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Abstract

Behaviours provide an elegant, parameter free characterization of deterministic

systems. We discuss a possible application of behaviours in the approximation of

stochastic systems. This can be seen as an extension to the dynamic case of the

well-known static factor analysis model. An essential di�erence is that we see mod-

elling primarily as a matter of process approximation, not as a method to recover

the true data generating process. In particular we see "noise properties" as a kind

of prior model assumption that can be compared with the resulting quality of the

process approximation.
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1 Open Symmetric Models

In this brief, expository paper we are concerned with a new modelling strategy. In order

to give a clear demarcation of the proposed approach from existing methodologies we

classify them according to the following two criteria.

� closed - open

� symmetric - asymmetric.

We call a model closed if it gives a complete description of the relevant properties of all

the model variables. It is open if these properties are not fully speci�ed for all the model

variables. A model is called symmetric if all the model variables are restricted in a similar

way, asymmetric if some of the variables are treated di�erent from others.

These are of course somewhat imprecise notions, but they are helpful in describing the

main di�erences between various modelling approaches. In our case we are interested in

linear dynamical systems that evolve in discrete time, and we will distinguish deterministic

from stochastic models. As properties of interest we consider the dynamical relations

between the system variables, that is, (linear) dynamical equations in the deterministic

case and dynamical correlations in the stochastic case. Together with the above two

criteria we can then distinguish eight types of models.

� Deterministic models

{ closed symmetric : autonomous di�erence equations

{ closed asymmetric : unusual

{ open symmetric : behaviours

{ open asymmetric : input - output systems.

� Stochastic models

{ closed symmetric : stationary processes

{ closed asymmetric : unusual

{ open symmetric : factor models

{ open asymmetric : input - output systems.

The mainstream approaches choose either for closed and symmetric models or for open

and asymmetric ones. This can be explained as follows. Closed symmetric models are

nice mathematical objects that serve the study of well-understood dynamical processes

in, for example, physics. In other �elds, the aim is often not so much to give a closed

form description of the future evolution of the process. For example, in engineering one

may wish to keep unexplained some parts of the system environment that in
uence the

dynamics. In other �elds, for example in econometrics, one only has partial information

so that a closed system description is beyond our abilities. The usual step is then to
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build conditional models that explain the behaviour of some of the system variables (the

outputs) in terms of other variables (the inputs) that are left unexplained by the model.

What about the other classes of models ? As far as linear systems are concerned,

we believe that closed asymmetric models will not be used so much. This is of course

di�erent for non-linear systems, for example hybrid systems where some of the variables

are discrete valued and others not. In this paper, however, we restrict our attention to

linear systems and consider open symmetric models. In our opinion this class of models is

of considerable interest, both from a conceptual point of view and with regard to possible

applications. It has relevance in all those situations where

� the system environment falls outside the scope of the model or one has incomplete

knowledge, so that a closed model is not appropriate;

� there are no natural conditioning variables, so that an asymmetric model is not

appropriate.

Several methods for the open symmetric modelling of systems have been developed. In

Section 2 we integrate two of these approaches, namely the behavioural modelling of

deterministic dynamical systems and factor models for stochastic static systems. We

discuss some modelling questions related with this new class of dynamic factor models in

Section 3. For a more extensive treatment of these issues we refer to [7], and for further

background on system behaviours to [12], [13].
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2 Dynamic Factor Models

We donote the observed variables by the q-dimensional real-valued vector w. In its most

general form, the static factor analysis model is of the form

w = f + e (1)

where f is the factor part and e the error part. The factor part satis�es linear restrictions,

say Af = 0 where A is a p� q matrix with full row rank p � q. Let A := ker(A) and let

F be a q � (q � p) matrix with im(F ) = A, then we can decribe this model also as

w = Fv + e (2)

This model states that the observations can be approximated by a structural part within

the subspace A up to an additive error e. This is clearly an open symmetric model. In the

literature several versions of this model have been investigated. A common assumption

is that all involved variables are random and that the error term satis�es additional

properties. In particular, it is usually assumed that e and v are uncorrelated and that also

all the components of e are mutually uncorrelated. In terms of the covariance matrices

� of w, �f of f and the diagonal covariance matrix �e of e the factor model can be

expressed as

� = �f +�e (3)

Models of this type have been used in statistics, psychometrics and econometrics for a

long time, and the associated structure theory, the so-called Frisch problem, has received

attention in the systems community, see [1], [2], [10]. Models of this kind are relevant

when the observed outcomes can be seen as the result of a limited number of underlying

factors that are contaminated by independent errors. However, the independence as-

sumption imposes very strong restrictions on the method of observation. In our approach

we will refrain from such restrictions on the error part and instead we will focus on the

approximation interpretation of factor models.

The de�nition of dynamic factor models that we will use in this paper is inspired by

the decomposition (1). In the literature several models of this kind have been proposed

that di�er mainly in the assumptions on the noise process, see for example [4], [5], [9], [3]

and [11]. In this paper we impose less restrictions on the noise process than is customary,

and our aim is to �nd a good compromise between the complexity and the goodness of �t

of factor models. Our de�nition of factor models is based on the behavioural approach to

system modelling, as we will make more explicit now.

Let w be a q-dimensional stochastic process that evolves in discrete time and let � be

its spectrum. A dynamic factor model corresponds to a decomposition w = f + e where

the factor part f satis�es linear deterministic restrictions. More in particular, we assume

that there exist 1 � q polynomial matrices a(z) in the time shift operator z such that

a(z)f = 0 holds true (almost surely). If the process f is assumed to be stationary then

the set of all annihilating polynomial matrices forms a module. In this case let A(z) be

a p � q polynomial matrix with independent rows that span this module. If the process

f has spectrum �f , then this module coincides with the left polynomial kernel of �f
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and B := ker(A(z)) coincides with the image of �f as subspace of all the q-dimensional

discrete time sequences. We call B the behaviour of the model, that is, the linear space

that contains (almost all) realizations of the factor process f . This space coincides with a

linear, �nite dimensional system with p outputs and q � p inputs, see [12]. If this system

is controllable then it can be represented in image form, that is, B = im(F (z)) for some

q� (q � p) polynomial matrix F (z). Then we can write the process decomposition (1) in

the form

w = F (z)v + e (4)

In spectral terms this says that the observed spectrum � can be approximated by the

rank reduced spectrum �f = F �v F
� up to an error process e. If we impose the condition

that the processes f and e are uncorrelated, then � = �f +�e so that the error spectrum

�e measures the error in reducing the rank of the observed spectrum.

We now give a more formal de�nition of the above ideas. The behaviour of a stochastic

process f is de�ned as the smallest linear, �nite dimensional system that contains almost

all process realizations, that is, it is the behaviour B(f) with the following properties (B

denotes an arbitrary linear, �nite dimensional system).

� Pff 2 B(f)g = 1

� Pff 2 Bg = 1 =) B(f) � B

Proposition 1 For every stochastic process the behaviour is well-de�ned.

A behaviour is called non-trivial if it imposes restrictions, that is, if there are discrete

time sequences that do not belong to the behaviour. A dynamic factor model is de�ned

as follows.

De�nition 1 A dynamic factor model of a process w is a decomposition of the form

w = f + e where the factor process f has non-trivial behaviour.

We will call the behaviour of f also the behaviour of the factor model. In order to simplify

the analysis we make the following assumptions.

Assumptions

� A1 The processes w, f and e are jointly weakly stationary, with zero mean and

�nite second order moments.

� A2 The observed process w is purely nondeterministic and has full rank.

� A3 The processes w, f and e have absolutely summable Wold representations.

Assumption A1 is imposed for convenience, so that the usual tools of time series analysis

and linear systems theory can be applied. Assumption A2 is a regularity condition.

The full rank assumption implies that the observed process can not be modelled by a

factor model with error zero. The process becomes purely nondeterministic if possible
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deterministic components have been removed in a preliminary analysis, which is a usual

assumption in time series analysis. It implies the existence of a moving average Wold

representation. Finally, assumption A3 is imposed only for technical reasons. It implies

that the spectral densities of the processes exist as bounded functions on the unit circle.

Proposition 2 Under assumption A3, the behaviour of factor models is controllable.

This means that the model can be expressed as in (4). Alternatively, it can be written in

state space form as

wt = Cxt +Dvt + et; xt+1 = Axt +Bvt (5)

This is a direct generalization of the static model (2). The state variables x make the

dynamical e�ect of the driving factors v on the observed process w explicit.
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3 Modelling Questions

For simplicity we will assume that complete information on the observed process w is

available, in the sense that we know the process spectral density �. The question then

becomes how to choose factor models for this process. In practice the only available

information will often consist of an observed time series, and for the related identi�cation

questions we refer to [7], [6].

Borrowing terminology from Kalman [8], an interesting feature of dynamic factor

models is that we can get no models without prejudice.

Proposition 3 For every behaviour B there exists a factor model of the observed process

w that has behaviour B.

So we have to impose prior restrictions in order to obtain models. Stated otherwise,

our model formulation makes the choices explicit that are of a more hidden nature in

modelling strategies that give unique models. The prior restrictions that we will consider

here are related to structural requirements and to the complexity and goodness of �t of the

models. We de�ne the free factor scheme as the one that imposes no structural restrictions

in addition to the one formulated in De�nition 1. Further the following speci�cations are

of interest.

De�nition 2 A factor model (1) is called observable if f and e are linear functions of

the process w. It is called orthogonal if the processes f and e are mutually uncorrelated.

The result in Proposition 3 continues to hold for observable and orthogonal models. That

is, for every behaviour there exist observable and orthogonal factor models. We base our

choice of models on their explanatory power, in terms of their complexity and goodness

of �t. We de�ne the complexity of a factor model as the pair (m;n), where m is the

(minimal) number of driving forces v and n the (minimal) number of state variables in

the state space representation (5). A model is less complex the smaller m and n are, that

is, the complexity is inversely proportional to the degree of restrictiveness of the factor

behaviour. The error of a factor model is measured in terms of the magnitude of the error

process e. As norm we take the total sum of squares, that is, [Eketk
2]1=2 = k�1=2

e
k2,

where E denotes expectation, k � k the Euclidean norm, k � k2 the L2-norm, and where

�1=2

e
is a spectral factor of the error spectrum. Of course this choice of norm is somewhat

arbitrary, but it has the virtue that it is symmetric in the model variables. This is in line

with the symmetry of factor models. In practice one might consider pre�ltering of the

process to obtain a weighted least squares criterium that gives more importance to the

errors in certain variables or in certain frequency bands.

Within this setting we prefer models that are less complex and that have better �t.

For a given process spectrum �, the following modelling questions are of interest.

Questions

� Q1 Given the behaviour B, minimize the error k�1=2

e
k2 over all factor models with

behaviour B.
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� Q2 Given the complexity (m;n), minimize the error k�1=2

e
k2 over all factor models

with complexity (m;n).

The solution of Question 1 is straightforward, and we refer to [7]. We denote the minimal

error by "�(B). It turns out that observability can be imposed without cost, but that the

condition of orthogonality will in general lead to larger errors. Question 2 is much harder

and has only been partly solved. We limit ourselves to some general aspects, for further

details we refer again to [7].

Question 2 involves the minimization of the error "�(B) over the set B(m;n) of

all controllable linear systems with m inputs and n states. We denote by B(m;n) :=
S
n

k=1B(m; k) the set of all controllable linear systems with m inputs and at most n states,

and by B :=
Sq

m=0

S
1

n=0B(m;n) the set of all controllable linear systems. On this model

class we de�ne the gap by d(B1;B2) := kP1�P2k1, where Pi is the orthogonal projection

operator onto the set of square summable time series in the behaviour Bi, i = 1; 2, and

where k � k
1
denotes the supremum norm. The gap de�nes a metric on B. We summarize

some properties that are of relevance in solving Question 2.

Proposition 4

(i) Under assumption A2, the error "�(B) is continuous in B.

(ii) For n > 0 and m < q the set B(m;n) is neither open nor closed in B.

(iii) The set B(m;n) is the closure of B(m;n) in B.

(iv) For n > 0 and m < q the sets B and B(m;n) are not compact.

Note that the case m = q is not of interest, as this corresponds to the trivial behaviour,

and that the case n = 0 is also of little interest as this concerns only static models. So, the

analysis of Question 2 may seem somewhat complicated because of the non-compactness of

the model class. However, this complication vanishes under a weak regularity condition,

as follows. For given process spectrum � and given number of driving factors m < q

let "n := inff"�(B);B 2 B(m;n)g be the in�mum of attainable errors for models of

complexity (m;n). Then there holds that "n�1 � "n, but strict inequality need not

hold true. The regularity condition requires that the process spectrum is such that this

inequality holds strictly. That is, it is assumed that the speci�ed complexity (m;n) is

such that the optimal �t can not be approximated arbitrarily well by models of lower

complexity (m;n0) with n0 < n. Indeed, if this were the case then the complexity was not

chosen e�ciently, as the complexity could be reduced without any substantial increase of

the error. For given " > 0 we de�ne the set B"(m;n) as the set of models in B(m;n) that

have error at most ", that is, with "�(B) � ".

Proposition 5 The set B"(m;n) is compact for all "n � " < "n�1.

In the regular case the set B"(m;n) is non-empty, and the above result helps to solve the

minimization connected with Question 2, see [7].
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4 Conclusion

In this paper we introduced a new class of dynamic factor models for the approximation

of stationary processes. The approximation, that is, the factor part satis�es deterministic

dynamical relations. The realizations of the factor process belong to a behaviour, that

is, to a linear system with less inputs than the number of observed variables. The ap-

proximation can also be seen as a rank reduction of the spectral density function of the

observed process. This modelling approach can be characterized as open, in the sense that

the dynamics is only partially speci�ed, and symmetric, in the sense that the variables

are treated all alike. We discussed some modelling questions related with the problem of

minimizing the error under restrictions on the allowed model complexity.
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