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Abstract

We present a framework for statistical analysis of discrete event
systems which combines tools such as simulation of marked point
processes, likelihood methods, kernel density estimation and stochas-
tic approximation to enable statistical analysis of the discrete event
system, even if conventional approaches fail due to the mathematical
intractability of the model.

The approach is illustrated with an application to modelling and
estimating corrosion of steel gates in the Dutch Haringvliet storm
surge barrier.
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1 Introduction

Uncertainty is an important part of life, and hence statistical modelling is

appropriate for many real life phenomena. Unfortunately, the complexity

of statistical models is a trade-off between the mathematical tractability of

the model on one hand, and insight into the structure of the phenomenon of

interest on the other hand. On the one side of the spectrum there are black

box models, which are easily analyzed statistically, but do not provide any

deep structural insights. On the other side of the spectrum there are white

box models, which carefully detail structure, but are hardly amenable for

statistical analysis.

In this paper we focus on discrete event systems, dynamic systems which

result in the occurrence of events at particular points in time; each event has

a certain discrete type. In the context of discrete event systems, modelling

the time to occurrence of a certain event by choosing a distribution from

some catalogue of distributions (for instance, Weibull, gamma, lognormal)

is an example of the black box approach, whereas a full-fledged simulation

model is an example of a white box model.

Our primary motivation for undertaking this study comes from experience

in the field of degradation modelling, see Nicolai et al. (2006). In this field,

there is an abundance of grey box models which are motivated by but do not

fully capture the underlying physical process of degradation. Examples are

degradation models derived from Brownian motion, gamma or compound

Poisson processes, see Doksum and Hoyland (1992); Çinlar et al. (1977);

Sobczyk (1987). These models have been successfully applied to quantify

degradation such as wear, corrosion, crack growth and creep.

As black box models are available for purely descriptive purposes, the

abundance of grey box degradation models underlines the need for incorpo-

rating structural insights into the statistical models. Nevertheless, white box

models, the pinnacles of structural thinking, are not used in the statistical

analysis. The reason for this is that conventional approaches to statistical

analysis are not feasible due to the mathematical intractability of the white

box models. For instance, applying likelihood methods is not feasible since

computing the likelihood becomes too complex.

The objective of this paper is to develop a likelihood based methodol-

ogy for statistical analysis of discrete event systems by means of white box

models, in which the mathematical intractability of the white box model
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is circumvented by using computer intensive methods. In particular, like-

lihood is “maximized” using simulation, density estimation and stochastic

approximation.

The remainder of this paper is as follows. In Section 2 we introduce our

methodology, in Section 3 we illustrate the approach with an application to

modelling and estimating corrosion, and in Section 4 we draw conclusions.

2 Methods

2.1 Model building

Capturing the white box model In this section we present a methodol-

ogy for statistical analysis of discrete event systems given a white box model.

As the methodology is likelihood based, we first need to capture the white

box model in mathematical equations, which allows us to identify the para-

meters to be estimated.

We achieve this by formulating the discrete event systems in terms of a

marked point process, a stochastic process which consists of events of a cer-

tain type (the mark) taking place at certain points of time. To each marked

point process belongs a counting process N∗ = {N∗(t) : t ≥ 0}, which counts

the number of occurrences of events in the interval [0, t]. Remark that the

counting process increases by 1 at every occurrence of any event. Thus, every

“jump time” of the counting process coincides with an occurrence of some

event, and vice versa. In addition, to each marked point process there be-

longs a mark sequence S1, S2, . . ., which accommodates the event type: the

ith mark Si gives the type of the event occurring at the ith jump time. The

marks Si take values in some mark space S. For discrete event systems, the

mark space S is discrete.

As for every possible mark value s ∈ S there exists a counting process

Ns = {Ns(t) : t ≥ 0}, which counts the number of occurrences of events

of type s in the interval [0, t], we may alternatively view the marked point

process as a multivariate counting process {Ns}s∈S . Moreover, we may write

N∗ =
∑

s∈S Ns.

As a counting process is a submartingale, it follows as a result of the

Doob-Meyer decomposition that there exists a corresponding compensator,

that is, a nondecreasing predictable process such that the difference of the

counting process and its compensator is a martingale, see (Andersen et al.,
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1993, p. 73). Predictability may be characterized as follows: the value of

a predictable process at time t is completely determined just before t, see

(Andersen et al., 1993, p. 67).

The derivative of the compensator with respect to time is called the in-

tensity rate function. Let Λ∗ = {Λ∗(t) : t ≥ 0} and Λs = {Λs(t) : t ≥ 0}
respectively denote the compensator, and let λ∗ = {λ∗(t) : t ≥ 0} and

λs = {λs(t) : t ≥ 0} respectively denote the intensity rate function belong-

ing to N∗ and Ns. We may write

Λ∗(t) =

∫ t

0

λ∗(s)ds, Λs(t) =

∫ t

0

λs(s)ds.

It is known that the structure of the compensator completely describes

the probabilistic behaviour of the corresponding counting process, and thus

we may model a counting process by imposing structure on its compensator,

or equivalently, imposing structure on its intensity rate function. As

λ∗ =
∑
s∈S

λs, (1)

it follows that a discrete event system may be modelled by imposing structure

on each of the mark-specific intensity rate functions λs. We shall assume that

λs(t) takes the form λ(t; θs, zs), where θs is a vector of structural parameters,

zs = {zs(t) : t ≥ 0} is a vector of possibly time dependent covariates,

and λ(·; θs, zs) is the generic form of the intensity rate functions λs. The

covariate vector zs contains all environmental factors determining the “risk”

of an event of type s. Remark that λs should be predictable, that is, λs(t)

is completely determined just before t; hence, we shall tacitly assume that a

time dependent covariate zs only has effect on λs(t) through its “historical

part” {zs(t
′)}0<t′<t.

The covariate vector may include global as well as local environmental

factors. An often useful way to handle local environmental factors is to

incorporate the state of a neighbourhood system as covariate in the model.

A neighbourhood system defines a neighbourhood Bs for each s ∈ S. For

example, if S is a two-dimensional grid, then the neighbourhood of s may

contain the four sites directly north, west, south and east of s, see Figure 1.

Note that s itself is not an element of Bs.

The distinction between global and local environmental factors implies

the existence of three types of structural parameters: (i) local coefficients,
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parameters which act as regression coefficients for local environmental fac-

tors; (ii) global coefficients, parameters which act as regression coefficients

for global environmental factors; (iii) baseline parameters, parameters which

do not act as regression coefficients for environmental factors.

In model building, one typically starts with a baseline model which does

not include any covariate. Then, the baseline model is extended by including

covariates. This can be conveniently done by multiplying a baseline parame-

ter by r
(
βTzs

)
, where β is a vector of unknown regression coefficients, and

r is a known scalar function. Typical choices are r(v) = ev and r(v) = v,

yielding multiplicative and additive covariate effects, respectively.

Finally, we present a scheme for simulating a marked point process, which

extends Algorithm 7.4.III in (Daley and Vere-Jones, 2003, p. 260), an algo-

rithm for simulating counting processes, by including the assignment of event

types by the inverse transform method. This scheme involves ps(t), the prob-

ability that the next event of N∗ is of type s given that it occurs at time t.

Observe that ps(t) = λ(t; θs, zs)/λ
∗(t).

Algorithm 1 (Simulation scheme marked point process {Ns}s∈S)

Initially, let t0 be the starting time of the simulation.

(1) Draw E, an exponential random variable with mean 1.

(2) The next event time t1 is the solution of Λ∗(t) = Λ∗(t0)+E with respect

to t.

(3) Select event type s with probability ps(t1). Specifically,

(3.1) Compute ps(t1) for every s ∈ S.

(3.2) Let F = 0 and set s equal to the first element of S. Draw U , a

random variable distributed uniformly on [0, 1].

(3.3) Let F = F + ps(t1).

(3.4) If U < F , then return event type s and go to step (4). Otherwise,

set s equal to the next element of S, and return to step (3.3).

(4) Set t0 = t1, update Λ∗, and return to step (1).
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The observation scheme Algorithm 1 allows us to provide a model for

a phenomenon under study. The next step involves fitting this model to

sampled data, observations obtained from the phenomenon. As it is usu-

ally not feasible to fully observe all aspects of the phenomenon, we have

to resort to partial observation in practice: we focus on one or more par-

ticular quantitative aspects of the phenomenon, and measure them at one

or more points in time. Thus, on top of the phenomenon there is some

observation scheme which ultimately produces the sampled data, a finite

sequence of measurements, say (X1, X2, . . . , Xn). In general, the random

variables X1, X2, . . . , Xn, will be neither independent nor identically distrib-

uted. Thus, we should view X = (X1, X2, . . . , Xn) as a random vector drawn

from some multivariate distribution.

In order to be able to simulate from the multivariate distribution of X, we

should mimic the observation scheme in simulations by some n-dimensional

function w which assigns to each marked point process {Ns}s∈S simulated by

Algorithm 1 a random vector w
(
{Ns}s∈S

)
of measurements w1

(
{Ns}s∈S

)
,

w2

(
{Ns}s∈S

)
, . . . , wn

(
{Ns}s∈S

)
.

2.2 Statistical inference

Likelihood Next, we take the multivariate distribution of the random vec-

tor w
(
{Ns}s∈S

)
as a model for X. As the random vector w

(
{Ns}s∈S

)
is

directly obtained from the marked point process {Ns}s∈S , it follows that

the multivariate distribution of w
(
{Ns}s∈S

)
has the same parameters as

{Ns}s∈S , say θ1, θ2, . . . , θk. Collect these parameters in the k-dimensional

parameter vector θ. Remark that θ contains all distinct elements of θs for

every s ∈ S. Let Θ ⊂ Rk be the set of all possible values of θ.

Since we now have a statistical model for X which depends on a parameter

vector θ, we are ready for parametric statistical inference on θ. We shall limit

ourselves to likelihood methods. Although there are many approaches to

statistical inference, likelihood methods have always been popular following

their proposal more than eighty years ago, and consequently have become

well understood.

The likelihood of a statistical model evaluated in an abitrary element ϑ

of parameter space Θ is given by L (ϑ) = fX (X; ϑ), where fX (·; ϑ) is the

joint density of X under this model. In simpler models we are able to derive

a closed mathematical expression for L (ϑ). Unfortunately, as we are dealing

5



with white box models, expressing L (ϑ) in this way is not feasible due to the

mathematical intractability of the white box models.

However, we do have a simulation model, which allows us to generate

data from the joint distribution of X under the statistical model. As the

likelihood L (ϑ) is in essence a joint density evaluated in X, we may resort

to density estimation on basis of the simulated data to obtain an approxi-

mation to L (ϑ). Therefore, we independently run the simulation m times

for the parameter value ϑ. As the jth simulation run yields a n-dimensional

simulated vector of observations X(j), we obtain independent random vectors

X(1),X(2), . . . ,X(m), all obeying the common unknown density fX (·; ϑ).

For ease of exposition, we shall in first instance focus on the univariate

case n = 1, in which the sequence of random vectors X(1),X(2), . . . ,X(m) coin-

cides with a sequence of independent random variables X(1), X(2), . . . , X(m).

Define the kernel density estimator f̂(x) by

f̂(x) =
1

mb

m∑
j=1

K

(
X(j) − x

b

)
.

Here the kernel K is some probability density, symmetric around zero, and

satisfying
∫

(K(x))2 dx < ∞. The smoothing index b is often referred to as

the bandwidth. Selecting the optimal bandwidth is an important topic in

density estimation. A popular choice is the direct plug-in (DPI) bandwidth

selector described in (Wand and Jones, 1995, paragraph 3.6.1). A variant of

the DPI method is the “solve the equation” plug-in bandwidth proposed in

Sheather and Jones (1991). The Sheather-Jones plug-in bandwidth has been

implemented in most statistical packages, and is widely recommended due to

its overall good performance, see Sheather (2004).

In the general case we will be faced with the situation where n > 1,

which forces us to resort to multivariate density estimation, a straightforward

extension of univariate density estimation. The general expression for the

multivariate kernel estimator is

f̂(x) =
1

mb

m∑
j=1

K

(
X(j) − x

b

)
,

where x = (x1, x2, . . . , xn), b is the bandwidth, and the kernel K is some

n-variate square integrable probability density, symmetric around the ori-

gin. Work on the selection of the optimal bandwidth in multivariate density

estimation is currently in progress, see Duong and Hazelton (2005).
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One of the problems in multivariate density estimation is the “curse of

dimensionality”, see (Scott, 1992, Section 7.2). This relates to the fact that

the convergence of any estimator to the true value of a smooth function

defined on a space of high dimension is very slow. In fact, the number of

simulations m required to attain a specified amount of accuracy grows at

least exponentially as n increases. Thus, one should estimate the density of

the vector X via estimating the densities of independent components of X,

if present. One may also resort to other forms of data reduction, such as

principal components and projection pursuit, see (Scott, 1992, Section 7.2).

Finally, one may take the “curse of dimensionality” into account in the choice

of the observation scheme.

Stochastic approximation By evaluating the density estimator f̂(x) for

x = X, we obtain an approximation

L̂ (ϑ) = f̂ (X) =
1

mb

m∑
j=1

K

(
X(j) −X

b

)
.

for the likelihood function L (ϑ). We will refer to this approximation as the

simulated likelihood. The method of maximum likelihood dictates that the

parameters of the white box model should be estimated by maximizing L (ϑ).

Unfortunately, we are unable to evaluate L (ϑ), and we have to make use of

L̂ (ϑ), a noisy version of L (ϑ).

This kind of optimization problem can be handled in various ways, which

differ in the way the gradient of L (ϑ) is estimated. We shall focus on finite

differences (FD) and simultaneous perturbation (SP) techniques, since they

only make use of the input and output of the underlying model.

In the two-sided FD approximation the ith component of the estimated

gradient ĝ (ϑ) is given by

ĝi(ϑ) =
L̂ (ϑ + cei)− L̂ (ϑ− cei)

2c
, i = 1, . . . , k, (2)

where ei a unit vector in the ith direction and c > 0 is sufficiently small. Ap-

proximating the gradient in this way requires 2k evaluations of the simulated

likelihood.

The SP method for estimating the gradient was proposed in Spall (1987),

and only requires a constant number of evaluations of the simulated likeli-

hood. The idea is to perturb the parameters in separate random directions.
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In the two-sided SP approximation the ith component of the estimated gra-

dient ĝ (ϑ) is given by

ĝi(ϑ) =
L̂ (ϑ + c∆)− L̂ (ϑ− c∆)

2c∆i

, i = 1, . . . , k, (3)

where ∆ = (∆1, . . . , ∆k)
T is a vector of user-specified random variables sat-

isfying certain conditions and c > 0 is a constant. Since the numerator in (3)

is the same for each component i, only two function evaluations are required

to obtain one SP gradient, that is, it does not depend on k.

The stochastic approximation algorithm The estimated gradient

can be used in a steepest ascent procedure, where in each step additional

simulation runs are performed. This method is generally referred to as sto-

chastic approximation. We shall focus on stochastic approximation where

the gradient is either estimated by means of finite differences (FDSA) or

simultaneous perturbation (SPSA).

Stochastic approximation builds upon the iteration formula θ̂[`+1] = θ̂[`] +

a`ĝ(θ̂[`]), where θ̂[`] ∈ Rk represents the estimate of θ after the `th iteration,

a` > 0 is a coefficient and ĝ(θ̂[`]) is the approximation of the gradient in θ̂[`].

The constant c defined in equation (3) may depend on the iteration number `.

Now, under conditions on the numbers a` and c` and the likelihood, θ̂[`] will

converge almost surely to the “true value” θ, for instance see Spall (2003).

In Kleinman et al. (1999) it is shown that using the same sequence of

random numbers for the simulation runs required to compute L̂ (ϑ + c∆) and

L̂ (ϑ− c∆) has a positive effect of the rate of convergence of both the FDSA

and SPSA procedures. There is some evidence that the common random

number version of SPSA should be preferred over its FDSA counterpart.

The scaled stochastic approximation algorithm described by Andradottir

(1996) may be used to prevent the algorithm to diverge when the estimated

gradient is either very steep or very flat. Finally, parameter transformations

or projection based versions of the SA algorithm may be used to deal with

parameter restrictions, for instance see Sadegh (1997).
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3 Application to steel corrosion

3.1 Data

As an illustration, we consider the Haringvliet corrosion data presented in

Heutink et al. (2004). The Dutch Haringvliet storm surge barrier was built in

1970, and closes the sea arm Haringvliet off from the sea. In the period from

1988 to 1996, the original coatings were replaced by new ones. In 2002, half

of these coatings were inspected resulting in different inspection intervals.

In Table 1 the percentage of the seaside surface of a steel gate that has

been corroded due to ageing of the coating is given for five steel gates of the

Haringvliet barrier. Note that n = 5. In Nicolai and Koning (2006) a more

extensive analysis of the Haringvliet data is presented.

3.2 A white box model

To model the corrosion process of a steel gate as a discrete event system, we

partition the rectangular surface of the steel gate in small square areas, which

we will refer to as sites. Each of these sites can be in two states; initially,

the square is “uncorroded”, but after some time it may become corroded.

Once the site is corroded, it cannot return to the uncorroded state. This

discrete event system is described by a marked point process which records

every time instance at which a site becomes corroded, and assigns to this

time instance the location of the site as a mark. Thus, the mark space S
is in fact a product of a finite “horizontal” space Sx and a finite “vertical”

space Sy. It follows from (1) that we may specify the discrete event system

by formulating the structure of each site-specific intensity rate function λs.

As a site s cannot return to the uncorroded state once the site is corroded,

the corresponding counting process Ns can only jump once. In other words,

the counting process is randomly stopped after the first jump. We may

incorporate this into the model by including a factor Ys(t) = 1 − Ns(t−)

in the intensity rate function λs. Here Ns(t−) is shorthand notation for

limε↓0 Ns(t− ε). In statistical modelling, the process Ys is usually referred to

as the “number at risk”, see (Andersen et al., 1993, p. 128). Observe that

the process Ys is predictable.

Next, we shall assume that corrosion is the interplay of two physical

processes: the initiation process and the propagation process.

In the initiation process the surface is constantly threatened by attacks.
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If an uncorroded site is hit, the site may or may not become corroded.

However, as time progresses, the uncorroded sites become more and more

vulnerable. We assume that the initiation process may be modelled by a

(randomly stopped) inhomogeneous Poisson process with an intensity pro-

portional to some power of t. That is, the initiation process contributes a

term λ
[initiation]
s (t) = qνtq−1Ys(t) to λs(t).

In the propagation process, an uncorroded site s may become “infected”

by neighbouring corroded sites, that is, by corroded sites in its neighbourhood

Bs. We assume that Bs is as in Figure 1. The propagation process contributes

a term λ
[propagation]
s (t) = δzs(t)Ys(t) to λs(t), where zs(t) =

∑
s′∈Bs

Ns′(t−)

counts the number of corroded sites in Bs just before time t. It follows that

λs(t) = λ[initiation]
s (t) + λ[propagation]

s (t) =
{
qνtq−1 + δzs(t)

}
Ys(t).

3.3 Results

In the previous subsection, we have formulated a model for the corrosion of

a single steel gate. Assuming that the corrosion of one gate evolves indepen-

dently of the corrosion of the other gates, this model is readily extended to

the complete system of five steel gates. If we in addition assume that the

five steel gates share the values of their parameters, we have θ = (ν, q, δ)T .

In order to approximate the likelihood function, the method of kernel

density estimation is applied to the outcomes of m = 1, 000 simulations runs

of {Ns}s∈S , generated according to Algorithm 1. Each outcome consists of

the percentage of corrosion at the five inspection times.

We have applied the stochastic approximation algorithm introduced in

section 2.2 to find the maximum likelihood estimates of the parameters of

the corrosion process. In particular, we used the SPSA approach in combina-

tion with common random numbers. Table 2 summarizes the results of the

parameter estimation. The estimate of the maximized likelihood function is

based on m = 10, 000 simulation runs.

Figure 2 shows a realization of the corrosion process at time t = 15 years.

The green pixels are uncorroded sites. The red pixels are corroded sites due

to initiation, and the white pixels are corroded sites due to propagation.
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4 Conclusion

In this article we have developed a general methodology for statistical analy-

sis of white box simulation models by likelihood methods. The mathematical

intractability of the white box model is circumvented by using computer in-

tensive methods, including simulation, multivariate density estimation and

stochastic approximation.

The objective in developing the methodology was complete generality.

As a consequence, the methodology is indeed computer intensive, and may

become very demanding on the available computing resources. For instance,

due to the “curse of dimensionality”, multivariate density estimation may

well become a time consuming affair.

As reducing the computer intensiveness is a necessary condition for suc-

cessful application to large problems, our methodology does not acquit the

researcher from understanding the white box model at a detailed level. For

instance, a cleverly devised observation scheme is instrumental in averting

the “curse of dimensionality”.

Also, knowledge of the model may make solving Λ∗(t) = Λ∗(t0) + E in

step (2) of Algorithm 1 simpler. For instance, in Section 3 we could have

made use of the fact that corrosion is in fact the interplay of two physical

processes. Indeed, this is the way in which Figure 2 was simulated, hence the

distinction between corroded sites due to initiation and corroded sites due

to propagation.
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Age (years) Corrosion (%)

6 0.27

8 0.41

10 0.84

12 0.75

14 2.10

Table 1: Inspection results for the seaside surface of five steel

gates of the Haringvliet storm surge barrier.

Parameter Estimate

ν 2.01E-04

δ 7.88E-02

q 1.02

Likelihood Value

L(ν̂, δ̂, q̂) 4.25

Table 2: Estimation results for the degradation of the seaside

surface of five steel gates of the Haringvliet storm surge barrier.
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N

E

Figure 1: Example of a neighbourhood in a two-dimensional grid.

The black dots N, W, S and E together form the neighbourhood

of the white dot.
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Figure 2: Simulated corrosion at t = 15 years.
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