial \dual"

DP formulation in combination with budget scaling. A similar approach may result

in approximations schemes for problems which are closely related to single{item ca-

pacitated lot{sizing problems, such as certain NP{hard location and network design

problems on trees (see, for instance, Flippo et al. 1996) and NP{hard variants of

the discrete lot{sizing and scheduling problem (Salomon et al. 1991). It is unlikely,

however, that our results can be extended to fairly general multi{item capacitated eco-

nomic lot{sizing problems, since these are known to be strongly NP{hard (Chen and

Thizy 1990).

Appendix: Pseudo-linear cost functions

In this appendix, the cost functions are assumed to be of the following form for t =

1; . . . ; T :

pt(xt) =

(
0 if xt = 0

ft + rtxt if 0 < xt � ct

ht(It) =

8><
>:

0 if It = 0

et + stIt if It > 0

gt � qtIt if It < 0

where ft; rt; et; st; gt and qt are non{negative integers. We will show that in this case

the complexity of the dynamic programming algorithm can be reduced. Consider the

following expression, which is part of recursion (5).

max
0�a�b

max
0�xt�ct

fFt�1(a) + xt � dt j pt(xt) + ht(Ft�1(a) + xt � dt) � b� ag (7)

As before, we would like to evaluate this expression for every b 2 f0; 1; . . . ; Bg. To

do this e�ciently, we will no longer consider these expressions for each value of b

separately, but we will exploit the fact that for consecutive values of b the expressions

are closely related. Our main result will be an O(TB) bound on the total computational

e�ort to evaluate (7) for all b 2 f0; 1; . . . ; Bg and all t 2 f1; 2; . . . ; Tg, instead of the
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O(B2
P

T

t=1 log ct+B
P

T

t=1 log(
P

t�1
�=1 c�)) bound, which was proved for the general case

in Section 2.

To start the exposition, we rewrite (7) in terms of It, which results in the following

maximization problem.

max0�a�bf It j Ft�1(a)� dt � It � Ft�1(a) + ct � dt ;

a+ pt(It � Ft�1(a) + dt) + ht(It) � bg
We split the maximization problem above into four (possibly overlapping) subprob-

lems corresponding to the following cases: (I) It = 0, (II) no production, i.e., It =

Ft�1(a) � dt, (III) It > 0 and positive production, and (IV) It < 0 and positive pro-

duction. We will solve these subproblems independently of each other. However, each

subproblem is considered for all b 2 f0; 1; . . . ; Bg simultaneously. We will show that

the total computational e�ort to solve a subproblem for all b 2 f0; 1; . . . ; Bg together

is O(B).

Subproblem (I)

Since the value of It is �xed, this is essentially a feasibility problem. If the feasible

region is non{empty for a certain value of b, then it is also feasible for larger values

of b. Hence, the problem boils down to �nding the smallest value of b for which the

feasible region is non{empty. This is done by considering b in order of increasing value

and keeping track of

min
0�a�b

f a+ pt(�Ft�1(a) + dt) j Ft�1(a)� dt � 0 � Ft�1(a) + ct � dtg (8)

As soon as (8) is smaller than b, we have found the smallest value for which the feasible

region is non{empty. Otherwise, we proceed with the next value of b. Since (8) can be

updated in constant time when the value of b is increased by 1, it follows that it takes

in total O(B) time to solve subproblem (I) for all b 2 f0; 1; . . . ; Bg.

Subproblem (II)

The problems are of the following form.

max
0�a�b

f Ft�1(a)� dt j a+ ht(Ft�1(a)� dt) � bg (9)

To solve these subproblems e�ciently, we consider them in order of increasing value of b.

We �rst determine aB, which is de�ned as the largest a for which a+ht(Ft�1(a)�dt) �
B. Since Ft�1(a) is non{decreasing in a, the optimal value of (9) for b = B is

Ft�1(aB)� dt. Next we determine the largest a for which a+ht(Ft�1(a)� dt) � B� 1.

Clearly, we can do this by considering a in decreasing order, starting from aB until we

reach the desired value. This gives us the optimal value of (9) for b = B � 1, and so
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on. The total computational e�ort of this procedure is easily seen to be O(B).

Subproblem (III)

We now consider the case in which both xt and It are positive. Substituting the speci�c

cost functions, the corresponding problems can be written as

max0�a�bmaxf It j maxf1; Ft�1(a) + 1 � dtg � It � Ft�1(a) + ct � dt ;

ft + et + rtdt + (rt + st)It � rtFt�1(a) + a � bg (10)

Let al be the smallest value of a with Ft�1(a) + ct � dt � 1. Clearly, values of a < al

can be ignored. If rt + st = 0, then it is optimal to take It = Ft�1(a) + ct � dt for all

a � al. In this case we can use a similar approach as for Subproblem (II). Therefore,

we assume rt + st > 0 from now on.

Consider for any a 2 fal; al + 1; . . . ; Bg the maximization problem

maxf It j maxf1; Ft�1(a) + 1� dtg � It � Ft�1(a) + ct � dt ;

ft + et + rtdt + (rt + st)It � rtFt�1(a) + a � bg (11)

Of course, the optimal value of this problem depends on the value of b. In particular,

the feasible region of the maximization problem is empty if b is less than bl(a) �
ft+ et+ rtdt+ (rt+ st)maxf1; Ft�1(a) + 1� dtg� rtFt�1(a)+ a. On the other hand, if

b is larger than bu(a) � ft + et + (rt + st)ct � stdt + stFt�1(a) + a, then the constraint

involving b is redundant and it is optimal to take It equal to its simple upperbound.

For values of b from bl(a) to bu(a), the constraint involving b is binding. Hence, for

each value of a, we have the following optimal solution of (11):

It =

8>>>>>><
>>>>>>:

�1 if b < bl(a)

H1(a; b) � b 1
rt+st

(b� ft � et � rtdt + rtFt�1(a)� a)c if bl(a) � b � bu(a)

H2(a) � Ft�1(a) + ct � dt if b � bu(a) + 1

For any value of b 2 fal; al + 1; . . . ; Bg, we can now rewrite (10) as

max

(
maxf H1(a; b) j al � a � b; bl(a) � b � bu(a)g;
maxf H2(a) j al � a � b; bu(a) + 1 � bg

)

Our approach will be to determine the values maxf H1(a; b) j al � a � b; bl(a) � b �
bu(a)g for all b 2 fal; al + 1; . . . ; Bg, and | independently| the values maxfH2(a) j al �
a � b; bu(a)+ 1 � bg, b 2 fal; al + 1; . . . ; Bg. In order to do this e�ciently, we will use

the facts stated in the following three propositions.
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Proposition 16 The value bu(a) is strictly increasing in a.

Proof. The statement follows immediately from the de�nition of bu(a) and the fact

that Ft�1(a) is non{decreasing in a.
2

Proposition 17 Suppose that for some �a 2 fal; al + 1; . . . ; B � 1g it holds that bl(�a) �
bl(�a+ 1), then maxf H1(a; b) j al � a � b; bl(a) � b � bu(a)g = maxf H1(a; b) j al �
a � b; bl(a) � b � bu(a); a 6= �ag.

Proof. Because of Proposition 16, we have that [bl(�a); bu(�a)] � [bl(�a + 1); bu(�a+ 1)].

Therefore, it su�ces to show that H1(�a+ 1; b) � H1(�a; b) for all b 2 [bl(�a); bu(�a)].

The inequality bl(�a) � bl(�a+ 1) immediately implies

maxf1; Ft�1(�a) + 1� dtg � rtFt�1(�a) + �a �
maxf1; Ft�1(�a+ 1) + 1 � dtg � rtFt�1(�a+ 1) + �a+ 1

or, equivalently,

rtFt�1(�a+ 1)� rtFt�1(�a)� 1 �
maxf1; Ft�1(�a+ 1) + 1 � dtg �maxf1; Ft�1(�a) + 1 � dtg � 0

SinceH1(�a+1; b)�H1(�a; b) = 1
rt+st

(rtFt�1(�a+1)�rtFt�1(�a)�1) for any b 2 [bl(�a); bu(�a)],

the desired result now follows.
2

Proposition 18 For all a 2 fal; al + 1; . . . ; Bg it holds that bl(a) � a.

Proof.

bl(a) = ft + et + rtdt + (rt + st)maxf1; Ft�1(a) + 1 � dtg � rtFt�1(a) + a

� ft + et + rtdt + rt(Ft�1(a) + 1 � dt) + st � rtFt�1(a) + a

= ft + et + rt + st + a

� a
2

Theorem 19 The values maxf H1(a; b) j al � a � b; bl(a) � b � bu(a)g and

maxf H2(a) j al � a � b; bu(a) + 1 � bg can be computed for b = al; al + 1; . . . ; B in

a total computational e�ort which is O(B).
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Proof. Let us �rst focus on the computation of the values maxf H2(a) j al � a �
b; bu(a) + 1 � bg, b = al; al + 1; . . . ; B. Let au be the largest value of a for which

bu(a) + 1 � B. From bu(a
u) � bl(a

u) and Proposition 18 it follows that b > au if

b � bu(a) + 1. Because H2(a) = Ft�1(a) + ct � dt is non{decreasing in a, we can now

conclude maxf H2(a) j al � a � b; bu(a) + 1 � bg = H2(au) for bu(a
u) + 1 � b � B.

Analogously, we can prove maxf H2(a) j al � a � b; bu(a) + 1 � bg = H2(au � 1) for

bu(a
u�1)+1 � b � bu(a

u), and so on. Hence, the procedure boils down to determining

for all b 2 fal; al + 1; . . . ; Bg the largest value bu(a) + 1 which is less than or equal to

b. This can easily be done in O(B) time.

Let us now consider the computation of maxf H1(a; b) j al � a � b; bl(a) �
b � bu(a)g, b = al; al + 1; . . . ; B. Because of Proposition 17 any value �a for which

bl(�a) � bl(�a + 1) may be ignored while determining these maxima. This implies that

it su�ces to consider the subsequence A of al; al + 1; . . . ; B de�ned by the property

that a 2 A if and only if there does not exist any a0 2 fa+ 1; a+ 2; . . . ; Bg with

bl(a
0) � bl(a). Note that this means that both bl(a) and bu(a) are strictly increasing

for increasing a 2 A. Also note that A can be constructed in O(B) time.

Now de�ne for every b 2 fal; al + 1; . . . ; Bg the | possibly empty | subset S(b) of

elements of A as follows. If S(b) = fa1; a2; . . . ; amg then

1. a1 is the smallest a 2 A for which bl(a) � b � bu(a),

2. ai, i = 2; 3; . . . ;m, is the smallest a 2 A for which ai > ai�1, bl(ai) � b � bu(ai)

and H1(ai; b) > H1(ai�1; b).

If S(b) is empty, then clearly maxf H1(a; b) j al � a � b; bl(a) � b � bu(a)g = �1.

If S(b) is non{empty, then we have the properties a1 < a2 < . . . < am and H1(a1; b) <

H1(a2; b) < . . . < H1(am; b). Because of Proposition 18, we know that ai � b for all

i = 1; 2; . . . ;m. It is now easily veri�ed that H1(am; b) = maxf H1(a; b) j al � a �
b; bl(a) � b � bu(a)g.

Besides the fact that we immediately obtain the value maxf H1(a; b) j al � a �
b; bl(a) � b � bu(a)g, there is another reason for keeping track of S(b). If for a

certain value of b a value a0 2 A with bl(a0) � b � bu(a0) is not in S(b), then it is

not in S(b0) for any b0 < b with bl(a0) � b0 � bu(a0). This follows from the fact that

there exists an ai 2 A with ai < a0, bl(ai) � b � bu(ai) and H1(ai; b) � H1(a0; b).

Because bl(ai) < bl(a0) � b0 < b � bu(ai), it holds that bl(ai) � b0 � bu(ai). Moreover,

H1(ai; b) � H1(a0; b) implies H1(ai; b
0) � H1(a0; b

0). Hence, a0 is not in S(b0).

We will consider b in order of decreasing value. The elements of subset S(B) can

trivially be found in O(B) time. To achieve this complexity bound for all b 2 fal; al+1;

. . . ; Bg together, we represent the subsets by a list in which the elements are stored
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in increasing order. This list has the property that at the bottom elements can only

be deleted, while at the top elements may be deleted and added. It is well{known

that this data structure can be implemented such that each deletion and each addition

requires constant time (see, for instance, Aho, Hopcroft and Ullman 1983).

Now suppose that S(b) has been determined for a certain value of b 2 fal+1; al+2; . . .
Bg. Let a0 be the largest element of A with bu(a0) < b. In order to determine S(b�1),

we do the following. If S(b) is empty, then we check whether b � 1 = bu(a0). If this

is the case, then S(b � 1) = fa0g, otherwise S(b � 1) = ;. If S(b) is non{empty, say

S(b) = fa1; a2; . . . ; amg, then the following steps are carried out.

(i) If b� 1 < bl(am), then delete am from the list.

(ii) If b�1 = bu(a0), then delete from the top of the list all ai for whichH
1(ai; b�1) �

H1(a0; b� 1) and add a0 to the top of the list.

The total amount of work involved in carrying out these steps for b = al+1; al+2; . . . ; B

can be bounded by a constant times the total number of additions to and deletions

from the list. Since every b 2 fal; al + 1; . . . ; B � 1g is added to the list exactly once

and deleted at most once, the O(B) bound now follows. This completes the proof.
2

Subproblem (IV)

The subproblems are now of the following form.

max0�a�bmaxf It j Ft�1(a) + 1� dt � It � minf�1; Ft�1(a) + ct � dtg ;
ft + gt + rtdt + (rt � qt)It � rtFt�1(a) + a � bg

Clearly, values of a for which Ft�1(a)+1�dt � 0 can be ignored. If rt� qt � 0, then it

is optimal to take It = minf�1; Ft�1(a) + ct � dtg for all remaining values of a. Since

this value is non{decreasing when a increases, we can use a similar approach as for

Subproblem (II).

If rt�qt > 0 we propose essentially the same approach as the one for Subproblem (III)

in the case rt + st > 0. The following observations | of which the proof is left to the

reader | are useful.

1. De�ne bl(a) � ft + gt + rt + (rt � qt)(Ft�1(a) + 1 � dt)� rtFt�1(a) + a. It holds

that bl(a) � a for all a with Ft�1(a) + 1� dt � �1 (i.e., for all relevant values of
a).

2. De�ne bu(a) � ft + gt + rt + (rt � qt)(minf�1; Ft�1 + ct � dtg) � rtFt�1(a) + a.

For every �a 2 f1; 2; . . . ; B � 1g it holds that bl(�a) � bl(�a + 1) if and only if
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bu(�a) � bu(�a+ 1). Moreover, if bl(�a) � bl(�a+ 1), then for bl(�a) � b � bu(�a+ 1):

b 1
rt�qt

(b� ft � et � rtdt + rtFt�1(�a)� �a)c �

b 1
rt�qt

(b� ft � et � rtdt + rtFt�1(�a+ 1) � �a+ 1)c

and for bu(�a+ 1) + 1 � b � bu(�a):

b 1

rt � qt
(b� ft � et � rtdt + rtFt�1(�a)� �a)c � minf�1; Ft�1(�a+ 1) + ct � dtg

This implies that �a may be ignored while computing the maxima. Therefore,

it su�ces to consider a particular subsequence of a = 0; 1; . . . ; B which has the

property that both bl(a) and bu(a) are strictly increasing in a.

It is now left to the reader to verify that the same approach as discussed for Subprob-

lem (III) can be applied. Hence, for �xed value of t, Subproblem (IV) is also solvable

in O(B) time. We have now derived the following result.

Theorem 20 If all cost functions are pseudo{linear, then it takes O(TB) time to

compute max0�a�bmax0�xt�ctfFt�1(a)+xt� dt j pt(xt)+ht(Ft�1(a)+xt� dt) � b� ag
for all b 2 f0; 1; . . . ; Bg and all t 2 f1; 2; . . . ; Tg.

The maximization in the theorem above is the �rst part of recursion (5). The other part

consists of evaluating maxfIt � 0 j 9 a 2 f0; 1; . . . ; bg : It < Ft�1(a)� dt; a+ ht(It) �
bg. It is left to the reader to verify that in case the holding cost functions are pseudo{

linear, this expression can be computed for all b 2 f0; 1; . . . ; Bg and all t 2 f1; 2; . . . ; Tg
in a total computational e�ort which is O(TB). The crucial observation to achieve the

reduction in complexity is that the binary searches which were needed in the general

case can now be replaced by O(1) computations.

This appendix can now be summarized as follows.

Theorem 21 If all cost functions are pseudo{linear, then the complexity of the dy-

namic programming algorithm based on formulas (1) and (5) is O(TB).
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