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Abstract

In this paper we put forward a generalization of the Dynamic Conditional Corre-
lation (DCC) Model of Engle (2002). Our model allows for asset-specific correlation
sensitivities, which is useful in particular if one aims to summarize a large number
of asset returns. The resultant GDCC model is considered for daily data on 18
German stock returns, which are all included in the DAX, and for 25 UK stock
returns in the FTSE. We find convincing evidence that the GDCC model improves
on the DCC model and also on the CCC model of Bollerslev (1990).
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1 Introduction

A topic high on the research agenda in financial econometrics is the construction of models

that can summarize the dynamic properties of two or more asset returns, with a particular

focus on volatility forecasting and portfolio selection. A class of models that addresses

this topic is the multivariate GARCH model. By now, there are many variants available,

see Bauwens et al. (2003) for a recent survey. The current benchmark models seem

to be the Constant Conditional Correlation (CCC) model of Bollerslev (1990) and its

extension, the Dynamic Conditional Correlation (DCC) model of Engle (2002). These

models impose a useful structure on the many possible model parameters. By doing so,

the model parameters can easily be estimated and the model can be evaluated and used

in a rather straightforward way.

In this paper we aim to extend on the DCC model by focussing on the notion that one

might want to use this model for a large number of asset returns. For example, one might

want to summarize 18 important stocks in the DAX for the purpose of portfolio selection,

as we will do below. As is shown in Engle and Sheppard (2001), the DCC model leads

to sub-optimal portfolio selection in case of many assets (like 20 or 30). This is due to

the fact that the DCC model assumes that the asset-specific conditional correlations all

follow the same dynamic (ARMA-type) structure. This assumption may be more easily

satisfied by a small number of selected asset returns, but it becomes increasingly more

unlikely in case of many returns. Hence, intuitively, when one considers many returns,

one would want to allow for asset-specific dynamics, and this is precisely what we do in

this paper. By allowing one of the ARMA parameters to vary across the assets, and in

a sense allowing for a panel structure, we generalize the DCC model towards a GDCC

model.

The outline of our paper is as follows. In Section 2, we review the CCC and DCC

model, and we introduce our GDCC model. In Section 3, we discuss parameter estimation

of the GDCC model, and various ways to compare it with the CCC and DCC model. In

Section 4, we consider the three models for daily data on 18 stock returns in the DAX and

on 25 stock returns in the FTSE. We document that the GDCC model improves on the

other two models in various dimensions. In Section 5, we conclude with some remarks.

2 Dynamic conditional correlation models

Let yt be an N dimensional time series of length T . Suppose for simplicity that the mean

of yt is zero. For example, yt could be the returns of the stocks in the DAX index. Our
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objective is to find a suitable model for the conditional covariance matrix Ht of yt if both

N and T are large.

The main benchmark is the CCC model of Bollerslev (1990), which specifies

Ht = DtRDt,

where Dt is a diagonal matrix with the square root of the estimated univariate GARCH

variances on the diagonal, and R is the sample correlation matrix of yt. Although the

model is useful, the assumption of constant conditional correlations can be too restrictive.

One may expect higher correlations in extreme market situations like crashes, for example.

Engle (2002) generalizes the CCC model to the Dynamic Conditional Correlation

model (DCC). This model is

Ht = DtRtDt (1)

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2 (2)

Qt = S(1− α− β) + αεt−1ε
′
t−1 + βQt−1 (3)

where α and β are parameters and εt = D−1
t yt are the standardized but correlated resid-

uals. That is, the conditional variances of the components of εt are equal to 1, but the

conditional correlations are given by Rt. diag(Qt) is a diagonal matrix with the same

diagonal elements as Qt. S is the sample correlation matrix of εt, which is a consistent

estimator of the unconditional correlation matrix. If α and β are zero, one obtains the

above CCC model. If they are different from zero one gets a kind of ARMA structure

for all correlations. Note however that all correlations would follow the same kind of

dynamics, since the ARMA parameters are the same for all correlations.

We propose to extend the DCC model to a generalized DCC (GDCC) model in the

following way, that is

Ht = DtRtDt (4)

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2 (5)

Qt = S
(
1− ᾱ2 − β̄2

)
+ αα′ ¯ εt−1ε

′
t−1 + ββ′ ¯Qt−1 (6)

where ¯ denotes the Hadamard matrix product operator, i.e., elementwise multiplication.

In (6), α and β are N × 1 parameter vectors, ᾱ = 1/N
∑N

i=1 αi and β̄ = 1/N
∑N

i=1 βi.

Clearly, the DCC model results as a special case if α1 = · · · = αN and β1 = · · · = βN . The

GDCC model guarantees to deliver positive definite Ht, because Qt is a sum of positive

(semi-)definite matrices, provided that a suitable starting value for Q0 is used, for example

the sample correlation matrix S.
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Note that the exact variance targeting approach as in the DCC model does not work

here, as the matrix S ¯ (ιι′ − αα′ − ββ′) is not positive definite in general. Thus, re-

placing the first term in (6) by this matrix would not guarantee a positive definite Qt.

The GDCC specification (6) leads to a bias in the unconditional correlations in the sense

that they do no longer correspond necessarily to the sample correlations. However, this

should be weighted against the flexibility gain for the dynamics of the correlations. As

the DCC model is nested in the GDCC model, the null hypothesis of DCC can be tested

using standard Wald or Likelihood ratio statistics. An exact variance targeting would

be possible if the residuals εt were orthogonalized such that S = IN , because the matrix

IN ¯ (ιι′−αα′− ββ′) is positive semi-definite if α2
i + β2

i < 1 for all i. We tried an orthog-

onalization in one empirical application but did not find any substantial improvement.

The GDCC model (6) contains 2N parameters for the conditional correlations. This

may still be problematic for estimation if N is very large. A compromise between the

models (3) and (6) could be found by noting that often the parameters associated with

the innovations, α, are more varying over the panel than the parameters associated with

the autoregression, β. In that case, we can specify

Qt = S
(
1− ᾱ2 − β

)
+ αα′ ¯ εt−1ε

′
t−1 + βQt−1 (7)

with only N + 1 parameters to estimate. One can still reduce the number of parameters

by pooling variables with similar values αi into meaningful clusters.

On the other hand, one may still add flexibility and introduce exogenous variables or

factors in the equation for Qt. For example, we could include a factor DAX2
t−11DAXt−1<τ ,

because, for example, it may be that correlations increase in crash situations where the

DAX return is smaller than a threshold τ .

Note that the ijth element of Qt can be written as

qij,t = Sij(1− ᾱ2 − β) + αiαjeij,t−1 + βqij,t−1

where eij,t = εi,tεj,t can be called the correlation innovation. The ijth element of Rt, the

conditional correlation matrix is given by

rij,t =
qij,t√
qii,tqjj,t

(8)

The α parameters could be given the following interpretation: If an αi is large (small),

then the correlation of the corresponding asset with other assets tends to be (in)sensitive

to correlation innovations. In the extreme case that αi = 0, we can write rij,t as

rij,t =
Sij

√
1− ᾱ2

√
Siiqjj,t
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Thus, if αi = 0, then all variation of rij,t originates from variation of qjj,t, which does not

depend on correlation innovations eij,t. In other words, we can characterize the α’s as the

individual asset’s sensitivity with respect to correlation innovations.

3 Estimation

This section discusses estimation methods for the GDCC model. We first review the

simultaneous estimation of all parameters, before discussing possible ways to combine

estimation of the individual correlations.

3.1 Simultaneous estimation

Estimation of the GDCC model parameters can be performed by quasi maximum likeli-

hood (QML) by maximizing the criterion function

L(θ) = −1

2

T∑
t=1

(
log |Ht(θ)|+ y′tH

−1
t (θ)yt

)

with respect to the parameter vector θ. Under quite general conditions, listed by Engle

and Sheppard (2001), these estimators will be consistent and asymptotically normal. If

the estimation for the variances (contained in Dt) and the correlations (contained in Rt) is

performed simultaneously, the QML estimation will be efficient provided that innovations

are indeed Gaussian. If estimation is split up in two parts, where first the variances are

estimated, and then the correlations, then estimators will no longer be efficient but still

consistent. Following Engle (2002), the likelihood can be split in two parts,

L(θ) = LV (θV ) + LC(θC)

where

LV (θV ) = −1

2

T∑
t=1

(
log |Dt(θV )|2 + y′tDt(θV )−2yt

)
(9)

is the volatility part of the likelihood, and

LC(θC) = −1

2

T∑
t=1

(
log |Rt(θC)|+ ε′tRt(θC)−1εt

)
(10)

is the correlation part, with θ = (θ′V , θ′C)′. At the first step, (9) is maximized with respect

to θV by estimating the univariate GARCH models for yit, i = 1, . . . , N . Define the esti-

mate of θV by θ̂V = arg max LV (θV ). Conditional on the first step, standardized residuals
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εt = Dt(θ̂V )−1yt can be calculated. At the second step, (10) is maximized with respect to

θC , giving the estimate θ̂C = arg max LC(θC). We use this two-step estimation procedure

in the empirical part of the paper. Inference concerning the correlation parameter vector

θC has to take the first step into account, as described by Engle and Sheppard (2002).

We also use their results to compute standard errors.

3.2 Combining individual correlation estimates

Maximization of the likelihood function may be cumbersome if the dimension N is high,

as in every step, N × N covariance matrices must be inverted. The inversions are nu-

merically difficult because the covariance matrices are typically ill-conditioned. It might

therefore be preferable to look for estimation routines of the individual correlations that

still restrict the composed covariance matrix to be positive definite. For example, esti-

mating univariate ARMA-type models for each component of the covariance matrix can

be achieved so quickly that the task of estimating N(N − 1)/2 such univariate models

can still be much faster than estimating the multivariate model. The difficult part is

to restrict the univariate models such that the composed multivariate model forms valid

covariance matrices.

In the following, we discuss one way of achieving this for the GDCC model. In the

standard DCC(1,1) model, Engle (2002) suggests to rewrite the ij-th cross product as an

ARMA(1,1) process,

eij,t = Sij(1− α− β) + (α + β)eij,t−1 − βuij,t−1 + uij,t, (11)

where eij,t = εi,tεj,t and uij,t = eij,t − qij,t has mean zero and can be treated as an error

term. Note however that it is not a martingale difference as the conditional expectation of

eij,t is rij,t and not qij,t, and it is not obvious to show that they are serially uncorrelated.

We found in a small simulation exercise that for typical parameter values, there is some

autocorrelation in the uij,t, which implies that (11) is not an ARMA process and parameter

estimates are biased.

Another way to obtain estimates for individual correlations is described in the follow-

ing. As by definition rij,t is the conditional expectation of eij,t, we can write

eij,t = rij,t(φij, θij) + ηij,t, (12)

where φij = (αi, αj), θij = (βi, βj), and ηij,t is an error term with variance σ2
ij, say, such

that E[ηij,t | Ft−1] = 0. If the conditional distribution of ηij,t can be approximated by a
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normal distribution, then we can estimate φij and θij by maximizing

Lij(φij, θij) = −1

2

n∑
t=1

(
log σ2

ij +
(eij,t − rij,t(φij, θij))

2

σ2
ij

)
.

Denote by φ̂ij and θ̂ij the corresponding estimates. Note however that for another pair,

say (i, j′), j′ 6= j, one obtains estimates for αi and αj′ , where αi is not necessarily equal to

the estimate of αi using the pair (i, j). Ideally they should be close if the GDCC model

is correctly specified, and this can be viewed already as a first specification test.

To obtain the composed estimates of α and β, define the symmetric matrices A and

B with entries

Aij = φ̂ij,1φ̂ij,2 Bij = θ̂ij,1θ̂ij,2

In words, Aij is just the product of the estimates of αi and αj using the pair (i, j). The

objective now is to find α and β such that αα′ is close to A and ββ′ close to B. Ideally,

one would like to solve the system of equations

Aij = αiαj and Bij = βiβj

for all i 6= j. By taking logarithms this can be written as a linear equation system, that

is

C log(α) = log(LT (A)) (13)

C log(β) = log(LT (B)) (14)

where C is an (N(N − 1)/2×N) matrix with a 1 at positions (kij, i) and (kij, j), where

kij = i − j + (j − 1)(N − j/2), i > j, and zeros elsewhere. The operator LT stacks

the lower triangular part of a symmetric matrix, excluding the diagonal, into a vector.

By convention, we define the logarithm of a vector as the vector of the componentwise

logarithms. It can be shown that the matrix C is of full column rank. Thus, we can define

estimators of α and β as

α̂ = exp
{
(C ′C)−1C ′ log(LT (A))

}
,

β̂ = exp
{
(C ′C)−1C ′ log(LT (B))

}
.

For example, consider the case with N = 3. Then the system for β can be written as




1 1 0

1 0 1

0 1 1







log β1

log β2

log β3


 =




log B12

log B13

log B23



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After matrix inversion one finds the exact solution

β̂1 =
√

B12B13/B23

β̂2 =
√

B12B23/B13

β̂3 =
√

B13B23/B12

Note that in the case N = 3 the system is exactly determined, so that an exact

solution to the equation system (13) and (14) can be found. For larger N , the system is

overdetermined so that one would have to add an ‘error term’ vij, say, to each equation.

The least squares estimates then minimize the sum of squared errors. For example, the

estimator for β minimizes
∑
i<j

v2
ij =

∑
i<j

(log Bij − log βi − log βj)
2. (15)

A general expression for the least squares estimator for βi for N > 2, can be shown to be

β̂i =

(∏
j 6=i Bij

) 1
N−1

(∏
j,k 6=i Bkj

) 1
(N−1)(N−2)

,

so that β̂i is just the geometrical mean of all Bij, j 6= i, divided by the square root of the

geometrical mean of all Bkj with j, k 6= i and k < j.

Rather than minimizing (15), one can also minimize directly the distance between B

and ββ′. For example, this distance can be measured by the Frobenius norm ‖ · ‖F , i.e.,

the sum of the squared elements of B − ββ′,

‖B − ββ′‖F = vec(B − ββ′)′vec(B − ββ′)

= Tr ((B − ββ′)(B − ββ′))

= Tr(BB) + (β′β)2 − 2β′Bβ (16)

As the first term of (16) does not depend on β, minimizing the Frobenius norm is equiv-

alent to minimizing

Q(β) = (β′β)2 − 2β′Bβ

As there is no analytic solution to this minimization problem, numerical algorithms have

to be used.

Finally, analogous estimators can be found for α,

α̂i =

(∏
j 6=i Aij

) 1
N−1

(∏
j,k 6=i Akj

) 1
(N−1)(N−2)

(17)
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and

α̃ = arg min
α

[
(α′α)2 − 2α′Aα

]
. (18)

The advantage of this individual estimation approach is the computational feasibility.

A drawback, however, is that the theoretical properties of these estimators are far from

clear. Even consistency is doubtful, as the regression equations (12) are linked through

the denominator of rij,t in (8), but these links are neglected in the estimation. In the next

section, we will therefore use the estimation method described in Section 3.1.

4 Empirical results

In the following some results are given for 18 selected daily stock returns of the Frankfurt

DAX30 index and 25 selected daily stock returns of the London FTSE 100 index. Both

series are adjusted for dividends and stock splits. The sample period is from 1/1/1973 to

3/1/2003 for the DAX returns (T = 7876 observations), and from 1/1/1973 to 5/13/2003

for the FTSE returns (T = 7921 observations). The series were selected such that they

are available over the entire sample period. In most of the FTSE returns we found

significant first order autocorrelation, so that we first estimated a linear AR(1) model and

continue to work with the residuals of that model in the following. The finding of first

order autocorrelation is not unusual, see for instance Chapter 2 of Campbell, Lo, and

MacKinlay (1997) and Hafner and Herwartz (2000) for empirical evidence.

Table 1 reports parameter estimates of the DCC model, as well as likelihood ratio

statistics for testing CCC against DCC and DCC against GDCC. In both cases, the

simpler model is clearly rejected. Table 2 summarizes the estimation results of the GDCC

model for the DAX data. The largest estimated αi is 0.0724, the smallest 0.0489, so the

range is quite narrow. To see the difference to the DCC model, we show in Figure 1

for the stock with smallest α the estimated conditional correlation series. It is obvious

that the DCC model (with a larger α estimate) implies a more volatile correlation series,

whereas the GDCC model permits a correlation series that is closer to a constant, as in

the CCC case.

For the FTSE data, results are reported in Table 3. The smallest estimated α is 0.0328,

the largest 0.0629. As reported in Table 1, the likelihood value is significantly improved

also for the FTSE data. The likelihoods for the CCC, DCC and GDCC models are,

respectively, -23.0395, -22.8028 and -22.7915, yielding in both cases significant likelihood

ratio statistics in favor of the more general model.

Table 3 also contains an indication of the sectors. To see if the αi values are perhaps
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sector-specific, we run a regression of the estimated values in this table on an intercept and

five sector dummies. No parameter for these dummies is significant, except for chemical

stocks, with a t-ratio of 2.801. Deleting redundant dummies leads to the conclusion that

the average value of αi is 0.044 for all sectors, while it is 0.057 for chemicals. Hence, chem-

ical stocks seem to have more volatile correlations with other stocks. For the DAX data,

we do not have enough observations to perform a similar regression, but, interestingly,

the BASF and Bayer αi values are also higher than the average value of 0.062.

As a diagnostic test, we use the multivariate Portmanteau statistic given by (see e.g.

Lütkepohl, 1993)

Ph = T 2

h∑
i=1

(T − i)−1Tr(Ĉ ′
iĈ

−1
0 ĈiĈ

−1
0 ), Ĉi =

1

T

T∑
t=i+1

ξ̂tξ̂
′
t−i, (19)

where ξ̂t = R̂
−1/2
t εt. The statistic Ph is conjectured to have an asymptotic χ2 distribution

with hN2 degrees of freedom. We use Ph as a measure for residual autocorrelation rather

than as a formal test statistic, as to our knowledge the asymptotic theory for the present

model framework has not been worked out. The value of P10 for the CCC model applied

to the FTSE data is 1,314,287.6, that for the DCC model is 1,296,375.8 and that of the

GDCC model is 1,245,106. All are higher than the 5% critical value of a χ2
6250 distribution.

This may indicate remaining residual autocorrelation, but it also shows that the GDCC

model provides a better fit to the data.

For the sake of completeness, we also report the results for the combined individual

estimates described in Section 3.2, applied to the FTSE data. The mean of α̂ in (17)

is 0.1241 with a standard deviation of 0.0306. The mean of α̃ in (18) is 0.1370 with

a standard deviation of 0.0349. All α̂i’s are close to the α̃i’s but tend to be slightly

smaller. However, both are substantially larger than the estimates using simultaneous

estimation, and this may indicate the inconsistency of the approach. The likelihood

of the individual estimates is -23.4656, much smaller even than the likelihood of the

CCC model. Surprisingly, however, the individual estimates have smaller Portmanteau

statistics of 912,583.9 and 876847.8, respectively.

As another specification test of the models, we can apply the estimated models to the

problem of finding the minimum variance portfolio. This has become a standard criterion

to evaluate the performance of models for the covariance of stock returns, see also Chan,

Karceski, and Lakonishok (1999). It is well known since Markowitz that the optimal

weight vector at time t is given by

wt =
H−1

t ι

ι′H−1
t ι

,

9



where ι is an (N × 1) vector of ones. If the model for Ht is correctly specified, then this

weight vector should provide the minimum variance portfolio. For the DAX (FTSE) data,

the variance of the portfolio that uses Ht estimated by the standard DCC model is about

4% (1%) higher than the one that uses the GDCC model.

For the same criterion, Engle and Sheppard (2001) report that the DCC model per-

forms well for small number of assets, but that the model fails to find the optimal portfolio

for N increasing. Another interesting phenomenon they find is that the estimated α pa-

rameter of the DCC model decreases when the number of assets is increased.

To see whether these features can be explained by different correlation sensitivities α,

consider a small simulation study. Let us assume that the volatility part of the model

does not play a role here, so to simplify we set Dt = IN , such that Ht = Rt. The

following results were checked for robustness with respect to this assumption, and no

counter-evidence was found. We generate time series yt following a GDCC model with

multinormal innovations. Before each simulation, a realization of an N × 1 parameter

vector α is drawn from the distribution

αi ∼ Beta(10, 90) (20)

which implies a population mean of 0.1 and a standard deviation of 0.0298. This is close

to the empirical moments of the reported estimates in Section 3. The autoregressive

part of Qt is fixed at β = 0.999 −max(α)2, so that the maximum persistence, measured

by α2
i + β, is given by 0.999. The unconditional correlation matrix is computed by

drawing a random N × N matrix Z of a uniform distribution letting Z∗ = Z ¯ Z and

S = diag(Z∗)−1/2Z∗diag(Z∗)−1/2. This gives unconditional correlations similar to what is

observed in the stock data.

We generate 500 time series, each of length 1000, calculate for each series the minimum

variance portfolio using either CCC, DCC or GDCC. The CCC model implies Rt = S,

so for every simulated series the generated S matrix is used to compute wt. For the

DCC model we use for every simulated series the mean of the generated αi parameters.

That is, the approximating DCC model reads Qt = S(1− ᾱ2 − β) + ᾱ2εt−1ε
′
t−1 + βQt−1.

This should provide a reasonable approximation to the true GDCC model, however, see

below for some comments on this issue. For the GDCC model, we use the generated αi

parameters.

To assess the relative performances, we then calculate the ratios of the CCC and DCC

portfolio variances with respect to the optimal GDCC one. Table 4 reports the means

and standard errors of these ratios. As can be seen, the ratios tend to increase with the

number of assets N . For small N it does not seem to make a difference whether to use
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DCC or GDCC, but for large N the difference becomes more and more important. This

holds true even though the distribution of the α is kept fixed. The interpretation of this

result is that, as N increases, it is more likely to have one asset that has a correlation

sensitivity αi in the tails of the distribution, so that the assumption that all αs are the

same becomes too restrictive and yields sub-optimal portfolios. In sum, this could be the

explanation of the failure of the DCC model to correctly identify the minimum variance

portfolio in high dimensions, as reported by Engle and Sheppard (2001).

Finally, we considered the issue of approximating a GDCC process by a DCC model

more closely. Table 5 reports estimates of a DCC model applied to 50 generated GDCC

models, where the GDCC parameters are again generated by (20). The striking result

is that the estimated α parameter tends to decrease with the dimension N . Moreover,

for N ≥ 30 the estimated α is significantly smaller than the mean of the true parameter

distribution. This could explain yet another empirical phenomenon of the DCC model,

namely the decreasing parameter estimates when the number of assets is increased, see

for example Tables 1 and 2 of Engle and Sheppard (2001) who use S&P500 and DJIA

stocks. We also tried the estimated DCC α parameter instead of the means of the GDCC

parameters in the minimum variance portfolio simulations, but did not find substantial

differences.

To summarize these simulation experiments, we find evidence that two empirical phe-

nomena of DCC models could be explained by the imposed restriction when applied to a

process that has a diversity of correlation sensitivities, such as the GDCC model. These

phenomena are the failure of the DCC model to identify the minimum variance portfo-

lio in high dimensions, and the decreasing α parameter estimates when the dimension is

increased.

5 Conclusion

In this paper we proposed an extended DCC model that allows for asset-specific hetero-

geneity in the correlation structure. The model was successfully fitted to DAX and FTSE

series, and it significantly improved on the DCC model in various dimensions.

A next topic of research in this area amounts to the interpretation of this heterogeneity.

In this paper we simply ran a regression of estimated parameters on sector dummies, but

more elegant approaches exist. One of them is to assume that the αi’s also are the

outcomes of a model with explanatory variables and an error term. This multi-level

model allows then for a further reduction of the number of parameters.
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DAX FTSE

N 18 25

T 7876 7921

sample period 1/1/1973–3/11/2003 1/1/1973–5/13/2003

Parameter estimate (std.err) estimate (std.err)

α 0.0038 (0.0003) 0.0021 (0.0001)

β 0.9944 (0.0005) 0.9957 (0.0004)

LCCC 5776 3750.8

LDCC 122.87 178.7

Table 1: Estimation results of the DCC model for the DAX and FTSE re-

turns. LCCC is the value of the likelihood ratio statistic that tests the CCC

model against the DCC model, and LDCC the statistic that tests the DCC

model against our GDCC model. Both are larger than the 1% critical values

of the asymptotic distribution.
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Stock αi standard error Stock αi standard error

Allianz 0.0680 0.0065 Lufthansa 0.0489 0.0043

BASF 0.0636 0.0046 MAN 0.0596 0.0049

Hypo-Bank 0.0593 0.0044 Münchner Rück 0.0575 0.0042

BMW 0.0619 0.0055 RWE 0.0614 0.0038

Bayer 0.0675 0.0054 Schering 0.0568 0.0058

Commerzbank 0.0666 0.0058 Siemens 0.0696 0.0047

Deutsche Bank 0.0714 0.0049 Thyssen 0.0632 0.0068

E.ON 0.0724 0.0042 TUI 0.0571 0.0049

Linde 0.0513 0.0037 VW 0.0663 0.0057

Table 2: Estimation results of the GDCC model for the 18 DAX returns,

1973–2003. The estimate of β is 0.9942 with a standard error of 0.0008.

The mean of the αis is 0.062 with a standard deviation of 0.0065.
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Stock αi std. err. Stock αi std. err.

Allied Domecq (R) 0.0472 0.0024 Diageo (R) 0.0449 0.0029

Amvescap (F) 0.0426 0.0041 Dixons (R) 0.0407 0.0036

Assd. Brit. Foods (R) 0.0342 0.0030 EMAP (M) 0.0453 0.0040

Aviva (F) 0.0465 0.0030 EXEL (T) 0.0384 0.0033

Barclays (F) 0.0458 0.0027 Foreign & Colonial (F) 0.0482 0.0024

BOC (C) 0.0494 0.0025 GKN (T) 0.0461 0.0027

Boots (R) 0.0541 0.0025 Glaxosmithkline (C) 0.0629 0.0028

BP (O) 0.0418 0.0034 Granada (M) 0.0452 0.0042

Brit. Ame. Tobacco (O) 0.0522 0.0029 GUS (R) 0.0469 0.0032

British Land (F) 0.0396 0.0033 Hanson (O) 0.0502 0.0025

BUNZL (O) 0.0328 0.0041 Hilton (O) 0.0454 0.0032

Cadbury Schweppes (R) 0.0419 0.0024 IMP (C) 0.0591 0.0024

Daily Mail (M) 0.0340 0.0039

Table 3: Estimation results of the GDCC model for the 25 FTSE returns,

1973–2003. Associated sectors are given in parentheses: R: Food, Beverages,

Retail, F: Banks, Insurance, Real Estate, C: Chemicals, M: Media, T: Trans-

port, O: Other. The estimate of β is 0.996 with a standard error of 0.0001.

The mean of the αis is 0.045 with a standard deviation of 0.007.
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DCC CCC

N mean std err mean std err

3 1.0228 0.0021 3.8495 0.8243

4 1.0357 0.0025 4.2428 0.7041

5 1.0560 0.0032 6.1709 1.1595

10 1.1180 0.0054 11.4363 2.0441

15 1.1814 0.0056 18.0791 3.6982

20 1.2267 0.0061 35.3159 7.6578

25 1.2761 0.0063 53.6910 9.5502

30 1.3245 0.0108 115.0078 40.3950

Table 4: Ratios of variances of the minimum variance portfolios. The se-

ries were generated by GDCC using (20), then the variance of the minimum

variance portfolio using the best DCC and CCC approximation is divided by

the GDCC variance. If the ratio is close one, the restricted model (DCC or

CCC) does not differ in determining the minimum variance portfolio.
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N mean std err

2 0.1080 0.0063

3 0.1088 0.0034

4 0.1109 0.0039

5 0.1091 0.0026

10 0.1076 0.0018

20 0.0993 0.0009

30 0.0945 0.0012

40 0.0929 0.0008

50 0.0907 0.0009

100 0.0811 0.0005

Table 5: Means and standard errors of estimated α parameters in the DCC

model, where 50 processes of length 1000 were generated by a GDCC model.

The parameters of the GDCC model are generated according to (20), which

implies a mean of 0.10 and a standard deviation of 0.0298.
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Figure 1: Estimated conditional correlation for Lufthansa with BASF. Solid

line: DCC estimate, dashed line: GDCC estimate.
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