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Abstract

This paper investigates the performance of quasi maximum likelihood (QML) and
nonlinear least squares (NLS) estimation applied to temporally aggregated GARCH
models. Since these are known to be only weak GARCH, the conditional variance of
the aggregated process is in general not known. Thus, one major condition that is
often used in proving the consistency of QML, the correct specification of the first
two moments, is absent. Indeed, our results suggest that QML is not consistent,
with a substantial bias if both the initial degree of persistence and the aggregation
level are high. In other cases, QML might be taken as an approximation with only
a small bias. Based on results for univariate GARCH models, NLS is likely to be
consistent, although inefficient, for weak GARCH models. Our simulation study re-
veals that NLS does not reduce the bias of QML in considerably large samples. As
the variation of NLS estimates is much higher than that of QML, one would clearly
prefer QML in most practical situations. An empirical example illustrates some of

the results.
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1 Introduction

When estimating parameters of the conditional mean and variance in time series models
with conditional heteroskedasticity, one of the conditions for consistency of quasi maxi-
mum likelihood estimators (QMLE) is that the first two conditional moments are correctly
specified, see e.g. Bollerslev and Wooldridge (1992). If this condition does not hold, then
the behavior of QMLE is in general not known. It then depends on the particular model
whether the bias of QMLE is substantial or negligible.

In the GARCH context, Drost and Nijman (1993) have shown that temporally aggre-
gated GARCH processes are only weak GARCH, in the sense that what is taken to be the
conditional variance in the QML estimation is, in reality, just the best linear predictor in
terms of a constant and lagged squared errors. Weak GARCH models are closed under
temporal aggregation, whereas classical GARCH models are not. Recently, Hafner (2004)
has shown that this carries over in a straightforward way to the multivariate case. Thus,
estimation of temporally aggregated (univariate or multivariate) GARCH models by QML
is in general not consistent.

In the univariate case, there is conflicting evidence on the importance of the bias of
QMLE. While Drost and Nijman (1993) report them to be small and negligible, Meddahi
and Renault (2004) find substantial biases. The latter authors emphasize that these biases
are found in particular in the case of a highly persistent high frequency process and a large
aggregation level. This is relevant for financial returns, where the high frequency process
is often found to be close to an integrated GARCH (IGARCH) process and aggregation
levels can be high, e.g. if weekly or monthly returns are investigated.

The objective of this paper is to extend the simulation results of Drost and Nijman
(1993) and Meddahi and Renault (2004) to the multivariate GARCH (MGARCH) case.
We want to shed light on the empirically relevant question how important the bias of
QML estimation is for alternative aggregation levels. Extending the proposal of Francq
and Zakoian (2000) to a multivariate framework, we also consider nonlinear least squares
(NLS) estimation that is not efficient but consistent. In our simulation study we evaluate
the empirical performance of both estimation procedures under typical bivariate example
processes exhibiting high persistence. We also allow for alternative unconditional correla-
tions between the two series. The main results indicate that the bias of QML is negligible
for small aggregation levels but becomes somewhat more pronounced for high levels. The

results show that for our sample size, NLS estimation does not reduce the mean square



error of QML. Considering one-step forecasts of the conditional variances and covariances,
QML still has a smaller mean square prediction error than NLS. One would therefore prefer
to use QML in a comparable situation in practice.

In an empirical application we show that fitting a multivariate GARCH(1,1) model for
daily DOW JONES/NASDAQ returns is not consistent with fitting the same model at the
weekly and bi-weekly frequency. This confirms previous results of Andersen and Bollerslev
(1997) in the univariate context, namely that high frequency financial returns do not obey
the aggregation schemes of simple GARCH(1,1) models.

The rest of this paper is organised as follows. Section 2 introduces some notation
and defines strong and weak multivariate GARCH models. Section 3 explains temporal
aggregation of multivariate GARCH models. The estimation of the parameters of the
models is subject of Section 4. The results of a simulation exercise are provided in Section
5. An empirical example illustrates the results of this paper in Section 6. Section 7

concludes.

2 From strong to weak MGARCH models

Let ¢; denote a stochastic vector process with K components and Ele; | F;_1] = 0 where
Fi—1 denotes the set of information available until time ¢ — 1. In the following we define
three versions of MGARCH models.

Definition 1 (MGARCH) Let H; be a stochastic positive definite symmetric matriz.
Then, an MGARCH (p,q) process is defined by

e = H'?¢ (1)
q p
hy = w+ Z Aine—i + Z Bjhi— (2)
i=1 j=1

where hy = vech(H;), w = vech(2), n: = vech(eiey). The parameter matrices §, A;, and
B;, are square of order N = K(K +1)/2. We can write (2) as a VARMA (max(p,q),p)

representation of g,

max(p,q) P
N = w+ Z (Ai + Bi)ne—i — Z Bjue—j + ug, (3)
i=1 j=1
where uy = 1n, — hy and where Ay = ... = A, =014 p>qand Bpyy = ... = B, =0 1tf

q > p. We consider two cases for u;:



- If uy is a martingale difference sequence, then & is white noise with identity covariance
matriz. This implies that Elee, | Fy_1] = Hy. If & is i.i.d. then the process {g;} is
called strong MGARCH. Otherwise, it is called semi-strong MGARCH.

- If uy is only a weak white noise, that is, zero mean and uncorrelated, then the process
{e:} is said to be a weak MGARCH process. This means that hy is the best linear

predictor of n; in terms of a constant and lagged values of n;.

This definition includes the VEC, BEKK and factor GARCH type-models, see Bauwens,
Laurent, and Rombouts (2003) for a recent survey of multivariate GARCH models. In their
definition of weak GARCH models, Drost and Nijman (1993) define h; to be the best linear
predictor of 7; in terms of a constant and lagged values of n;, but also in terms of lagged
values of ;. However, as shown by Hafner (2004) this is not necessary to close the model
under temporal aggregation. Rather, an assumption on the fourth moment structure is
needed, such as (10).

In the following we assume that all eigenvalues of the matrix » ;=" P9 (A, + B;) have
modulus smaller than one. This ensures the existence of the unconditional covariance

matrix of g;, Var(g;) = X, given by

—1
max(p,q)

og=vech(S.)= [Iy— > (A+B)]| w, (4)
i=1

where the (N x 1) vector o contains the K unconditional variances and the K(K — 1)/2
unconditional covariances of ;. We will also need finiteness of fourth moments of ¢; in
order to calculate the autocovariances of the moving average part of (3). Necessary and
sufficient conditions for finite fourth moments are provided by Hafner (2003) for the case
of spherical distribution of &. We assume these conditions to hold in the rest of the paper.
Let us denote by ¥, the variance matrix of w;, i.e., ¥, = Elusuj]. Also, we will need the

following autocovariance matrices :

Tu(r) = E[(h —0)(hir — 0)] (5)
Ly(r) = Elm—0)(m-r—0)] (6)
Ty(t) = E[Djvec(eie;_, )vec(ee;_,) D] (7)

with D,, denoting the duplication matrix! and D), = (D! D) *D.,. For the case of
a high frequency strong GARCH process with spherical innovations, Hafner (2003) gives

IThe (m? x m(m + 1)/2) duplication matrix D,, is defined by the property vec(A) = D,,vech(A) for

any symmetric (m x m) matrix A.



expressions for ¥,, I',)(7), I',(0) and Hafner (2004) for fn(T). It can easily be shown
that I',(7) = (A+ B)"T',(0), 7 > 0. For the calculations in our paper we also use the

asssumption of spherical innovations.

3 Temporal aggregation

We will only look at the case of flow variables which is certainly the most relevant one
in the case of financial variables such as returns. The aggregation of flow variables is
characterized by taking the sum of the high frequency process. Denote the process ¢; that

is aggregated over m periods by {6(7”) t € ZZ} which is then given by

mt

(m) _
Emt = Emt +emt—1+ ...+ Emt—m+1-

= vech(e%)giz)/) the vector process that contains the squares and
(m)

mt

mension K, vech(ab’) + vech(ba') = 2D} vec(al'), we have

Now denote by 5™

cross-products of the aggregated process ¢ Since for arbitrary vectors a and b of di-

Mot = ot + Thont—1 + - -+ Nent—mg1 + Wy - (8)

where, using the lag operator L*z; = z,_4,

m—2 m—3
wl™ = 2D} {Z Livec(epel . 1) + Z L'vec(epmel o o) + -+ Vec(smts'mt_mﬂ)}} :

=0 =0 (9)

)

Each term of w,(:tl has expectation zero. By further assuming

Elvec(ee;_;) vec(eg; ;)] =0 Vi, j >0, i # j, (10)

) is uncorrelated with

and using the martingale difference property of ¢;, every term of wf:z
every other term of w,(;j? and with n,,;_x, K =0,...,m—1. It can be shown that condition
(10) holds under the stronger assumption of a strong multivariate GARCH process with
spherical innovations &, see also Hafner (2004).

The variance matrix of w7,

»(m) say, is given by
m—1

S =4 (m =)L), (11)
i—1

where (i) is given by (7).
To get a better grasp of the matrix notation and the ideas of temporal aggregation we

give an illustration for the simplest case by taking m = 2.
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Example 1 (m=2,K=2) The aggregated process is then given by
59 = €t + €2t—1

Z522(2—1) = &2(¢t-1) + E9(t—1)—1 = E2¢—2 + E9r 5

552(2_2) = Eg(t—2) T E2(t—-2)—1 = €2t—4 T E2t—5.
Therefore, the new process is a result of adding up the subsequent high frequency vectors &;
without overlapping. The interest lies in the process ngf) which 1s given by

(2)
t

_ + /
Ny, = Mot + Nor—1 + 2D vec(exeh, 1)
2 2
€1,2t €12t-1
h "=
vech (eo4 + €2t—1) (et + €2—1) = €22t €12t | T | €226-1€1201 | T
2 2
€90t €9.0t-1

2 €1,2¢ €1,2t—1
€92t €12t—1 T €1,2¢ €221

2 €22t €2,2t—1

To keep the notation simple we focus on multivariate GARCH(1,1) models in the fol-
lowing. Theorem 1 of Hafner (2004) states that if (10) holds, then the class of weak
multivariate GARCH(1,1) processes is closed under temporal aggregation. This means

(m

that the aggregated process nmt) follows a weak VARMA(1,1) process on the low frequency

time scale that can be written as

mt = m(t—1 (t—1) mt s
where w(™ is given by
wm™ =m(Iy+A+B+...+(A+B)" Y, (13)
the matrix B is given by the solution to the system of quadratic equations
B™@G,B™ + BM™gS 4G, =0, (14)

with all eigenvalues of B(™ smaller than one in modulus, and where the matrices S, and
G,, are given by

2m—1

Sm = Y JEJ+ S0+ (A+ B)"EiM(A + B (15)
=0
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Gm = JiemEu ! — (A + B)"xim (16)

where S, is the variance of —B(m)uf:(bz_l) +uf$), the moving average term in (12), and G,

is its first order autocovariance. The matrices J; in (15) and (16) are defined by

Jo = Iy
J = IN+A+(A+B)A+--+(A+B) A, i=1,....m—1
Jn = {In+(A+B)+--+(A+B)"*}A—(A+B)™'B
J = {(A+B)"™+(A+B)"™" +...+ (A+B)"*}A— (A+B)"'B
t1=m+1,...,2m —2
Jom1 = —(A+B)"'B

)

and £ is the variance matrix of w™ given in (11).

Note that the solution to (14) is not unique, but restricting B to have eigenvalues
smaller than one in modulus provides a unique solution. Although we do not have a proof
for this statement, we found it to hold under various scenarios using numerical techniques.

Having determined B, the coefficient matrix A™ in (12) is then given by
A™ = (A+ B)™ — B™. (17)

In the following, let us give an example how these matrices look like in the simple case
of m=2and K = 2.

Example 2 (m=2 continued) For simplicity we take an MGARCH(1,1) process with

K =2 components (N = 3). The autocovariance matriz in (11) becomes

where T(1) in (7) is given in the bivariate case by

Y11 Y21 V31
F(l) =k Y21 V22 Y32 (19)
Y31 V32 Y33

where

_ 2 2
-V = €1 €1



1 2 1.2
- Y21 = 5€1,t €24 €141 T 5E1 4 €2,0—1 E1,t—1

- V31 = €24 €2¢1-1 €14 €141

- Y22 = is%,t Eit_l + %51,t €24—1 €2 €1,t—1 T i5it 5§,t_1
- V32 = %é‘%,t €1,4-1 €2¢-1 t %51,15 637,5,1 €24

- V33 = 5%,t 5%,t—1

If we suppose w = (w11, 0,ws3) and A and B (3 x 3) diagonal matrices, then the uncon-
ditional covariance is zero, as can easily be seen from (4). If we additionally assume a
spherical distribution for & then it can be shown that E(v) = E(vs2) = 0 and that the
(3% 3) variance matriz of uy, X, also has zero elements at positions (2,1), (1,2), (2,3) and
(3,2). Writing (14) equation-wise, it may be seen that the solution of B'™ has the same
structure as X, and therefore also the solution for A . This particular structure of the
model implies a reduction of the number of parameters from 21 to 12. It should be empha-
sized that unlike the high frequency process, the low frequency process is not characterized
by diagonal parameter matrices.

(m)

mt

matrix ng) with

The noise {u,, ,t € Z} in (12) is a weak white noise vector process with covariance

vec(20™) = (In2 + B™ @ BM™) vec(S,,). (20)

Therefore, the parameter matrices of the aggregated process can be obtained from the
high frequency process. The matrices S,, and G,, given by (15) and (16) are functions
of the matrices A, B, and X, and thus can be calculated if the high frequency process
is known. As for B (14) is a system of nonlinear equations that can not be solved
explicitly but for which numerical procedures provide solutions very quickly.

We summarize this section by collecting the main conditional and unconditional mo-
ments in Table 1 under the assumption of strong multivariate GARCH with spherically

distributed innovations of the high frequency process.

4 Estimation

In this section we discuss possible estimation methods for the temporally aggregated mul-

tivariate GARCH processes. Certainly the most common estimation method is maximum



likelihood, which assumes a specific conditional distribution of the errors. In many situ-
ations, assuming Gaussian innovations provides consistent maximum likelihood estimates
even if this assumption is wrong. In that case we speak of quasi maximum likelihood
estimation. In some cases, consistent quasi maximum likelihood estimation under mis-
specification may also be available assuming non-Gaussian innovations, see Newey and
Steigerwald (1997). But for our purpose we restrict QML to the common assumption
of Gaussian innovations. In formalizing this approach in the following, we suppress the
subscript (m) from all variables and parameters for notational simplicity.

Denote by 6 the parameter vector that characterizes h; = vech(H,), the best linear
predictor of 7, i.e., = vec(w, A, B). To stress the dependence of H; on this parameter
vector we write it as H,(f). Suppose that there is an underlying data generating process
characterized by the unknown parameter vector #; which one wants to estimate using a
given sample of T observations. The quasi maximum likelihood (QML) approach estimates

0y by maximizing the log likelihood function assuming normality.

Definition 2 (QML) The quasi mazimum likelihood estimator is defined by

T
Oqumr = arg I(gleag ; 1(6) (21)
where
N 1 1,
(0) = 5 In(27) — 3 In|Hy(0)| — igth 1(0)5t (22)

conditional on some starting value for Hy.

Bollerslev and Wooldridge (1992) have discussed the properties of QML estimates éQ ML
in a general conditional heteroskedasticity model framework. One of their conditions for
consistency is that the first two conditional moments of ; are correctly specified. As we
have seen from the previous section, however, this is not the case for weak multivariate
GARCH models, where the conditional variance can differ from the predictor Hy(#). More
specifically, Jeantheau (1998) assumes a semi-strong multivariate GARCH model to prove
consistency of QML, and the same was done by Comte and Lieberman (2003) to prove
asymptotic normality.

Of course one can still do estimation and inference using QML, hoping that the differ-

ence between H,;(#) and the true conditional variance is negligible. If the model is correctly



specified, that is, in the semi-strong and strong case, then QML estimates are asymptoti-
cally normally distributed, even in the case of non-normally distributed innovations. The

asymptotic distribution is given by

VT (Ogur, — bo) — N (0,T'2T7Y), (23)
where
_ o | 91(9) 91,(0) N RAC)
I=E\"5 o ol J =8 Fe00 "

and where the expectation is taken with respect to the true process. The matrix Z is the
expectation of the outer product of the score vector evaluated at the true parameter vector
0y and is often called the information matrix, whereas J is the negative expectation of the
Hessian evaluated at 6,. If the error process ¢; is conditionally Gaussian, then Z = J and
the asymptotic covariance matrix reduces to Z!, the Cramer-Rao lower bound.

We can now do QML estimation of the temporally aggregated process by maximizing
the quasi log-likelihood (22). Inference is done by using the empirical counterparts of the
matrices Z and J, replacing the expectations by sample means, evaluated at éQ mrL- These
are used for the estimation of the asymptotic covariance matrix in (23).

A second possibility is to use nonlinear least squares (NLS) estimation, as proposed by
Francq and Zakoian (2000) for univariate weak GARCH models. The justification for this
approach lies in the linear regression form of the VARMA representation (3). Least squares
estimation of VAR models is known to be consistent and asymptotically efficient under
quite general conditions and if the error distribution is multinormally distributed, see e.g.,
Liitkepohl (1993). The moving average part complicates the estimation, since no closed
form solution to the normal equations are available. However, numerical techniques can
be used just as in QML estimation. Since the error term u; of the VARMA representation
(3) is not Gaussian, the least squares estimation is likely to be quite inefficient. However,
it will still be consistent under mild conditions. One of the objectives of this paper is to
assess the empirical performances of both QML and NLS estimates.

Formally, the NLS estimator is defined as follows.

Definition 3 (NLS) The nonlinear least squares estimator is defined by

T
Onrs = arg 1;%%1 ; ue(6)"ue (0) (24)

where
uy(0) =1 —w — (A+ B)ne—1 + Buy_1(0) (25)

9



conditional on some starting values uy and ng.

In a univariate framework, Francq and Zakoian (2000) show that éNLS is consistent and
asymptotically normally distributed under mild conditions and proposes a method to esti-
mate the asymptotic covariance matrix.

When the data of the high frequency process are available it is of course possible to
first estimate the high frequency parameters by maximum likelihood and then transform
the estimates according to the above functions to obtain parameter estimates of the ag-
gregated series. It is then also possible via the delta method to obtain the asymptotic
covariance matrix of the low frequency parameter estimates by using the corresponding
matrix of the high frequency estimates and the nonlinear functions that link the former to
the latter. Standard errors are likely to be smaller when high frequency data are used, as

more observations are used for estimation.

5 A simulation study

In this section we investigate the properties of the QML and NLS estimators applied to
temporally aggregated data coming from a high frequency multivariate GARCH process.
The parameters of the high frequency process are chosen such that they resemble typical
values for financial data, see for example the empirical analysis in Section 6. We study
the behavior of the two estimators for different levels of aggregation using a bivariate
GARCH(1,1) model.

5.1 The high frequency process

The high frequency process (m = 1) is assumed to be a strong MGARCH process. We
choose a diagonal VEC model with innovations that are generated either from a bivariate
normal distribution or from a bivariate student ¢ distribution with 8 degrees of freedom.
This allows us to assess the effect of alternative kurtosis and co-kurtosis coefficients on the

parameter estimates. The parametrization of the process is as follows.

e, = H'% (26)
1 007 0 0 0.9 0 0

vech(Hy))=hy = |wy [+| 0 008 0 |[ma+]| 0 09 0 |h-1(27)
1 0 0 0085 0 0 09

10



where

(i) & ~ii.d.N(0,L)
(i) & ~i.i.dts(0,1)

and where wy; = pv/200/15 and p is the unconditional correlation coefficient. We choose five
alternative values for p: 0, 0.1, 0.3, 0.5, and 0.7. The sample size is chosen to be T" = 5000.
The process in (26) and (27) is stationary with maximum eigenvalue of A + B equal to
0.985. The unconditional variances of ¢; are given by 33.33 and 66.66, respectively. In the
case of Gaussian (tg) innovations, the unconditional kurtosis of £, is 3.60 (6.34), that of
£9¢ 18 5.83 (29.86) and the unconditional co-kurtosis is 1.46 (3.26). Let us first consider
the case p = 0. While the unconditional covariance is zero in this case, the conditional
covariance fluctuates around zero. By restricting p to zero in the diagonal vec model, the
estimation problem using the aggregated data involves 8 parameters less than in the case
where p is different from zero. Therefore we present detailed results for the case p = 0 and
summary results for the other cases.

Table 2 reports the results for the high frequency model. Results using the multivariate
t distribution are not given here to economize on space, but they are included in Hafner and
Rombouts (2003). The process in (26) and (27) is generated 500 times and then estimated
by QML and NLS. Reported are summary statistics of the distribution of parameter esti-
mates, as well as the total mean squared error (MSE), i.e., the trace of the mean squared
error matrix. Comparing the QML results for normal innovations with ¢g innovations, the
bias is very similar but the standard deviations are higher for the ¢g innovations, giving a
slightly higher mean squared error (MSE). This is at least partly due to the fact that QML
is inefficient in this case. There are small differences between the biases measured by the
mean and the median for the QML method, showing that the finite sample distribution of
QML parameter estimates is slightly asymmetric. In the tables, significant deviations of
the mean from the true value are indicated with asterisks, one for the 5% level and two
for the 1% level. As the high frequency process is generated as strong GARCH, it may be
somewhat surprising that QML estimates of the parameters in w and B are significantly
different from the true values. However, note that the median is slightly closer to the
true values. Given that asymptotically median and mean should be the same (because the
asymptotic distribution is normal), we conjecture that our sample size may not suffice to
obtain unbiased QML estimates. It should also be emphasized that estimation of bivariate
GARCH models is by far more complicated than that of univariate GARCH models, so

11



the small absolute values of the biases should be satisfactory from a practical viewpoint.

As expected, the nonlinear least squares results are decidedly worse than the quasi
maximum likelihood results for both the normal and the student ¢ innovations, due to the
inefficiency as outlined in the previous section. The parameter estimates of the A and
B matrices have a reasonably low bias, but the constants w; and wy are systematically
overestimated. This overestimation of the constants in the conditional variance matrix
interacts with the underestimation of b1; and agz for respectively the first and second
constant. We also perform a simulation exercise, the results of which are not reported
here, using the variance targeting technique of Engle and Mezrich (1996), which means
that we fix w = (I3 — A— B) ¢ where ¢ contains the empirical variances and the covariance
of the high frequency data. We do this to evaluate whether the NLS biases of b;; and agss
are somewhat reduced, but the results did not change substantially. The high standard
deviations of the NLS estimates indicate the inefficiency of this method. As a consequence,
the total mean square errors are much higher than those of QML, 2.1262 and 3.0805 for the
normal case and the student ¢ case respectively. The difference between the total MSE’s
is larger than for the QML estimator, 7.e. the NLS estimator is more sensitive to the
kurtosis of the innovations. The parameter space for the NLS estimation is restricted to
avoid extreme values for the parameter estimates. For example w; and ws are restricted to
be smaller than 6 which can be noticed by inspection of the maxima in the NLS panels.
The distribution of the NLS parameter estimates is in most cases quite asymmetric, which
can be seen by the difference between the mean and median. The median bias is larger
than the mean bias for the A parameters but smaller for w and B, which holds for both
normal and student t innovations.

We now turn to the case p # 0. Rather than reporting estimation results for the
nine parameters, Table 5 reports the mean square errors of the one-step predictions of
conditional variances and conditional covariance. This measure has also been used by
Francq and Zakoian (2000) in the univariate setting to evaluate the relative forecasting
performance of QML and NLS. We find that in general, QML has a smaller mean square
prediction error. Taking into account the standard error of the simulations, which we do not
report to economize on space, the difference between QML and NLS is not significant. Note
that the MSPE decreases for the conditional variances and increases for the conditional

covariance when p is increased.
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5.2 Low frequency processes

For the aggregation level of the low frequency process, we consider two cases: m = 2 and
m = 10. The true parameters of the aggregated process are obtained by (13), (14) and (17).
In order to obtain the same number of observations of the low frequency process whatever
the value of m, we generate T" = 5000 m observations of the high frequency process. As
mentioned above, the scenario p = 0 of the high frequency process allows us to estimate
also a restricted VEC model for the low frequency process, although not a diagonal one.
Recall that even if the high frequency parameter matrices are diagonal, the low frequency
parameters are in general not diagonal anymore. In other words, the class of diagonal VEC
models is not closed under temporal aggregation. Thus, the model we estimate for the case

p = 0 is given by

wi™ aff’ 0 afy Y0 b
=1 0 |+ 0 o o [aZl | o b o |[Am_. (28
wi™ a§’ 0 afy o0 bl

Note that the solution for w(™, az(;n) and bg;n) depends on the innovation distribution, i.e.
the true parameter values are different when we switch from normal innovations to student
t innovations.

Table 3 presents the results of the simulation exercise for m = 2. The initial data of the
high frequency process are divided by /m in order to obtain series with the same uncondi-
tional variance. For the diagonal elements in (28), the QML method still yields reasonably
small biases but larger standard deviations compared with m = 1, for both normal inno-
vations and student ¢ innovations. The true off-diagonal elements of the aggregated model
are close to zero and the QML biases and standard deviations for these parameters are
still quite small. Again, there are tiny differences between the mean bias and the median
bias for the QML method, indicating that the parameter distribution is almost symmetric.
Overall, the median bias tends to be smaller than the mean bias. Generally speaking,
QML still works well in the setting with m = 2. The total MSE is 0.6109 and 0.4790 for
the normal case and the student ¢ case respectively.

The results for NLS and m = 2 show that some parameters such as bﬁ) and a%) are

(2) )

underestimated, which corresponds to the large biases for w;,™ and w§2 , respectively.?2 The

2In GARCH type models, the constant is typically negatively correlated with the o and with the
parameter. This is plausible from the formula for the unconditional variance, which should match the

empirical variance, a given value.
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inefficiency of NLS is again clearly demonstrated by the large standard deviations. Unlike
QML, some NLS parameter estimates are not symmetrically distributed, and again the
median biases of the parameters in w and B are smaller than the mean biases, but that of
A is larger. The difference in total MSE between normal (8.2043) and student ¢ (52.8210)
innovations is quite pronounced. As for m = 1, variance targeting does not improve the
results. Thus, for m = 2 one would also clearly prefer QML over NLS, as the latter does
not help in reducing the finite sample bias but has a much higher variation.

Turning to m = 10, Table 4 summarizes the results. A general impression is that QML
biases become more pronounced compared to the m = 2 case, especially for the aggregated

b(lo)

i parameters. The underestimation of the parameters in B and the overestimation of
those in w corresponds exactly to the results reported by Meddahi and Renault (2004) for
the univariate case. Also, the variation of the parameter estimates rises importantly.

The least squares results are comparable to the m = 2 case with often a smaller median
bias than mean bias. However, the total MSE’s are still more than ten times larger than
those of QML. In any practical situation one would clearly prefer to use QML estimation.

We also examined the case m = 50 for which the results are not reported here. The
main conclusions for this case are that neither QML nor NLS perform satisfactorily. Both
methods provide intolerable biases and standard deviations. Furthermore, it happens fre-
quently that convergence of the estimation algorithm can not be achieved. We can therefore
conclude that in our setting QML outperforms NLS, but for large m QML seems to be
biased for the parameter matrix B. This shows that the conclusion of Meddahi and Re-
nault (2004) of significantly biased QML estimates at large aggregation levels carries over
to the multivariate case. Given the conjectured consistency of NLS (extending the results
of Francq and Zakoian (2000) to the multivariate case), one would expect a critical sample
size above which NLS is preferable to QML, provided that QML is inconsistent. But even
if QML is inconsistent, the critical sample size above which NLS should be preferred is
likely to be so large that NLS will be irrelevant in most practical situations.

Finally, Table 5 reports results of the mean square prediction errors for alternative
values of p and m = 2. Comparing QML and NLS, the result is that on average QML
outperforms NLS, but taking into account the variation across the 500 replications, the
difference between the two methods is again not significant. Thus, we cannot conclude

that NLS provides superior predictions in terms of mean square prediction error.
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6 Empirical example

In this section we present an application to a bivariate stock index series. We use the Dow
Jones Industrial Average index (DOW) and the NASDAQ index from January 1980 to
June 2003. Summary statistics of the log returns are provided in Table 6. Note that the
NASDAQ has a higher standard deviation but a lower skewness and kurtosis. The skewness
and kurtosis are strongly affected by the 1987 crash, where the DOW fell stronger than
the NASDAQ. This holds for daily, weekly, and bi-weekly returns.

We estimated a diagonal VEC model for two aggregation levels. In theory, some off-
diagonal elements of the parameter matrices of the aggregated model should be non-zero,
but these were found to be very small and insignificant. QML estimation results are
reported in Table 7.

Figure 1 plots the estimated conditional correlations and volatilities using the daily
series, whereas Figures 2 and 3 do the same for the weekly and bi-weekly series. In each
figure, the upper panel shows the estimated conditional correlation and the lower panel
the estimated conditional variances. Consider first the conditional correlations. For most
of the time until about 1993, the correlation between DOW and NASDAQ was on a high
level around 0.8. After that it drops somewhat, where the drop is more pronounced for
the weekly and bi-weekly returns than for the daily returns. The biggest change occurs
in 2000, where correlation drops to zero for all considered aggregation levels, and then
slowly increases again to attain the pre-2000 level. This is due to the decoupling of the
two markets during the new economy boom, where NASDAQ stock prices increased much
stronger than DOW stock prices.

Looking at the estimated conditional variances, one notes the enormous effect of the
October 1987 crash in the DOW, which was remarkably smaller in the NASDAQ. Inversely,
the NASDAQ was much more volatile than the DOW in the years of the new economy
boom, i.e., 1996 to 2000. This is apparent in daily returns, but even more so in weekly
and bi-weekly returns.

Also reported in Table 7 are the parameters of A™ + B(™ implied by the estimation
of the high frequency process, based on equation (17). That is, we calculate (A + B)® and
(A + B)'Y to obtain the weekly and bi-weekly parameters implied by the daily estimates,
and further calculate (A®) 4 B®))2 to obtain the bi-weekly parameters implied by the
weekly estimates. Note that for the diagonal VEC model used here for the high frequency

process, all matrices A + B(™ of the aggregated process are diagonal as well. The
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eigenvalues of this matrix are just given by the diagonal elements, and the largest of these
is often considered as a coefficient measuring persistence. It is striking from the results
in Table 7 that the daily estimates imply low frequency models with smaller persistence
than the estimates of the low frequency models. On the other hand, the weekly estimates
imply bi-weekly persistence that closely matches the persistence estimated with bi-weekly
data. In other words, estimation results using daily data on the one hand and weekly and
bi-weekly data on the other hand suggest that the model used is not coherent with respect
to the sampling frequency, whereas only considering weekly and bi-weekly data it appears
to be coherent. This hints at a possible mis-specification of the model used for daily data.
It also confirms previous results, e.g. by Andersen and Bollerslev (1997), that financial
time series tend to become more complicated and different from simple GARCH models if

the sampling frequency is increased.

7 Conclusions and Outlook

We have investigated the performance of two estimation techniques, quasi maximum like-
lihood (QML) and nonlinear least squares (NLS), for temporally aggregated multivariate
GARCH models. In a simulation study, we draw the main conclusion that for small ag-
gregation levels one would prefer to use QML due to the higher efficiency relative to NLS.
We could not find any strong bias in the QML estimates for typical example processes,
allowing for alternative unconditional correlations, and NLS estimation did not reduce the
bias substantially. For very large aggregation levels neither method performed well and
convergence of the optimization algorithms became a non-trivial task. We conjecture that
this is due to the remaining large kurtosis after temporal aggregation, where the dynamics
are already close to white noise. We have also tried semiparametric estimation methods as
in Hafner and Rombouts (2004), but this did not improve the results for QML. Altogether,
our study suggests that in most practical situations, there will be no better choice than

QML for parameter estimation.

16



Acknowledgments

The authors would like to thank Luc Bauwens and Feike Drost for helpful discussions.
This text presents research results of the Belgian Program on Interuniversity Poles of
Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy Program-

ming. The scientific responsibility is assumed by the authors.

References

ANDERSEN, T., anp T. BOLLERSLEV (1997): “Intraday Periodicity and Volatility Per-

sistence in Financial Markets,” Journal of Empirical Finance, 4, 115-158.

BAUWENS, L., S. LAURENT, anD J. RoMBOUTS (2003): “Multivariate GARCH Models:
A Survey,” CORE DP 2003/31.

BOLLERSLEV, T., AND J. WOOLDRIDGE (1992): “Quasi-Maximum Likelihood Estima-

tion and Inference in Dynamic Models with Time-varying Covariances,” Econometric
Reviews, 11, 143-172.

COMTE, F., anp O. LIEBERMAN (2003): “Asymptotic Theory for Multivariate GARCH
Processes,” Journal of Multivariate Analysis, 84, 61-84.

DrosT, C., anp T. NIIMAN (1993): “Temporal Aggregation of GARCH Processes,”
Econometrica, 61, 909-927.

ENGLE, R., anp J. MEZRICH (1996): “GARCH for Groups,” RISK, 9, 36—40.

FrANCQ, R., AND J.-M. ZAKOIAN (2000): “Estimating Weak GARCH Representations,”
Econometric Theory, 16, 692-728.

HAFNER, C. (2003): “Fourth Moment Structure of Multivariate GARCH Processes,” Jour-

nal of Financial Econometrics, 1, 26-54.

(2004): “Temporal Aggregation of Multivariate GARCH Processes,” Econometric
Institute Report 29, Erasmus University Rotterdam.

HAFNER, C., anp J. RoMBouUTS (2003): “Estimation of Temporally Aggregated Multi-
variate GARCH Models,” CORE DP 2003/73.

17



(2004): “Semiparametric Multivariate Volatility Models,” Econometric Institute

Report 21, Erasmus University Rotterdam.

JEANTHEAU, T. (1998): “Strong Consistency of Estimators for Multivariate ARCH mod-
els,” Econometric Theory, 14, 70-86.

LUTKEPOHL, H. (1993): Introduction to Multiple Time Series Analysis. Springer-Verlag.

MEDDAHI, N.; AND E. RENAULT (2004): “Temporal Aggregation of Volatility Models,”
forthcoming in Journal of Econometrics.

NEWEY, W., AND D. STEIGERWALD (1997): “Asymptotic Bias of Quasi Maximum Likeli-
hood Estimators in Conditional Heteroskedasticity Models,” Econometrica, 65, 587-599.

18



Table 1: Summary of moments of high and low frequency processes

v Epg-y(ve) E(xy)  vech(Varpu—1y(ze)) Var(x) Cov(zpme, Tmi—r))
Et 0 0 ht Ee 0
Ut 0 0 (C gK — ]NZ)(ht ® ht) Zu 0
UG " g (C gK - ]N2>(ht ® ht) Fn<0) Fn(T)
hy Dy o 0 Fh(o) Fh(7'>
glm 0 0 (29) my. 0
u™ 0 0 x s 0
m o (29) mo . T (0) ™ (r)
w!™ 0 0 x s 0

The *-sign indicates that these expressions can be derived following the same type of
calculations of Hafner (2003a). The matrix Gy is given by 2(Df ® D) (Ix ® Cxx ®
Ix)(Dg ® Dk ) + In2. The scalar ¢ is the cokurtosis of the innovations, Dy is the

duplication matrix, D;g its generalized inverse and Ckx the commutation matrix.

See Liitkepohl (1996) for definitions of these matrices. Expression (29) is given by

m—2
B[] = (I = A= B) ™ (I = (A+ B)™) hyg-1y11+ Y (m—1—i)(A+ B)iw (29)
1=0

where the second term of (29) is zero for m = 1.
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Table 4: Simulation results for m = 10 with normal innovations



Table 5: Mean squared prediction errors

m=1 QML NLS
P hi1 hia hao hi1 hi2 haso

0.1 2604 2716 15060 2607 2732 15347
0.3 2580 2907 14689 2591 2941 14928
0.5 2540 3337 14369 2542 3357 14348
0.7 2315 3476 11737 2343 3573 12166

m=2 QML NLS
P hi1 h12 h22 hi1 h12 h22

0.1 2942 3008 17328 2973 3074 17601
0.3 2935 3278 17196 2950 3304 17065
0.5 2870 3704 16490 2912 3775 16850
0.7 2641 4032 14269 2678 4117 14562

Mean squared errors of one-step predictions of conditional
variances and covariances for alternative unconditional cor-
relations p and for the high frequency (m = 1) and low
frequency (m = 2) processes. The reported values are av-
erages over 500 replications of our bivariate VEC example

process.
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Table 6:

Summary statistics

Dow Jones returns
Observations 6110 1222 611
Mean 0.00039 0.00193 0.00387
Standard Deviation 0.01078 0.02416 0.03291
Maximum 0.09666 0.1195 0.10746
Minimum —0.25632 —0.30924 —0.32524
Skewness —2.3318 —1.7404 —1.8541
Kurtosis 60.146 26.348 19.865

NASDAQ returns
Observations 6110 1222 611
Mean 0.00039 0.00195 0.00389
Standard Deviation 0.01327 0.03170 0.04385
Maximum 0.13255 0.12725 0.15141
Minimum —0.14002 —0.19518 —0.21701
Skewness —0.41565 —0.95124 —0.47162
Kurtosis 14.296 8.1694 5.3898

Descriptive statistics for the Dow Jones returns and NASDAQ returns
from 02/01/1980 to 10/06/2003 on a daily, weekly and bi-weekly

basis.
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Table 7: Diagonal VEC estimates for different time aggregation frequencies

Daily (m =1) Weekly (m = 5) Bi-weekly (m = 10)
Coefficient  Std error Coefficient Std error Coefficient Std error
wim™ 0.017145  (0.00469)  0.120609  (0.05622) 0.530121  (0.28656)
Wit 0.011888  (0.00267) 0.097031  (0.03687) 0.316104  (0.22101)
Wiy 0.015078  (0.02416)  0.174297  (0.06415) 0.452082  (0.21156)
a{™ 0.071864  (0.01740)  0.069882  (0.01263)  0.091380  (0.04568)
alm 0.070409  (0.01154) 0.063831  (0.00990) 0.065885  (0.03219)
alm 0.095909  (0.01164) 0.093720  (0.01914)  0.089211  (0.02807)
gim 0.915186  (0.01645) 0.916838  (0.02023) 0.872395  (0.04961)
(m) 0.914904  (0.01160) 0.922681  (0.01645) 0.907624  (0.04174)
gl 0.893063  (0.01168) 0.890637  (0.02485) 0.886542  (0.03237)
it + B 0.98897 0.98672 0.97575
ol + B 0.98705 0.98651 0.97351
aly) + gl 0.98531 0.98435 0.96377
(V) glym 0.94605 0.89502
(aly) + S5ym 0.93434 0.87779
(ol + 6(1))m 0.92416 0.86244
(af} + B17)? 0.97361
(a22 + 6(5))2 0.97320
() + 52 0.96894

Std error means the QML standard error.
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Figure 1: Estimated daily conditional correlations and variances of the Dow Jones and
NASDAQ from 02/01/1980 to 10/06/2003. Solid line: Dow Jones. Dashed line: NASDAQ
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Figure 2: Estimated weekly conditional correlations and variances of the Dow Jones and
NASDAQ from 02/01/1980 to 10/06/2003. Solid line: Dow Jones. Dashed line: NASDAQ
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Figure 3: Estimated bi-weekly conditional correlations and variances of the Dow Jones and
NASDAQ from 02/01/1980 to 10/06/2003. Solid line: Dow Jones. Dashed line: NASDAQ
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