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Abstract

To minimize the primal support vector machine (SVM) problem, we
propose to use iterative majorization. To do so, we propose to use it-
erative majorization. To allow for nonlinearity of the predictors, we use
(non)monotone spline transformations. An advantage over the usual ker-
nel approach in the dual problem is that the variables can be easily inter-
preted. We illustrate this with an example from the literature.
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1 Introduction

In recent years, support vector machines (SVMs) have become a popular tech-
nique to predict two groups out of a set of predictor variables (Vapnik, 2000).
This data analysis problem is not new and such data can also be analyzed
through alternative techniques such as linear and quadratic discriminant anal-
ysis, neural networks, and logistic regression. However, SVMs seem to compare
favorably in their prediction quality with respect to competing models. Also,
their optimization problem is well defined and can be solved through a quadratic
program. Furthermore, the classification rule derived from an SVM is relatively
simple and it can be readily applied to new, unseen samples. At the downside,
the interpretation in terms of the predictor variables in nonlinear SVM is not
always possible. In addition, the usual formulation of an SVM is not easy to
grasp.

In this paper, we offer a different way of looking at SVMs that makes the
interpretation much easier. First of all, we stick to the primal problem and
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formulate the SVM in terms of a loss function that is regularized by a penalty
term. From this formulation, it can be seen that SVMs use robustified errors.
Then, we propose a new majorization algorithm that minimizes the loss. Finally,
we show how nonlinearity can be imposed by using I-Spline transformations.

2 The SVM Loss Function

In many ways, an SVM resembles regression quite closely. Let us first introduce
some notation. Let X be the n ×m matrix of predictor variables of n objects
and m variables. The n × 1 vector y contains the grouping of the objects into
two classes, that is, yi = 1 if object i belongs to class 1 and yi = −1 if object
i belongs to class −1. Obviously, the labels −1 and 1 to distinguish the classes
are unimportant. Let w be the m× 1 vector with weights used to make a linear
combination of the predictor variables. Then, the predicted value qi for object
i is

qi = c + x′iw, (1)

where x′i is row i of X and c is an intercept. Consider the example in Figure 1a
where for two predictor variables, each row i is represented by a point labelled
‘+’ for the class 1 and ‘o’ for class −1. Every combination of w1 and w2 defines a
direction in this scatter plot. Then, each point i can be projected onto this line.
The idea of the SVM is to choose this line in such a way that the projections
of the class 1 points are well separated from those of class −1 points. The
line of separation is orthogonal to the line with projections and the intercept
c determines where exactly it occurs. Note that if w has length 1, that is,
‖w‖ = (w′w)1/2 = 1, then Figure 1a explains fully the linear combination (1).
If w has not length 1, then the scale values along the projection line should
be multiplied by ‖w‖. The dotted lines in Figure 1a show all those points
that project to the lines at qi = −1 and qi = 1. These dotted lines are called
the margin lines in SVMs. Note that if there are more than two variables the
margin lines become hyperplanes. Summarizing, the SVM has three sets of
parameters that determines its solution: (1) the regression weights, normalized
to have length 1, that is, w/‖w‖, (2) the length of w, that is, ‖w‖, and (3) the
intercept c.

SVMs count an error as follows. Every object i from class 1 that projects
such that qi ≥ 1 yields a zero error. However, if qi < 1, then the error is linear
with 1− qi. Similarly, objects in class −1 with qi ≤ −1 do not contribute to the
error, but those with qi > −1 contribute linearly with qi + 1. In other words,
objects that project on the wrong side of their margin contribute to the error,
whereas objects that project on the correct side of their margin yield zero error.
Figure 1b shows the error functions for the two classes.

As the length of w controls how close the margin lines are to each other, it
can be beneficial for the number of errors to choose the largest ‖w‖ possible, so
that fewer points contribute to the error. To control the ‖w‖, a penalty term
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Figure 1: Panel a Projections of the observations in groups 1 (+) and −1 (o)
onto the line given by w1 and w2. Panel b shows the error function f1(qi) for
class 1 objects (solid line) and f−1(qi) for class −1 objects (dashed line).

that is dependent on ‖w‖ is added to the loss function. The penalty term also
avoids overfitting of the data.

Let G1 and G−1 denote the sets of class 1 and −1 objects. Then, the SVM
loss function can be written as

LSVM(c,w)
=

∑
i∈G1

max(0, 1− qi) +
∑

i∈G−1
max(0, qi + 1) + λw′w

=
∑

i∈G1
f1(qi) +

∑
i∈G−1

f−1(qi) + λw′w
= Class 1 errors + Class −1 errors + Penalty for ,

nonzero w

(2)

see, for similar expressions, Hastie, Tibshirani, and Friedman (2000) and Vapnik
(2000).

Assume that a solution has been found. All the objects i that project on
the correct side of their margin, contribute with zero error to the loss. As a
consequence, these objects could be removed from the analysis without changing
the solution. Therefore, all the objects i that project at the wrong side of their
margin and thus induce error or if an object falls exactly on the margin, then
these objects determine the solution. Such objects are called support vectors
as they form the fundament of the SVM solution. Note that these objects (the
support vectors) are not known in advance so that the analysis needs to be
carried out with all n objects present in the analysis.

What can be seen from (2) is that any error is punished linearly, not quadrat-
ically. Thus, SVMs are more robust against outliers than a least-squares loss
function. The idea of introducing robustness by absolute errors is not new. For
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more information on robust multivariate analysis, we refer to Huber (1981),
Vapnik (2000), and Rousseeuw and Leroy (2003).

The SVM literature usually presents the SVM loss function as follows (Burges,
1998):

LSVMClas(c,w, ξ) = C
∑

i∈G1

ξi + C
∑

i∈G2

ξi +
1
2
w′w, (3)

subject to 1 + (c + w′xi) ≤ ξi for i ∈ G−1 (4)
1− (c + w′xi) ≤ ξi for i ∈ G1 (5)
ξi ≥ 0, (6)

where C is a nonnegative parameter set by the user to weight the importance of
the errors represented by the so-called slack variables ξi. Suppose that object i
in G1 projects at the right side of its margin, that is, qi = c + w′xi ≥ 1. As a
consequence, 1 − (c + w′xi) ≤ 0 so that the corresponding ξi can be chosen as
0. If i projects on the wrong side of its margin, then qi = c + w′xi < 1 so that
1− (c +w′xi) > 0. Choosing ξi = 1− (c +w′xi) gives the smallest ξi satisfying
the restrictions in (4), (5), and (6). As a consequence, ξi = max(0, 1 − qi) and
is a measure of error. A similar derivation can be made for class −1 objects.
Choosing C = (2λ)−1 gives

LSVMClas(c,w, ξ)

= (2λ)−1


 ∑

i∈G1

ξi +
∑

i∈G−1

ξi + 2λ
1
2
w′w




= (2λ)−1


 ∑

i∈G1

max(0, 1− qi) +
∑

i∈G−1

max(0, qi + 1) + λw′w




= (2λ)−1LSVM(c,w).

showing that the two formulations (2) and (3) are exactly the same up to a
scaling factor (2λ)−1 and yield the same solution. However, the advantage of
(2) is that it can be interpreted as a (robust) error function with a penalty.
The quadratic penalty term is used for regularization much in the same way as
in ridge regression, that is, to force the wj to be close to zero. The penalty is
particularly useful to avoid overfitting. Furthermore, it can be easily seen that
LSVM(c,w) is a convex function in c and w because all three terms are convex
in c and w. As the function is also bounded below by zero and it is convex, the
minimum of LSVM(c,w) is a global one. In fact, (3) allows the problem to be
treated as a quadratic program. However, in the next section, we optimize (2)
directly by the method of iterative majorization.
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3 A Majorizing Algorithm for SVM

In the SVM literature, the dual of (3) is reexpressed as a quadratic program and
is solved by special quadratic program solvers. A disadvantage of these solvers
is that they may become computationally slow for large number of objects n
(although fast specialized solvers exist). However, here we derive an iterative
majorization (IM) algorithm. An advantage of IM algorithms is that each it-
eration reduces (2). As this function is convex and IM is a guaranteed descent
algorithm, the IM algorithm will stop when the estimates are sufficiently close
to the global minimum.

Let f(q) be the function to be minimized. Iterative majorization operates on
an auxiliary function, called the majorizing function g(q,q), that is dependent
on q and the previous (known) estimate q. The majorizing function g(q,q) has
to fulfill several requirements: (1) it should touch f at the supporting point y,
that is, f(q) = g(q,q), (2) it should never be below f , that is, f(q) ≤ g(q,q),
and (3) g(q,q) should be simple, preferably linear or quadratic in q. Let q∗ be
such that g(q∗,q) ≤ g(q,q), for example, by finding the minimum of g(q,q).
Because the majorizing function is never below the original function, we obtain
the so called sandwich inequality

f(q∗) ≤ g(q∗,q) ≤ g(q,q) = f(q)

showing that the update q∗ obtained by minimizing the majorizing function
never increases f and usually decreases it. More information on iterative ma-
jorization can be found in De Leeuw (1994), Heiser (1995), Lange, Hunter, and
Yang (2000), Kiers (2002), and Hunter and Lange (2004) and an introduction
in Borg and Groenen (2005).

To find an algorithm, we need to find a majorizing function for (2). First, we
derive a quadratic majorizing function for each individual error term. Then, we
combine the results for all terms and come up with the total majorizing function
that is quadratic in c and w so that an update can be readily derived. At the
end of this section, we provide the majorization results.

Consider the term f−1(q) = max(0, q + 1). For notational convenience, we
drop the subscript i for the moment. The solid line in Figure 2 shows f−1(q).
Because of its shape of a hinge, this function is sometimes referred to as the
hinge function. Let q be the known error q of the previous iteration. Then,
a majorizing function for f−1(q) is given by g−1(q, q) at the supporting point
q = 2. For notational convenience, we refer in the sequel to the majorizing
function as g−1(q) without the implicit argument q. We want g−1(q) to be
quadratic so that it is of the form g−1(q) = a−1q

2 − 2b−1q + c−1. To find
a−1, b−1, and c−1, we impose two supporting points, one at q and the other
at −2− q. These two supporting points are located symmetrically around −1.
Note that the hinge function is linear at both supporting points, albeit with
different gradients. Because g−1(q) is quadratic, the additional requirement that
f−1(q) ≤ g−1(q) is satisfied if a−1 > 0 and the derivatives at the two supporting
points of f−1(q) and g−1(q) are the same. More formally, the requirements are
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Figure 2: The error functions of Groups−1 and 1 and their majorizing functions.
The supporting point is q = 2. Note that the majorizing function for Group −1
also touches at q = −4 and that of Group 1 also at 0.

that

f−1(q) = g−1(q),
f ′−1(q) = g′−1(q),

f−1(−2− q) = g−1(−2− q),
f ′−1(−2− q) = g′−1(−2− q),

f−1(q) ≤ g−1(q).

It can be verified that the choice of

a−1 = 1
4 |q + 1|−1, (7)

b−1 = −a−1 − 1
4 , (8)

c−1 = a−1 + 1
2 + 1

4 |q + 1|, (9)

satisfies all these requirements. Figure 2 shows the majorizing function g−1(q)
with supporting points q = 2 or q = −4 as the dotted line.

For Group 1, a similar majorizing function can be found for f1(q) = max(0, 1−
q). However, in this case, we require equal function values and first derivative
at q and at 2− q, that is, symmetric around 1. The requirements are

f1(q) = g1(q),
f ′1(q) = g′1(q),

f1(2− q) = g1(2− q),
f ′1(2− q) = g′1(2− q),

f1(q) ≤ g1(q).

6



Choosing

a1 = 1
4 |1− q|−1

b1 = a1 + 1
4

c1 = a1 + 1
2 + 1

4 |1− q|
satisfies these requirements. The functions f1(q) and g1(q) with supporting
points q = 2 or q = 0 are plotted in Figure 2.

Note that a−1 is not defined if q = −1. In that case, we choose a−1 as a small
positive constant δ that is smaller than the convergence criterion ε (introduced
below). Strictly speaking, the majorization requirements are violated. How-
ever, by choosing δ small enough, the monotone convergence of the sequence of
LSVM(w) will be no problem. The same holds for a1 if q = 1.

Let

ai =
{

max(δ, a−1i) if i ∈ G−1,
max(δ, a1i) if i ∈ G1,

(10)

bi =
{

b−1i if i ∈ G−1,
b1i if i ∈ G1,

(11)

ci =
{

c−1i if i ∈ G−1,
c1i if i ∈ G1.

(12)

Then, summing all the individual terms leads to the majorization inequality

LSVM(c,w) ≤
n∑

i=1

aiq
2
i − 2

n∑

i=1

biqi +
n∑

i=1

ci + λ

m∑

j=1

w2
j . (13)

Because qi = c + x′iwi, it is useful to add an extra column of ones as the first
column of X so that X becomes n× (m + 1). Let v′ = [c w′] so that q = Xv.
Now, (2) can be majorized as

LSVM(v) ≤
n∑

i=1

ai(x′iv)2 − 2
n∑

i=1

bix′iv +
n∑

i=1

ci + λ

m+1∑

j=2

v2
j

= v′X′AXv − 2v′X′b + cm + λv′Kv

= v′(X′AX + λK)v − 2v′X′b + cm, (14)

where A is a diagonal matrix with elements ai on the diagonal, b is a vector
with elements bi, and cm =

∑n
i=1 ci, and K is the identity matrix except for

element k11 = 0. Differentiation the last line of (14) with respect to v yields
the system of equalities linear in v

(X′AX + λK)v = X′b.

The update v+ solves this set of linear equalities, for example, by Gaussian
elimination, or, somewhat less efficiently, by

v+ = (X′AX + λK)−1X′b. (15)
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t = 0;
Set ε to a small positive value;
Set w0 and c0 to a random initial values;
Compute LSVM(c0,w0) according to (2);
Set L−1 = LSVM(c0,w0) + 2ε;
while Lt−1 − LSVM(ct,wt) > ε do

t = t + 1;
Lt−1 = LSVM(ct−1,wt−1);
Compute the diagonal matrix A with elements defined by
(10);
Compute the b with elements defined by (11);
Find v+ by solving (15);
Set c+

t = v1 and w+
tj = v+

j+1 for j = 1, . . . , m;

end

Figure 3: The SVM majorization algorithm.

Because of the substitution v′ = [c w′], the update of the intercept is c+ = v1

and w+
j = v+

j+1 for j = 1, . . . , m. The update v+ forms the heart of the
majorization algorithm for SVMs.

The majorizing algorithm for minimizing the standard SVM in (2) is sum-
marized in Figure 3. This algorithm has several advantages. First, it iteratively
approaches the global minimum closer in each iteration. In contrast, quadratic
programming of the dual problem need to solve the dual problem completely to
have the global minimum of the original primal problem. Secondly, the progress
can be monitored, for example, in terms of the changes in the number of misclas-
sified objects. Thirdly, to reduce the computational time, smart initial estimates
of c and w can be given if they are available, for example, from a previous cross
validation run.

An illustration of the iterative majorization algorithm is given in Figure 4.
Here, c is fixed at its optimal value and the minimization is only over w, that is,
over w1 and w2. Each point in the horizontal plane represents a combination of
w1 and w2. The majorization function is indeed located above the original func-
tion and touches it at the dotted line. The w1 and w2 where this majorization
function finds its minimum, LSVM(c,w) is lower than at the previous estimate,
so LSVM(c,w) has decreased. Note that the separation line and the margins
corresponding to the current estimates of w1 and w2 are given together with
the class 1 points represented as open circles and the class −1 points as closed
circles.
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Figure 4: Example of the iterative majorization algorithm for SVMs in action
where c is fixed and w1 and w2 are being optimized. The majorization function
touches LSVM(c,w) at the previous estimates of w (the dotted line) and a solid
line is lowered at the minimum of the majorizing function showing a decrease
in LSVM(c,w) as well.

4 Nonlinear SVM

The SVM described so far tries to find a linear combination q = Xb such that
negative values are classified into class −1 and positive values into class 1. As a
consequence, there is a separation hyperplane of all the points that project such
that q = 0. Therefore, the standard SVM has a linear separation hyperplane.
To allow for a nonlinear separation plane, the the classical approach is to turn
to the dual problem and introduce kernels. By doing so, the relation with the
primal problem LSVM(c,w) is lost and the interpretation in terms of the original
variables is not always possible anymore.

To cover nonlinearity, we use the optimal scaling ideas from Gifi (1990). In
particular, each predictor variable is being transformed. A powerful class of
transformations is formed by spline transformation. The advantage of splines
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Figure 5: Panels a to e give an example of the columns of the spline basis B. It
consists of five columns given the degree d = 2 and the number of interior knots
k = 3. Panel f shows a linear sum of these bases that is the resulting I-Spline
transformation z for a single predictor variable x.

is that they yield transformations that are piecewise polynomial. In addition,
the transformation is smooth. Because the resulting transformation consists
of polynomials whose coefficients are known, the spline basis values can also
be computed for unobserved points. Therefore, the transformed value of test
points in can be easily computed.

There are various sorts of spline transformations, but here we choose the
I-Spline transformations (see Ramsay, 1988). An example of such a transforma-
tion is given in Figure 5f. In this case, the piecewise polynomial consists of four
intervals. The boundary points between subsequent intervals are called interior
knots tk. The interior knots are chosen such that the number of observations
is about equal in each interval. The degree of the polynomial d in the I-Spline
transformation of Figure 5f is 2 so that each piece is quadratic in the original
predictor variable xj . Once the number of interior knots k and the degree d are
fixed, each I-Spline transformation can be expressed as zj = Bjwj where Bj is
the so called spline basis of n×(d+k). For the example transformation in Figure
5f, the columns of Bj are visualized in Figures 5a to 5e. One of the properties
of the I-Spline transformation is that if the weights wj are all positive, then the
transformation is monotone increasing as in our example as in Figure 5f. This
property is of use to interpret the solution.

To estimate the transformations in the SVM problem, we simply replace X
by the matrix B = [B1 B2 . . . Bm], that is, by concatenating the spline bases
Bj , one for each original predictor variable xj . In our example, we have m = 2
variables (x1 and x2), d = 2, and k = 3, so that B1 and B2 are both matrices of
size n×(d+k) = n×5 and B is of size n×m(d+k) = n×10. Then, the vector of
weights w′ = [w′

1 w′
2 . . . w′

m] is of size m(d + k)× 1 and the transformation zj

of a single variable xj is given by zj = Bjwj . Thus, to model the nonlinearity
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Figure 6: The left panel shows samples from a mixture distribution of two
groups (Hastie et al., 2000) and a sample of points of these groups. The line is
the optimal Bayes decision boundary. The right panel shows the SVM solution
using spline transformations of degree 2 and 5 interior knots, λ = .00316, with
an training error rate of .21.

in the decision boundary, we extend the space of predictor variables from X to
the space of the spline bases of all predictor variables and then search through
the SVM for a linear separation in this high dimensional space.

Consider the example of a mixture of 20 distributions for two groups given by
Hastie et al. (2000) on two variables. The left panel of Figure 6 shows a sample
200 points with 100 in each class. It also shows the optimal Bayes decision
boundary. The right panel of Figure 6 shows the results of the SVM with I-
Spline transformations of the two predictor variables using k = 5 and d = 2.
After cross validation, the best preforming λ = .00316 yielding a training error
rate of .21.

Once the SVM is estimated and w is known, the transformations zj = Bjwj

are determined. Thus, each interval of the transformation is in our example with
d = 2 a quadratic function in xj for which the polynomial coefficients can be
derived. As test points, we use a grid in the space of the two predictor variables.
Because the polynomial coefficients are known for each interval, we can derive
the transformed (interpolated) value zij of test point i for each j and the value
qi = c +

∑
j zij where c is the intercept. If qi for the test point is positive, we

classify the test point i in class 1, if qi < 0 in class −1, and if qi = 0 it is on the
decision boundary. This classification is done for all the test points in the grid,
resulting in the reconstructed boundary in the right panel of Figure 6.

I-Splines have the property that for nonnegative w the transformation zj is
monotone increasing with xj . Let w+

j = max(0,wj) and w−
j = min(0,wj) so

that wj = w+
j + w−

j . Then, the transformation zj can be split in a monotone
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Figure 7: Spline transformations of the two predictor variables used in the SVM
solution in the right panel of Figure 6.

increasing part z+
j = Bjw+

j and a monotone decreasing part z−j = Bjw+
j . For

the mixture example, these transformations are shown in Figure 7 for each of
the two predictor variables. From this figure, we see that for x1 the nonlinearity
is caused by the steep transformations of values for x1 > 1 both for the positive
as for the negative part. For x2, the nonlinearity seems to be caused by only
by the negative transformation for x2 < 1.

5 Conclusions

We have discussed how SVM can be viewed as a the minimization of a robust
error function with a regularization penalty. Nonlinearity was introduced by
mapping the space of each predictor variable into a higher dimensional space
using I-Spline basis. The regularization is needed to avoid overfitting in the case
when the number of predictor variables increases or the their respective spline
bases become of high rank. The use of I-Spline transformations are useful to
allow interpreting the nonlinearity in the prediction. We also provided a new
majorization algorithm for the minimization of the primal SVM problem.

There are several open issues and possible extensions. A disadvantage of
the I-Spline transformation over the usual kernel approach is that the degree
of the spline d and the number of interior knots k need to be set whereas
most standard kernels just have a single parameter. We need more numerical
experience to study what good ranges for these parameters are.

The present approach can be extended to other error functions as well. Also,
there seems to be close relations with the optimal scaling approach taken in
multidimensional scaling and by the work of Gifi (1990). We intend to study
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these issues in subsequent publications.
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