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Abstract

We create a hedonic price model for house prices for six geographical submarkets in the
Netherlands. Our model is based on a recent data mining technique called boosting. Boosting
is an ensemble technique that combines multiple models, in our case decision trees, into
a combined prediction. Boosting enables capturing of complex nonlinear relationships and
interaction effects between input variables.

We report mean relative errors and mean absolute error for all regions and compare our
models with a standard linear regression approach. Our model improves prediction perfor-
mance with up to 40% compared with Linear Regression. Next, we interpret the boosted
models: we determine the most influential characteristics and graphically depict the relation-
ship between the most important input variables and the house price. We find the size of
the house to be the most important input for all but one region, and find some interesting
nonlinear relationships between inputs and price.

Finally, we construct hedonic price indices and compare these to the mean and median
index and find that these indices differ notably in the urban regions of Amsterdam and
Rotterdam.

1 Introduction

Hedonic pricing theory hypothesizes that the price p of a product is determined by a function
p = F ∗(x), where x is a bundle of characteristics that define the product. Hedonic pricing theory
is generally attributed to Court (1939), Lancaster (1966), Griliches (1971b, 1971a) and Rosen
(1974).

In practice the hedonic function F ∗(x) is estimated by a model F (x) which is fitted on a
historical dataset {pi,xi}N

1 . Traditionally, these models are Linear Regression or Box-Cox type
models.

In the context of housing and real estate hedonic models are useful in three ways. In the first
place a hedonic model is a very suitable way to predict house prices. House price prediction can
be used for bulk appraisal for property tax, but can also help real estate brokers by determining
the asking price for a house. However, it is also possible to use a hedonic method for a website
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feature, where potential costumers can check their house value informally, after which they may
decide to sell their house, although they did not intend to do so in advance.

The model structure itself can also be interesting, especially when one wants to find out
what the influence is of a characteristic of the house on the price or which characteristics have the
highest influence on the price. By interpreting the hedonic model these questions can be answered.
Harrison and Rubinfeld (1978) for example use a hedonic model to find a relationship between air
pollution and house prices.

The third way in which the hedonic model can be useful, is when it is used to create a hedonic
price index. A hedonic price index uses a hedonic model to correct for quality differences over
time. Ordinary indices may give a deceptive view, because the average or median product in year
t may be a better (or worse) product than in year t − 1. An average house in the 1930’s for
instance can in no way be compared with an average house sold in the year 2004 (since these have
different characteristics), but nonetheless this is what a regular price index does. Hedonic indices
for housing are for instance constructed by Wallace (1996) and Clapp (2004).

Traditional hedonic models have the advantage they are easy to interpret and estimate, but
often suffer from misspecification: The assumptions made on functional form do not allow a good
representation of reality, i.e., the hedonic model does not fit the data well. Several authors, e.g.
Anglin and Gençay (1996), Gençay and Yang (1996), Pace (1998), Clapp (2004), Boa and Wan
(2004), Bin (2004), Martins-Filho and Bin (2005), have used semi- and non-parametric methods
to estimate a hedonic price model and compared these models with the traditional parametric
hedonic models. Usually these new models outperformed the parametric models in terms of
prediction performance. Also artificial neural nets, a popular machine learning technique, are
frequently used for the estimation of the hedonic function, e.g. by Daniels and Kamp (1999),
Kershaw and Rossini (1999), Lomsombunchai, Gan, and Lee (2004). An artificial neural net is a
very flexible model, which in theory is a universal function approximator.

A recent successful machine learning method is boosting. Boosting is a relative new method
to combine multiple models into a combined prediction. These individual models are called base
learners. Often regression or classification trees (Breiman, Friedman, Olshen, and Stone 1983) are
used as base learners, but a combination of other models, e.g., neural nets is also possible (Drucker
1999) (We will describe regression trees and boosting in more detail in Section 2.). Van Wezel,
Kagie, and Potharst (2005) use boosting for hedonic pricing. Boosted hedonic price models where
created for 3 small and simple datasets available on the internet: one dataset deals with automo-
biles, the other two with houses. On two out of the three datasets the boosted models substantially
improved out-of-sample performance compared with a stepwise linear regression model.

In this paper, boosted regression trees will be used to create hedonic models for 6 regions
in the Netherlands. Real-life data of the year 2004, collected by the largest association of real
estate brokers in the Netherlands, the NVM, will be used. These hedonic models will be used for
prediction, interpretation and the construction of hedonic price indices.

The remainder of this paper has the following structure. In the next Section we will discuss
regression trees and boosting in more detail. Section 3 describes the data used in the experiments.
Section 4 describes the performed experiments and their results. In Section 5 two graphical
methods, relative importance plots and partial dependence plots are used to interpret the boosted
hedonic price models. A hedonic price index based on our boosted models is discussed in Section
6. Finally Section 7 gives a discussion, conclusions and directions for further research.

2 Models & Methods

In this section we will discuss the Machine Learning techniques used in this paper. Generally,
in Machine Learning a model is trained (fit, calibrated) on a dataset D = {(xi; yi)}N

i=1. An
instance (observation, row) (x; y) exists of a vector of J attributes x = (x1, . . . , xJ) and a target
y. The x attributes are the explanatory or independent variables and the target is the explained
or dependent variable. In Machine Learning a distinction is made between classification and
regression models. In the classification case the targets {yi}N

1 have a categorical or binary value,
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Figure 1: Example of a Regression Tree: The root node divides the houses in the dataset in two
parts using the continuous variable size. Instances with a size smaller than 100 m2 go left, all
others right. Instances going right get a price of 173000 euros. The instances who were going
right, will be split a second time on the categorical type. When the type is apartment, the instance
is going left.

in the regression case a continuous value. In both cases the attributes xj can be either continuous,
categorical or ordinal.

2.1 Classification and Regression Trees

CART (Classification And Regression Trees) is one of the most frequently used methods for con-
structing decision trees and developed by Breiman, Friedman, Olshen, and Stone (1983). In this
paper we will use the CART regression tree.

A regression tree consists of decision nodes and leaf nodes. Each decision node has two child
nodes, which may again be decision nodes or leafs. The root of the tree is on the very top – it
is the only node in the tree without an ancestor. Every decision node (also called non-terminal
node) contains a split criterion, which divides the data at that point in two parts. This split
criterion has the shape of xj < C for continuous variables, where xj is the jth variable and C is
some constant. For a categorical variable the split criterion looks like xjε(V ), V ⊂ Wj . Here is
Wj collection of all possible levels of variable j. The terminal nodes (leafs) contain a ŷ value, an
estimate for the target value in that leaf. In practice this value is taken to be the average of all
observed y values in that leaf.

An example of a regression tree is shown in Figure 1. This tree can be used for prediction as
follows. We begin at the root and when the split criterion is met we turn left and when it is not
met we turn right. We keep on doing this until we reach a terminal node and use the ŷ value in
that node as our prediction.

Decision trees are usually built in two phases. The first phase is a growing phase, the second
phase is a pruning phase. In the growing phase, the tree is grown until error reduction on the
training set is no longer possible or a predetermined threshold has been reached. The resulting
model usually overfits the data, and this is countered in a pruning phase, where the tree is shrunk
until the error on a hold-out sample, the pruning set, is minimal. Details on the CART procedure
for growing and pruning can be found in, e.g., (Breiman, Friedman, Olshen, and Stone 1983;
Ripley 1996). Here, we suffice by saying that, given dataset {(xi; yi)}N

1 , a regression tree B is
constructed such that it minimizes the squared error loss

B = arg min
B

Ex,y[(B(x)− y)2],

where B(x) denotes the prediction of tree B for input vector x.
In the context of Boosting, discussed below, the pruning phase of the decision tree algorithm

is usually skipped and instead the tree size is limited to a predetermined depth. In the most
extreme case the tree depth is 1. The tree then consists of a single decision node and two leaves.
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Such a special tree is called a decision stump. Although a single decision stump has very limited
modelling power, an ensemble of such stumps is able to model complex relationships.

Regression trees have some advantages over linear regression. In the first place regression trees
are able to determine themselves which attributes are to be used for modelling the target variable.
Another advantage is that regression trees are able to model interactions between attributes and
non-linearities, without a required explicit transformation of the inputs. For example, there may
be an interaction effect between lot size and location. In the center of a city houses are built more
closely to each other so gardens are smaller or absent. A square meter of building site in the city
will therefore be far more expensive than in the country, so there is an interaction between the
two variables.

There are many examples of non-linearities in the context of housing in the Netherlands, of
which construction year is probably the most clear one. Where ancient houses from the 19th

century and before are more expensive than same kind of houses from later periods, because of
their monumental character, houses from the 1950’s on the other hand are relative cheap. Since
many houses where destructed in World War II, a lot of new dwellings had to be built as quick as
possible in the late 1940’s and 1950’s, so that buildings built in this period are of a less quality and
also not the most beautiful ones. Finally newly built houses are of course again more expensive,
so the average relationship between construction year and price is clearly non-linear. Many other
variables show saturation effects, e.g. the utility of a 3rd or 4th room is much higher than the
utility of the 8th.

Besides the previous advantages there are also two practical ones: In contrast to parametric
models regression trees can handle categorical variables and missing values, without transformation
of the data.

A drawback of decision trees is their instability – The implemented model depends heavily on
the dataset used for model creation, and a small change in the data may have large consequences
for the model. Ensemble methods, such as bagging (Breiman 1996) and boosting, have a stabilizing
effect by averaging over a number of decision trees. We consider boosting next.

2.2 Boosting

Boosting is a method to combine multiple models to improve performance. Boosting was first
applied to and developed for classification problems (with categorical response) by Freund and
Schapire (1996, 1997). In a classification context boosting seemed to be able to strongly reduce
the error rate on out-of-sample data in many cases (Breiman 1998). The idea behind boosting is
to create a sequence of models, called base learners, in which each subsequent base learner focusses
on the residual error of the previous base learners. Often, these base learners are decision trees
or stumps. The original Freund and Schapire boosting algorithm for classification, AdaBoost.M1,
tries to do this by increasing the weight of instances that were wrongly classified by the previous
base classifier and decreasing the weight of the correctly classified instances.

The AdaBoost.M1 algorithm was only applicable to binary classification problems. For these
problems, the model predicts whether an instance belongs to a class or not. The model thus
has a 0/1 output and the quality of the model is measured with the 0 − 1 loss function, which
basically counts the number of misclassifications. For modelling house prices this loss function
is not suitable. Instead, we need a regression loss function that measures the deviance between
two numerical values, as usual in regression. This means that we cannot apply the AdaBoost.M1
algorithm to house price prediction, but we have to use a Boosting algorithm for regression. We
will pay more attention to loss functions for regression below.

Driven by the success Boosting had in the case of classification various Boosting algorithms
were designed for regression (Drucker 1997; Zemel and Pitassi 2001; Duffy and Helmbold 2000;
Duffy and Helmbold 2002; Rätsch, Warmuth, Mika, Onoda, Lemm, and Muller 2000; Buhlmann
and Yu 2003; Friedman 2001). Friedman (2001) developed LSBoost, LADBoost and MBoost based
on the squared, absolute and Huber loss function respectively. (All these loss functions apply to
regression problems.) Duffy and Helmbold (2000, 2002), Rätsch, Warmuth, Mika, Onoda, Lemm,
and Muller (2000) and Buhlmann and Yu (2003) developed similar algorithms but with other loss
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functions. Friedman (2002) also created stochastic variants of his boosting algorithms, where a
base learner is repeatedly trained on a sample drawn without replacement from the dataset.

In this paper we will use the non-stochastic versions of Friedman’s LSBoost and LADBoost
algorithms. These algorithms are chosen because, contrary to many other Boosting algorithms,
they have a solid mathematical foundation: they are instantiations of a general Boosting algorithm
for general loss functions named GradientBoost. We now give a brief, imprecise description of
GradientBoost, LSBoost and LADBoost. More detailed descriptions of these algorithms can be
found in (Friedman 2001) and in Appendix A. We will pay more attention to loss functions shortly,
in Subsection 2.3.

Contrary to fitting a single model, like the decision tree B above, boosting starts of with an
initial guess F0 and then fits a sequence of M models B1, . . . , BM (the base learners) which are
subsequently combined in a weighted manner. The final model is thus

FM (x) = F0(x) +
M∑

m=1

νρmBm(x).

Here, ρm denotes the weight for model m and is determined by the algorithm. M , the number of
iterations, is to be set by the user. ν ∈ (0; 1] denotes a regularization parameter parameter called
the learning rate. Small values of ν will help prevent the algorithm overfitting the training data.

Note that in the mth iteration, Bm() is added to Fm−1:

Fm(x) = Fm−1(x) + νρmBm(x).

It makes sense to choose Bm() such that is minimizes the residual error of Fm−1. Roughly speaking,
given a general loss function L(y, F ), Bm attempts to minimize the expected value of this loss
function over the dataset:

Bm = arg min
B

N∑
i=1

L(yi, [Fm−1(xi) + B(xi)]).

In practice this is done by fitting pseudo responses ỹi in each iteration

Bm = arg min
B

N∑
i=1

{ỹi −B(xi)}2.

Three remarks must be made about this equation. The first remark is that the ỹ values depend
upon the loss function in question. See the appendix for details on how these pseudo-responses
are derived. Here, we suffice by stating that the pseudo-responses for the

• squared error loss function L(y, F ) = (y − F )2/2 are given by ỹi|m = yi − Fm−1(xi), and

• for the absolute deviation loss function L(y, F ) = |y − F | are given by ỹi|m = sign(yi −
Fm−1(xi)).

The squared error loss function and the absolute deviation loss function are used in the LSBoost
and LADBoost algorithms respectively.

The second remark is that the minimization over B is done by minimizing over B’s parameter
space. If B is a tree, these parameters are the split variables and split points in the decision nodes,
and BM is the tree that gives the best fit of the ỹ values in iteration m. If B is a neural network,
these parameters are the weights and biases of the neural network.

The third remark is that no matter what loss function boosting attempts to minimize, a least
squares regression is performed in each step of the Boosting algorithm. So, even if the Boosting
algorithm as a whole does not minimize squared error loss but another loss function, the individual
base models are fit by least squares regression.
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no. volume lotsize price
1 4500 45270 4310912
2 425 323 420000
3 400 310 329000
4 310 360 275000
5 380 255 232500
6 360 180 210000
7 360 156 195000
8 300 154 183500
9 225 90 167000
10 225 70 137500

Table 1: Dataset used in the example. Left: scatter plot with outlier, middle: scatter plot without
outlier, right: dataset.

2.3 Loss Functions & Boosting Example

In this subsection we give an illustrative example of the first iterations of the Boosting process for
a small dataset. This subsection also serves to illustrate the consequences of using the squared
error- or absolute deviation loss function. The first loss function is the most common in regression
settings. However, a drawback of this loss function is its sensitivity to outliers, since squaring the
errors blows up the large errors caused by the outliers. This drawback can be relieved by using
the absolute deviation loss function.

For the example, we use the data in Table 1. These data come from the Apeldoorn dataset
(see below) and represent 10 houses in the Apeldoorn region. Both volume, lot size and price
are approximately 10 times as high for house 1 as for the 2nd most expensive house, number 2.
Clearly, house 1 is an outlier.

In the example below, we use both LSBoost, which attempts to minimize the squared loss
function, and LADBoost, based on the absolute deviation. We will see how both these methods
cope with the outlier. As base learners, we will use decision stumps – trees with only one decision
node and two leaves. The learningrate is set to 1.

2.3.1 LSBoost example

First we start with the LSBoost algorithm. First the initial guess F0 is computed. This is the
mean price of the datapoints:

F0 = ȳ = 646041.20

The outlier is responsible for the fact that the first guess F0 is in between the highest and the
second highest price. With the use of F0 the residuals ỹ are computed and on these residuals the
first tree is trained. The first stump splits on lotsize < 22815, which means that outlier datapoint
1 is excluded from the other points. After this step there are thus two groups: the outlier and the
rest. Since our interest is mainly in the normal houses, we actually know nothing at all after this
step, which is graphically shown in plot F1 of Figure 2.

In the second iteration again a stump is trained on the residuals. Outlier datapoint 1 has a
residual of 0, because it is correctly predicted by the first base learner. Further datapoints 2 and
3 have a positive residual and the rest a negative one. It is the task of the second stump to find
a split that separates the high (positive) from the low (negative) residuals. In fact the second
stump uses lotsize < 282.5 to separate the 5 less expensive (who had negative residuals)from the
3 expensive houses (who had non-negative residuals). In plot F2 this division is shown. Datapoint
1 is not shown in the plot, so that the focus is on the “normal” houses. Remarkable is that the
prediction of datapoint 1 is not perfect any more after the second iteration, since this second
stump adds €76875 to the (correct) price of F1.

In the third iteration again datapoint 1 has the highest residual in absolute terms. Although
the prediction of F2 has only made a mistake of 1.8% on this point, datapoint 1 will again has
a high influence on the third stump. Also points 4 and 8 were highly overestimated up to now,
where datapoint 5 is highly underestimated. It is obvious that there is no way to separate these
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3 overestimated point from the underestimated one. But when datapoint 1 was excluded from
the dataset, we could use the criterion volume < 335 to split the overestimated points from the
underestimated ones. But the third stump chooses to separate point 1 and 4 from the rest using
lotsize ≥ 341.5. This means that this stump in fact gives a penalty on these high lot sizes, i.e. it
modelled a negative effect between lot size and price. When we look at plot F3 we see that due
to this penalty, houses with a lotsize ≥ 341.5 (and lotsize < 22815) have a lower predicted price
than houses with a lotsize < 341.5.

Finally in the fourth iteration the four cheapest houses are separated form the 6 expensive
ones again on the variable lotsize. The spit criterion is lotsize < 155. After 4 iterations LSBoost
has produced a model that divides the space of possible houses into 5 parts all based on lotsize.
A higher lotsize leads to a higher price, except for the area 341.5 ≤ lotsize < 22815. Only
datapoint 4 is in this area. This house has indeed the second largest lotsize of the 10 houses, but
in terms of volume it comes only on a seventh place. This typical split (of the third iteration) was
influenced by the outlier, despite the prediction of this house was relative good. And also the first
iteration was negative influenced by the outlier, because we had preferred an extra split between
the normal houses, which is far more useful for out-of-sample prediction. Of course these effects
will be smaller in the real experiments, because of the larger sizes of the datasets and the use of
a smaller value for the learningrate parameter.

2.3.2 LADBoost example

LADBoost tries to minimize an absolute loss function. To do this, it uses the sign (-1,0 or 1) of the
residual instead of the residual themselves as pseudo responses and medians instead of means. In
theory these adaptations should make LADBoost more resistant to outliers. Also with LADBoost
we start with an initial guess, in this case the median of the prices of the dwellings in the dataset:

F0 = median(y) = 221250

Since it is the median, it is obvious 5 datapoints are overestimated and 5 underestimated. The five
more expensive houses get a ỹ = 1 and the five cheaper ones get a ỹ = −1. The first stump can
split these to groups perfect using the split criterion lotsize < 217.5. The medians of the residuals
of the datapoints in a node are finally used as the prediction. For the left side this is the residual
of datapoint 8, -37750, and for the right side this is the residual of datapoint 3, 107750. So after
the first iteration datapoints 3 and 8 are correctly classified and the outlier has had no influence
in the process. Graphically the first step of LADBoost is shown in plot F1 of Figure 3.

In the second iteration, shown in plot F2, it is impossible for a decision stump to separate the
positive signed targets from the negative signed ones. The stump splits the data on volume < 335.
This is the split we wanted LSBoost to make in its third iteration, but that it did not make, caused
by the outlier. In the LADBoost algorithm the residual of the outlier has the same influence on
the training process as the other residuals due to the fact that the signs of the residuals are taken.
This is the reason the split on volume is performed here.

In the third iteration the outlier has for the first time influence on the process. There are
five datapoint with positive signs, the 2 most expensive houses and houses 6,8 and 9, which are
situated relatively in the middle of the data. Since it is impossible to separate datapoints 6,8 and
9 in some way from the other points, it is obvious that the split is made on volume < 412.5, so
that point 1 and 2 are separated from the rest. House 1 and 2 are thus together one node with
residuals of 3962912 and 72000. According to the algorithm these houses are predicted by the base
learner by taking the median of the residuals in the node. The median of two points is the mean:
2017456. Obviously this has a terrible influence on the prediction of the second house, which was
predicted 72000 euros too low by F2, but is predicted nearly 2 million too high by F3. The outlier
has in this case a high influence, but in large datasets this situation is unlikely to occur.

Finally in the fourth iteration the same split is made as in the first iteration, only signs are
switched: lot ≥ 217.5. In fact the influence of the first base learner is reduced.

When we compare these steps of LADBoost with LSBoost, we see that the influence of the
outlier is less than in the LSBoost algorithm. Only in the third iteration the outlier has an
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Figure 2: LSBoost process
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Figure 3: LADBoost process

influence, but this is a rather large one. However, the small size of the dataset is mostly responsible
for this influence. LADBoost has the advantage that it is less sensitive to outliers, but this means
also that is expected to be worse in the appraisal of expensive houses. Therefore we will use both
algorithms in this paper.

2.3.3 Loss Functions for Model Evaluation

We mentioned above that we use either absolute or squared error in the boosting (model fitting,
training) procedure. However, for the purpose of interpretation the squared error loss function
is not very suitable, as the mean (or sum of) squared error(s) may largely be determined by an
outlier.
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Figure 4: The situation of the 6 NVM Regions.

Thus, for model evaluation we use either the Mean Absolute Error or the Mean Relative Error:

MAE =
1
N

N∑
i=1

|FM (xi)− yi|, (1)

MRE =
1
N

N∑
i=1

∣∣∣∣FM (xi)− yi

yi

∣∣∣∣ . (2)

where FM (xi) denotes the prediction as before. These loss functions have the advantage of better
interpretability, and they are used to report model performance even when a model is fit using
the squared loss function.

3 Data

The datasets used in this paper are derived from the database of the Nederlandse Vereniging
van Makelaars (NVM, Dutch Association of Real Estate Brokers). The NVM is the largest Dutch
association of real estate brokers with 3751 members. 80 % of the sworn brokers in The Netherlands
is a member of the NVM. The NVM has divided The Netherlands in 80 living regions or housing
markets. Most people move inside such a region and therefore these regions can be seen as distinct
markets. For the experiments 6 living regions are used: City of Groningen and environs, Apeldoorn
and environs, Eindhoven and environs, Amsterdam, Rotterdam and Zeeland. In the next section
the 6 regions will be briefly described and in Section 3.2 an overview of the used variables will be
given.
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groningen apeldoorn eindhoven amsterdam rotterdam zeeland
Size Dataset 3387 2402 3730 8490 7510 2216

NVM Market Share (2003) 77% 91% 51% 76% 56% 33%
Housing Stock 99034 76330 168342 430733 418467 157377

Percentage Houses in Dataset 3.42% 3.15% 2.22% 1.97% 1.79% 1.41%

Total Area Size (m2) 288.10 498.38 308.98 303.33 448.83 2689.38
Size Land (m2) 272.45 496.17 304.20 239.02 337.75 1645.30

Percentage Land 94.57% 99.56% 98.45% 78.80% 75.25% 61.18%
Population Size 217593 189309 392773 855094 899781 349683

Population Density 799 382 1291 3577 2664 213
Apartments 45.73% 22.31% 24.21% 79.41% 61.58% 10.47%

Terraced 34.96% 35.64% 72.65% 18.20% 31.80% 48.29%
Detached 8.92% 25.60% 9.92% 0.94% 2.30% 25.36%

Semi Detached 10.39% 16.44% 17.35% 1.45% 4.31% 15.88%

Table 2: Some characteristics of the 6 regions.

3.1 Regions

Figure 4 shows where the regions are located in the Netherlands and Table 2 summaries some
characteristics of the 6 regions. A brief description of the six regions is given below1:

City of Groningen and environs: The city of Groningen is located in the province Groningen
in the north east of the Netherlands. The region contains the municipalities of Groningen
(179185 inhabitants, 76 km2), Haren (19048, 46 km2), Eelde (6920, 13 km2), Norg (7160,
110 km2) and Peize (5280, 28 km2). Groningen is the largest city in the north west of the
Netherlands and the capital of the province with the same name. It is surrounded by small
rural villages. With 77% the NVM has a relatively high market share in this region.

Apeldoorn and environs: Apeldoorn is located in the province Gelderland in the east of the
Netherlands. The region contains the municipalities of Apeldoorn (156000 inhabitants, 340
km2) and Epe (33309, 156 km2). Like Groningen Apeldoorn is mainly surrounded by small
villages. This region is interesting, because all the house types are almost equally present in
this region and the NVM has a very high market share of 91% in this region.

Eindhoven and environs: Eindhoven is located in the province Noord-Brabant in the south east
of the Netherlands. The region contains the municipalities of Eindhoven (207870 inhabitants,
88 km2), Nuenen (23367, 34 km2), Son en Bruegel (15070, 26 km2), Valkenswaard (31091,
55 km2), Veldhoven (42545, 32 km2), Waalre (16502, 22 km2) and Geldrop (27670, 13 km2).
Eindhoven is the largest city in the south east of the Netherlands and has became this mainly,
because of the factories and head quarters of DAF Trucks and Philips, that were located in
this city. Eindhoven itself is a typical Dutch city with a large amount of terraced houses.
The NVM has a market share of 51% in this region.

Amsterdam: Amsterdam is located in the province Noord-Holland in the west of the Nether-
lands. The region contains the municipalities of Amsterdam (739104 inhabitants, 161 km2),
Amstelveen (78886, 44 km2), Diemen (24049, 12 km2) and Ouder-Amstel (13055, 24 km2).
Amsterdam is the largest city in the Netherlands and the capital of the country. The city
is situated on the borders of the river IJ. Amstelveen, Diemen and Duivendrecht (Ouder-
Amstel) are suburbs of Amsterdam. The NVM has a market share of 76% in this region.

Rotterdam: Rotterdam is located in the province Zuid-Holland in the west of the Netherlands.
The region contains the municipalities of Rotterdam (598923 inhabitants, 206 km2), Capelle
aan den IJssel (65354, 14 km2), Krimpen aan den IJssel (29046, 8 km2),Nieuwekerk aan
den IJssel (22334,17 km2), Vlaardingen (74058,24 km2), Schiedam (75619, 18 km2), Al-
brandswaard (19607, 22 km2) and Nederlek (14831, 28 km2). Rotterdam, the second largest
city in the Netherlands, is one of the largest sea ports in the world and located in delta of

1All statistics that are used in the descriptions and Table 2 are derived from the online StatLine database of the
CBS (de Jonge, Reedijk, and Sluis 2005), except the NVM market shares.
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the rivers Rhine, Maas, Lek and IJssel and near the North Sea coast. The market share of
the NVM real estate brokers in this region is 56%.

Zeeland: The region Zeeland contains almost the complete province of Zeeland, located in the
south west of the Netherlands. The region contains the municipalities of Borsele (22318
inhabitants, 142 km2), Goes (36591 inhabitants, 93 km2), Hulst (27887, 201 km2), Kapelle
(11627, 37 km2), Middelburg (46350, 49 km2), Reimerswaal (20996, 102 km2), Terneuzen
(55412, 251 km2), Veere (22130, 133 km2), Vlissingen (45236, 34 km2), Schouwen-Duiveland
(34416, 231 km2), Noord-Beveland (7124, 86 km2) and Sluis (24596, 280 km2). Zeeland exist
of a number of islands and peninsulas (Schouwen-Duivenland, Noord- and Zuid-Beveland,
Walcheren and Zeeuws-Vlaanderen) and because of that 40% of the total area of Zeeland is
water. Zeeland is one of the less dense populated regions in the Netherlands and also the
NVM has a relative small market share (33%) in this region. Besides the large size of this
region these two reasons would make that Zeeland is expected to be the region that is the
hardest to predict.

3.2 Variables

For these 6 regions all transactions of existing houses (no newly built houses) that were sold by
NVM brokers in the year 2004 are used to create the datasets. The transaction price in euros
is the target variable or response. There are 83 explanatory variables, of which 12 variables are
continuous, 12 variables are categorical and the other 59 are binary. Both the continuous and
the categorical variables have some missing values. Not all categorical variables are compulsory
to fill in by the broker who sold the house and continuous variables contain some odd values like
9999 and 0’s for number of total rooms and 1’s for house sizes. These odd values are replaced by
missing values. Binary values measure whether something is present or not, so missing values are
replaced by 0 in the dataset. A description of the variables for the 6 regions is given in Table 9
up to 14 in the Appendix. The floor specific variables (except rooms per floor) are summarized in
Table 15 for all regions together. When a variable has the same value for all houses in a dataset
the variable is omitted in the table. For the districts only the 5 biggest districts are given in the
tables, but all districts are used in the computations.

3.3 Demographic Data

According to many real estate brokers location is one of the most important characteristics that
determine the house price. In the dataset location is included in the terms of a district code. In
the different regions 3 levels of geographic positioning can be used: On municipality, district and
neighborhood level. Of course we want to include a positioning at the lowest possible level. How-
ever, the disadvantage of the use of neighborhood coding, is its number of possibilities. Because
there are many different neighborhoods and some of them are very small, there are neighborhoods
where during the time of one year only one or two houses are sold and often even none. The use
of neighborhoods coding will thus definitely lead to classification problems (because one tries to
estimate the price of a house positioned in a neighborhood unknown to the model) and overfitting
of the dataset (because many neighborhoods are represented in the dataset by just a couple of
houses). On the other hand the use of district coding has the disadvantage that, especially in
big cities as Amsterdam and Rotterdam, the defined districts are quite large, with up to 80, 000
inhabitants and a surface of up to 4, 000 hectares.

Due to these considerations we use another way represent location, namely with the use of
demographic data. Statistics Netherlands (Centraal Bureau voor Statistiek, CBS) publishes de-
mographic information for all the municipalities, districts and neighborhoods in the Netherlands.
This information is free accessible on the internet via StatLine (de Jonge, Reedijk, and Sluis 2005).
The neighborhood codes of the houses available in the dataset are matched with the CBS neigh-
borhood information. When a characteristic is missing for some neighborhood, this characteristic
is replaced by the value for the district the neighborhood belongs to. When this information is
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also unavailable for the district, the municipality data is used. When information of neither of
the 3 levels is available a missing value is inserted. Table 16 shows which information is included
from the StatLine database.

4 Experiments and Results

In this section the experiments in which the boosting algorithms are tested on the datasets are
described and their results are reported. Subsection 4.1 describes the setup for the experiments,
the software and the parameter values used. Next we describe two experiments, one without
demographic data and one with demographic data included, respectively in Subsections 4.2 and
4.3.

4.1 Setup for the Experiments

For the experiments the R programming environment (R Development Core Team 2005) is used.
In each experiment the dataset is partitioned in a test set and a training set for 100 times.
Each time, the training set contains 90% of the instances from the dataset, the other 10% of the
instances form the test set. Both training and test set are random samples (without replacement)
of the total dataset. Nevertheless, in each experiment with the same dataset the nth training
and test set in experiment A are equal to the nth training and test set in experiment B. All
error measures reported below are test set errors or out of sample errors. The datasets of the 6
regions described in the previous section are used. (Remember that the total dataset contains all
transactions concerning existing houses in 2004.) We will now describe the configurations for the
various model types.

Linear Regression. We use linear regression as a reference model in our experiments. As
implementation of the linear regression model the lm function in R is used. We use the most simple
version of Linear Regression, without any transformation of variables. This is done because the
boosted regression trees also use untransformed input variables. Also a stepwise procedure is not
used, because these procedures are too slow, when having large numbers of variables. Since linear
regression is unable to use categorical variables, dummies are created for this kind of variable.
Due to the very large number of possible values of the district variable this variable is not used
in the linear regression analysis. The second disadvantage of linear regression is that it is unable
to handle missing values. Therefore missing values have been replaced by the mean of the non
missing values of the variable.

CART. For the CART experiments the rpart package (Therneau, Atkinson, and Ripley.
2005) in R is used. Pruning is done by 10 fold cross validation. Furthermore the minimal split
criterion is set to 10, which means that a node split is only attempted if the node contains at least
10 instances. The minimum bucket size is 1 which means that a newly created node after a split
must contain at least 1 instance. Finally, the complexity parameter (a regularization parameter)
is set to 0 so that the tree will get all opportunity grow before it get pruned.

LSBoost and LADBoost. The base of both the boosting algorithms is also rpart, because
CART is used as base learner for these algorithms. We implemented the LSBoost and LADBoost
algorithms ourselves. The base learners have the same parameters as stand alone CART, except
no cross validation and thus no pruning is performed and the depth of the tree is constrained to
1, 2, 3, 4 or 5. When the tree has a depth of 1, a so called stump is created with only the root and
2 terminal nodes. A depth of 2 and 3 are associated with maximums of 4 and 8 terminal nodes
respectively et cetera. Depths higher than 5 are not evaluated because those kind of interactions
are not likely to occur in reality.

The LSBoost and LADBoost algorithms themselves also have 2 parameters: the number of
base learners M and the learning rate ν, for which we used values 300 and 0.1 respectively. These
setting lead to good results, but there is no guaranty these are the optimal ones. There is a quite
high possibility that with higher M and a lower ν better results will be produced, but the finding
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Region Best Model MAE Improvement MRE Improvement
groningen LSBoost (5) €20110.40 26.47% 11.32% 32.01%
apeldoorn LSBoost (5) €26643.74 24.38% 9.31% 32.39%
eindhoven LSBoost (5) €21856.95 26.71% 8.06% 31.98%

amsterdam LADBoost (5) €29320.47 32.84% 9.38% 44.00%
rotterdam LADBoost (5) €22637.88 34.60% 10.91% 40.15%

zeeland LSBoost (5) €28914.29 31.16% 14.83% 38.03%

Table 3: Out-of-sample performance of the best models per region. Improvement is the improve-
ment with respect to the Linear Regression model. The number between the parentheses represents
the tree depth of the base learner. See text for more comments.

MAE MRE
Region LSBoost LADBoost Impr. LADB LSBoost LADBoost Impr. LADB

groningen €20110.40 €20141.72 -0.16% 11.32% 11.62% -2.65%
apeldoorn €26643.74 €27824.49 -4.43% 9.31% 9.86% -5.91%
eindhoven €21856.95 €21822.29 0.16% 8.06% 8.09% -0.37%

amsterdam €29283.76 €29320.47 -0.13% 9.55% 9.38% 1.78%
rotterdam €22067.10 €22637.88 -2.59% 10.96% 10.91% 0.46%

Table 4: Comparison of the results of LSBoost and LADBoost

of the optimal parameters is a time-consuming task that we considered to be beyond the scope of
our research.

4.2 Experiment 1: Data with Districtcoding

This subsection gives the results of the experiments using districtcoding but without demographic
variables. In Table 3 a summary of the best results is given. A complete overview of all results
can be found in Appendix D, Table 17.

On each dataset 10 boosting experiments are performed (5 LSBoost and 5 LADBoost, with
depths 1 up to 5), except on the Amsterdam and Rotterdam regions, where some less interesting
experiments were skipped, because of their long computation times. All these boosting experiments
outperformed the LR model on their dataset. Adding an extra layer always reduced both absolute
and relative error, but the effect of every extra layer is less than the previous one. The improvement
of a Boosting model with depth 5 with respect to a depth 4 model in terms of absolute error is
around €200. It is therefore expected that the effect of adding a 6th layer is negligible. There
are two possible reasons why extra layers increase the prediction performance. In the first place
because extra layers allow for extra interaction and in the second place, since the number of models
is constant, extra layers just can make more splits on the data and therefore predict more accurate.

The boosting models with depth 5 reduce the absolute error with around 25% – 35% and
relative error with around 30% – 45% with respect to the LR model. But which of the two
boosting algorithms, LSBoost and LADBoost, performed best differed by dataset. When we
look at the relative error, LADBoost is the best algorithm in the large cities of Amsterdam and
Rotterdam, where LSBoost performed best in the other 4 regions. However, the difference in
performance between the two algorithms is very small. Only in Apeldoorn and environs LSBoost
is really better than LADBoost. Since LADBoost tries to ignore outliers, it is possible that the
worse performance in Apeldoorn is explained by the bad prediction of expensive houses. In Table
4 a comparison is made between the results of both the boosting algorithms.

4.2.1 Submarkets

It is possible that prediction accuracy is very different among different types of houses or market
segments. In real estate literature market segments are often called submarkets. We analyze the
predictive performance of our models after a very simple market segmentation, in which each of
the six possible house types (detached, apartments etc.) represents a segment.

The prediction error (MAE or MRE) of a submarket is the weighted mean test error of that
submarket, i.e. in every test set the houses belonging to the submarket are collected and the
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Region Best Size LSBoost LADBoost Worst Size LSBoost LADBoost
groningen mid-terraced 901 9.67% 9.24% detached 302 24.30% 24.98%
apeldoorn mid-terraced 548 5.08% 5.15% detached 615 14.39% 14.82%
eindhoven apartment 903 6.92% 6.93% detached 370 13.11% 12.26%

amsterdam apartment 6742 9.06% 8.92% detached 80 23.68% 21.90%
rotterdam stepped 61 8.00% 8.04% detached 173 19.66% 18.57%

zeeland stepped 34 9.58% 9.83% detached 562 20.29% 20.82%

Table 5: Best and worst predicted house type per region

mean is taken and multiplied by the number of houses belonging to the submarket in that test
set. Afterward the sum of all these means is taken and divided by the sum of the house counts.

Table 5 gives the best and worst predicted house types per region. More detailed results can
be found in Appendix D, Table 18.

The terraced houses, especially the mid-terraced house, are predicted relatively well in all
regions. There are many terraced houses and when looking at the variables included, we may
conclude that these datasets are especially created for terraced houses (and other single house-
hold residences). Many of the variables are uninteresting for apartments (gardens, floors etc.).
Apartments are also predicted well, except in Zeeland. Detached houses seem to be the biggest
problem, also when there are relative many houses of this type in the region, e.g. in Apeldoorn
and Zeeland. Even then detached houses are quite complex to predict. Detached houses are often
quite unique and besides the included variables also the architectonic style of the house may have a
high influence. Also by the other house types we see when a house becomes more exotic prediction
performance decreases. There are two approaches that may improve the prediction of these exotic
houses, but these approaches create also new problems. Both approaches are based on extending
the datasets. First we can include houses sold in other years in the dataset, but then we have
to correct the prices to compensate for market dynamics. The second approach is to combine
multiple regions. Disadvantage is we get an enormous number of districts, but maybe the use of
demographic data (and preferable other environmental variables) can replace the districts.

It was expected that LADBoost would predict ordinary houses better and LSBoost reached
better results on the larger dwellings. The submarket results don’t confirm this expectation.
Sometimes LADBoost predicts detached dwellings even better than LSBoost. Overall there does
not seem to be a pattern in which algorithm predicts best on the different house types.

4.3 Experiment 2: Data with Demographic Variables

In Section 3.3 datasets were created where the district codes were replaced by a number of demo-
graphic variables on neighborhood level. The LSBoost and LADBoost, with depth 5, were also
trained on these datasets. In Table 6 the best models per region are listed. A complete overview
of the results is given in Table 19 in the Appendix.

The results of all the boosting models in all 6 regions are better on these new datasets compared
with the results on the old ones, discussed in Section 4.2. The size of the performance increase
differs among regions and models. Overall, the adaptation of the datasets has more influence
on the LSBoost models than on the LADBoost models. In the region of Amsterdam prediction
performance of the models has increased by about 10%, but in the region of Rotterdam this is
only 3% to 4%. It does not come as a surprise that Amsterdam is the region where performance
gain is highest, since the districts in Amsterdam are extremely large. With the use of demographic
information the model can discover a better separation between different locations.

We can conclude that LSBoost or LADBoost models with depth 5 and built with the use of
demographic data are the best choices among the models evaluated so far. These models improve
the Mean Relative Error with 35% up to 49% compared with the original Linear Regression model.
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Region Best Model MAE Improvement MRE Improvement
groningen LSBoost (5) €18892.04 6.06% 10.41% 8.04%
apeldoorn LSBoost (5) €25497.43 4.30% 8.64% 7.20%
eindhoven LSBoost (5) €20748.22 5.07% 7.71% 4.34%

amsterdam LADBoost (5) €26373.36 10.05% 8.51% 9.28%
rotterdam LADBoost (5) €21936.93 3.10% 10.42% 4.49%

zeeland LSBoost (5) €27189.76 5.96% 13.90% 6.27%

Table 6: Results of the best models per region with the use of demographic data. Improvement is
the improvement with respect to the model trained on the normal dataset.

5 Interpretation

Parametric techniques often have the advantage that a useful interpretation can be given to the
model parameters, e.g., in linear regression the model parameters can be interpreted as the partial
prices of the product characteristics. Although not parametric, regression trees are also highly
interpretable and can be written as an equivalent set of if-then rules. Boosted trees lack both
these appealing properties. Not all is lost, however, because two useful tools exist that can be
used for the interpretation of these ensemble models:

Relative importance plots, that visualize how important the various independent variables are
relative to one another in predicting the dependent variable. In regression trees, the relative
importance of a variable is measured examining the effect of each split on that variable on the
model outcome. Roughly speaking, this effect is high if the split results in a large difference
in model outcome for the right and the left subtree (with preferably an equal probability to
turn right or left) and/or the split is likely to occur. (The probability that a split occurs
is indicated by the number of patterns that travel through the corresponding node relative
to the number of patterns in the dataset. Generally this probability is higher for nodes
close to the root.) In an ensemble of regression trees such as built by boosting, the relative
importances are simply averaged over all trees in the ensemble.

Partial dependence plots, that visualize the partial dependence of the implemented function
on a subset of the independent variables. For a grid of values for this variable subset, the
‘expected’ output of the model at that point is computed. Ideally, this expectation at a grid
point should be computed with respect to the conditional distribution (given the grid point)
of the variables not in the subset. In practice it is obtained by averaging the model outputs
over all instances in the dataset, keeping the values in the selected variable subset fixed to
the grid point, thus using the dataset to approximate the distribution.

A more detailed description of these plot types is given in Appendix B.
Both relative importance plots and partial dependence plots are made for the six datasets

using an LSBoost model. An LSBoost model, with 300 CART base learners with depth 5 and
learningrate 0.1, is trained on the complete 2004 dataset of a region. First we will use the datasets
with district coding, but in Subsection 5.2 we will also create relative importance plots with the
inclusion of demographic variables and partial dependence plots of some demographic variables.

5.1 Interpretation: Data with Districtcoding

Figure 5 shows the relative importance plots of the 6 regions. Only the 10 most important variables
in a dataset are plotted. Except in Zeeland the most important variable in all regions is a variable
that measures some size: volume, size or lot size. In Zeeland kind is the most important variable,
but kind measures house size implicit. In general there are 6 variables that are in the top tens for
all 6 datasets: volume, size, lot size, kind, construction year and district. It is remarkable that,
although the size of the house is very important in the hedonic model, the number of rooms in a
house hardly has an influence. The total size of these rooms is far more important.

We created partial dependence plots for 5 of the 6 most important variables mentioned in the
previous section. Only for district no plots are created, because of the large number of different
values this variable can have.

16



vo
lu

m
e

ki
nd

si
ze

di
st

ric
t

lo
t s

iz
e

co
ns

tr
 y

ea
r

ty
pe

ro
om

s 
G

F

ga
ra

ge

ga
rd

en
 s

iz
e

Groningen

0
20
40
60
80

100

lo
t s

iz
e

ki
nd

vo
lu

m
e

si
ze

di
st

ric
t

ty
pe

co
ns

tr
 y

ea
r

ga
ra

ge
 2

+

m
ai

nt
 in

si
de

ga
rd

en
 m

ai
nt

Apeldoorn

0
20
40
60
80

100

vo
lu

m
e

lo
t s

iz
e

ty
pe

ki
nd

di
st

ric
t

c 
ye

ar

si
ze

m
ai

nt
 o

ut

ba
th

 2
F

bl
cn

y 
1F

Eindhoven

0
20
40
60
80

100

si
ze

vo
lu

m
e

di
st

ric
t

ki
nd

lo
t s

iz
e

m
ai

nt
 in

si
de

co
ns

tr
 y

ea
r

ga
rd

en
 s

iz
e

ga
rd

en
 E

−
W

he
at

in
g

Amsterdam

0
20
40
60
80

100

vo
lu

m
e

si
ze

lo
t s

iz
e

di
st

ric
t

ki
nd

co
ns

tr
 y

ea
r

ro
om

s

m
ai

nt
 in

si
de

ty
pe

ga
ra

ge

Rotterdam

0
20
40
60
80

100

ki
nd

di
st

ric
t

vo
lu

m
e

lo
t s

iz
e

c 
ye

ar

si
ze

ty
pe

m
ai

nt
 in

ga
ra

ge

he
at

in
g

Zeeland

0
20
40
60
80

100

Figure 5: Relative Importance of predictors with Districtcoding.
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Figure 6: Partial Dependence Plots Continuous Variables: Groningen (dashed), Apeldoorn (solid),
Eindhoven (dotted), Amsterdam (longdash), Rotterdam (twodash) and Zeeland (dotdash)
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In Figure 6 the partial dependence plots of the four important continuous variables (volume,
size, lot size and construction year) are shown. When interpreting these plots we must remember
that only average relations are shown and that, for certain values of correlated predictors, the
relationship may be entirely different.

Figure 7 shows the partial dependence plots of the categorical variable kind house. The plots
are centered to have zero mean over the coresponding dataset. We can see in these plots that for
example a country-estate in Apeldoorn has a partial dependence of +60, 000 euros and a bungalow
a partial dependency of −20, 000. This means that the average effect of being a country-estate
and not a bungalow is 60,000-(-20,000)=80,000. This seems a little odd, but we have to realize
that we in fact ignore the other variables, although in fact a country-estate has probably a larger
lot size and volume.

5.2 Interpretation: Data with Demographic Variables

Figure 8 shows these new relative importance plots. In all the 6 regions 2 up to 5 demographic
variables are in the top 10 of most important variables. Average income per income receiver is 4
times in the top 10 and 3 times together with average income, which is also the total of top 10’s for
average income. Also western immigrants is 3 times in the top 10, which is remarkable. Further
address density and percentage 25-45 years are both mentioned twice. Figure 9 shows partial
dependence plots of the 4 continuous demographic variables. In general we see that these partial
effects are much smaller than the ones shown in the previous subsection, since these variables are
less important.

6 Hedonic Price Indices & Boosting

Hedonic models can be used to construct a so called hedonic price index. A hedonic price index
uses hedonic models to correct for quality changes. In the next section we will describe which
hedonic price indices exist and how they work. In Section 6.2 it is explained how boosting is
combined with these indices. Finally in the last section results are given of the hedonic indices.

6.1 Hedonic Price Indices

In a recent paper by Pakes (2003) an overview of different hedonic indices is given and compared
with a standard matched model index (or repeated sales index). Besides some hybrid indices
Pakes describes three types of hedonic indices: Dummy variable indices, Laspeyres-like indices and
Paasche-like indices. Wallace (1996) mentions the Fischer’s Ideal index which is a combination of
the Laspeyres- and Paasche-like hedonic index. In the next subsections we will briefly describe
these 4 methods.

We will use the following notation. We construct an index over a number of periods {t}T
1 . For

each of these periods we have a dataset of houses {(xt
i, p

t
i)}nt

1 with characteristics xt and price pt.
Each of these datasets can be used to train a hedonic model ht(x). We will use period t1 as the
comparison period and period t0 as the base period.

6.1.1 Dummy Variable Hedonic Index

The dummy variable hedonic index is the most frequently used hedonic index in economic research,
mainly because it is very easy to construct. This index is obtained by pooling all the data together
and then regressing the log of price on the characteristics and period specific dummy variables. The
difference between two dummies coefficients is then the growth rate of that period. This method
assumes that model parameters are constant over time, so the valuation of the characteristics of
the houses does not change.
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Figure 7: Partial Dependence Plot House Kind. From left to right the following kinds are plotted:
simple house (A), middle class house (B), mansion (C), villa (D), country-house (E), country-
estate (F), bungalow (G), patio-bungalow (H), semi bungalow (I), split-level (J), downstairs house
(K), upstairs house (L), up- + downstairs house (M), staircase-access flat (N), canal house (O),
maisonette (P), service flat (Q), flat with elevator (R), flat without elevator (S), house with office
(T), drive-in house (U), farm house (V), apartment (W), holiday home (X)
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Figure 8: Relative Importance with demographic data
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Figure 9: Partial Dependence Plots of Demographic Variables: Groningen (dashed), Apeldoorn
(solid), Eindhoven (dotted), Amsterdam (longdash), Rotterdam (twodash) and Zeeland (dotdash)
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6.1.2 Laspeyres-like Hedonic Index

According to Pakes(2003) the Laspeyres-like hedonic index tries to model the amount of income
a consumer needs in the comparison period to buy the same good (in this case a house) as in the
base period. We use the average over all consumers, thus over all houses sold in a period.

The average amount of income used for buying a house in the base period is known: It is the
mean price of the houses in the base period. Now we want to know what amount of income a
consumer needs to have in the comparison period to buy the same house, i.e. we need to know how
expensive the houses sold in the base period are in the comparison period. Since it is very likely
these houses are not sold again in the comparison period, we need to estimate these comparison
period prices, using the characteristics of the houses. For the estimation of the comparison period
prices we use a hedonic model ht1 trained on the houses sold in the comparison period:

p̃t1
i = ht1(xt0

i )

The last thing we need to do to create the index is dividing the estimated mean price of the
comparison period by the mean price of the base period:

It1
Laspeyres =

∑nt0
i=1 ht1(xt0

i )∑nt0
i=1 pt1

i

Since the Laspeyres-like index holds the product bundle constant, it does not account for
substitution effects. It is well possible that a consumer, given the “prices” of the characteristics in
the comparison period, would buy a different house, by, for instance, substituting a wooden shed
by an extra room (used as store room), because of increased prices of wood and thereby increased
prices of wooden sheds. The Laspeyres-like index just computes the extra costs for the wooden
shed, but the consumer derives the same utility to a house with an extra room, which is cheaper.
The index thus overestimates the amount of income compensation that is necessary to stay at the
same utility level.

6.1.3 Paasche-like Hedonic Index

For estimating a series of T price indices using a Laspeyres-like method, one needs to train T − 1
models. The advantage of the Paasche-like hedonic index, is that only one model needs to be
trained, the model of the base period. Disadvantage is that data quality of datasets is often worse
in earlier years and a relatively bad model will be used for the construction of the index.

According to Pakes (2003) the Paasche hedonic models the amount of income that would make
a consumer who bought the comparison periods bundle in the base period at least as well off in
the comparison period as in the base period. This makes the Paasche-like hedonic the opposite to
the Laspeyres-like hedonic, since it uses the comparison product bundle instead of the base period
bundle. Now we know the prices of the bundle of houses sold in the comparison period and need
to estimate these bundle’s price in the base period:

p̃t0
i = ht0(xt1

i )

And this leads to the Paasche-like hedonic index:

It1
Paasche =

1
nt1

nt1∑
i=1

pt1
i

ht0(xt1
i )

Also the Paasche-like hedonic doesn’t account for substitution effect, but because the Paasche
hedonic works opposite to the Laspeyres hedonic, the index underestimates the amount of income
compensation that is necessary to stay at the same utility level. Both Pakes(2003) and Wal-
lace(1996) show that the Laspeyres-like and Paasche-like hedonic indices are the upper bound and
lower bound of the real hedonic index.
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Region Mean Median Fisher’s Ideal Hedonic
groningen 354.18 376.01 388.60
apeldoorn 396.79 377.36 408.49
eindhoven 367.48 356.19 404.94

amsterdam 408.60 402.42 511.95
rotterdam 334.73 335.80 430.24

zeeland 317.64 311.71 341.40

Table 7: Indices for the year of 2004. (1985=100)

6.1.4 Fisher’s Ideal Hedonic Index

Since we can see the Laspeyres-like and Paasche-like index as the bounds of the real index, we
know that the real index is in between those two. According to Wallace (1996) the Fisher’s
Ideal index will be the best estimation of the real index, when the Laspeyre-like and Paasche-like
index lie “close” to each other. The Fisher’s Ideal index is defined as the geometric mean of the
Laspeyres-like and Paasche-like index:

It1
Fisher =

√
It1
Paasche · I

t1
Laspeyres

6.2 Using Boosting to Create a Hedonic Price Index

Boosting will be used to construct the indices mentioned in the previous chapter, except for the
dummy variable index. This index is omitted in the experiments. In the first place because it is
expected that the assumption of constant “prices” of the characteristics would not hold in reality.
Second boosting is not an appropriate method to use in combination with the dummy variable
index. Since we want in the case of the dummy variable index model a ceteris paribus effect of the
dummy variables on the price no interaction with other variables is allowed. However, the power
of boosting is in these interaction effects.

The other indices will be constructed on data from the period 1985 until 2004 for the same 6
regions as the other experiments. These datasets are also derived from the NVM database and
have the same variables. Hence, the index gives only information about the dwellings that were
sold by NVM brokers during these years and not about all dwellings. Since demographic data
is not available for all years, we will use district coding instead. For the hedonic models ht(x)
LSBoost models will be used with regression trees with depth 5 as their base learners. Further
all parameters are the same as in the previous experiments. 1985 will be used as the base period
and is set to 100. The Paasche and Laspeyres Index are only used for the creation of the Fisher’s
Ideal Index.

6.3 The Hedonic Price Indices for the Six Dutch Regions

Table 7 shows the hedonic indices for 2004 with 1985 as base period. The hedonic indices are
compared with the mean and median index. This comparison is interesting, because we can see in
this way, whether quality of the houses has improved during the period. Because both mean and
median index don’t correct for quality, they are just the mean or median of the comparison period
divided by the mean or median of the base period, the difference between the hedonic index and
the mean or median index can be used as a measure of quality improvement. When the hedonic
index is below the mean or median index, this means that quality has improved, since the quality
corrected prices are lower than the real prices. We see that house prices has raised impressive in
all 6 regions. An avarage house was in 2004 3 up to 4 times more expensive than in 1985. Of
course it is possible that houses were become that expensive, because houses have reached a higher
level of quality during these years. The hedonic indices show that this is not the case. It is even
the other way around, all hedonic indices in all 6 regions are higher than the mean and median
index, what means that quality has decreased.

Figure 10 show the course of the indices over time for the 6 regions during the period 1985
until 2004. The plots show the Fisher’s Ideal hedonic index together with the mean and median
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Lot Size Volume Apartments
Region 1985 2004 % 1985 2004 % 1985 2004 %

Groningen 587.39 240.50 -59.06% 356.21 327.93 -7.94% 49.12% 46.06% -6.22%
Apeldoorn 864.85 654.82 -24.29% 384.59 379.00 -1.45% 13.33% 22.04% 65.32%
Eindhoven 335.85 254.53 -24.21% 425.88 389.39 -8.57% 9.25% 23.48% 153.80%

Amsterdam 170.72 108.14 -36.65% 337.70 269.60 -20.17% 71.24% 79.26% 11.26%
Rotterdam 292.01 138.13 -52.70% 420.17 305.51 -27.29% 49.54% 61.46% 24.06%

Zeeland 675.99 467.29 -30.87% 428.07 377.89 -11.72% 16.20% 10.93% -32.57%

Table 8: Differences of variable values between 1985 and 2004

index.
In all 6 regions the same pattern is visible only the absolute effects differ. Prices raises in the

first 10 years with 40% in Zeeland up to 90% in Amsterdam, according to the mean and median
indices. The Fisher hedonic shows raises of 58% in Zeeland up to 106% in Amsterdam, which
means that the price raise was accompanied by a quality decline.

In the next 5 years, 1995 up to 2000 these effects became even stronger. In 2000 houses were
almost 4 times so expensive in Amsterdam than in 1985. Corrected for quality this is even 5 times.
Although both effects are the strongest in Amsterdam this pattern is also visible in the other 5
regions. The quality decline is the largest in big cities, such as Amsterdam and Rotterdam, but
also in Eindhoven. In the 3 more rural regions the quality decline is less impressive. Due to
these differences in quality decline, mean and median indices give a wrong notion about in which
regions prices have increased the most. There is no discussion about the fact that Amsterdam is
the region with the highest price increase and Zeeland the region with the lowest. But for the
other 4 regions the mean and median indices give a deceptive view. The most striking example
is Rotterdam. According to the mean and median indices this region is positioned fith out of the
six regions in terms of price increase, but according to the hedonic indices it is positioned second,
since the quality decline of the dwellings in Rotterdam is relatively high.

Table 8 shows some means of important variables in the years of 1985 and 2004. When these
important characteristics have become of less quality (i.e. the average house volume has become
smaller, the average lot size has decreased or more dwellings are apartments) this would be a
decent explanation of the quality decline the hedonic models found between 1985 and 2004. Both
lot size and volume have decreased during these 20 years in all of the 6 regions. Lot size with 24%
in Eindhoven up to 59% in Groningen and volume with 1% in Apeldoorn up to 27% in Rotterdam.
Also the relative amount of apartments has increased in 4 of the 6 regions. The regions with a large
decline in the average house volume are also the 2 regions with a large quality decline according
to the hedonic price index: Amsterdam and Rotterdam. The quality decline during the 90’s can
therefore mainly be explained by the fact that houses have become smaller during this period.

These hedonic indices give only a general overview of all possible dwellings. Since we can see
in Table 8 that in some regions one reason of the decline in quality is the increase of the portion of
apartments, it is possible that the average qualities of the different house types did not decrease.
When one wants to check whether this is the case one could create hedonic indices per house type.

Although the hedonic indices give a good impression of the quality differences during a period,
they are not 100% reliable. There are three reasons for this.

The first reason is a theoretic one and discussed in the previous section. Both the Paasche and
Laspeyres index do not account for substitution effects. The Fisher’s Ideal index only estimates
these effect by using the geometric mean of the other two indices. However, the Laspeyres and
Paasche index are situated very close to each other and thus the Fisher’s index seems to be a good
estimation.

In the second place the boosting models make prediction errors. Since the data quality and
quantity become less going further back in history, this will be a problem. Especially for the
Paasche-like index, because this approach uses only the base period model.

The third reason has to do with the meaning of the variables. There are two variables which
meanings change over time. The first is construction year. This variable measures in fact two
things: the age of the house and the period it is built in, e.g. the architectonic style and average
quality of houses built in that period. This means a construction year of 1980 has a different
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Figure 10: Hedonic and normal indices of the six regions: Fisher’s Hedonic Index (solid), Mean
Index (dashed) and Median Index (dotted).

26



meaning in 1985 than in 2004. Another problem is that houses in 1985 cannot have construction
years higher than 1985 and the boosting model also cannot extrapolate. In the Paasche Hedonic
this means that all construction years higher than 1985 were treated as built in 1985. The second
variable which can cause problems is district. This is due by the fact that houses can be torn
down and new houses can be built in a district during the period.

Overall the hedonic index gives a better notion of the real price index than mean and median
index, despite its theoretical and practical flaws. The hedonic indices show that not only prices
have increased, but also the quality of the dwellings has decreased, mainly because houses have
become smaller.

7 Conclusions

Boosted hedonic models were used in this thesis in 3 applications in a housing context: Prediction,
interpretation and construction of hedonic indices.

The predictions of a boosted hedonic model can be used for bulk appraisal. Of course models
with a high prediction performance and low errors are preferred. The experiments in Section 4.2
show that the boosting models, LSBoost and LADBoost, improve prediction performance (MRE)
with up to 40% in relation to an ordinary Linear Regression model. Further we tried to improve
prediction performance by replacing the district codes by a number of demographic variables on
neighborhood level. This improves the prediction performance of the boosting models by 5% to
10%. Also simple submarkets were created to see whether prediction performance differed a lot
among different types of houses. These experiments show that terraced houses and apartments in
some regions are the best predicted houses. Detached houses on the other hand are a problem for
the models.

Prediction performance of the boosting models may possible be increased in the future. First
the model itself can be approved. Model parameters M and ν were not optimized in the ex-
periments in this thesis. Further other base learners can be used to improve model parameters.
These base learners can be for instance monotone decision trees (Potharst and Bioch 2000) or
multivariate adaptive regression splines (MARS) (Friedman 1991). Monotone decision trees have
the advantage that these trees are monotone on a chosen set of variables, which forces the tree to
construct a more plausible function. However, the boosting model also has to be made monotone
itself for optimal performance. MARS models have the advantage that these functions are more
smooth than regression trees and are able to extrapolate.

A second way in which the prediction performance of the boosting models may be approved is an
extension of the dataset. First we can increase the number of instances in the training set by adding
more years from the past to the model, but then a good way of correcting for price fluctuations is
necessary. A good method for price fluctuation also corrects for in-year price fluctuations, which
are also a problem for the prediction. Second we can use larger regions or even the complete
country as region, but the use of district codes is not possible any more in that case, because of
the high number of different possible values. An inclusion of demographic variables and preferable
also some environmental variables will take away this problem. Besides increasing the number of
instances also an increase of the number of variables may increase prediction performance, like in
the case of the demographic data. However, this data has to be available or collected. One way to
collect extra information may be the use of textmining to collect information out of descriptions
brokers give about the house and its location.

For the interpretation of the boosting models two graphical models were used: Relative im-
portance and partial dependence plots. Although interpretation of these plots seems easy at first,
interpretation of these plots, especially the partial dependence plots, is sometimes rather difficult.
The reason is the large number of variables used in the experiments that are also sometimes highly
correlated with each other. For interpretation it would be better to use a smaller set of variables
or perform factor analysis before training the model.

In the last chapter boosted hedonic models were used for the construction of hedonic price
indices for the different regions. These indices were compared with median and mean price indices
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to see whether there was a quality increase or decline during the evaluated period 1985 to 2004.
The hedonic indices show in all six regions a quality decline of the dwellings. This quality decline
is mainly explained by the fact that houses have become smaller and lot sizes have decreased
dramatically during the last 20 years in the evaluated regions. An interesting extension of the use
of these hedonic models in the future can be to use this hedonic index to compare different regions
with each other. The mixture of houses differs between regions, so we cannot compare mean or
median prices of regions with each other. A hedonic index corrects for these differences in housing
quality between regions. The index has only be adapted so it uses a base and comparison region
instead of a base and comparison period.
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A Boosting Algorithms

A.1 GradientBoost

Parametric statistical models F (x|θ) for finding some relationship between a target y and inputs x
are fit by minimizing an objective function. This objective function is a function of the parameters
θ:

Fbest = F (x|θbest)

θbest(x) = arg min
θ

Ex,y[L(y, F (x|θ))]

In theory the loss function L can be every differentiable function of the parameters, but it is often a
negative log likelihood function. In many cases the optimal parameter vector is found in a number
of steps. Also the GradientBoost (Friedman 2001) procedure uses a number of steps to find an
approximation of the target function, but instead of optimizing model parameters, boosting adds
a new base model to the model each iteration. The algorithm starts with an initial guess F0 and
then in M steps M base models Bm are added to the function:

Fbest = F0 +
M∑

m=1

ρmBm(x)

Of course, we want to find a function F that minimizes the loss function of our choice:

Fbest = arg min
F

N∑
i=1

L(yi, F (xi))

GradientBoost finds this minimum by taking M steps along the negative gradient direction of the
objective function

∑N
i=1 L(yi, F (xi)). When a large enough number of steps would be taken by

the algorithm, it will certainly reach a local minimum. The negative gradient at instance i at the
mth step is given by:

−gm(xi) = −∂L(yi, Fm−1(xi))
∂Fm−1(xi)

|xi

To reach the minimum we would like to take steps −ρmgm along the negative gradient direction,
where ρm is a step size parameter. However, when a finite dataset is used the negative gradient can
only be estimated at the datapoints. GradientBoost uses a certain model type, the base learner,
to approximate this step as good as possible. These base learners Bm are all of the same type
(e.g. neural nets or like in this case regression trees) and have parameters a (e.g. weights or split
points). To find the best step size these parameters have to be optimized (i.e. the model has to
be trained). A least squares method is used to find the optimal parameters of the model:

am = arg min
a

N∑
i=1

{−gm(xi)−B(xi|a)}2

After the training of the model the step size parameter ρm has to be estimated:

ρm = arg min
ρ

N∑
i=1

L(yi, Fm−1(xi) + ρBm(xi))

Finally this base learner is added to the aggregated function:

Fm(x) = Fm−1 + ρmBm(x)

The different instantiations of the GradientBoost procedure, summarized in Figure 11, differ
from each other by the use of different loss functions. First the LSBoost algorithm, based on
squared loss, will be discussed in the next subsection, then the LADBoost algorithm (absolute
loss) is described in subsection A.3.
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Input: dataset with instances {xi; yi}N
1

number of iterations M
Output: Model F (x)
F0(x) = arg minρ

∑N
i=1 L(yi, ρ) for m = 1 to M do{

ỹi = −∂L(yi,Fm−1(xi))
∂Fm−1(xi)

}N

1

train Bm(x) using {xi; ỹi}N
1

ρm = arg minρ

∑N
i=1 L(yi, Fm−1(xi) + ρBm(xi))

Fm(x) = Fm−1(x) + ρmBm(x)
end

Figure 11: GradientBoost algorithm

A.2 LSBoost

The LSBoost (Friedman 2001) algorithm is an instantiation of the GradientBoost algorithm where
the loss function is the squared loss function:

L(y, F ) = (y − F )2/2

When we follow GradientBoost first an initial guess F0 has to be computed. The initial guess is
a constant that minimizes the total squared loss over the instances:

F0(x) = arg min
ρ

N∑
i=1

L(yi, ρ) = arg min
ρ

N∑
i=1

(yi − ρ)2/2 = ȳ

Each iteration GradientBoost replaces the targets with the negative gradient. In the case of
LSBoost one gets:

ỹi = −gm(x) = −∂L(yi, Fm−1(xi))
∂Fm−1(xi)

= −∂((yi − Fm−1(xi))2/2)
∂Fm−1(xi)

= yi − Fm−1(xi)

This means that the target is replaced by the difference of the real value of y and the y value
predicted by the additive model up to now. Now a new base learner Bm(x) will be trained on
the attributes and the replaced targets {xi; ỹi}N

1 . After the training the ρ parameter needs to be
computed:

ρm = arg min
ρ

N∑
i=1

(ỹi − ρBm(xi))2

In practice ρm will almost always equal 1 when using CART as base learner. At this point a new
parameter will be introduced: the learningrate ν. In practice it is not always preferable to reach
the optimum as quickly as possible, because data will then be predicted too closely and overfitting
will occur. Therefore the learningrate is introduced, which slows down the learning process by
decreasing the influence of a single base model on the total function. The update of F (x) now
becomes:

Fm(x) = Fm−1(x) + νρmBm(x)

When a small learningrate is used more iterations are necessary to train the algorithm, so there
exists a trade off between speed and precision. However, the marginal effect of lowering the
learningrate is decreasing, which means that after some point lowering the learningrate is hardly
effective. The LSBoost algorithm is summarized in Figure 12.

A.3 LADBoost

LADBoost (Friedman 2001) like LSBoost is an instantiation of the GradientBoost algorithm.
LADBoost uses absolute loss as its loss function:

L(y, F ) = |y − F |
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Input: dataset with instances {xi; yi}N
1

number of iterations M
learning rate ν
Output: Model F (x)
F0(x) = ȳ
for m = 1 to M do

{ỹi = yi − Fm−1(xi)}N
1

train Bm(x) using {xi; ỹi}N
1

ρm = arg minρ

∑N
i=1[ỹi − ρBm(xi)]2

Fm(x) = Fm−1(x) + νρmBm(x)
end

Figure 12: LSBoost algorithm

The new initialization becomes:

F0(x) = arg min
ρ

N∑
i=1

|yi − ρ| = median{yi}N
1

Again the new targets are the negative gradient of the loss function with respect to the current
model F in the datapoints:

ỹi = −∂|yi − Fm−1(xi))|
∂Fm−1(xi)

= sign(yi − Fm−1(xi))

In the case that the base learner B(x) is a regression tree T (x) a line search is not necessary to
determine ρm. Friedman (2001) shows, when having a regression tree T (x) with terminal nodes
{Rl)}L

1 , ρm can be replaced by a γlm for each terminal node. The γlm ’s are the medians of the
residuals in the specific node:

γlm = medianxiεRlm
{yi − Fm−1(xi)},

Finally F (x) is updated:
Fm(x) = Fm−1(x) + νγlm1(xεRlm)

Here function 1(xεRlm) has a value of 1 when the datapoint belongs to terminal node Rlm and 0
otherwise. An overview of LADBoost for regression trees, LADTreeBoost, is given in Figure 13.

Input: dataset with instances {xi; yi}N
1

number of iterations M
learning rate ν
Output: Model F (x)
F0(x) = median{yi}N

1

for m = 1 to M do
{ỹi = sign(yi − Fm−1(xi))}N

1

train tree Tm(x) having terminal nodes {Rlm)}L
1 using {xi; ỹi}N

1

γlm = medianxiεRlm
{yi − Fm−1(xi)}

Fm(x) = Fm−1(x) + νγlm1(xεRlm)
end

Figure 13: LADTreeBoost algorithm

B Methods for Interpretation

In this appendix we describe two graphical methods to interpret LSBoost models: Relative im-
portance plots and partial dependence plots. Both methods are introduced by Friedman (2001).
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B.1 Relative Importance Plots

A relative importance plot shows, graphically, how much influence the different variables have
on the output of the model. Breiman et al. (1983) developed the following formula to measure
importance of a variable in a single CART model:

Î2
j (T ) =

J−1∑
t=1

î2t 1(vt = xj)

Here the summation is over the non-terminal nodes in the J-terminal-node tree T and 1() denotes
the indicator function. vt is the split variable of node t. î2t measures the improvement in squared
error as a result of the split in t, and can be computed with the equation:

î2 =
wlwr

wl + wr
(ȳl − ȳr)2

Here wl and wr are the probabilities an instance turns to the left or right child node, ȳl and ȳr

are the mean target values for both children. Both the probabilities and the means are computed
on the training set and saved in the CART model.

Î2
j is used to measure importance in the case of regression trees and not its square root Îj . To

compute the Î2
j ’s of a boosting model it is sufficient to average the Î2

j ’s of the base learners:

Î2
j =

1
M

M∑
m=1

Î2
j (Tm)

A variable gets a high importance I2 when it is used in many splits, but more importantly when
it is used in splits that divide the data in two almost equally large parts with a high difference in
the mean value of the target value.

Finally the variable with the highest importance gets an index of RI = 100 and the other
indices are adjusted to this:

RIj =
Î2
j

Î2
max

· 100

B.2 Partial Dependence Plots

Relative importance plots show which variables have the highest influence on F (x), but don’t show
anything about the sign or the shape of the influence of variable xj on F (x). Partial dependence
plots do show this.

For a single regression tree T , input variable xj and a specified set of values {xij}N
i=1 for

variable xj , a partial dependence plot shows the average output of T for all values of xj in the
set. For one point xij this is denoted T̄ (xij). The average output is computed with respect to the
training data. The average output of T is computed over all points in the training set, keeping xj

fixed to one value.
In the case of a tree, this average output can be computed by a a weighted pass-through of

T . At the root of the tree a weight wij = 1 is initialized. For each non-terminal node with xj

as split variable that will be visited, the right or left child node will be visited depending on the
value of xij . When a non-terminal node will be visited with another split variable than xj , both
its children will be visited and the weight multiplied with the probability to turn right or left:

wl = wpl;wr = w(1− pl)

Each visited terminal node will be assigned the current value of wij . The value of T̄ (xij) is the
weighted sum of the terminal nodes:
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T̄ (xij) =
K∑

k=1

(wkyk)

Here the summation is over the number of visited terminal nodes and wk and yk are weight and
the mean target value of terminal node k.

In the case of an LSBoost model the results of the base learners Tm(x) are summed in the
same way as in the normal LSBoost algorithm (see Figure 12):

F̄ (xij) = F0 +
M∑

m=1

(νρmT̄m(xij))

Because partial dependence plots display an average relationship, one must be cautious when
interpreting these plots. Partial dependence plots ignore correlations that exist between the ‘fixed’
variable and the other variables. This may lead to a deceptive result where the true influence of the
‘fixed’ variable is not correctly depicted. Nevertheless, they sometimes reveal interesting patterns.
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C Tables with Data Statistics

Categorical

Name Levels
Kind House simple house (122) middle class house (1201) mansion (271) villa (45)

country-house (35) bungalow (32) patio-bungalow (7) semi bungalow (10)
downstairs house (318) upstairs house (387) up- + downstairs house (10)
staircase-access flat (144) canal house (7) maisonette (73) service flat (25) flat
with elevator (106) flat without elevator (390) house with office (18) drive-in house
(24) farm house (33) apartment (96) holiday home (33)

Type House apartment (1549) end-terraced house (283) mid-terraced house (901) detached
house (302) semi detached house(312) stepped house (40)

Garden Size no garden (1221) 0 to 5 meters (161) 5 to 10 m (657) 10 to 15 m (746) 15 to 20 m
(205) 20 to 50 m (124) 50+ m (13) missing (260)

Situation Garden N-S no garden (1221) east or west (513) north (481) south (760) missing (412)
Situation Garden E-W no garden (1221) north or south (584) east (478) west (692) missing (412)

Garage no garage (2672) attached brick (250) detached brick (185) attached wood (12)
detached wood (53) built-in (215)

Living Room L-room (602) T-room (15) Z-room (57) through living room (344) room and suite
(236) missing (2133)

Garden Maintenance no garden (1221) to be laid out (53) normal (1815) pretty (291) neglected (7)
Shed no shed (775) attached brick (284) detached brick (757) attached wood (121)

detached wood (618) built-in (832)
Heating central(gas) (2528) central(oil) (21) city heating (234) room heater with back

boiler (131) warm-air (48) gas heaters (376) missing (49)
Situation open (50) normal (3016) covered (321)
District groningen herewegwijk en helpman (557) groningen noorddijk (476) groningen

oranjewijk (305) groningen schilders- en zeeheldenwijk (299) haren centrum (293)
other(12 districts) (1450) missing (7)

Numerical

Name Min. 1st Qu. Median Mean 3rd Qu. Max. (Missing)
Transaction Price (€) 13000 115000 137500 172800 190300 1450000

Lot Size (m2) 12 80 110 242.8 177 14950 (70)
Construction Year 1650 1935 1965 1958 1980 2004
Rooms Basement 0 0 0 0.01063 0 6

Rooms Ground-Floor 0 1 1 1.832 3 10
Rooms 1st Floor 0 0 2 1.793 3 6

Rooms 2nd Floor 0 0 0 0.3862 1 5

Rooms 3rd Floor 0 0 0 0.01151 0 4
Total Rooms 1 3 4 4.044 5 22 (8)
Volume (m3) 76 225 300 327 375 3500 (4)

House Size (m2) 22 80 100 109.1 125 640(4)
Subsidized House 0 0 0 0.0008857 0 1

Listed Building 0 0 0 0.0062 0 1
Upholstered 0 0 0 0.00561 0 1

Partially Upholstered 0 0 0 0.03956 0 1
Furnished 0 0 0 0.003543 0 1

Maintenance Outside 2 8 8 8.026 8 10
Maintenance Inside 2 8 8 7.997 8 10

Garden: Patio 0 0 0 0.002952 0 1
Garden: Place 0 0 0 0.04163 0 1

Garden: Terrace 0 0 0 0.08001 0 1
Garden: Lawn 0 0 0 0.07411 0 1

Carport 0 0 0 0.02834 0 1
Possibility for garage 0 0 0 0.01535 0 1

Garage: 2+ cars 0 0 0 0.02126 0 1
Garage: Central Heated 0 0 0 0.01329 0 1

Parking Space 0 0 0 0.05403 0 1
Rear Access 0 0 0 0.3 1 1

Floor Heating 0 0 0 0.01358 0 1
Fireplace 0 0 0 0.04547 0 1

Isolation: Roof 0 0 0 0.2899 1 1
Isolation: Wall 0 0 0 0.2203 0 1

Isolation: Floor 0 0 0 0.1751 0 1
Isolation: Double Glazing 0 0 0 0.2359 0 1

Isolation: Double Glazing Part. 0 0 0 0.3646 1 1
Isolation: Double Windows 0 0 0 0.0248 0 1

Table 9: City of Groningen and environs: Statistics of variables
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Categorical

Name Levels
Kind House simple house (63) middle class house (1219) mansion (195) villa (153)

country-house (15) country-estate (1) bungalow (50) patio-bungalow (2) semi
bungalow (37) split-level (6) downstairs house (18) upstairs house (19) up- +
downstairs house (4) staircase-access flat (35) maisonette (41) service flat (42) flat
with elevator (137) flat without elevator (170) house with office (27) drive-in house
(22) farm house (58) apartment (76) holiday home (18)

Type House apartment (536) end-terraced house (272) mid-terraced house (584) detached
house (615) semi detached house(345) stepped house (50)

Garden Size no garden (484) 0 to 5 meters (44) 5 to 10 m (297) 10 to 15 m (767) 15 to 20 m
(222) 20 to 50 m (172) 50+ m (18) missing (398)

Situation Garden N-S no garden (484) east or west (381) north (314) south (664) missing (559)
Situation Garden E-W no garden (484) north or south (412) east (428) west (519) missing (559)

Garage no garage (1512) attached brick (234) detached brick (405) attached wood (9)
detached wood (130) built-in (129)

Living Room L-room (393) T-room (20) Z-room (132) through living room (115) room and suite
(78) missing (1721)

Garden Maintenance no garden (484) to be laid out (28) normal (1408) pretty (463) neglected (19)
Shed no shed (637) attached brick (219) detached brick (666) attached wood (49)

detached wood (402) built-in (429)
Heating central(gas) (1908) central(oil) (26) city heating (133) room heater with back

boiler (48) warm-air (76) gas heaters (173) missing (38)
Situation open (70) normal (2106) covered (226)
District apeldoorn west (355) apeldoorn zuidoost (346) apeldoorn zuid (285) apeldoorn

oost (258) apeldoorn noord (221) other(15 districts) (935) missing (2)
Numerical

Name Min. 1st Qu. Median Mean 3rd Qu. Max. (Missing)
Transaction Price (€) 27500 175000 210000 256700 300000 4311000

Lot Size (m2) 11 124 184 643.1 335.3 45270 (46)
Construction Year 1830 1955 1972 1966 1984 2004
Rooms Basement 0 0 0 0.02165 0 4

Rooms Ground-Floor 0 1 1 1.758 2 8 (1)
Rooms 1st Floor 0 1 3 2.216 3 10

Rooms 2nd Floor 0 0 0 0.46 1 5

Rooms 3rd Floor 0 0 0 0.004163 0 3
Total Rooms 1 4 4 4.472 5 20 (6)
Volume (m3) 10 300 350 376.8 400 4500 (11)

House Size (m2) 10 100 120 127.2 140 1500 (11)
Subsidized House 0 0 0 0.0008326 0 1

Listed Building 0 0 0 0.002914 0 1
Upholstered 0 0 0 0.006661 0 1

Partially Upholstered 0 0 0 0.006661 0 1
Furnished 0 0 0 0.001249 0 1

Maintenance Outside 2 8 8 8.204 8 10
Maintenance Inside 2 8 8 8.153 8 10

Garden: Patio 0 0 0 0.004163 0 1
Garden: Place 0 0 0 0.00458 0 1

Garden: Terrace 0 0 0 0.1478 0 1
Garden: Lawn 0 0 0 0.1561 0 1

Carport 0 0 0 0.1224 0 1
Possibility for garage 0 0 0 0.03081 0 1

Garage: 2+ cars 0 0 0 0.05579 0 1
Garage: Central Heated 0 0 0 0.04455 0 1

Parking Space 0 0 0 0.132 0 1
Rear Access 0 0 0 0.39 1 1

Floor Heating 0 0 0 0.03164 0 1
Fireplace 0 0 0 0.1116 0 1

Isolation: Roof 0 0 0 0.4933 1 1
Isolation: Wall 0 0 0 0.4184 1 1

Isolation: Floor 0 0 0 0.2889 1 1
Isolation: Double Glazing 0 0 0 0.2627 1 1

Isolation: Double Glazing Part. 0 0 0 0.44 1 1
Isolation: Double Windows 0 0 0 0.01582 0 1

Table 10: Apeldoorn and environs: Statistics of variables
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Categorical

Name Levels
Kind House simple house (61) middle class house (2037) mansion (420) villa (100)

country-house (34) country-estate (1) bungalow (62) patio-bungalow (18) semi
bungalow (37) split-level (9) downstairs house (41) upstairs house (64) up- +
downstairs house (2) staircase-access flat (33) maisonette (66) service flat (1) flat
with elevator (254) flat without elevator (327) house with office (34) drive-in house
(16) farm house (8) apartment (115)

Type House apartment (903) end-terraced house (514) mid-terraced house (1296) detached
house (370) semi detached house(532) stepped house (115)

Garden Size no garden (831) 0 to 5 meters (51) 5 to 10 m (533) 10 to 15 m (1358) 15 to 20 m
(519) 20 to 50 m (278) 50+ m (22) missing (138)

Situation Garden N-S no garden (831) east or west (655) north (628) south (940) missing (138)
Situation Garden E-W no garden (831) north or south (619) east (770) west (834) missing (138)

Garage no garage (2465) attached brick (411) detached brick (447) attached wood (4)
detached wood (7) built-in (396)

Living Room L-room (789) T-room (44) Z-room (180) through living room (416) room and suite
(83) missing (2218)

Garden Maintenance no garden (831) to be laid out (17) normal (2079) pretty (784) neglected (19)
Shed no shed (881) attached brick (283) detached brick (1393) attached wood (41)

detached wood (274) built-in (858)
Heating central(gas) (3032) central(oil) (121) city heating (331) room heater with back

boiler (60) warm-air (26) gas heaters (89) missing (71)
Situation open (24) normal (3563) covered (143)
District eindhoven woensel-noord (660) eindhoven stratum (445) eindhoven woensel-zuid

(374) best (290) eindhoven strijp (246) other(16 districts) (1711) missing (4)
Numerical

Name Min. 1st Qu. Median Mean 3rd Qu. Max. (Missing)
Transaction Price (€) 79500 165000 198000 237700 269000 1690000

Lot Size (m2) 12 115 166 265.1 249 46370 (14)
Construction Year 1694 1960 1974 1971 1987 2005
Rooms Basement 0 0 0 0.01287 0 3

Rooms Ground-Floor 0 1 1 1.495 2 8
Rooms 1st Floor 0 2 3 2.335 3 6

Rooms 2nd Floor 0 0 0 0.6062 1 6

Rooms 3rd Floor 0 0 0 0.01206 0 3
Total Rooms 1 4 5 4.469 5 13 (5)
Volume (m3) 84 300 365 389 450 3115 (24)

House Size (m2) 11 100 125 130 150 854 (5)
Subsidized House 0 0 0 0.0005362 0 1

Listed Building 0 0 0 0.004558 0 1
Upholstered 0 0 0 0.001609 0 1

Partially Upholstered 0 0 0 0.01072 0 1
Furnished 0 0 0 0.0002681 0 1

Maintenance Outside 2 8 8 8.099 8 10
Maintenance Inside 2 8 8 8.116 8 10

Garden: Patio 0 0 0 0.01394 0 1
Garden: Place 0 0 0 0.005898 0 1

Garden: Terrace 0 0 0 0.1319 0 1
Garden: Lawn 0 0 0 0.1332 0 1

Carport 0 0 0 0.04692 0 1
Possibility for garage 0 0 0 0.03619 0 1

Garage: 2+ cars 0 0 0 0.03405 0 1
Garage: Central Heated 0 0 0 0.05684 0 1

Parking Space 0 0 0 0.06005 0 1
Rear Access 0 0 1 0.52 1 1

Floor Heating 0 0 0 0.06595 0 1
Fireplace 0 0 0 0.119 0 1

Isolation: Roof 0 0 0 0.4724 1 1
Isolation: Wall 0 0 0 0.3547 1 1

Isolation: Floor 0 0 0 0.296 1 1
Isolation: Double Glazing 0 0 0 0.2662 1 1

Isolation: Double Glazing Part. 0 0 0 0.3129 1 1
Isolation: Double Windows 0 0 0 0.005094 0 1

Table 11: Eindhoven and environs: Statistics of variables
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Categorical

Name Levels
Kind House simple house (145) middle class house (1040) mansion (325) villa (61)

country-house (3) bungalow (6) patio-bungalow (3) semi bungalow (1) split-level
(20) downstairs house (763) upstairs house (3557) up- + downstairs house (61)
staircase-access flat (86) canal house (62) maisonette (377) service flat (20) flat
with elevator (609) flat without elevator (346) house with office (32) drive-in house
(42) farm house (7) apartment (923) holiday home (1)

Type House apartment (6742) end-terraced house (335) mid-terraced house (1210) detached
house (80) semi detached house(104) stepped house (19)

Garden Size no garden (5408) 0 to 5 meters (602) 5 to 10 m (1196) 10 to 15 m (924) 15 to 20 m
(134) 20 to 50 m (90) 50+ m (16) missing (120)

Situation Garden N-S no garden (5408) east or west (761) north (461) south (1413) missing (447)
Situation Garden E-W no garden (5408) north or south (973) east (691) west (971) missing (447)

Garage no garage (8018) attached brick (78) detached brick (58) attached wood (6)
detached wood (13) built-in (317)

Living Room L-room (560) T-room (12) Z-room (24) through living room (568) room and suite
(537) missing (6789)

Garden Maintenance no garden (5408) to be laid out (146) normal (2524) pretty (394) neglected (16)
missing (2)

Shed no shed (4262) attached brick (210) detached brick (578) attached wood (80)
detached wood (581) built-in (2779)

Heating central(gas) (5464) central(oil) (316) city heating (1473) room heater with back
boiler (208) warm-air (23) gas heaters (569) missing (437)

Situation open (126) normal (8057) covered (307)
District amsterdam oud-zuid (1187) amsterdam binnenstad (1109) amstelveen (1029)

amsterdam zuideramstel (623) amsterdam oost/watergraafsmeer (507) other(14
districts) (4015) missing (20)

Numerical

Name Min. 1st Qu. Median Mean 3rd Qu. Max. (Missing)
Transaction Price (€) 22500 160000 210000 257600 292000 4250000

Lot Size (m2) 10 65 85 108.7 115 30050 (155)
Construction Year 1584 1920 1955 1946 1985 2004
Rooms Basement 0 0 0 0.02886 0 4

Rooms Ground-Floor 0 1 2 2.19 3 10
Rooms 1st Floor 0 0 0 0.867 2 7 (1)

Rooms 2nd Floor 0 0 0 0.257 0 5

Rooms 3rd Floor 0 0 0 0.04523 0 4
Total Rooms 1 3 3 3.469 4 22 (164)
Volume (m3) 12 175 230 269.4 315 4240 (181)

House Size (m2) 18 65 85 97.59 115 1400 (6)
Subsidized House 0 0 0 0.0007067 0 1

Listed Building 0 0 0 0.02521 0 1
Upholstered 0 0 0 0.01625 0 1

Partially Upholstered 0 0 0 0.1353 0 1
Furnished 0 0 0 0.001413 0 1

Maintenance Outside 2 8 8 8.355 8 10
Maintenance Inside 2 8 8 8.274 9 10

Garden: Patio 0 0 0 0.01201 0 1
Garden: Place 0 0 0 0.008716 0 1

Garden: Terrace 0 0 0 0.07986 0 1
Garden: Lawn 0 0 0 0.05536 0 1

Carport 0 0 0 0.008245 0 1
Possibility for garage 0 0 0 0.02108 0 1

Garage: 2+ cars 0 0 0 0.006596 0 1
Garage: Central Heated 0 0 0 0.005536 0 1

Parking Space 0 0 0 0.04523 0 1
Rear Access 0 0 0 0.08 0 1

Floor Heating 0 0 0 0.01048 0 1
Fireplace 0 0 0 0.01331 0 1

Isolation: Roof 0 0 0 0.2465 0 1
Isolation: Wall 0 0 0 0.2212 0 1

Isolation: Floor 0 0 0 0.236 0 1
Isolation: Double Glazing 0 0 0 0.2845 1 1

Isolation: Double Glazing Part. 0 0 0 0.1254 0 1
Isolation: Double Windows 0 0 0 0.006125 0 1

Table 12: Amsterdam: Statistics of variables
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Categorical

Name Levels
Kind House simple house (86) middle class house (2006) mansion (518) villa (113)

country-house (8) bungalow (30) patio-bungalow (11) semi bungalow (7) split-level
(19) downstairs house (527) upstairs house (1206) up- + downstairs house (9)
staircase-access flat (148) canal house (9) maisonette (461) service flat (2) flat
with elevator (734) flat without elevator (1227) house with office (23) drive-in
house (45) farm house (10) apartment (308)

Type House apartment (4625) end-terraced house (635) mid-terraced house (1753) detached
house (173) semi detached house(263) stepped house (61)

Garden Size no garden (3930) 0 to 5 meters (247) 5 to 10 m (1089) 10 to 15 m (1542) 15 to 20
m (315) 20 to 50 m (165) 50+ m (11) missing (211)

Situation Garden N-S no garden (3930) east or west (912) north (540) south (1407) missing (721)
Situation Garden E-W no garden (3930) north or south (865) east (936) west (1058) missing (721)

Garage no garage (6788) attached brick (224) detached brick (127) attached wood (9)
detached wood (22) built-in (340)

Living Room L-room (587) T-room (14) Z-room (66) through living room (480) room and suite
(408) missing (5955)

Garden Maintenance no garden (3930) to be laid out (81) normal (3012) pretty (447) neglected (36)
missing (4)

Shed no shed (2656) attached brick (370) detached brick (794) attached wood (140)
detached wood (917) built-in (2633)

Heating central(gas) (4342) central(oil) (89) city heating (1748) room heater with back
boiler (261) warm-air (48) gas heaters (535) missing (487)

Situation open (127) normal (7086) covered (297)
District rotterdam noord (735) rotterdam prins alexander (731) rotterdam

hilligersberg-schiebroek (586) rotterdam kralingen-krooswijk (518) rotterdam
delfshaven (436) other(38 districts) (4354) missing (11)

Numerical

Name Min. 1st Qu. Median Mean 3rd Qu. Max. (Missing)
Transaction Price (€) 11500 120000 160000 192400 220000 2045000

Lot Size (m2) 15 75 100 137.9 140 9719 (98)
Construction Year 1580 1936 1964 1960 1984 2005 (1)
Rooms Basement 0 0 0 0.02863 0 5

Rooms Ground-Floor 0 1 2 1.903 3 7 (1)
Rooms 1st Floor 0 0 2 1.489 3 30

Rooms 2nd Floor 0 0 0 0.4638 1 6

Rooms 3rd Floor 0 0 0 0.0249 0 5
Total Rooms 1 3 4 3.916 5 16 (16)
Volume (m3) 75 210 270 305.5 360 2500 (16)

House Size (m2) 25 76 100 109.6 130 650 (10)
Subsidized House 0 0 0 0.0001332 0 1

Listed Building 0 0 0 0.004927 0 1
Upholstered 0 0 0 0.002796 0 1

Partially Upholstered 0 0 0 0.01771 0 1
Furnished 0 0 0 0.0009321 0 1

Maintenance Outside 2 8 8 7.96 8 10
Maintenance Inside 2 8 8 7.876 8 10

Garden: Patio 0 0 0 0.006658 0 1
Garden: Place 0 0 0 0.01025 0 1

Garden: Terrace 0 0 0 0.03222 0 1
Garden: Lawn 0 0 0 0.06232 0 1

Carport 0 0 0 0.01238 0 1
Possibility for garage 0 0 0 0.01691 0 1

Garage: 2+ cars 0 0 0 0.009055 0 1
Garage: Central Heated 0 0 0 0.01265 0 1

Parking Space 0 0 0 0.06099 0 1
Rear Access 0 0 0 0.18 0 1

Floor Heating 0 0 0 0.02503 0 1
Fireplace 0 0 0 0.04008 0 1

Isolation: Roof 0 0 0 0.2097 0 1
Isolation: Wall 0 0 0 0.1903 0 1

Isolation: Floor 0 0 0 0.1758 0 1
Isolation: Double Glazing 0 0 0 0.2574 1 1

Isolation: Double Glazing Part. 0 0 0 0.1905 0 1
Isolation: Double Windows 0 0 0 0.003728 0 1

Table 13: Rotterdam: Statistics of variables
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Categorical

Name Levels
Kind House simple house (130) middle class house (1379) mansion (101) villa (46)

country-house (25) country-estate (1) bungalow (76) patio-bungalow (2) semi
bungalow (62) split-level (8) downstairs house (17) upstairs house (60) up- +
downstairs house (7) staircase-access flat (5) canal house (5) maisonette (20)
service flat (1) flat with elevator (27) flat without elevator (58) house with office
(17) drive-in house (12) farm house (41) apartment (37) holiday home (79)

Type House apartment (232) end-terraced house (356) mid-terraced house (714) detached
house (562) semi detached house(318) stepped house (34)

Garden Size no garden (249) 0 to 5 meters (64) 5 to 10 m (387) 10 to 15 m (635) 15 to 20 m
(214) 20 to 50 m (234) 50+ m (29) missing (404)

Situation Garden N-S no garden (249) east or west (376) north (319) south (577) missing (695)
Situation Garden E-W no garden (249) north or south (362) east (443) west (467) missing (695)

Garage no garage (1362) attached brick (386) detached brick (275) attached wood (11)
detached wood (35) built-in (147)

Living Room L-room (341) T-room (6) Z-room (43) through living room (434) room and suite
(94) missing (1298)

Garden Maintenance no garden (249) to be laid out (47) normal (1699) pretty (201) neglected (20)
Shed no shed (706) attached brick (315) detached brick (569) attached wood (70)

detached wood (288) built-in (268)
Heating central(gas) (1835) central(oil) (21) city heating (52) room heater with back boiler

(15) warm-air (18) gas heaters (205) missing (70)
Situation open (78) normal (2025) covered (113)
District goes (177) vlissingen oost-souburg (118) middelburg centrum (109) middelburg

zuidoost (96) middelburg noord (95) other(126 districts) (1596) missing (25)
Numerical

Name Min. 1st Qu. Median Mean 3rd Qu. Max. (Missing)
Transaction Price (€) 31000 125000 162000 195200 230400 1400000

Lot Size (m2) 11 130 191 454.4 344.5 22420 (33)
Construction Year 1545 1936 1970 1956 1983 2004 (1)
Rooms Basement 0 0 0 0.01489 0 3

Rooms Ground-Floor 0 1 1 1.507 2 7
Rooms 1st Floor 0 2 3 2.288 3 9

Rooms 2nd Floor 0 0 0 0.4152 1 6

Rooms 3rd Floor 0 0 0 0.0194 0 4
Total Rooms 1 4 4 4.536 5 15 (140)
Volume (m3) 66 280 340 377.1 410 3600 (2)

House Size (m2) 25 90 110 122.5 140 800 (3)
Listed Building 0 0 0 0.01309 0 1

Upholstered 0 0 0 0.01805 0 1
Partially Upholstered 0 0 0 0.01083 0 1

Furnished 0 0 0 0.03565 0 1
Maintenance Outside 2 8 8 7.787 8 10

Maintenance Inside 2 8 8 7.807 8 10
Garden: Patio 0 0 0 0.003159 0 1
Garden: Place 0 0 0 0.02347 0 1

Garden: Terrace 0 0 0 0.03294 0 1
Garden: Lawn 0 0 0 0.09657 0 1

Carport 0 0 0 0.02211 0 1
Possibility for garage 0 0 0 0.02527 0 1

Garage: 2+ cars 0 0 0 0.037 0 1
Garage: Central Heated 0 0 0 0.02527 0 1

Parking Space 0 0 0 0.03655 0 1
Rear Access 0 0 0 0.41 1 1

Floor Heating 0 0 0 0.02392 0 1
Fireplace 0 0 0 0.07356 0 1

Isolation: Roof 0 0 0 0.4215 1 1
Isolation: Wall 0 0 0 0.3308 1 1

Isolation: Floor 0 0 0 0.2446 0 1
Isolation: Double Glazing 0 0 0 0.2541 1 1

Isolation: Double Glazing Part. 0 0 0 0.3384 1 1
Isolation: Double Windows 0 0 0 0.009025 0 1

Table 14: Zeeland: Statistics of variables
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Name Groningen Apeldoorn Eindhoven Amsterdam Rotterdam Zeeland
Basement

Kitchen 0.0002952 0.0004163 0 0.0004711 0.001731 0.0004513
Bathing Facilities 0.001476 0.002914 0.0005362 0.0053 0.004527 0.002256

Understairs Pantry 0.2247 0.2856 0.3732 0.07479 0.1092 0.1417
Cellar Pantry 0.007086 0.01166 0.009115 0.01567 0.01838 0.004513

Basement Boiler 0.007676 0.007078 0.00563 0.007774 0.01691 0.00361
Garage 0 0.002082 0.001609 0.0007067 0.0002663 0.0009025

Ground-Floor
Study 0.01476 0.06661 0.03056 0.009894 0.006525 0.009928

Garden Room 0.02126 0.03705 0.02574 0.02521 0.01931 0.02347
Kitchen 0.4618 0.4092 0.2729 0.3514 0.3742 0.3159
Scullery 0.1963 0.2423 0.2147 0.03757 0.05393 0.282

Living-Room-Cum-Kitchen 0.07942 0.1694 0.1086 0.08987 0.06312 0.1187
Open-Plan Kitchen 0.3888 0.3855 0.4397 0.3847 0.381 0.3308

Sun-Room 0.0109 0.04704 0.01716 0.004594 0.005859 0.0167
Bathroom with Bath 0.1119 0.1415 0.1453 0.2744 0.1764 0.1187

Bathroom with Shower 0.279 0.2356 0.1252 0.3585 0.2663 0.1697
Shower 0.07263 0.03997 0.0185 0.05041 0.04341 0.03971

First Floor
Balcony 0.1069 0.122 0.1643 0.0978 0.178 0.04919
Kitchen 0.052 0.02498 0.04879 0.08657 0.08921 0.02978

Store-room 0.1414 0.1936 0.1493 0.07786 0.10932 0.08303
Bathroom with Bath 0.2578 0.3177 0.5166 0.166 0.3103 0.3299

Bathroom with Shower 0.2628 0.2785 0.2284 0.1064 0.1718 0.2748
Shower 0.03484 0.01832 0.01877 0.01932 0.02636 0.02843

Second Floor
Balcony 0.007086 0.002914 0.005898 0.01625 0.02357 0.00361

Bathing Facilities 0.04872 0.0295587 0.02949 0.04888 0.06764 0.03159
Attic Storage Space 0.2524 0.4488 0.5311 0.09046 0.1763 0.3005

Loft 0.06466 0.1082 0.1381 0.02049 0.03356 0.1588
Dormer 0.01949 0.06869 0.1657 0.0338 0.05899 0.01083

Fixed Staircase 0.09123 0.1936 0.3335 0.02214 0.06764 0.1079
Room Possibility 0.0508 0.07535 0.1209 0.006832 0.02916 0.04016

Third Floor
Balcony 0 0 0 0.003534 0.001065 0.0004513

Bathing Facilities 0.001771 0 0.001072 0.01107 0.004927 0.002256
Ceiling 0.01329 0.006245 0.02332 0.01013 0.01438 0.008574

Attic 0.01476 0.005828 0.02601 0.004829 0.01505 0.006769
Dormer 0.0002952 0.0004163 0.001072 0.001178 0.0009321 0.0004513

Fixed Stairs 0.002362 0.0008326 0.00563 0.0009423 0.002397 0.002708
Room Possibility 0.001181 0.0004163 0.002413 0.0008245 0.001731 0.0009025

Table 15: Means of floor specific variables
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Variable Description

address density the average number of adresses per km2 within a circle with a radius of 1 km
with the address as the center of the circle.

women proportion of women in the total population
0-15 years percentage of 0-15 years old people in the total population

15-25 years percentage of 15-25 years old people in the total population
25-45 years percentage of 25-45 years old people in the total population
45-65 years percentage of 45-65 years old people in the total population
65+ years percentage of 65+ years old people in the total population

population density average number of inhabitants per km2

western immigrants percentage of immigrants coming from Europe, North-America, Oceania,
Japan and Indonesia with respect to the total population

non-western immigrants percentage of immigrants coming from Turkey, Africa, Latin-America and Asia
(except Japan and Indonesia) with respect to the total population

moroccan immigrants percentage of immigrants coming from Morocco with respect to the total
population

antillean immigrants percentage of immigrants coming from the Dutch Antilles and Aruba with
respect to the total population

surinamese immigrants percentage of immigrants coming from Surinam with respect to the total
population

turkish immigrants percentage of immigrants coming from Turkey with respect to the total
population

other non-western immigrants percentage of immigrants coming from other non-western countries with
respect to the total population

single person households percentage of households which consist of only one person
households without children percentage of multi person households without children

households with children percentage of multi person households with children
average household size average number of persons in a household

average income per income receiver average annual net income of individuals who received 52 weeks of the previous
year an income (2003)

average income total annual net income of the population divided by the number of
inhabitants (2003)

low incomes percentage of income receivers with an annual gross income below €14200 per
year (2003)

high incomes percentage of income receivers with an annual gross income above €25200 per
year (2003)

non-actives percentage of income receivers which had social welfare as major source of
their income (2003)

water proportion of surface water with respect to the total surface

Table 16: Description of the variables taken from the StatLine database. All information is from
the year 2004, except the variables where is stated otherwise.
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D Tables with Results

Mean Absolute Error Mean Relative Error
Groningen region

Model Mean Sd Improvement Mean Sd Improvement
Linear Regression €27348.79 €1625.07 – 16.65% 1.584% –

CART €30369.98 €3313.63 -11.05% 18.21% 2.626% -9.37%
LSBoost (1) €24666.29 €2052.02 9.81% 14.97% 2.131% 10.09%
LSBoost (2) €21259.41 €1523.75 22.27% 12.57% 1.546% 24.50%
LSBoost (3) €20283.89 €1389.76 25.83% 11.82% 1.415% 29.01%
LSBoost (4) €20170.40 €1459.15 26.25% 11.54% 1.475% 30.69%
LSBoost (5) €20110.40 €1520.25 26.47% 11.32% 1.480% 32.01%

LADBoost (1) €23744.68 €2251.29 13.18% 13.63% 1.613% 18.14%
LADBoost (2) €21287.20 €1771.59 22.16% 12.33% 1.677% 25.94%
LADBoost (3) €20499.94 €1618.75 25.04% 11.86% 1.639% 28.77%
LADBoost (4) €20229.31 €1593.25 26.03% 11.68% 1.659% 29.85%
LADBoost (5) €20141.72 €1591.84 26.35% 11.62% 1.639% 30.21%

Apeldoorn region
Linear Regression €35231.94 €3216.74 – 13.77% 0.9960% –

CART €43445.45 €10161.24 -23.31% 16.52% 5.223% -20.00%
LSBoost (1) €31767.77 €4080.93 9.83% 11.81% 0.9014% 14.23%
LSBoost (2) €28563.06 €4190.22 18.93% 10.47% 0.8362% 23.97%
LSBoost (3) €27648.55 €4115.88 21.52% 9.95% 0.7727% 27.74%
LSBoost (4) €26877.13 €4159.03 23.71% 9.56% 0.6932% 30.57%
LSBoost (5) €26643.74 €4176.01 24.38% 9.31% 0.7084% 32.39%

LADBoost (1) €31153.46 €5182.99 11.58% 11.05% 0.9471% 19.75%
LADBoost (2) €29128.91 €4838.08 17.32% 10.28% 0.8913% 25.34%
LADBoost (3) €28394.42 €4542.81 19.41% 10.08% 0.9324% 26.80%
LADBoost (4) €28255.91 €4484.44 19.80% 10.03% 0.9566% 27.16%
LADBoost (5) €27824.49 €4348.22 21.02% 9.86% 0.8823% 28.40%

Eindhoven region
Linear Regression €29821.35 €2729.40 – 11.85% 0.7173% –

CART €31020.14 €2692.29 -4.02% 12.05% 1.035% -1.67%
LSBoost (1) €25108.28 €1881.82 15.80% 9.68% 0.5560% 18.30%
LSBoost (2) €23532.32 €1594.52 21.09% 8.94% 0.4881% 24.56%
LSBoost (3) €22549.92 €1512.67 24.38% 8.50% 0.4205% 28.30%
LSBoost (4) €22025.48 €1581.09 26.14% 8.22% 0.3945% 30.63%
LSBoost (5) €21856.95 €1516.26 26.71% 8.06% 0.3844% 31.98%

LADBoost (1) €24326.20 €2080.84 18.43% 9.03% 0.4787% 23.83%
LADBoost (2) €22870.33 €1838.51 23.31% 8.48% 0.4062% 28.43%
LADBoost (3) €22398.23 €1790.51 24.89% 8.26% 0.4054% 30.29%
LADBoost (4) €21986.68 €1655.48 26.27% 8.13% 0.4070% 31.39%
LADBoost (5) €21822.29 €1594.00 26.82% 8.09% 0.4191% 31.73%

Amsterdam region
Linear Regression €43659.71 €2014.69 – 16.75% 0.5359% –

CART €44375.37 €3596.66 -1.64% 16.32% 1.609% 2.57%
LSBoost (1) €37825.20 €2045.186 13.36% 13.65% 0.4418% 18.54%
LSBoost (2) €33582.29 €1594.52 23.08% 11.66% 0.3986% 30.41%
LSBoost (3) €30746.69 €1843.06 29.58% 10.28% 0.3543% 38.61%
LSBoost (4)
LSBoost (5) €29283.76 €1991.59 32.93% 9.55% 0.3373% 42.99%

LADBoost (1)
LADBoost (2)
LADBoost (3) €30043.13 €2063.33 31.19% 9.68% 0.3368% 42.21%
LADBoost (4)
LADBoost (5) €29320.47 €2014.00 32.84% 9.38% 0.3418% 44.00%

Rotterdam region
Linear Regression €34613.74 €1730.56 – 18.23% 0.6519% –

CART €31390.28 €2091.12 9.31% 15.86% 1.061% 13.03%
LSBoost (1) €29720.83 €1738.70 14.14% 15.08% 0.7008% 17.28%
LSBoost (2) €25388.71 €1540.41 26.65% 12.87% 0.6044% 29.41%
LSBoost (3) €23677.78 €1376.89 31.59% 11.91% 0.5614% 34.68%
LSBoost (4)
LSBoost (5) €22067.10 €1283.30 36.25% 10.96% 0.4982% 39.88%

LADBoost (1)
LADBoost (2)
LADBoost (3) €23707.98 €1633.10 31.51% 11.36% 0.5112% 37.69%
LADBoost (4)
LADBoost (5) €22637.88 €1508.22 34.60% 10.91% 0.5178% 40.15%

Zeeland region
Linear Regression €41999.26 €3459.74 – 23.93% 1.849% –

CART €43666.48 €4198.79 -3.97% 23.23% 2.412% 2.93%
LSBoost (1) €32815.32 €3081.94 21.87% 17.46% 1.572% 27.03%
LSBoost (2) €29608.46 €2782.55 29.50% 15.68% 1.524% 34.48%
LSBoost (3) €29466.44 €2803.23 29.84% 15.42% 1.399% 35.58%
LSBoost (4) €28915.97 €3027.87 31.15% 14.96% 1.333% 37.48%
LSBoost (5) €28914.29 €3127.07 31.16% 14.83% 1.299% 38.03%

LADBoost (1) €33194.28 €3953.89 20.96% 16.77% 1.552% 29.92%
LADBoost (2) €31245.20 €3736.43 25.61% 15.79% 1.471% 34.01%
LADBoost (3) €30446.38 €3416.95 27.51% 15.36% 1.385% 35.83%
LADBoost (4) €29875.19 €3430.52 28.87% 15.17% 1.348% 36.61%
LADBoost (5) €29567.88 €3332.21 29.60% 15.10% 1.288% 36.90%

Table 17: Results for the experiments without demographic data. The numbers in the parentheses
behind the boosting models represent the depths of the base learners.
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Groningen Region
Lin Regr CART LSBoost LADBoost

House Type Size MAE MRE MAE MRE MAE MRE MAE MRE
Apartment 1549 €17827.19 15.38% €18587.10 16.63% €12479.71 10.32% €12598.37 10.37%
End-terraced 283 €23691.92 14.68% €26598.52 15.36% €17731.11 11.21% €18502.50 11.54%
Mid-terraced 901 €22052.74 14.37% €24138.70 15.25% €15295.61 9.67% €14958.97 9.24%
Detached 302 €64154.15 30.19% €77635.62 34.73% €55537.34 24.30% €54995.75 24.98%
Semi Detached 312 €36969.56 15.99% €38286.19 16.70% €26185.88 11.30% €26951.49 11.42%
Stepped 40 €44411.16 20.63% €35043.76 15.67% €27394.72 12.74% €25903.62 11.64%

Apeldoorn Region
Lin Regr CART LSBoost LADBoost

House Type Size MAE MRE MAE MRE MAE MRE MAE MRE
Apartment 536 €23555.67 18.24% €27050.15 21.14% €14499.10 10.13% €15460.91 11.92%
End-terraced 272 €20101.79 9.56% €26216.55 12.69% €14368.29 6.72% €14860.05 6.93%
Mid-terraced 584 €17340.62 8.90% €17018.77 8.88% €10049.46 5.08% €10250.35 5.15%
Detached 615 €67918.12 17.47% €87852.79 21.95% €59389.71 14.39% €62723.96 14.82%
Semi Detached 345 €31012.65 12.20% €36953.09 14.75% €23058.85 9.10% €23544.35 9.33%
Stepped 50 €23233.14 10.85% €23409.40 10.95% €14563.45 6.68% €14488.86 6.77%

Eindhoven Region
Lin Regr CART LSBoost LADBoost

House Type Size MAE MRE MAE MRE MAE MRE MAE MRE
Apartment 903 €20699.26 12.05% €21040.66 12.27% €12640.84 6.92% €12943.35 6.93%
End-terraced 514 €24740.35 11.81% €28418.24 13.07% €18093.28 8.38% €18277.05 8.39%
Mid-terraced 1296 €22067.13 11.16% €20493.94 10.35% €14236.11 7.05% €14749.54 7.19%
Detached 370 €79229.99 15.22% €86893.90 16.57% €68535.87 13.11% €63773.48 12.26%
Semi Detached 532 €33417.15 11.32% €39114.38 13.16% €27277.07 9.18% €28441.11 9.52%
Stepped 115 €29136.63 11.05% €39109.76 15.04% €24721.68 8.89% €26390.02 9.46%

Amsterdam Region
Lin Regr CART LSBoost LADBoost

House Type Size MAE MRE MAE MRE MAE MRE MAE MRE
apartment 6742 36678.28 16.43% 35854.45 15.94% 23032.78 9.06% 23275.45 8.92%
end-terraced 335 55853.86 16.04% 59701.44 15.06% 41154.55 10.14% 41761.38 9.59%
mid-terraced 1210 62159.73 17.95% 63989.83 16.69% 45668.35 10.97% 44288.03 10.63%
detached 80 213587.50 27.06% 252667.24 32.53% 182074.62 23.68% 173400.37 21.90%
semi-detached 104 94040.41 19.31% 122671.10 22.26% 73634.77 14.15% 75611.02 14.01%
stepped 19 82789.66 24.98% 63989.42 18.83% 35195.60 10.82% 29103.85 8.87%

Rotterdam Region
Lin Regr CART LSBoost LADBoost

House Type Size MAE MRE MAE MRE MAE MRE MAE MRE
apartment 4625 26331.68 18.66% 23959.67 16.87% 16710.27 11.30% 16952.31 11.18%
end-terraced 635 43616.01 16.94% 40319.59 15.42% 26620.20 9.75% 28617.72 10.06%
mid-terraced 1753 37521.85 16.45% 33116.94 14.42% 22258.11 9.58% 23026.87 9.53%
detached 173 136534.87 26.24% 152763.75 27.88% 108303.86 19.66% 105308.32 18.57%
semi-detached 263 62357.89 17.19% 74818.91 20.35% 46406.91 12.88% 48668.82 13.32%
Stepped 61 34317.44 12.71% 38894.28 14.30% 21140.52 8.00% 22721.22 8.04%

Zeeland Region
Lin Regr CART LSBoost LADBoost

House Type Size MAE MRE MAE MRE MAE MRE MAE MRE
Apartment 232 €35878.69 27.50% €41320.77 30.59% €27387.84 19.72% €28948.27 19.89%
End-terraced 356 €34625.24 23.10% €29782.00 19.93% €19796.46 12.58% €19869.47 12.71%
Mid-terraced 714 €31529.63 22.89% €29386.76 20.88% €18588.37 12.90% €18875.97 12.99%
Detached 562 €67684.37 27.08% €80484.99 30.21% €56843.39 20.29% €57309.8 20.82%
Semi Detached 318 €33454.68 20.76% €32656.20 19.29% €19508.23 11.39% €20197.78 11.96%
Stepped 34 €38145.65 18.47% €44478.35 18.54% €21023.92 9.58% €20446.54 9.83%

Table 18: Results for Submarkets
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MAE MSE
Model Mean Std Impr. Mean Std Impr.

Groningen region
LSBoost(5) €18892.04 €1565.54 6.06% 10.41% 1.357% 8.04%

LADBoost(5) €19147.28 €1514.23 4.94% 10.93% 1.600% 5.94%
Apeldoorn region

LSBoost(5) €25497.43 €4095.57 4.30% 8.64% 0.5955% 7.20%
LADBoost(5) €26635.71 €4704.50 4.27% 9.26% 0.7960% 6.09%

Eindhoven region
LSBoost(5) €20748.22 €1471.96 5.07% 7.71% 0.3384% 4.34%

LADBoost(5) €20895.34 €1583.24 4.25% 7.78% 0.3718% 3.83%
Amsterdam region

LSBoost(5) €26301.93 €1885.80 10.18% 8.61% 0.2967% 10.92%
LADBoost(5) €26373.36 €1803.08 10.05% 8.51% 0.2933% 9.28%

Rotterdam region
LSBoost(5) €21410.43 €1322.24 2.98% 10.56% 0.4302% 3.65%

LADBoost(5) €21936.93 €1498.14 3.10% 10.42% 0.4302% 4.49%
Zeeland region

LSBoost(5) €27189.76 €2936.54 5.96% 13.90% 1.114% 6.27%
LADBoost(5) €28165.62 €3026.54 4.74% 14.64% 1.196% 3.05%

Table 19: Results with the use of demographic data
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