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Abstract

Reasonable descent is a novel, transparent approach to a well-established field: the deep methods
and applications of the complete analysis of continuous optimization problems. Standard reason-
able descents give a unified approach to all standard necessary conditions, including the Lagrange
multiplier rule, the Karush-Kuhn-Tucker conditions and the second order conditions. Nonstandard
reasonable descents lead to new necessary conditions. These can be used to give surprising proofs
of deep central results outside optimization: the fundamental theorem of algebra, the maximum
and the minimum principle of complex function theory, the separation theorems for convex sets,
the orthogonal diagonalization of symmetric matrices and the implicit function theorem. These
optimization proofs compare favorably with the usual proofs and are all based on the same strat-
egy. This paper is addressed to all practitioners of optimization methods from many fields who are
interested in fully understanding the foundations of these methods and of the central results above.
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1 Introduction

The idea of this paper is to develop the following geometrical view on the complete analysis of finite-
dimensional minimization (and so maximization) problems with continuous variables. The name of
the game of this analysis is to find for as many admissible points P as possible a small continuous
curve of admissible points, originating in P and having everywhere outside P a lower value of the
objective function than at P , to be called a reasonable descent. These points P cannot be local
minima, clearly, and so need not be considered. By a comparison of the—few— remaining admissible
points, one finds the global minimum—or minima. To be rigorous, one has to establish the existence
of a global minimum in advance, always by means of—a variant of—the theorem of Weierstrass. This
theorem states that a continuous function on a non-empty closed and bounded set in <n assumes its
global minimum. A useful variant states that a continuous function that is coercive—this means that
outside a suitable closed and bounded set all values taken are higher than at some point of this set—
assumes its minimum. This is for example the case for a continuous function f : <n → < for which
lim|x|→+∞ f(x) = +∞ (where | · | denotes the modulus or euclidian norm). In the present paper
we will construct standard and non-standard reasonable descents. The former give the standard
necessary conditions such as the Fermat theorem, the Lagrange multiplier rule, the Karush-Kuhn-
Tucker theorem, and the second order conditions (involving the definiteness of hessians). The latter
give nonstandard necessary conditions, which can be used to prove the following famous deep results:
the fundamental theorem of algebra, the maximum and the minimum principle from complex function
theory, the orthogonal diagonalization of symmetric matrices, the implicit function theorem and the
separation theorem for convex sets. It might be a surprise that these theorems can be proved at
all using optimization methods; in fact optimization leads to proofs that are simpler than the usual
ones, and are all based on one and the same strategy: reasonable descent.
Many optimization problems have been solved in the recent and distant past with great effort by
some of the greatest scientists. The advantage of the reasonable descent view is its user-friendliness:
it allows a wide circle of practitioners to understand fully the methods of optimization and to use
these methods to solve optimization problems in a routine way. Thus the high art of great experts is
turned into a basic craft.
The reasonable descent approach has a constructive, algorithmic character, and will hopefully be
of help in the numerical solution of problems; for example the reasonable descent approach of the
theorem on symmetric matrices is closely related to the Jacobi methods; these are efficient algorithms
for finding an orthonormal basis of eigenvectors for a symmetric matrix.
The scope of the reasonable descent approach extends to dynamic optimization, that is, to the
Calculus of Variations and the Optimal Control. Moreover it would be of interest to discover new
necessary conditions for optimality by means of the construction of new reasonable descents.
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2 Reasonable descent.

Formally we define the concept reasonable descent as follows. For a set A ⊆ <n and a point x̄ ∈ A

a variation for a point x̄ in the set A is defined to be a curve xα, α ≥ 0 in the set A with endpoint
x̄ = x0 that is continuous at α = 0. For a set A ⊆ <n and a function f : A → <, we consider the
problem to minimize f on A, to be denoted as

f(x) → min, x ∈ A,

and define a reasonable descent for an admissible point x̄ ∈ A to be a variation xα, α ≥ 0 for x̄ inside
the set of admissible points A, for which moreover, writing g(α) = f(xα), the inequality g(α) < g(0)
holds for all sufficiently small α > 0. Often, but not always, we will show that a concrete variation
is a reasonable descent by checking that either g is differentiable at 0 and g′(0) < 0, or g is twice
differentiable at 0, g′(0) = 0 and g′′(0) < 0. The concept reasonable descent is useful, as reasonable
descents are often easy to construct explicitly for almost all points x̄ ∈ A, and then these points
cannot be local minima, let alone global minima. Therefore we can delete these points from the list
of ‘suspects’ (of the ‘crime’ of being a global minimum) or ‘candidate solutions’, which is initially
the whole of A, the set of all admissible points. Thus the construction of standard or nonstandard
reasonable descents is the most spectacular part of the solution process of an optimization problem.
Usually it brings us from a state of complete ignorance about a concrete optimization problem to a
situation where we have one candidate solution, which is almost certainly the true solution, and then
the Weierstrass theorem leads to complete certainty. For each type of reasonable descent one gets a
necessary condition for local optimality: inclusion in the complement of the set of those admissible
points for which a reasonable descent has been constructed.

3 Applications of standard reasonable descents without constraints.

In this section we illustrate the concept reasonable descent by means of the following two fundamen-
tal results of optimization theory: the first and second order necessary conditions for unconstrained
problems. These results are applied in the complete analysis of all concrete unconstrained optimiza-
tion problems. We emphasize that the core of these results is the construction of the following two
types of reasonable descent.

1. If the derivative of a function of n variables at a point x̄ is nonzero, then going in a straight
line from x̄ in the direction opposite to that of the gradient gives a reasonable descent (it is
in fact the steepest descent). This is the essence of the first order conditions for unconstrained
problems.
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2. If the derivative of a function of n variables f at a point x̄ is zero and the second derivative or
hessian matrix is not positive semidefinite, that is, hT f ′′(x̄)h < 0 for some h ∈ <n, then going
in a straight line from x̄ in the direction determined by the vector h gives a reasonable descent.
This is the essence of the second order conditions for unconstrained problems.

If f is a function defined in a neighborhood of a point x̂ ∈ <n and differentiable at x̂, we write
f ∈ D1(x̂). If f is moreover twice differentiable at x̂, we write f ∈ D2(x̂).

Theorem. First and second order conditions for unconstrained problems.

1. Let x̂ ∈ <n and f ∈ D1(x̂). If f is a local minimum at x̂, then f ′(x̂) is zero.

2. Let x̂ ∈ <n and f ∈ D2(x̂). If f is a local minimum at x̂, then f ′(x̂) is zero and f ′′(x̂) is
positive semidefinite.

The novelty of the proofs below is their presentation in terms of reasonable descent; logically
these proofs are equivalent to the usual ones.

Proof.

1. Consider any x̄ ∈ <n and f ∈ D1(x̄) for which f ′(x̄) is nonzero; we will construct a reasonable
descent for x̄. We define the variation xα = x̄ − αf ′(x̄)T , α ≥ 0 (where T = transpose). We
check that this is a reasonable descent: we write g(α) = f(xα) and calculate

g′(0) = −f ′(x̄)f ′(x̄)T = −|f ′(x̄)|2 < 0,

where | · | denotes the modulus or euclidian norm on <n.

2. Consider any x̄ ∈ <n and f ∈ D2(x̄) for which f ′(x̄) is zero and f ′′(x̄) is not positive semidefinite;
we will construct a reasonable descent for x̄. Choose a vector h ∈ <n for which hT f ′′(x̄)h < 0.
We define the variation xα = x̄ + αh, α ≥ 0. We check that this is a reasonable descent: we
write g(α) = f(xα) and calculate g′(0) = f ′(x̄)h = 0 and g′′(0) = hT f ′′(x̄)h < 0.

One can go on to construct reasonable descents that give higher order conditions. We only give
the one variable case, as this has applications. If f is a function defined in a neighborhood of x̂ ∈ <
and k times differentiable at x̂, we write f ∈ Dk(x̂).

Theorem. Higher order conditions (one variable case). Let x̂ ∈ < and f ∈ Dk(x̂). If f

is a local minimum at x̂ and k is the smallest positive integer for which f (k)(x̂) is nonzero, then k is
even and f (k)(x̂) is positive.
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Proof. Let x̄ ∈ < and f ∈ Dk(x̄), and assume that k is the smallest positive integer for which
f (k)(x̄) is nonzero. To prove the theorem, it suffices to construct reasonable descents in the following
two cases.

1. k is odd and f (k)(x̄) is positive. We define the variation xα = x̄ − α, α ≥ 0. We check that
this is a reasonable descent for x̄: we write g(α) = f(xα) and calculate the k-th order Taylor
approximation at α = 0

g(α) = g(0) +
1
k!

g(k)(0)αk + o(αk)

—where o is small Landau-o—and the higher derivative

g(k)(0) = (−1)kf (k)(x̄) < 0.

It follows that the variation xα, α ≥ 0 is a reasonable descent.

2. f (k)(x̄) is negative. We define the variation xα = x̄+α, α ≥ 0. We check that this is a reasonable
descent for x̄: we write g(α) = f(xα) and calculate the k-th order Taylor approximation at α = 0

g(α) = g(0) +
1
k!

g(k)(0)αk + o(αk)

and the higher derivative g(k)(0) = f (k)(x̄) < 0. It follows that the variation xα, α ≥ 0 is a
reasonable descent.

4 Nonstandard reasonable descents and central theorems

Now we will formulate and prove some well-known results. Each one of these is the central result of
an entire field. The usual proofs are complicated. None of these results seems to have anything to
do with optimization. However we will give straightforward proofs using optimization methods: in
each case the heart of the matter is the construction of a suitable type of non-standard reasonable
descent for a suitable auxiliary optimization problem, giving a nonstandard necessary condition for
this problem.

Fundamental theorem of algebra. Each polynomial equation

p(x) = a0 + · · ·+ anxn = 0

in one complex variable x—of degree n ≥ 1 has at least one solution.

This is the central property of the complex numbers. The proofs that are usually given are based
on relatively advanced methods such as Galois theory (cf [9]) or complex function theory (cf [10]).
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The proof to be given here is based on an idea of d’Alembert. The auxiliary optimization problem is
the minimization of the modulus of p(x). We have simplified the recent version of this proof (cf [1]) by
replacing the intricate use of trigonometric functions by the easy fact that for each complex number
a the equation xk − a = 0 has a solution.

Proof.

1. We consider the problem
f(x) = |p(x)| → min, x ∈ C.

This two-variable problem (x = x1 + ix2 with x1, x2 ∈ <) has a solution x̂, as the function
x → |p(x)| is coercive:

|p(x)| = |x|n|an + · · ·+ a0x
−n|,

the first factor tends to +∞ and the second one to |an| for |x| → +∞.

2. Consider any complex number x̃ for which p(x̃) 6= 0; we will construct a reasonable descent for
x̃. We assume that x̃ = 0 as we may without restricting the generality of the argument. Then
a0 = p(0) 6= 0. Let k be the smallest positive integer for which ak 6= 0. Choose a solution
u ∈ C of the equation a0 + akx

k = 0: that is, u is one of the k k-th roots of the number − a0
ak

.
Define the variation xα = αu, α ≥ 0. We check that this is a reasonable descent: we write
g(α) = f(xα) and calculate

g(α) = |a0 + ak(αu)k + o(αk)| = |(1− αk)a0 + o(αk)| < |a0| = g(0)

for α > 0 sufficiently small.

3. Deleting from the list of suspects the complex numbers for which we have constructed a rea-
sonable descent, gives that all local solutions of the optimization problem are solutions of the
polynomial equation p(x) = 0.

4. The theorem is proved, as p(x̂) = 0.

Note that we have constructed a type of reasonable descent and that this gives the nonstandard
necessary condition ‘p(x) = 0’ for a local solution x of the optimization problem. This reasonable
descent can be turned into an algorithm for solving polynomial equations. We note moreover that
this reasonable descent is for k = 1 (resp. k = 2, resp. k ≥ 2) related to the reasonable descents used
in the previous section to establish the first (resp. second, resp. higher) order conditions.

In a similar way one can prove the following more general result; in the proof the role of polyno-
mials is taken over by power series.
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Theorem. Minimum Principle from complex function theory. The modulus of an ana-
lytical function of a complex variable can only assume its minimal value at an interior point if the
value of the function at this interior point is zero.

From this result one can derive the following one by going over from a function z 7→ f(z) to the
function z 7→ f(z)−1.

Theorem. Maximum Principle from complex function theory. The modulus of an an-
alytical function of a complex variable on the closure of a bounded open set assumes its maximum
value only at boundary points of its domain.

The minimum and the maximum principle are central results of complex function theory.

For a convex set C ⊆ <n the relative interior of C is defined to be the interior of C inside the
smallest affine subspace of <n containing C.

Theorem. Separation of convex sets. Two convex sets C and D in <n can be separated by
a hyperplane if their relative interiors have no point in common.

This is the central property of convex analysis (the subject dealing with convex sets, convex
functions and convex minimization problems). The required reasonable descent will be based on the
following geometrical observation: if, for two different points P and Q in a two-dimensional plane,
we move Q in a direction making an acute angle with the original interval PQ, then the distance
to P decreases initially. The auxiliary optimization problem is the shortest distance problem for a
closed nonempty convex set C and a point p 6∈ C. The novelty of the proof below is the presentation
in terms of reasonable descent; logically this proof is equivalent to the usual one, which is also based
on this shortest distance problem.

Proof. We only give the proof in the following special case: C is closed, D consists of one point
p only and p is not contained in C. The general case can be derived from this special case.

1. We consider the problem
f(x) = |x− p|2 → min, x ∈ C,

that is, the shortest distance problem for p and C. It has a global solution x̂: this follows from
the Weierstrass theorem after adding the constraint f(x) ≤ f(x0) for some x0 ∈ C (this does
not change the solution set and makes the admissible set bounded).

2. Consider any x̄ ∈ C that has the following property: the hyperplane

Hx̄ = {x : 〈p− x̄, x− x̄〉 = 0}
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—where 〈 , 〉 denotes the standard inner product on <n—through the point x̄ and orthogonal
to the line through x̄ and p, does not separate C from p; we will construct a reasonable descent
for x̄. We choose a point x0 ∈ C that lies strictly on the same side of the hyperplane Hx̄ as p.
That is,

〈p− x̄, x0 − x̄〉 > 0. (∗)

Define the curve xα = (1 − α)x̄ + αx0, α ≥ 0, that is, the straight line connecting x̄ and
x0. We check that this is a reasonable descent for x̄: we write g(α) = f(xα) and calculate
g′(0) = 2〈x̄− p, x0 − x̄〉 < 0 using (∗).

3. Deleting from the list of suspects all points in C for which we have constructed a reasonable
descent, gives that all local solutions of the problem separate C from p.

4. The theorem is proved: the hyperplane Hx̂ separates p from C.

Note that we have constructed a reasonable descent and that it gives the nonstandard necessary
condition ‘Hx separates p from C’ for a local solution x.

Theorem. Orthogonal diagonalization of symmetric matrices. For each symmetric n×n

matrix A there exists an orthogonal n× n-matrix P such that P T AP is a diagonal matrix.

This is the central property of symmetric matrices (an alternative formulation of this result is
that each symmetric matrix has an orthonormal basis of eigenvectors). We will give an optimization
formulation of this theorem and then we will construct a type of reasonable descent inside the set
of orthogonal n × n-matrices. The descent curve will be constructed by multiplication of a given
orthogonal n × n-matrix with suitable orthogonal matrices representing rotations in <n over small
angles. This reasonable descent is closely related to the Jacobi methods; this is a class of efficient
algorithms to calculate an orthogonal diagonalization of a given symmetric matrix (cf. [4]). The
usual proof makes use of complex numbers(cf. [4]). There is an alternative proof that makes use of
optimization methods (cf [1]): for the most convenient presentation of it one has to view a symmetric
matrix as a linear operator on an abstract finite-dimensional vector space; it proceeds by induction
with respect to the dimension of the vector space, each step involving an optimization problem. Below
we present a one-blow proof, requiring only one optimization problem to be solved, and not making
use of complex numbers. The auxiliary optimization problem is the problem to minimize the sum
of the squares of the off-diagonal elements of the matrix that is the result of conjugating the given
symmetric matrix with a variable orthogonal matrix.
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Proof.

1. We consider the problem

f(P ) = s(P T AP ) → min, P orthogonal,

where we write s(B) for the sum of the squares of the off-diagonal elements of a symmetric
n × n matrix B. Note that s(B) = 0 precisely if B is a diagonal matrix. This problem has a
global solution P̂ : this follows from the Weierstrass theorem, as the orthogonal n× n-matrices
form a nonempty closed and bounded set in the space of n× n-matrices (boundedness follows
from the fact that all columns of an orthogonal matrix have unit length).

2. Consider any orthogonal n × n-matrix P̄ for which C = P̄ T AP̄ is not a diagonal matrix; we
will construct a reasonable descent for P̄ . We choose an off-diagonal element cij of C that is
nonzero. For each α ∈ < we let Q(α) denote the n× n-matrix for which

qii(α) = qjj(α) = cos α, qji(α) = −qij(α) = sin α, pkk = 1 ∀k 6= i, j,

and all other entries are zero; note that Q(α) is an orthogonal matrix: a counterclockwise
rotation over angle α in the two-dimensional i, j-plane. Define the curve Pα = P̄Q(α), α ∈ <
of P̄ inside the set of orthogonal n× n-matrices. We write g(α) = f(P̄P (α)) and calculate

g′(0) = 2cij(cii − cjj)

and
g′′(0) = (cii − cjj)2 − 4c2

ij .

For later use we note the following consequence:

g′(0) = 0 ⇒ g′′(0) < 0. (∗∗)

It follows that the variation Pα, α ≥ 0 (resp. P−α, α ≥ 0) is a reasonable descent if g′(0) ≤ 0—
taking into account (∗∗)—(resp. if g′(0) > 0).

3. Deleting from the list of suspects all orthogonal matrices P̄ for which we have constructed a
reasonable descent, gives that the matrix P T AP is diagonal for all local solutions P of the
problem.

4. The theorem is proved: P̂ T AP̂ is a diagonal matrix.

Note that we have constructed reasonable descents and that these give the nonstandard necessary
condition ‘P T AP is a diagonal matrix’ for a local solution P of the optimization problem.

9



We need some definitions in order to formulate the next result. For a neighborhood W ⊆ <n of
a point w ∈ <n and a mapping F = (f1, . . . , fm)T : W → <m, one says that F is differentiable at w

with derivative or Jacobi-matrix F ′(w) ∈ Mm×n—F ∈ D1(w,<m)—if

lim
h→0

|h|−1|F (w + h)− F (w)− F ′(w)h| = 0.

A mapping F ∈ D1(0n,<m) is called continuously differentiable at 0n—F ∈ C1(0n,<m)—if F is
differentiable in some neighborhood of 0n and if moreover the derivative mapping F ′ is continuous at
0n. Usually it is easy to check this property for concrete mappings F : it holds if all partial derivatives
of the functions fi, 1 ≤ i ≤ m, exist in a neighborhood of 0n and are continuous at 0n; moreover,
then F ′(0n) = (∂fi(0n)

∂xj
)i,j . We define for a mapping F ∈ C1(0n,<m) the remainder functions r(x1, x2)

and s(x) implicitly by
F (x1)− F (x2) = F ′(0n)(x1 − x2) + r(x1, x2)

and
F ′(x) = F ′(0n) + s(x).

The following properties hold true:

lim
x1, x2→0n

|r(x1, x2)|
|x1 − x2|

= 0, (1)

lim
x→0n

‖s(x)‖ = 0. (2)

Property (2) expresses the continuity of F ′ at 0n; property (1) is called the strict differentiability
of F at 0n. Property (1) follows readily from (2) and the following chain of inequalities, which hold
for any ε > 0 and any convex neighborhood W of 0n for which ‖s(x)‖ ≤ ε ∀x ∈ W :

|r(x1, x2)| = |
∫ 1

0
s(tx1 + (1− t)x2)(x1 − x2)dt|

≤ |x1 − x2|
∫ 1

0
‖s(tx1 + (1− t)x2)‖dt ≤ ε|x1 − x2| ∀x1, x2 ∈ W. (3)

Implicit function theorem. Let F ∈ C1(0n,<m) be given and assume that F (0n) = 0m and
that the last m columns of F ′(0n) are linearly independent. Then the vector equation F (x) = 0m

determines in a suitable neighborhood of 0n the last m variables xn−m+1, . . . , xn as functions of the
remaining variables x1, . . . , xn−m, say z = ϕ(y), where y = (x1, . . . , xn−m) and z = (xn−m+1, . . . , xn).
The mapping ϕ is differentiable at 0n−m, and

ϕ′(0n−m) = −F ′
z(0n)−1F ′

y(0n).
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This theorem is the central result of differential calculus. We will prove it by means of an
analysis of the following optimization problem: minimize in a neighborhood of 0n the modulus of
F (x1, . . . , xn) for fixed y = (x1, . . . , xn−m) and variable z = (xn−m+1, . . . , xn). The usual proof of
the implicit function makes use of the contraction principle. The optimization proof given below is
essentially different.

Proof. To begin with, we give a reformulation of the continuity of F ′ at 0n that is convenient
for the present purpose. Let U be a neighborhood of 0n on which F is defined and differentiable and
on which the modulus of F ′ is bounded. For each r > 0 for which U contains the ‘block’

Br = {(y, z) : |y| ≤ r, |z| ≤ (|F ′
z(0n)−1F ′

y(0n)|+ 1)r}

we let ε(r) > 0 be the supremum of |F ′(x)− F ′(0n)|, where x runs over Br. Then limr↓0 ε(r) = 0, as
F ∈ C1(0n,<n).

1. For each y with

ε(|y|) <
|F ′

z(0n)−1|−1

2 + |F ′
z(0n)−1F ′

y(0n)|
, (∗ ∗ ∗)

we consider the problem

fy(z) = |F (y, z)|2 → min, |z| ≤ (|F ′
z(0n)−1F ′

y(0n)|+ 1)|y|.

This problem has a global solution ẑ = z(y) by the Weierstrass theorem.

2. Consider an interior point z̄ of the admissible set for which F (y, z̄) is nonzero; we will construct
a reasonable descent for z̄. Define the variation zα = z̄ − αf ′(z̄)T , α ≥ 0 inside the admissible
set. We check that this is a reasonable descent: we write g(α) = f(zα) and calculate

g′(0) = f ′(z̄)(−f ′(z̄)T ) = −|f ′(z̄)|2,

so it suffices to verify that f ′(z̄) is nonzero. One has

f ′(z̄) = 2F (y, z̄)T F ′
z(y, z̄)

and this shows that f ′(z̄) is nonzero, as F (y, z̄) is nonzero by assumption and F ′
z(y, z̄) is

invertible: this follows from the inequality

‖F ′
z(y, z̄)F ′

z(0n)−1 − In‖ ≤ ‖F ′
z((y, z̄))− F ′

z(0n)‖‖F ′
z(0)−1‖ < 1.

3. Deleting from the list of suspects all points for which a reasonable descent has been constructed,
it follows that F (y, z) = 0m for each interior local solution z of the problem.

Now we establish two additional properties of minima.
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(a) For all global minima x̄ the following inequality holds (this will give the differentiability
property of the implicit function at y = 0n−m):

|z̄ − (−F ′
z(0n)−1F ′

y(0n)y)| ≤
ε(|y|)(1 + ‖F ′

z(0n)−1F ′
y(0n)‖

|F ′
z(0n)−1|−1 − ε(|y|)

|y|.

We argue by contradiction: assume that this inequality does not hold.

Applying the inequality (3) twice, once with x1 = (y, z̄), x2 = (y,−F ′
z(0n)−1F ′

y(0n)y) and
once with x1 = (y,−F ′

z(0n)−1F ′
y(0n)y), x2 = 0n leads to the inequality

f(z̄) > f(−F ′
z(0n)−1F ′

y(0n)y);

this shows that (y, z̄) is not a global minimum.

(b) The problem has at most one local minimum. If F (y, z1) = F (y, z2) = 0m, then by (3) we
get |F ′(0n)(x1 − x2)| ≤ ε(|y|)|x1 − x2| and by (∗ ∗ ∗) this implies z1 = z2.

4. The theorem is proved and ϕ(y) can be characterized as the unique global minimum ẑ(y) of
the problem above.

Note that we have constructed a reasonable descent and that these gives the nonstandard necessary
condition ‘z is a solution of the vector equation F (y, z) = 0m’ for a local interior solution z of the
optimization problem. It is of interest that here the existence of a unique solution of a system of non-
linear equations is proved without using strict convexity (which does in fact not necessarily hold here).

Now we formulate a result that is equivalent to the implicit function theorem, but is geometrically
more intuitive; in the next section we will use it to prove the Lagrange multiplier rule. We need some
definitions. If S is a subset of <n containing the origin and L is a linear subspace of <n, then we
say that L is the tangent space of S at the origin if there exists a neighborhood U of the origin
such that the orthogonal projection π on L sends the intersection S ∩ U bijectively onto L ∩ U , and
v = π(v) + o(|π(v)|) where v runs over S ∩ U . The value of this definition is that a tangent space
gives a parametrization and approximation of a complicated set S by means of a simpler set L near
the origin: each point v ∈ S near the origin is approximated by the point π(v) near the origin, which
is moreover very close to v, as v = π(v) + o(|π(v)|). Warning: there are other—weaker—concepts of
tangent spaces.

Tangent space theorem. Let F ∈ C1(0n,<m) with F (0n) = 0m, and nondegenerate at 0n in
the sense that the Jacobi-matrix F ′(0n) has full rank m. Then the linear subspace ker F ′(0n) = {x :
F ′(0n)x = 0m} is the tangent space at the origin to the set {x : F (x) = 0m}.
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The tangent space theorem gives a parametrization and approximation of the solution set of a
system of nonlinear equations F (x) = 0m in a neighborhood of a given nondegenerate solution 0n in
terms of the solution set of the system of linear equations F ′(0n)x = 0m, which arises by linearizing
at 0n the given nonlinear system. Note that this result is essentially the most general result of this
type: it implies the result with 0n replaced by an arbitrary point x̂ ∈ <n, and 0m by an arbitrary
point ŷ ∈ <m (by means of translations in <n and <m).

5 Applications of standard reasonable descents with constraints.

In this section we present further illustrations of the construction of reasonable descents in order
to establish first order necessary conditions for optimization problems with constraints. To begin
with we consider the Lagrange multiplier rule—the first order conditions for equality constrained
problems. The novelty of the proof is the presentation in terms of reasonable descent as well as the
use of the tangent space theorem. This use leads to a more intuitive proof than the usual one, which
proceeds by a mechanical verification, using the implicit function theorem. The core of the result is
the construction of the following type of reasonable descent. Let continuously differentiable functions
fi, 0 ≤ i ≤ m, of n variables, and a solution x̄ of the system of equations fi(x) = 0, 1 ≤ i ≤ m, be
given. Consider the problem

f0(x) → min, fi(x) = 0, 1 ≤ i ≤ m.

If there is no nontrivial linear relation between the derivatives of the functions fi, 0 ≤ i ≤ m,

at x̄, then the following variation for x̄ inside the admissible set is a reasonable descent : the curve
xα, α ≥ 0, where xα is the admissible point close to x̄ that is mapped to the same point as x̄−αf ′0(x̄)T

under the orthogonal projection onto the tangent space at x̄ to the admissible set. This fact is the
essence of the Lagrange multiplier rule in terms of reasonable descent.

Theorem. Lagrange multiplier rule. Consider the problem with equality constraints

f0(x) → min, fi(x) = 0, 1 ≤ i ≤ m,

where f0 ∈ D1(x̂), fi ∈ C1(x̂,<), 1 ≤ i ≤ m, for some x̂ ∈ <n. Then for each local solution x̂, there
is a nonzero selection of multipliers (λ0, . . . , λm) for which L′(x̂) = 0n is zero, where the Lagrange
function L is defined by L(x) =

∑m
i=0 λifi(x).

Proof. Consider any admissible point x̄ for which the derivatives f ′i(x̄), 0 ≤ i ≤ m, are linearly
independent; we will construct a reasonable descent for x̄. We assume that x̄ = 0, as we may without
restricting the generality of the argument. We take the orthogonal projection v of f ′0(x̄) on the
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linear subspace of vectors that are orthogonal to the vectors f ′i(x̄), 1 ≤ i ≤ m. This projection
v is a nonzero vector: by the linear independence assumption f ′0(x̄) is not contained in the linear
span of the vectors f ′i(x̂), 1 ≤ i ≤ m, and so the orthogonal projection v of f ′0(x̂) on the orthogonal
complement of this linear span is nonzero. Now we apply the tangent space theorem to the mapping
(f1, . . . , fm)T ∈ C1(0n,<m). This implies that there is a variation xα, α ≥ 0 with endpoint x0 = 0n

in the admissible set of the given optimization problem for which the orthogonal projection of xα on
the tangent space at x̄ = 0n to this admissible set is −αv and such that moreover xα = −αv + o(α).
We check that this is a reasonable descent: we write g(α) = f0(xα) and calculate

g(α) = f0(xα) = f0(0n)− f ′0(0n)vα + o(α) = g(0)− |v|2α + o(α) < g(0),

for α > 0 sufficiently small.

In addition we give for three types of mixed smooth-convex problems the necessary conditions.
These results can also be established by the use of suitable reasonable descents, but we will only
display the reasonable descent proof of the Karush-Kuhn-Tucker theorem. It is based on the sepa-
ration theorem. The proofs of the other two results require a combination of the techniques used to
prove the central results of differentiable and convex calculus: the implicit function theorem and the
separation theorem.

For each closed, pointed, solid, convex cone C in <n we define an ordering � on <n by x � y

precisely if x− y ∈ C; such an ordering will be called a conic ordering.

Theorem.

1. Theorem of Karush-Kuhn-Tucker. Consider the convex problem with inequality constraints

f0(x) → min, fi(x) ≤ 0, 1 ≤ i ≤ m, x ∈ A,

where A ⊆ <n is a convex set, fi : A → <, 1 ≤ i ≤ m are convex functions. Then each local
solution x̂ is a global solution, and there is a nonzero selection of multipliers (λ0, . . . , λm) such
that the following conditions hold true:

• L(x̂, λ) = minx∈A L(x, λ), where the Lagrange function L is defined by L(x) =
∑m

i=0 λifi(x).

• λi ≥ 0, 0 ≤ i ≤ m,

• λifi(x̂) = 0, 1 ≤ i ≤ m.

2. Lagrange multiplier rule for problems with inequality constraints. Consider the prob-
lem with inequality constraints

f0(x) → min, fi(x) ≤ 0, 1 ≤ i ≤ m,
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where f0 ∈ D1(x̂), fi ∈ C1(x̂,<), 1 ≤ i ≤ m, for some x̂ ∈ <n. Then for each local solution x̂,
there is a nonzero selection of multipliers (λ0, . . . , λm) such that the following conditions hold
true:

• L′(x̂) = 0n, where the Lagrange function L is defined by L(x) =
∑m

i=0 λifi(x).

• λi ≥ 0, 0 ≤ i ≤ m,

• λifi(x̂) = 0, 1 ≤ i ≤ m.

3. Necessary conditions for conic problems. Consider the conic problem

f0(x) → min, F (x) = 0m, x � 0n,

where f0 ∈ D1(x̂), F = (f1, . . . , fm)T ∈ C1(x̂,<m) and � is a conic ordering on <n. Then for
each local solution x̂, there is a nonzero selection of multipliers (λ0, . . . , λm) with λi ≥ 0, 0 ≤
i ≤ m such that the following condition holds true:

min
h�−x̂

L′(x̂)h = 0,

where the Lagrange function L is defined by L(x) =
∑m

i=0 λifi(x).

Proof of the Karush-Kuhn-Tucker theorem. Consider any admissible point x̄ for which
the KKT-conditions do not hold; we will construct a reasonable descent for x̄. We assume that all
constraints are tight at x̄ as we may without restricting the generality of the argument (by omitting
the constraints that are not tight at x̄). Moreover we assume that x̄ = 0n, also without restricting
the generality of the argument. That the KKT-conditions do not hold is equivalent to the fact that
the point 0m+1 and the set C = {r ∈ <m+1 : fi(x) ≤ ri, 0 ≤ i ≤ m} cannot be separated by a
hyperplane; by the separation theorem this implies that 0m+1 is an interior point of C. In particular
C contains a point (β, 0, . . . , 0) for some β < 0. That is, there exists a point x̃ ∈ <n for which
f0(x̃) < 0 and fi(x̃) ≤ 0, 1 ≤ i ≤ m. Define the variation xα = (1− α)x̄ + αx̃, α ≥ 0. This variation
is a reasonable descent, clearly.

All other first, second—and higher—order conditions for optimization problems with equality and
inequality constraints can be established in a similar way by means of suitable reasonable descents.
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