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Abstract 

 
This study examines the conditional volatility and correlation dependency and 

interdependency for the four major precious metals (that is, gold, silver, platinum and 

palladium), while accounting for geopolitics within a multivariate system. The 

implications of the estimated results for portfolio designs and hedging strategies are also 

analyzed. The results for the four metals system show significant short-run and long-run 

dependencies and interdependencies to news and past volatility. These results have 

become more pervasive when the exchange rate and FFR are included. Monetary policy 

also has a differential impact on the precious metals and the exchange rate volatilities. 

Finally, the applications of the results show the optimal weights in a two-asset portfolio 

and the hedging ratios for long positions. 

 

Keywords: Multivariate, shocks, volatility, correlation, dependency, interdependency, 
precious metals, exchange rates, hedging. 
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1. Introduction 
 

The literature on commodities has concentrated on price co-movements and 

their roles in transmitting information about the macroeconomy. The research covers a 

wide scope of commodities including agricultural commodities, base metals, industrial 

metals and energy. The existing research on precious metals focuses mainly on gold and 

silver. Much of the past research on industrial metals is less generous when it comes to 

examining the volatility of returns of the precious metals. It mainly employs univariate 

models of the GARCH family to analyze volatility. Previous studies focused on own 

shock and volatility dependencies, while ignoring volatility and correlation 

interdependencies over time. Thus, they do not examine precious metals’ shock and 

volatility cross effects. This could be a major shortcoming when one considers such 

applications as hedging, optimal portfolio diversification, inter-metal predictions and 

regulations. In this regard, we are interested in ascertaining to what extent precious 

metal interdependencies exist and the roles of hedging and diversification among them. 

In addition to policy makers, traders and portfolio managers, manufacturers would be 

interested in this information because the metals have important and diversified 

industrial uses in jewelry, medicine, and electronic and autocatalytic industries, as well 

as being investment assets. 

The broad objective of this study is to examine conditional volatility and 

correlation dependency and interdependency for the four major precious metals: gold, 

silver, platinum and palladium, using multivariate GARCH models with alternative 

assumptions regarding the conditional means, conditional variances, conditional 

covariances and conditional correlations. We include the vector autoregressive, moving 

average GARCH (VARMA-GARCH) model and the dynamic conditional correlation 

(DCC) model. We use the DCC-GARCH model as a diagnostic test of the results of the 
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VARMA-GARCH model.  This method enables us to examine the conditional 

volatility and correlations cross effects with meaningful estimated parameters and less 

computational complications that characterize these models. A second objective is to 

examine the volatility feedback effects between the four precious metals and the US 

dollar/euro exchange.1 Almost all metals are sensitive to changes in the dollar exchange 

rates, particularly the dollar/euro rate, which is followed closely by currency and 

commodity practitioners and policy makers. We expect to have metals’ volatility 

heighten when the dollar is weak and volatile because investors move to the safety of 

the dollar-priced precious metals. But we are also keen on knowing whether some 

precious metals volatility contributes to heightened volatility for the US dollar since 

both types of assets may be included in international foreign reserves. A third objective 

is to derive the implications of the estimated results on variances and covariances for 

effectuating optimal portfolio designs and hedging strategies.  

This paper is organized as follows. After the introduction, we present a review of 

the literature on precious metal volatility in section 2. Section 3 provides the data and 

their descriptive statistics. Section 4 illustrates the VARMA-GARCH and 

DCC-GARCH methodologies. The empirical results are discussed in section 5, while 

section 6 provides implications of the estimates of the models. Section 7 concludes. 

 

2. Review of the Literature 

Research on industrial commodities such as oil, copper and precious metals, 

among others, is much richer on explaining their co-movements and information 

transmissions than on illustrating their volatility and correlation dependency and 

                                                        
1 In a classroom exercise on the historical correlations between the gold price and a group of dollar 
exchange rates and indices including dollar/euro, dollar/pound, dollar/yen, exchange rate index-broad 
and exchange rate index-major, the students found that the dollar/euro exchange rate has the highest 
correlation with the gold price over the daily period 1999-2009. 
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interdependence. Moreover, research on volatility is more extensive for oil and energy 

than for precious metals. Within the precious metals, the research on volatility primarily 

employs univariate models of the GARCH family, addresses volatility dependency but 

not interdependency and focuses on one or two precious metals, neglecting other major 

ones such as platinum and palladium. McKenzie et al. (2001) explored the applicability 

of the univariate power ARCH volatility model (PARCH) to precious metals’ futures 

contracts traded at the London’s Metal Exchange (LME). They found that the 

asymmetric effects are not present and the model did not provide an adequate 

explanation of the data. Tully and Lucey (2007) used the univariate (asymmetric) power 

GARCH model (APGARCH) to examine the asymmetric volatility of gold. They 

concluded that the exchange rate is the main macroeconomic variable that influences 

the volatility of gold but few other macroeconomic variables had an impact. Batten and 

Lucey (2007) studied the volatility of gold futures contracts traded on the Chicago 

Board of Trade (CBOT) using intraday (high frequency) and interday data. They used 

the univariate GARCH model to examine the volatility properties of the futures returns 

and the alternative nonparametric Garman-Klass volatility range statistic (Garman and 

Klass, 1980) to provide further insights in intraday and interday volatility dynamics of 

gold. The results of both measures provided significant variations within and between 

consecutive time intervals. They also found slight correlations between volatility and 

volume. 

In terms of nonlinearity and chaotic structure, Yang and Brorsen (1993) 

concluded that palladium, platinum, copper and gold futures have chaotic structures. In 

contrast, Adrangi and Chatrath (2002) found that the nonlinearity in palladium and 

platinum is inconsistent with chaotic behavior. They concluded that ARCH-type models 

with controls for seasonality and contractibility explained the nonlinear dependence in 
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their data for palladium and platinum. They did not examine chaotic behavior of other 

precious metals. 

In comparison with other commodities, Plourde and Watkins (1998) compared 

the volatility in the prices of nine non-oil commodities (including gold and silver) to 

volatility in oil prices. Utilizing several non-parametric and parametric tests, they found 

that the oil price tends to be more volatile than the prices of gold, silver, tin and wheat. 

They argued that the differences stand out more in the case of precious metals. 

Hammoudeh and Yuan (2008) included three univariate models of the GARCH family 

to investigate the volatility properties of two precious metals (gold and silver) and one 

base metal (copper). They found that, in the standard univariate GARCH model, gold 

and silver have almost the same volatility persistence, which is higher than that of the 

pro-cyclical copper. In the EGARCH model, they found that only copper has 

asymmetric leverage effect, and in the CGARCH model the transitory component of 

volatility converges to equilibrium faster for copper than for gold and silver. Using a 

rolling AR(1)-GARCH, Watkins and McAleer (2008) showed that the conditional 

volatility for two nonferrous metals, namely aluminum and copper, is time-varying over 

a long horizon. 

In this paper, we include ARMA in the conditional mean equation to account for 

possible nonlinearity. Recent research has shown that ignoring this attribute may kill 

some of the dynamics of the relationships of the model.2  The recent literature has used 

different ways to deal with non linearity. Pertinent articles on this subject can be found 

in the book edited by Schaeffer (2008). Other articles include Westerhoff and Reltz 

(2005) and Kyrtsou and Labys (2007). 

 

                                                        
2 We thank a referee for bringing this point to our attention and for providing pertinent references. 
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3. Data Description 

We utilized daily time series data (five working days per week) for the four precious 

commodity closing spot prices (gold, silver, platinum and palladium), federal funds rate 

(FFR) and U.S. dollar/euro exchange rate from January 4, 1999 to November 5, 2007.3 

The exchange rate is the value of the US dollar to one euro, suggesting that a rise in the 

rate implies a devaluation of the dollar. The gold (GOLD), silver (SILV), palladium 

(PALL), and platinum (PLAT) are all traded at COMEX in New York and their price is 

measured in US dollars per troy ounce.4 The data for the daily federal funds rate (FFR) 

and the US dollar/euro exchange rate (ER) are obtained from the database of the Federal 

Reserve Bank of Saint Louis. All series are modeled in natural logarithms. 

Since the precious metals, particularly gold, are sensitive to geopolitical crises, we 

included the geopolitical dummy variable, D03, to mark the beginning of the 2003 Iraq 

war. The historical paths of the six variables are graphed in Figure 1. We believe this 

geopolitical episode is more enduring and significant than the 9/11 event. 

The descriptive statistics for the metals’ price levels in U.S. dollar and the returns 

are reported (in level form) in Tables 1-A and I-B, respectively. Unlike oil grades, the 

statistics show that the seemingly close precious metals do not belong to one great pool. 

Based on the coefficient of variation, gold price has the lowest historical volatility 

amongst all the precious metals prices, while palladium price has the highest because of 

its relatively small supply. The annual demand and production of gold are less than 10% 

of its above-ground supply. Its stock is a supply buffer against its fundamentals’ shocks. 

Gold price’s low volatility is also consistent with the fact that gold has an important 

                                                        
3 It is estimated that 80 percent of the world’s platinum supply comes from South Africa, whereas Russia 
is the top producer of palladium. China seems to have overtaken South Africa as the No. 1 producer of 
gold. Mexico and Poland are the largest producers of silver. 

4 Price of silver is usually quoted in cents per troy ounce but we transformed it into dollars per troy ounce 
for consistency purposes. 
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monetary component and is not used frequently in exchange market interventions. Gold 

is known to have notoriously extended bear markets, while silver price is more 

commodity-driven than gold as its monetary element was gradually phased out, but they 

are still closely related. 

The statistics for the metals’ returns generally follow those for their prices. 

Palladium return has the highest historical volatility followed by silver, as measured by 

standard deviation, while gold return has the lowest among the four metals. Silver 

outperforms gold when the market is up and does worse when the market is down. 

Traders know it is better to buy silver before gold when the market is booming, but to 

sell silver before gold when the market starts to head down. It is interesting to note that 

change in FFR is much more volatile than the four metals and the exchange rate’s 

returns. In term of historical return means, platinum has the highest average return 

followed by silver, while gold and palladium have the lowest averages. 

Contemporaneous correlations between metal price returns are shown in Table 2. 

The historical return correlation between platinum and palladium is positive and the 

highest among all precious metals, followed by the correlation between gold and silver 

returns. The saying goes “if you want to buy gold buy silver, and if you want to sell gold 

sell silver”. The lowest correlation is between gold and palladium. The correlation 

between palladium return and those of gold and the other metals is positive. There is a 

noticeably strong correlation between gold and platinum.5 The change in the federal 

funds rate has a negative correlation with all the precious metals, as well as the 

exchange rate. The changes in prices of commodities and nominal interest rate are 

connected through changes in the dollar exchange rate and asset shifts from 

dollar-priced securities to commodities. The appreciation of the dollar exchange rate 
                                                        
5 For information on the anecdotal evidence on the historical correlation between gold and platinum, see 
Hamilton (2000). 
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($/euro) also is associated with higher short-term interest rates and lower commodity 

prices. 

 

4. Methodology 

Our objective is to upgrade the application of the univariate GARCH approach to a 

multivariate system with non linearity in the mean in order to examine the conditional 

volatility, correlation dependency, and interdependency for precious metals and US 

dollar/euro exchange rate in the presence of monetary policy by focusing on meaningful, 

interpretable parameters with minimal computational difficulties. Since BEKK did 

converge when exogenous variables are included, we employ the slightly more 

restrictive VARMA-GARCH model developed by Ling and McAleer (2003) to focus on 

interdependence of conditional variance and correlation among the precious metals and 

exchange rate, and the heavily more restrictive Multivariate Dynamic Conditional 

Correlation GARCH model (DCC-MGARCH) developed by Engle (2002) to focus on 

the evolution of conditional correlations over time and use it as a diagnostic test on the 

dynamics of the first model. 6  These approaches should enable us to investigate 

conditional volatility interdependence, measure short- and long-run persistence in 

conditional correlations among the variables and derive the implications for optimal 

portfolio designs and hedging strategies using the two different types of the multivariate 

GARCH models. 

 

4.1. VARMA-MGARCH 

The precious metal commodities and the exchange rate in the VARMA-GARCH 
                                                        
6  As mentioned above, we estimated the more general BEKK volatility model, but encountered 
convergence problems, less significant relationships and unreasonable parameter estimates. Therefore, 
we decided to use more heavily restricted models as it is well known that the BEKK model suffers from 
the archetypal “curse of dimensionality” (for further details, see Caporin and McAleer (2009)).  
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system are indexed by i, and n is total number of those commodities and the exchange 

rate when the latter is included in a variant model. The mean equation for the ith precious 

metal/exchange rate in this system is ARMA(1, 1) and given by: 

, , 1 , , 1i t i i i t i t i i tR a b R d                                (1) 

1/ 2
, , ,i t i t i th   

where Ri,t is the return of the ith precious metal (or exchange rate) of the nx1 vector Rt 

defined as the first logged difference and MA is the moving average. The MA process is 

included to account for nonlinearity in the mean equation. The innovation ,i t is i.i.d. 

random shock and ,i th is conditional variance of precious metal i (or the exchange rate) at 

time t. Ling and McAleer (2003) proposed the specification of interdependent 

conditional variance:   

2
, , 1 , 1

1 1

n n

i t i ij j t ij j t
j j

h c h   
 

                       (2) 

as a generalization of Bollerslev (1986) univariate GARCH process, where hi,t is the 

conditional variance at time t, hj,t-1 refers to own past variance for i=j and past 

conditional variances of the other precious metals (and exchange rate) in the system for 

ij, Σαij2
j,t-1 is the short-run persistence or the ARCH effects of the past shocks, Σijhj,t-1 

is the long-run persistence or the GARCH effects of past volatilities. From (2), the 

conditional variance for the ith precious metal (or exchange rate) is impacted by past 

shocks and past conditional variances of all precious metals (or exchange rate), 

capturing interdependencies. Therefore, this specification allows for the cross-sectional 

dependency of volatilities among all precious metals (or exchange rate). The past shock 

and volatility of one asset are allowed to impact the future volatilities not only of itself 

but also of all the other assets.  

The parameters of the VARMA-GARCH system defined above are obtained by 
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using the maximum likelihood estimation (MLE) when the distribution of ,i t  is 

standard normal and by quasi maximum likelihood estimation (QMLE) when the 

distribution is not standard normal. Ling and McAleer (2003) showed that the existence 

of the second moment is sufficient for consistency, while existence of the fourth 

moments is sufficient for the asymptotic normality of the QMLE.7  The i.i.d. of ,i t  

implies that conditional correlation matrix of 1, 2, , ,, , ] '[t t t n t     is constant over 

time. The constant correlation matrix is ( ')t tE   , where 1, 2, ,[ , , , ] 't t t n t     .  

 

4.2. DCC-MGARCH 

The assumption that the random shocks 1, 2, , ,, , ] '[t t t n t     have a constant 

correlation matrix may not be well supported in the commodity markets because of high 

uncertainty, structural changes, and geopolitical events. Moreover, some researchers 

prefer to use an MGARCH model of multiple equations that follows a univariate 

process and does not include any spillovers across variables. The results of this model 

can stand as diagnostic tests of those of VARMA-GARCH. Therefore, we apply Engle 

(2002) DCC-MGARCH to examine the time-varying correlations among commodities. 

Furthermore, in contrast to the specification of the interdependent conditional variance 

in equation (2) of VARMA-GARCH, the DCC-MGARCH model assumes that the 

conditional variance of each precious metal (or exchange rate) follows univariate 

GARCH process: 

2
, , , , ,

1 1

p q

i t i i k i t k i s j t s
k s

h c h   
 

                      (3) 

where Σαi,k2
i,t-k is short-run persistence of precious metal (or exchange rate) i’s own 

                                                        
7  See Ling and McAleer (2003) for necessary and sufficient conditions in more details. Jeantheau (1998) 
proved consistency of the QMLE for the BEKK model of Engle and Kroner (1995). 
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past shocks and Σi,shi,t-s is the long-run persistence of the GARCH effects of past 

volatilities. It is worth noting that in the equation (3) the conditional variances of 

precious metals (and exchange rate) are assumed to be independent from one another. 

The estimation of dynamic conditional variance-covariance matrix of 

DCC-MGARCH entails two steps. First, the matrix Qt used to calculate the dynamic 

conditional correlation is assumed time-varying and governed by two parameters, 1 

and 2: 

1 2 0 1 1 1 2 1(1 ) 't t t tQ Q Q                      (4) 

where Q0 is the unconditional correlation matrix of t , which is a consistent estimator 

of the unconditional correlation matrix of commodities, Qt is a weighted average of a 

positive-definite and a positive-semidefinite matrix which is solely used to provide the 

dynamic correlation matrix, and 1 and2 are parameters. 1 represents the impact of 

past shocks on a current conditional correlation, and 2 captures the impact of the past 

correlations. If both parameters 1 and2 are statistically significant, then there is an 

indication that conditional correlations are not constant. The dynamic conditional 

correlation coefficients ( ( )ij t ) between commodities (or exchange rate) i and j are 

calculated by: 

( )
( )

( ) ( )
ij

ij

ii jj

Q t
t

Q t Q t
                      (5) 

Second, the sequence of dynamic conditional covariance matrix is then computed by 

( )ij t and the estimated univariate conditional variances: 

( ) ( ) ( ) ( )ij ij ii jjH t t H t H t                    (6) 
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11, 12, 1,

21, 2 ,

1, 2, ,

( )

t t n t

t n t

n t n t nn t

h h h

h h
H t

h h h

 
 
 
 
 
 



 

   



 

where hii,t=hi,t is for the convenience of notation, which is estimated based on the 

univariate GARCH process as showed in equation (3). The elements hii,t and hij,t are the 

estimated conditional variance and conditional covariance, respectively, at time t and 

hij,t = hji,t.  

 

5. Empirical Results 

We present the estimates of different VARMA-GARCH models with varying 

degrees of parameter restrictions and included variables in order to capture appropriate 

nonlinearity and dynamics. 8   These are: VARMA-GARCH Model I for the four 

precious metals in presence of geopolitics, VARMA-GARCH Model II for three 

precious metals and the exchange rate in presence of monetary policy and geopolitics, 

and two more restricted models, VARMA-DCC Model III for the four precious metals 

and VARMA-DCC Model IV for the three precious metals and the exchange rate in the 

presence of monetary policy.9 The results of the two DCC models (Models III and IV) 

are meant to stand as a diagnostic check on models I and II since a constant conditional 

correlation matrix may not be well supported in commodity markets.10 All models 

include the geopolitical dummy D03 to capture the impact of the ongoing 2003 Iraq war. 

                                                        
8 The results for the more general BEKK version for models I and II are not provided because this 
GARCH version did not converge when exogenous variables are included. When those variables are 
excluded, the results exhibit less dynamics than for the VARMA-GARCH models. 

9
  RATS 6 was used. The estimation algorithm is discussed in Ling and McAleer (2003). 

10 The BEKK frequently does not converge when there are more than four assets, so its 
over-parameterization (otherwise known as "the curse of dimensionality") is a serious computational 
problem. See McAleer (2005) for further discussion of this issue.  
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The volatility proxies for the exchange rate her(t-1) and federal funds rate 

(DLFFRSQ(-1)) defined as a percentage change of the lagged sums of the squared 

deviation from their respective means, are included in the variance equations. Model II 

does not include palladium because the system model does not converge with more than 

four endogenous variables and one lagged exogenous policy variable. Moreover, this 

metal has very small supply relative to gold and silver and is the least known and traded 

of the four metals.11 

We estimate these four models with and without nonlinearity in the mean equations. 

The results show unequivocally that the models with nonlinear means have more 

relational dynamics than those without. We only report results for the nonlinear case. 

This is consistent with the findings of the recent literature. 

  
5.1. Model I(VATMA-GARCH): The Four Precious Metals 

The estimates of the VARMA-GARCH for the four precious metals in Model I are 

provided in Table 3. The ARCH (α) and GARCH (), own past shocks and volatility 

effects respectively, are significant for all the precious metals. The degree of persistence 

is 0.736, 0.978, 0.976 and 0.909 for gold, silver, platinum and palladium, respectively. 

This means the convergence to long-run equilibrium after shocks is the slowest for gold 

and the fastest for silver, with silver and platinum exhibiting similar persistence, which 

means that investors can wait more on silver than on the other three metals to converge. 

 
Own shock volatility 

The degree of own news sensitivity or short-run persistence (ARCH effect) varies 

across those metals, with palladium and gold showing the most news sensitivity while 

silver displaying the least (Table 3). Specifically, palladium and gold have the highest α 

                                                        
11 We thank a referee for bringing this point to our attention. 
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or (news) shock dependency in the short run, amounting to 0.152 and 0.145, 

respectively, while silver’s sensitivity is 0.006. Palladium has a small supply, is 

particularly active during crisis times, and usually exhibits more volatility at a later 

stage of the crisis cycle. Gold (α=0.145) is very sensitive to news, likely because it is the 

most watched metal by traders and policy makers. The exotic metal, platinum, has the 

lowest shock sensitivity (α=0.080), perhaps because it is very expensive. This 

news-oriented result thus separates the four precious metals into two groups: the high 

news-sensitivity group that includes gold and palladium, and the really low news- 

sensitivity group that encompasses silver and platinum. Traders who favor more 

news-sensitive precious metals should focus their eyes on the first group, while those 

who disfavor volatility should focus on the second group. 

 
Own volatility dependency 

As in the case of shock dependency, all four precious metals in this model show 

significant  sensitivity to own past volatility in the long run (Table 3). However, the 

magnitude of the past volatility sensitivity is much greater than that of the past shock 

sensitivity, while the disparity among the metals for the former is much smaller than in 

the latter. This result implies that the precious metals are generally more influenced by 

common fundamental factors (e.g., macroeconomic factors) than by shocks (e.g., fires 

in mines or strikes). In contrast to the shock sensitivity, volatility sensitivity places 

silver and platinum (0.972 and 0.895) in the high volatility sensitivity group, while gold 

and palladium (0.590 and 0.758) in the relatively low volatility group.  

As shown above, gold (=0.590) is relatively less sensitive to macroeconomic 

variables in the long run because of its vast above-ground supply that acts as a buffer 

against changes in annual demand and production in the long run. It is also known to 

have extended bear markets. On the other hand, silver (=0.972) is more 
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commodity-driven than gold, and thus seems to be more influenced by long-run 

economic factors that affect the business cycles than gold. Platinum (=0.895), the 

white metal, which is mostly used as an industrial commodity is sided more with silver 

than with the yellow metal when the long-run own volatility sensitivity is concerned. 

This result shows some distancing between gold and platinum than is known in the 

marketplace.12 This relative separation had become more evident during the recent 

commodity boom. Meanwhile, the grey dull metal, palladium (=0.758), shows a long 

run conditional volatility that is less than platinum but considerably higher than gold. In 

sum, when gold is added to a diversified portfolio, it is likely to raise volatility in the 

short run but does less so in the long run.  This is due to its short run sensitivity to news 

and its long run above-ground supply buffer that smoothes out daily and annual 

fluctuations. However, silver platinum, and palladium add to long-run volatility in this 

respect. 

 
Short-run shock interdependency 

The results also show that spillovers among the four metals are significant, except 

for the cross-shock effects emanating from the gold and platinum to palladium (Table 3). 

Still, the cross shock effects among all the four metals are limited as is the case with the 

own shock effects, lowering the interaction and influence of common global shocks on 

the four metals. This implies that the precious metals do not belong to “one great pool” 

in the short run, dissimilar to the crude oil case, which also has many different oil grades 

but all are commonly affected by shocks (e.g., accidents or fire incidents in oil fields). It 

is interesting to note that the shock impact from palladium on platinum is significant but 

negative (-0.031). This finding suggests that shocks to palladium are likely to cool off 

                                                        
12 See Hamilton (2000) for a closer relationship between gold and platinum 



 17

platinum volatility, possibly because they are substitutes in industrial production.  

In terms of specific cross shock effects for the individual metal, gold is affected 

positively by previous inter-shocks from silver (0.038) and, to a lesser extent, from 

palladium (0.026) in the short run. This shock spillover reflects gold’s high sensitivity to 

its own news, and the positive (historical) contemporaneous correlations between the 

returns of gold and silver as is provided in Table 2. In addition to figuring high in 

commodity investment portfolios as safe havens, gold and silver metals are also used in 

the jewelry industry. The reason for the cross shock impact of palladium on gold is not 

clear.  

In contrast to gold, silver is cross-shock influenced by past shocks from all the 

metals (-0.038 from gold, -0.008 from platinum, and -0.049 from palladium) in addition 

to its own (0.006). Thus, silver shares common shocks with the other metals. Since all 

the cross shock effects are negative, there is likely a reduction in a silver conditional 

volatility coming from the other metals except from itself when combined in a 

diversified portfolio. This result suggests that cross-metal news sensitivity may offset 

more own-news sensitivity effects within a diversified portfolio. Platinum and 

palladium are positively affected by cross shocks from the other metals except from 

each other. 

 
Long run volatility interdependency 

In contrast to the short-run cross shock effects and without exception, the long-run 

impacts of cross past volatility are significant for all the metals. The cross volatility 

impacts are, however, small relative to its own impact. The exception is the cross effect 

between gold and palladium, which is estimated at 0.528 (Table 3). Palladium displays 

volatility late in a crisis, but the result suggests that palladium’s past volatility feeds into 

gold volatility. 
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Gold is consistently the most sensitive to long-run volatility interdependence with 

respect to all other metals (-0.05 from silver, 0.175 from platinum, and 0.528 from 

palladium). Based on anecdotal correlation evidence, Hamilton (2000) showed that 

platinum is a leading indicator of gold. However, our conditional results show stronger 

influence coming from palladium in the long run.  

Gold also has the strongest cross volatility spillover impact on the other metals. 

Factors that affect gold seem to more notably impact the other metals. This result should 

not be surprising as the shiny metal is used in jewelry, industry, and as a safe haven 

investment and part of international reserve, while the other metals are used 

substantially in industrial purposes such as electronics and auto-related industries. The 

strong interdependence with gold is probably due to the yellow metal being the big 

brother with vast above-ground supply, and also being the most watched precious metal 

by traders and policy makers. In a practitioner’s words “Silver investors and speculators 

all watch the gold price…it is the primary ingredient coloring their sentiment. So when 

gold is looking strong, they flood into silver and bid it up rapidly. And when gold 

weakens, many are quick to exit silver.”13 We should also note that during the recent 

crisis, gold was driven down to a 14-month low but silver plummeted to a 34-month low. 

It could also be due to the close relationship between gold and the dollar.  

Silver is the third most (interdependently volatility) sensitive after gold and 

palladium, affected positively by gold and palladium (0.190 and 0.021, respectively) 

and negatively platinum (-0.081). Finally, platinum and palladium are affected by 

long-run volatility spillovers from all the other metals and from each other because both 

shared common uses in autocatalysis, jewelry, and electronics.  

There is only one pair of metals that has a two-way negative conditional volatility 

                                                        
13 See Hamilton (2009). He calls silver “gold’s lapdog.” 
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interdependency in the long run. Silver and platinum’s past volatilities offset each 

other’s current volatility, implying that they are negatively affected by common 

fundamental factors. However, this impact is miniscule compared to that of own past 

volatilities, suggesting that silver and platinum may not be included in a portfolio that 

aims at reducing volatility in the long run, despite silver’s better behavior in this regard. 

 
Geopolitics 

 When it comes to sensitivity of precious metals to geopolitical events, the 2003 Iraq 

war slightly elevated the mean returns of both gold and silver as a result of flight to 

safety (Table 3).14 The results, however, do not show that this war generated the same 

flight to safety across platinum and palladium. Investors who are interested in average 

returns demand risk premium from holding gold and silver, while those who favor 

platinum and palladium do not.  

When it comes to conditional volatility, silver responded positively to this war, 

while platinum and palladium responded negatively in the long run. This implies that 

investors and traders of these metals hedge differently against volatility caused by 

geopolitics during such events.  

 
Constant conditional correlations (CCC) 

 As expected, all the CCCs between the four precious metal returns are positive 

(Table 3). The conditional correlations between the precious metal returns are below 

0.50 reflecting varying news sensitivity and economic uses. All the estimates show that 

the highest CCC is between platinum and palladium (0.48). These metals are used in the 

same industries and the former plays catch up to the latter. The second highest CCC is 

between gold and silver (0.42), which is not surprising considering that these two metals 

                                                        
14 When the September 11th dummy is used, similar results are obtained for volatility. 
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are the most widely traded among the precious metals and both are used in jewelry and 

as an investment vehicle. The lowest is between the most traded gold and the least 

traded palladium. All these conditional correlations are in line with the 

contemporaneous correlations provided in Table 2. 

 
5.2. Model II (Expanded VARMA-GARCH): Precious Metals and Exchange Rate 

This expanded volatility system includes the dollar/euro exchange rate, three 

precious metals as endogenous variables, the federal funds rate as a policy variable and 

the geopolitical dummy. Palladium is excluded for three reasons. First, it is 

characterized by a very small annual production, compared to gold and silver. Second, it 

is not widely traded on world commodity trading centers and considered a “junior” 

precious metal. Third, the VARMA-GARCH (as well as BEKK) did not converge when 

palladium was added to gold, silver, platinum and exchange rate in the presence of FFR 

and the geopolitical variable. 

The ARCH (α) and GARCH () effects for this model are significant for all the 

metals as is the case in the previous model (see Table 4). The degrees of persistence are: 

0.695, 0.975, 0.949 and about 1.005 for gold,15 silver, platinum and exchange rate, 

respectively, with GARCH effect dominating the ARCH effect, implying that 

conditional volatility is predictable from past data. The numbers are comparable with 

the (purely) commodity model, Model I, also implying tardiness in convergence to the 

long-run equilibrium. We should also mention that the volatility persistence for gold has 

increased in this model relative to the previous model because gold is highly sensitive to 

changes in exchange rate and monetary policy. Another noticeable difference is that 

many own and cross-past shocks and volatility spillover effects have lessened slightly in 

                                                        
15  In a multivariate GARCH model, coefficients are not restricted to the interval (-1, 1). 
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Model II relative to Model I as some of these volatilities shifted from being metals 

volatility to metals-currency rate volatility.  

The long-run fluctuations in the exchange rate in the form of a falling dollar and the 

presence of monetary policy increases the cross currency/metal volatilities, attesting the 

safe haven phenomenon is alive and well in this model (Table 4). Gold and platinum are 

the highest recipients of this cross exchange rate volatility followed by silver. All in all, 

this implies that there are economic fundamental factors related to the exchange rate 

volatility that escalate the precious metals volatilities.  

Interestingly, there are also strong volatility spillovers from precious metals to the 

exchange rate but with differential impacts. Gold has the strongest cross reversal impact 

and silver and platinum have lower but similar effects. Precious metals can be 

considered as resource currencies. Gold’s past volatility escalates the exchange rate 

volatility. The yellow metal and US dollars are integral part of international foreign 

reserves for many central banks and gold is the first safe haven for the dollar.  

The findings also suggest that the volatility of the federal funds rate has significant 

impacts, though differential, on the three precious metals and the exchange rate. 

Monetary policy makers consider gold price a harbinger of inflation. The monetary 

authority can also dampen the volatility of the dollar exchange rate by changing the 

federal funds rate, but doing so may lead to an escalation of the volatility of the major 

precious metals markets.  

In this system, the impact of the 2003 Iraq war on both metal returns and volatility 

is significant. It elevates the average returns of all metals and depreciates the US dollar 

relative to the euro because of the flight to safety from dollar assets to hard assets. 

Silver’s average return is affected the most, while platinum return is affected the least. 

The war also increases the volatility of all three metals as well as the dollar volatility. It 
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affects the gold volatility the most and that of platinum the least. Contrary to the 

previous the model, it is possible that the interaction of the geopolitical variable and the 

exchange rate in this model helps elevate the impact of geopolitics in this model. 

There is no change in the positive conditional correlations among the precious 

metals in the expanded system from the previous one. In sum, accounting for the 

exchange rate as an endogenous variable and FFR as a monetary policy variable in the 

system reduces the metals’ volatilities because the metal-to-metal volatilities are 

moderated by the metals-to-exchange rate volatilities despite the strong volatility 

spillovers from the metals to the exchange rate. The policy implication of this finding 

suggests that traders, producers, and policy makers should take this moderation effect 

into account when making decisions. It also points to the significance of a freely moving 

dollar exchange rate in moderating metal volatilities. 

 
5.3. Model III (VARMA-DCC): The Four Precious Metals 

The estimates of this VARMA-DCC model for the four precious metals are 

provided in Table 5. These estimates are significant and mirror, to a large extent, the 

estimates of Model I, underpinning the robustness of the results. The ARCH (α) and 

GARCH (), own past (unexpected) shocks and volatility effects, respectively, are 

significant for all the precious metals, including platinum’s own shock and its spillover 

shock to gold. These are the only shocks that are not significant in Model I. The degrees 

of persistence in this model are higher for some metals, particularly gold, than in Model 

I. They are: 0.913, 0.980, 0.978 and 0.975 for gold, silver, platinum and palladium, 

respectively.   

The news or shock effects in the (purely) metals model are comparable to those of 

Model I, except for silver despite the elimination of cross shock effects in this model 

(Table 5). The estimate of the silver’s own shock effect in this model is much greater 
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than in Model I and close to that of platinum. The effects of past volatility are mixed 

compared to their counterparts in Model I. This implies that the restriction of cross-over 

volatility effect can have measured mixed effects on own volatility of the precious 

metals. 

Figure 2 shows the evolution of conditional correlations between pairs of precious 

metals over time for Model III (VARMA-DCC).16 The range of this evolution is 

between 0.1 and 0.6, which justifies the use of the VARMA-GARCH model in 

examining the volatility transmissions between those commodities. These different 

correlations echo different advantages and varying roles played by these commodities 

over time. 

Our estimates for the DCC model also mirror those that are found in the literature, 

namely that the lagged conditional correlation matrix has the coefficient 2 close to 

unity. There are no long-run dynamic conditional correlations as the effect of shocks, or 

news, is zero. This result may also justify using the VARMA-GARCH models. 

 
5.4. Model IV (Expanded VARMA-DCC): Precious Metals and Exchange Rate 

 Similar to the expanded model II (VARMA-GARCH), this expanded DCC 

volatility system includes the dollar/euro exchange rate, three precious metals as 

endogenous variables, the federal funds rate as a policy variable and the geopolitical 

dummy variable. The results show that all own shock and volatility effects are 

significant. The shock effects in this model are almost identical to those of 

VARMA-DCC in Model III, while the volatility effects are lower for silver and 

platinum but higher for gold (Table 6). We conclude that restricting the shock and 

volatility spillovers does not affect the own shock effects much, but it does have mixed 

                                                        
16 The corresponding graphs for Model IV are very similar to the graphs in Figure 2 and, thus, are 
available upon request. 
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effects on the own volatility spillovers. 

 
6. Implications for Portfolio Designs and Hedging Strategies 

We provide two examples for constructing optimal portfolio designs and hedging 

strategies using our estimates of Model I (VARMA-GARCH) for the four precious 

metals and the geopolitical dummy variable and Model II (VARMA-GARCH) for the 

three precious metals and exchange rate in presence of monetary policy and geopolitics. 

The first example follows Kroner and Ng (1998) by considering a portfolio that 

minimizes risk without lowering the expected returns. In this case, the portfolio weight 

of two assets holdings is given by: 

22, 12,
12,

11, 12, 22,2
t t

t
t t t

h h
w

h h h




 
 

and 

12,

12, 12, 12,

12,

0, 0

, 0 1

1, 1

t

t t t

t

if w

w w if w

if w

 
  
 

 

where w12,t is the weight of the first precious metal in one dollar portfolio of two 

precious metals at time t, h12,t is the conditional covariance between metals 1 and 2 and 

h22,t is the conditional variance of the second metal. Obviously, the weight of the second 

metal in the one dollar portfolio is 1-w12,t.  

The average values of w12,t based on our Model I (VARMA-GARCH) estimates are 

reported in the first column of Table 7. For instance, the average value of w12,t of a 

portfolio comprising gold and silver is 0.81 in favor of the yellow metal. This suggests 

that the optimal holding of gold in one dollar of gold/silver portfolio be 81 cents and 19 

cents for silver. These optimal portfolio weights suggest that investors should have 

more gold than silver and other precious metals in their portfolios to minimize risk 
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without lowering the expected return. This is not surprising, given that the CCC 

coefficient between these two metals is the second highest. Investors should also have 

more platinum than silver (60% to 40%) in their portfolios. These two precious metals 

are not (relatively) highly correlated. When it comes to the two platinum and palladium, 

the optimal portfolio should be 83% to 17% in favor of the exotic metal over the dull one, 

because they have the highest correlation among the four metals.  

All the optimal weight results are confirmed by the estimates of the more restricted 

model, Model III (VARAM-DCC), which gives very similar results. The DCC estimates 

are not reported here but are available on request. 

We now follow the example given in Kroner and Sultan (1993) regarding risk- 

minimizing hedge ratios and apply it to our precious metals. In order to minimize risk, a 

long (buy) position of one dollar taken in one precious metal should be hedged by a 

short (sell) position of $t in another precious metal at time t. The rule to have an 

effective hedge is to have an inexpensive hedge. The t is given by: 

12,

22,

t
t

t

h

h
   

where t is the risk-minimizing hedge ratio for two precious metals, h12,t is the 

conditional covariance between metals 1 and 2 and h22,t is the conditional variance of the 

second metal.  

The second column of Table 7 of Model I (VARMA-GARCH) reports the average 

values of t. The values for hedge ratios for the four precious metals are smaller than 

those for equity markets (Hassan and Farooq, 2007). By following this hedging strategy, 

one dollar long (buy) in gold for example should be shorted by about 19 cents of silver. 

The results show that it is more (hedging) effective to hedge long (buy) gold positions 

by shorting (selling) palladium (than by silver and platinum). Gold and palladium have 
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the lowest CCC among all the pairs. The most (least) effective strategy to hedge silver is 

also to short palladium (platinum). The least effective hedging among all the precious 

metals is hedging long (buy) platinum position using (selling) palladium. Obviously, the 

CCC between the two cousins (platinum and palladium) is the highest among any pairs 

of the precious metals. This case implies hedging is more effective when a long (buy) 

position in one precious metal is hedged with a short (sell) position in another precious 

metal that is not closely related to the first one. 

These values for t are also similar to those obtained from Model III (DCC for the 

four metals). These results will not be repeated in this paper and are available on 

request. 

The optimal portfolio weights and hedging ratios for Model II (VARMA-GARCH) 

for the three precious metals and exchange rate in presence of monetary policy and 

geopolitics are provided in Table 8. The optimal weights for the optimal two-asset 

portfolios: (gold/silver), (gold/platinum), and (silver/platinum) are the same as in Table 

7. The interesting new optimal weights are for the holdings of a precious metal and the 

U.S. dollar exchange rate representing the value of the dollar. The portfolio gold/dollar 

has the highest weight for gold among the three precious metals included in Model I, 

while the silver/dollar portfolio has the lowest. It seems that gold commands the highest 

weight against the U.S. dollar because it is considered the safest haven against 

fluctuations in the dollar. Silver does not seem provide enough diversification benefits 

like gold and platinum. 

The same are also obtained from Model IV (VARMA-DCC) for the three metals 

and the exchange rate in presence of monetary policy and geopolitics. 

 

7. Conclusions 
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This paper investigates conditional own and spillover volatilities and correlations 

for gold, silver, platinum and palladium and also with the exchange rate in simultaneous 

multivariate settings using the VARMA-GARCH and the more restrictive 

VARMA-DCC models. The results of these models are used to calculate the optimal 

two-asset portfolio weights and the hedging ratios. The models have varying-levels of 

restrictions relative to the BEKK model, which did not converge when exogenous 

variables were included. Even when the exogenous variables were removed, BEKK 

gave less reasonable estimates. 17  On the other hand, VARMA-GARCH and 

VARMA-DCC gave more interpretable parameters and have less computational and 

convergence complications.  

Thus, our broad objective in this study is to examine the volatility and correlation 

interdependence among those seemingly close metals and with the US dollar/euro 

exchange rate in the presence of monetary policy and geopolitcs. Our consequential 

objective is to apply the results to derive optimal portfolio weights and hedging ratios. 

The results show that almost all the precious metals are moderately sensitive to own 

news and weakly responsive to news spilled over from other metals in the short run. 

This underscores the importance of hedging in the short run, but it also shows that 

hedging precious metals against each other has its limitation.  

There is however strong volatility sensitivity to own past shocks in the long run, 

with the strongest sensitivity bestowed on silver and the weakest on gold. The saying 

goes “if you like gold, buy silver and if you want to sell gold sell silver.” The spillover 

volatilities are also stronger than the spillover shocks or news, which implies that these 

volatilities are predictable. The CCC matrix shows that gold and silver have the highest 

conditional correlations (0.42) among any pairs of the precious metals after platinum 
                                                        
17  For more information, see Caporin and McAleer (2009). “Do we really need both BEKK and DCC? A 
tale of two covariance models,” available at SSRN: http://ssrn.com/abstract=1338190 
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and palladium (0.48).  

Examining the volatility sensitivity of precious metals to the exchange rate 

volatility in the presence of monetary policy in Model II, the estimates show this 

sensitivity is strong, particularly for silver. The results reflect the fact that gold is the 

safest haven in the flight from the dollar to the safety of the precious metals. There are 

also weak reverse volatility spillovers from the precious metals to the exchange rate.  

The above results reflect on the strategies that aim at designing optimal portfolio 

holdings and effective hedging. Among the pairs of metals that are highly correlated 

like gold and silver, the optimal two-asset holding tilts strongly for one asset at the 

expense of the other ones. The results show we do not have well balanced two-asset 

portfolios for the precious metals. These findings also manifest themselves in the size of 

the hedging ratios between pairs of metals and metals/exchange rate. These results point 

out to the specificity of hedging gold against exchange rate risk. 
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Table 1-A: Descriptive Statistics for Levels 

 GOLD PALL PLAT SILV ER FFR 
 Mean 399.466  366.381  752.290 6.873  1.114  3.594  
 Std. Dev. 138.198  186.035  285.904 3.032  0.163  1.863  
 C.V. 0.346  0.508  0.380  0.441  0.147  0.518  
 Skewness 0.952  1.605  0.541  1.243  -0.080  -0.079  
 Kurtosis 2.678  5.332  2.242  3.096  1.704  1.505  
 J.B. 358.483  1511.853 167.761 595.090 163.824  217.154 
 Probability <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
 Obs. 2306  2306  2306  2306  2306  2306 
Notes: In this panel, we provide the data statistics in levels to place the prices of the absolute US dollar 
values in perspective. GOLD is gold price, PALL is palladium price, PLAT is platinum price, SLVR is 
silver price, FFR is federal funds rate, ER is US dollar/euro exchange rate and C.V. is the coefficient of 
variation.  
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Table 1-B: Descriptive Statistics for Returns 

 DLGOLD DLPALL DLPLAT DLSILV DLER DLFFR 
 Mean 4.5E-04 3.7E-05 6.0E-04 4.7E-04 8.8E-05 -3.3E-04 
 Std. Dev. 0.010 0.021 0.013 0.016 0.006 0.114 
 C.V. 2.22E+01 5.68E+02 2.17E+01 3.40E+01 6.82E+01 -3.45E+02 
 Skewness 0.116 -0.261 -0.262 -1.577 0.009 0.213 
 Kurtosis 8.919 6.846 7.856 19.428 4.032 38.825 
 Jarque-Bera 3370.049 1446.515 2290.749 26875.660 102.344 123282.600
 Probability 0 0 0 0 0 0 
 Observations 2305 2305 2305 2305 2305 2305 

Notes: DLGOLD is gold return, DLPALL is palladium return, DLPLAT is platinum return, DLSLVR is 
silver return, DLFFR is percentage change in federal funds rate and DLER is US dollar/euro exchange 
rate return. All are logged first differences. 
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Table 2: Contemporaneous Correlation Matrix between Returns 

 
Returns  GOLD PALL PLAT SILV ER FFR 

GOLD 1.00       
PALL 0.26  1.00      
PLAT 0.33  0.47  1.00     
SILV 0.37  0.32  0.31  1.00    
ER 0.30  0.15  0.16  0.26  1.00   
FFR -0.01  -0.02  -0.01  -0.05  -0.02  1.00  
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Table 3: Model I-Estimates of VARMA-GARCH for the Four Precious Metals 
 
  Gold Silver Platinum Palladium 
 Mean Equation 

C -0.0001   -0.0004 
b 0.0002   -4.8E-05   

AR(1) 0.5422 
a -0.1955 

a -0.0384 
b 0.0253   

MA(1) -0.5029 
a 0.0448 

b -0.0086  0.0057   

D03 0.0003 
a 0.0011 

a 0.0002   -3.0E-05   

 Variance Equation 

C 4.0E-06
a 1.0E-06

a 4.0E-06
a 1.7E-05 

a 

gold(t-1) 0.1452 
a 0.0353 

a -0.0052  0.0260  
b 

silver(t-1) -0.0380 
a 0.0062 

a -0.0079 
a -0.0496  

a 

platinum(t-1) 0.0275 
a 0.0137 

a 0.0801 
a -0.0305  

a 

palladium(t-1) 0.0016  0.0023 
a -0.0010  0.1516  

a 

hgold(t-1) 0.5904 
a -0.0499 

a 0.1745 
a 0.5284  

a 

hsilver(t-1) 0.1899 
a 0.9717 

a -0.0806 
a 0.0212  

a 

hplatinum(t-1) 0.1054 
a -0.0707 

a 0.8954 
a 0.0952  

a 

hpalladium(t-1) 0.5284 
a 0.0212 

a 0.0952 
a 0.7578  

a 

 +   0.736
 

0.978
 

0.976
 

0.909 
 

D03 -3.0E-08   1.0E-06
a -2.0E-06

a -1.3E-05 
a 

 Constant Correlation Matrix 

Gold 1.00               

Silver 0.42 a 1.00      

Platinum 0.38 a 0.35 a 1.00  


Palladium 0.27 a 0.30 a 0.48 a 1.00  

Log Likelihood 27697.29 


 


 


 


AIC -23.98 


 


 


 


J.B. Stat 3344.6 a 23296.2 a 2437.8 a 1432 a 
Breusch-Godfrey 
LM Stat 3.89 b 36.98 a 1.57  6.23 b 
Durbin-Watson 
Stat 2.08   1.75   1.95   1.90   

#Obs. 2304 
   

   
   



Notes: This model includes the four precious metals -gold, silver, platinum and palladium- as the 
endogenous variables and D03 as the exogenous variable. a and b denote rejection of the hypothesis at the 
1% and 5% level, respectively.  

j(t-1)represents the past shock (news) of the jth metal in the short-run. 
hj (t-1) denotes the past conditional volatility dependency. D03 is the geopolitical dummy for the 2003 
Iraq war. Each column represents an equation. ARMA(1, 1) is the most common suitable specification for 
model convergence and parameter statistical significance ARMA(1,1) is typically superior to AR(1), 
while ARMA(p, q), p>1, q>1, is usually not much different from ARMA(1,1). In our case, ARMA(1,1) 
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gives the best fit. 
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Table 4: Model II-Estimates of VARMA-GARCH for Precious Metals 
and Exchange Rate 

 
  Gold Silver Platinum ER 

  Mean Equation 

C -0.0001   -0.0006 
a -3.2E-05  -0.0001  

AR(1) 0.5711  
a -0.1776 

a -0.0404 
b -0.0420 

a 

D03 0.0004  
a 0.0015 

a 0.0006 
b 0.0004 

a 

DFFR(1) 0.0004   -0.0047 
a 0.0010  -0.0009  

MA(1) -0.5474  
a 0.0351  -0.0154  0.0052  

 Variance Equation 

C -5.0E-06 
a -3.0E-06 

a 0.0000  0.0000 
a 

gold(t-1) 0.1355  
a 0.0356 

a -0.0035 
a -0.0059 

a 

silver(t-1) -0.0078  
a 0.0217 

a 0.0052 
a -3.3E-05 

b 

platinum(t-1) 0.0255  
a 0.0239 

a 0.0695 
a 0.0004 

a 

ER(t-1) -0.1017  
a -0.0508 

a -0.1060 
a 0.0032 

a 

hgold(t-1) 0.5597  
a -0.1693 

a 0.1318 
a 0.0144 

a 

hsilver(t-1) 0.1490  
a 0.9530 

a -0.0718 
a -0.0067 

a 

hplatium(t-1) 0.1529  
a 0.0106 

a 0.8802 
a -0.0168 

a 

hER(t-1) 0.8688  
a 0.5279 

a 0.5477 
a 1.0029 

a 

 +   0.695 
 

0.975 
 

0.949 
 

1.005 
 

D03 5.0E-06 
a 4.0E-06 

a 0.0000 
a 0.0000 

c 

DFFRSQ(1) 3.3E-05 
a 2.0E-06  1.4E-05 

a -2.0E-06 
a 

 Constant Correlation Matrix 

Gold 1.00        

Silver 0.42 a 1.00      

Platinum 0.38 a 0.35 a 1.00   


ER 0.34 a 0.30 a 0.21 a 1.00   

Log Likelihood 30392.58  


 


 


 


AIC -26.32  


 


 


 


J.B. Stat 3435.79 a 24236.67 a 2440.77 a 111.38 a 
Breusch-Godfrey 
LM Stat 1.48  27.32 a 2.10  3.69 c 
Durbin-Watson 
Stat 2.05  1.78  1.94  1.92  

#Obs. 2304  
   

   
   

 

Notes: This model includes gold, silver, platinum and the exchange rate as the endogenous 
variables and DLFFR and D03 as the exogenous variables. a and b denote rejection of the  
hypothesis at the 1% and 5% levels, respectively. her(t-1) is the volatility proxy for the exchange 
rate defined as the lagged squared sum of deviation from the mean. DLFFR is logarithmic 
difference for the federal funds policy variable. ARMA(1, 1) is the most common suitable 
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specification for model convergence and parameter statistical significance. 
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 Table 5: Model III-Estimates of VARMA-DCC for the Four Metals 
 

  Gold Silver Platinum Palladium 

 Mean Equation 

C -0.0001  -0.0006 
b 0.0005  0.0001   

AR(1) 0.6319 
a -0.1869 

a -0.0392 
b 0.0128   

D03 0.0003  0.0014 
a 0.0002  0.0002   

MA(1) -0.6083 
a 0.0357  -0.0145  -0.0163   

 Variance Equation 

C 7.0E-06 
a 3.0E-06 

b 6.0E-06 
a 1.8E-05 

a 

(t-1)  0.1337 
a 0.0678 

a 0.0899 
a 0.1088  

a 

h(t-1) 0.7790 
a 0.9119 

a 0.8885 
a 0.8651  

a 

 +   0.913 
 

0.980 
 

0.978 
 

0.975 
 

D03 2.0E-06 
b 6.0E-06 

a -3.0E-06 
a -8.0E-06 

a 

 DCC Coefficients 

1 0.0085a        

 0.9900a        

LogL 27760.2781 
   

   
   

 

AIC -24.07 


 


 


 


J.B. Stat 3427.05 a 23745.84 a 2437.24 a 1447.05 a 
Breusch-Godfrey 
LM Stat 1.51  33.45 a 1.83  9.98 b 
Durbin-Watson 
Stat 2.05   1.76   1.94   1.87   

#Obs. 2304 
   

   
   

 

Notes: This DCC model includes the four precious metals -gold, silver, platinum and palladium-as the 
endogenous variables and D03 as the exogenous variable. a and b denote rejection of the hypothesis at the 
1% and 5% levels, respectively.  

j(t-1)represents the past shock of the jth metal in the short-run or is 
news. hj (t-1) denotes the past conditional volatility dependency. 1 and 2 are the DCC parameters. D03 is 
the dummy for the 2003 Iraq war. Each column represents an equation. ARMA(1, 1) is the most common 
suitable specification for model convergence and parameter statistical significance. 
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Table 6: Model IV-Estimates of VARMA-DCC for Metals and Exchange Rate 
 

  Gold Silver Platinum ER 

 Mean Equation 

C -0.0002  -0.0006 
b 0.0003  -0.0001   

AR(1) -0.9350 
a -0.1790 

a -0.0368 
c -0.0524  

a 

D03 0.0017 
a 0.0016 

a 0.0004  0.0004  
c 

DFFR(1) -0.0017 
b -0.0053 

b 0.0003  -0.0008   

MA(1) 0.9427 
a 0.0172  -0.0235  0.0023   

 Variance Equation 

C 7.0E-06 
a 2.0E-06 

b 6.0E-06 
a 0.0E+00  

(t-1) 0.1587 
a 0.0689 

a 0.1022 
a 0.0171  

a 

h(t-1) 0.7409 
a 0.9090 

a 0.8739 
a 0.9806  

a 

 +   0.9996 
 

0.9779 
 

0.9761 
 

0.9977 
 

D03 4.0E-06 
a 6.0E-06 

a -3.0E-06 
a 0.0E+00  

DFFRSQ(1) 2.3E-05 
b 4.0E-05 

b 2.2E-05  2.0E-06  


DCC Coefficients 

1 0.0090a        

 0.9892a        

LogL 30425.3657 
   

   
   

 

AIC -26.37 


 


 


 


J.B. Stat 3542.16 a 24232.16 a 2425.46 a 112.46 a 
Breusch-Godfrey 
LM Stat 0.13  30.07 a 1.82  6.25 b 
Durbin-Watson 
Stat 2.01   1.77   1.94   1.89   

Obs. 2304   2304   2304   2304   
Notes: This DCC model includes gold, silver, platinum and the exchange rate as the endogenous variables, 
and DLFFR and D03 as the exogenous variables. a and b denote rejection of the hypothesis at the 1% and 
5% respectively.  

j(t-1)represents the past shock of the jth metal in the short-run or is news. hj (t-1) 
denotes the past conditional volatility dependency. 1 and 2 are the DCC parameters. D03 is the dummy 
for the 2003 Iraq war. Each column represents an equation. ARMA(1, 1) is the most common suitable 
specification for model convergence and parameter statistical significance. 
model convergence and parameter statistical significance. 
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Table 7: Hedge Ratios and Optimal Portfolio Weights Based on Model I (VARMA) 
 

Portfolio Average w12,t Average t 

Gold/Silver  0.81 0.29 

Gold/Platinum  0.69 0.30 

Gold/Palladium  0.87 0.13 

Silver/Platinum  0.40 0.46 

Silver/Palladium  0.66 0.24 

Platinum/Palladium  0.83 0.32 

Notes: This VARMA-GARCH model includes gold, silver, platinum and palladium as the exogenous 
variables, and D03 as the geopolitical dummy. w12,t is the portfolio weight of two assets holdings at time 
t and average t is the risk-minimizing hedge ratio for two precious metals. 
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Table 8: Hedge Ratios and Optimal Portfolio Weights Based on Model 
II (VARMA-GARCH) for Three Metals and Exchange Rate 

 

Portfolio Average w12,t Average t 

Gold/Silver  0.80 0.28 

Gold/Platinum  0.69 0.30 

Gold/ER 0.23 0.56 

Silver/Platinum  0.40 0.46 

Silver/ER 0.10 0.82 

Platinum/ER  0.14 0.47 

Notes: This VARMA-GARCH model includes gold, silver, platinum and the exchange rate as the 
endogenous variables and DLFFR and DO3 as the exogenous variables. w12,t is the portfolio weight of 
two assets holdings at time t and average t is the risk- minimizing hedge ratio for two precious metals. 
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Figure 1: Paths of Daily Prices of the four Precious Metals, Federal Funds Rate 

and Exchange rate 
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Note: All variables are expressed in logarithmic form.  
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Figure 2: Estimated Dynamic Correlation Based on Model III (VARMA-DCC) 
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