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Abstract

This paper investigates the performance of quasi maximum likelihood (QML) and

nonlinear least squares (NLS) estimation applied to temporally aggregated GARCH

models. Since these are known to be only weak GARCH, the conditional variance of

the aggregated process is in general not known. Thus, one major condition that is

often used in proving the consistency of QML, the correct specification of the first

two moments, is absent. Indeed, our results suggest that QML is not consistent,

with a substantial bias if both the initial degree of persistence and the aggregation

level are high. In other cases, QML might be taken as an approximation with only

a small bias. Based on results for univariate GARCH models, NLS is likely to be

consistent, although inefficient, for weak GARCH models. Our simulation study re-

veals that NLS does not reduce the bias of QML in considerably large samples. As

the variation of NLS estimates is much higher than that of QML, one would clearly

prefer QML in most practical situations. An empirical example illustrates some of

the results.
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1 Introduction

When estimating parameters of the conditional mean and variance in time series models

with conditional heteroskedasticity, one of the conditions for consistency of quasi maxi-

mum likelihood estimators (QMLE) is that the first two conditional moments are correctly

specified, see e.g. Bollerslev and Wooldridge (1992). If this condition does not hold, then

the behavior of QMLE is in general not known. It then depends on the particular model

whether the bias of QMLE is substantial or negligible.

In the GARCH context, Drost and Nijman (1993) have shown that temporally aggre-

gated GARCH processes are only weak GARCH, in the sense that what is taken to be the

conditional variance in the QML estimation is, in reality, just the best linear predictor in

terms of a constant and lagged squared errors. Weak GARCH models are closed under

temporal aggregation, whereas classical GARCH models are not. Recently, Hafner (2004)

has shown that this carries over in a straightforward way to the multivariate case. Thus,

estimation of temporally aggregated (univariate or multivariate) GARCH models by QML

is in general not consistent.

In the univariate case, there is conflicting evidence on the importance of the bias of

QMLE. While Drost and Nijman (1993) report them to be small and negligible, Meddahi

and Renault (2004) find substantial biases. The latter authors emphasize that these biases

are found in particular in the case of a highly persistent high frequency process and a large

aggregation level. This is relevant for financial returns, where the high frequency process

is often found to be close to an integrated GARCH (IGARCH) process and aggregation

levels can be high, e.g. if weekly or monthly returns are investigated.

The objective of this paper is to extend the simulation results of Drost and Nijman

(1993) and Meddahi and Renault (2004) to the multivariate GARCH (MGARCH) case.

We want to shed light on the empirically relevant question how important the bias of

QML estimation is for alternative aggregation levels. Extending the proposal of Francq

and Zakoian (2000) to a multivariate framework, we also consider nonlinear least squares

(NLS) estimation that is not efficient but consistent. In our simulation study we evaluate

the empirical performance of both estimation procedures under typical bivariate example

processes exhibiting high persistence. We also allow for alternative unconditional correla-

tions between the two series. The main results indicate that the bias of QML is negligible

for small aggregation levels but becomes somewhat more pronounced for high levels. The

results show that for our sample size, NLS estimation does not reduce the mean square
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error of QML. Considering one-step forecasts of the conditional variances and covariances,

QML still has a smaller mean square prediction error than NLS. One would therefore prefer

to use QML in a comparable situation in practice.

In an empirical application we show that fitting a multivariate GARCH(1,1) model for

daily DOW JONES/NASDAQ returns is not consistent with fitting the same model at the

weekly and bi-weekly frequency. This confirms previous results of Andersen and Bollerslev

(1997) in the univariate context, namely that high frequency financial returns do not obey

the aggregation schemes of simple GARCH(1,1) models.

The rest of this paper is organised as follows. Section 2 introduces some notation

and defines strong and weak multivariate GARCH models. Section 3 explains temporal

aggregation of multivariate GARCH models. The estimation of the parameters of the

models is subject of Section 4. The results of a simulation exercise are provided in Section

5. An empirical example illustrates the results of this paper in Section 6. Section 7

concludes.

2 From strong to weak MGARCH models

Let εt denote a stochastic vector process with K components and E[εt | Ft−1] = 0 where

Ft−1 denotes the set of information available until time t − 1. In the following we define

three versions of MGARCH models.

Definition 1 (MGARCH) Let Ht be a stochastic positive definite symmetric matrix.

Then, an MGARCH(p,q) process is defined by

εt = H
1/2
t ξt (1)

ht = ω +

q∑
i=1

Aiηt−i +

p∑
j=1

Bjht−j (2)

where ht = vech(Ht), ω = vech(Ω), ηt = vech(εtε
′
t). The parameter matrices Ω, Ai, and

Bj, are square of order N = K(K + 1)/2. We can write (2) as a VARMA(max(p, q), p)

representation of ηt,

ηt = ω +

max(p,q)∑
i=1

(Ai + Bi)ηt−i −
p∑

j=1

Bjut−j + ut, (3)

where ut = ηt − ht and where Aq+1 = . . . = Ap = 0 if p > q and Bp+1 = . . . = Bq = 0 if

q > p. We consider two cases for ut:
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- If ut is a martingale difference sequence, then ξt is white noise with identity covariance

matrix. This implies that E[εtε
′
t | Ft−1] = Ht. If ξt is i.i.d. then the process {εt} is

called strong MGARCH. Otherwise, it is called semi-strong MGARCH.

- If ut is only a weak white noise, that is, zero mean and uncorrelated, then the process

{εt} is said to be a weak MGARCH process. This means that ht is the best linear

predictor of ηt in terms of a constant and lagged values of ηt.

This definition includes the VEC, BEKK and factor GARCH type-models, see Bauwens,

Laurent, and Rombouts (2003) for a recent survey of multivariate GARCH models. In their

definition of weak GARCH models, Drost and Nijman (1993) define ht to be the best linear

predictor of ηt in terms of a constant and lagged values of ηt, but also in terms of lagged

values of εt. However, as shown by Hafner (2004) this is not necessary to close the model

under temporal aggregation. Rather, an assumption on the fourth moment structure is

needed, such as (10).

In the following we assume that all eigenvalues of the matrix
∑max(p,q)

i=1 (Ai + Bi) have

modulus smaller than one. This ensures the existence of the unconditional covariance

matrix of εt, Var(εt) = Σε, given by

σ = vech(Σε) =


IN −

max(p,q)∑
i=1

(Ai + Bi)



−1

ω, (4)

where the (N × 1) vector σ contains the K unconditional variances and the K(K − 1)/2

unconditional covariances of εt. We will also need finiteness of fourth moments of εt in

order to calculate the autocovariances of the moving average part of (3). Necessary and

sufficient conditions for finite fourth moments are provided by Hafner (2003) for the case

of spherical distribution of ξt. We assume these conditions to hold in the rest of the paper.

Let us denote by Σu the variance matrix of ut, i.e., Σu = E[utu
′
t]. Also, we will need the

following autocovariance matrices :

Γh(τ) = E [(ht − σ)(ht−τ − σ)′] (5)

Γη(τ) = E [(ηt − σ)(ηt−τ − σ)′] (6)

Γ̃η(τ) = E[D+
Kvec(εtε

′
t−τ )vec(εtε

′
t−τ )

′D+,′
K ] (7)

with Dm denoting the duplication matrix1 and D+
m = (D′

mDm)−1D′
m. For the case of

a high frequency strong GARCH process with spherical innovations, Hafner (2003) gives

1The (m2 ×m(m + 1)/2) duplication matrix Dm is defined by the property vec(A) = Dmvech(A) for
any symmetric (m×m) matrix A.
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expressions for Σu, Γη(τ), Γh(0) and Hafner (2004) for Γ̃η(τ). It can easily be shown

that Γh(τ) = (A + B)τΓh(0), τ ≥ 0. For the calculations in our paper we also use the

asssumption of spherical innovations.

3 Temporal aggregation

We will only look at the case of flow variables which is certainly the most relevant one

in the case of financial variables such as returns. The aggregation of flow variables is

characterized by taking the sum of the high frequency process. Denote the process εt that

is aggregated over m periods by {ε(m)
mt , t ∈ ZZ} which is then given by

ε
(m)
mt = εmt + εmt−1 + . . . + εmt−m+1.

Now denote by η
(m)
mt = vech(ε

(m)
mt ε

(m)′
mt ) the vector process that contains the squares and

cross-products of the aggregated process ε
(m)
mt . Since for arbitrary vectors a and b of di-

mension K, vech(ab′) + vech(ba′) = 2D+
Kvec(ab′), we have

η
(m)
mt = ηmt + ηmt−1 + . . . + ηmt−m+1 + w

(m)
mt . (8)

where, using the lag operator Lkxt = xt−k,

w
(m)
mt = 2D+

K

{
m−2∑
i=0

Livec(εmtε
′
mt−1) +

m−3∑
i=0

Livec(εmtε
′
mt−2) + · · ·+ vec(εmtε

′
mt−m+1)}

}
.

(9)

Each term of w
(m)
mt has expectation zero. By further assuming

E[vec(εtε
′
t−i) vec(εtε

′
t−j)

′] = 0 ∀i, j ≥ 0, i 6= j, (10)

and using the martingale difference property of εt, every term of w
(m)
mt is uncorrelated with

every other term of w
(m)
mt and with ηmt−k, k = 0, . . . , m− 1. It can be shown that condition

(10) holds under the stronger assumption of a strong multivariate GARCH process with

spherical innovations ξt, see also Hafner (2004).

The variance matrix of w
(m)
mt , Σ

(m)
w say, is given by

Σ(m)
w = 4

m−1∑
i=1

(m− i)Γ̃(i), (11)

where Γ̃(i) is given by (7).

To get a better grasp of the matrix notation and the ideas of temporal aggregation we

give an illustration for the simplest case by taking m = 2.
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Example 1 (m=2,K=2) The aggregated process is then given by

ε
(2)
2t = ε2t + ε2t−1

ε
(2)
2(t−1) = ε2(t−1) + ε2(t−1)−1 = ε2t−2 + ε2t−3

ε
(2)
2(t−2) = ε2(t−2) + ε2(t−2)−1 = ε2t−4 + ε2t−5.

Therefore, the new process is a result of adding up the subsequent high frequency vectors εt

without overlapping. The interest lies in the process η
(2)
2t which is given by

η
(2)
2t = η2t + η2t−1 + 2D+

Kvec(ε2tε
′
2t−1)

vech (ε2t + ε2t−1)(ε2t + ε2t−1)
′ =




ε2
1,2t

ε2,2t ε1,2t

ε2
2,2t


 +




ε2
1,2t−1

ε2,2t−1 ε1,2t−1

ε2
2,2t−1


 +




2 ε1,2t ε1,2t−1

ε2,2t ε1,2t−1 + ε1,2t ε2,2t−1

2 ε2,2t ε2,2t−1




To keep the notation simple we focus on multivariate GARCH(1,1) models in the fol-

lowing. Theorem 1 of Hafner (2004) states that if (10) holds, then the class of weak

multivariate GARCH(1,1) processes is closed under temporal aggregation. This means

that the aggregated process η
(m)
mt follows a weak VARMA(1,1) process on the low frequency

time scale that can be written as

η
(m)
mt = ω(m) + (A(m) + B(m))η

(m)
m(t−1) −B(m)u

(m)
m(t−1) + u

(m)
mt , (12)

where ω(m) is given by

ω(m) = m(IN + A + B + . . . + (A + B)m−1)ω, (13)

the matrix B(m) is given by the solution to the system of quadratic equations

B(m)GmB(m)′ + B(m)Sm + Gm = 0, (14)

with all eigenvalues of B(m) smaller than one in modulus, and where the matrices Sm and

Gm are given by

Sm =
2m−1∑
i=0

JiΣuJ
′
i + Σ(m)

w + (A + B)mΣ(m)
w (A′ + B′)m (15)
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Gm =
m−1∑
i=0

Ji+mΣuJ
′
i − (A + B)mΣ(m)

w (16)

where Sm is the variance of −B(m)u
(m)
m(t−1) +u

(m)
mt , the moving average term in (12), and Gm

is its first order autocovariance. The matrices Ji in (15) and (16) are defined by

J0 = IN

Ji = IN + A + (A + B)A + · · ·+ (A + B)i−1A, i = 1, . . . , m− 1

Jm = {IN + (A + B) + · · ·+ (A + B)m−2}A− (A + B)m−1B

Ji = {(A + B)i−m + (A + B)i−m+1 + · · ·+ (A + B)m−2}A− (A + B)m−1B

i = m + 1, . . . , 2m− 2

J2m−1 = −(A + B)m−1B

and Σ
(m)
w is the variance matrix of w

(m)
mt given in (11).

Note that the solution to (14) is not unique, but restricting B(m) to have eigenvalues

smaller than one in modulus provides a unique solution. Although we do not have a proof

for this statement, we found it to hold under various scenarios using numerical techniques.

Having determined B(m), the coefficient matrix A(m) in (12) is then given by

A(m) = (A + B)m −B(m). (17)

In the following, let us give an example how these matrices look like in the simple case

of m = 2 and K = 2.

Example 2 (m=2 continued) For simplicity we take an MGARCH(1,1) process with

K = 2 components (N = 3). The autocovariance matrix in (11) becomes

Σ(2)
w = 4Γ̃(1), (18)

where Γ̃(1) in (7) is given in the bivariate case by

Γ̃(1) = E




γ11 γ21 γ31

γ21 γ22 γ32

γ31 γ32 γ33


 (19)

where

- γ11 = ε2
1,t ε2

1,t−1

6



- γ21 = 1
2
ε1,t ε2,t ε2

1,t−1 + 1
2
ε2
1,t ε2,t−1 ε1,t−1

- γ31 = ε2,t ε2,t−1 ε1,t ε1,t−1

- γ22 = 1
4
ε2
2,t ε2

1,t−1 + 1
2
ε1,t ε2,t−1 ε2,t ε1,t−1 + 1

4
ε2
1,t ε2

2,t−1

- γ32 = 1
2
ε2
2,t ε1,t−1 ε2,t−1 + 1

2
ε1,t ε2

2,t−1 ε2,t

- γ33 = ε2
2,t ε2

2,t−1

If we suppose ω = (ω11, 0, ω33)
′ and A and B (3 × 3) diagonal matrices, then the uncon-

ditional covariance is zero, as can easily be seen from (4). If we additionally assume a

spherical distribution for ξt then it can be shown that E(γ21) = E(γ32) = 0 and that the

(3×3) variance matrix of ut, Σu, also has zero elements at positions (2, 1), (1, 2), (2, 3) and

(3, 2). Writing (14) equation-wise, it may be seen that the solution of B(m) has the same

structure as Σu, and therefore also the solution for A(m). This particular structure of the

model implies a reduction of the number of parameters from 21 to 12. It should be empha-

sized that unlike the high frequency process, the low frequency process is not characterized

by diagonal parameter matrices.

The noise {u(m)
mt , t ∈ ZZ} in (12) is a weak white noise vector process with covariance

matrix Σ
(m)
u with

vec(Σ(m)
u ) = (IN2 + B(m) ⊗B(m))−1vec(Sm). (20)

Therefore, the parameter matrices of the aggregated process can be obtained from the

high frequency process. The matrices Sm and Gm given by (15) and (16) are functions

of the matrices A, B, and Σu and thus can be calculated if the high frequency process

is known. As for B(m), (14) is a system of nonlinear equations that can not be solved

explicitly but for which numerical procedures provide solutions very quickly.

We summarize this section by collecting the main conditional and unconditional mo-

ments in Table 1 under the assumption of strong multivariate GARCH with spherically

distributed innovations of the high frequency process.

4 Estimation

In this section we discuss possible estimation methods for the temporally aggregated mul-

tivariate GARCH processes. Certainly the most common estimation method is maximum
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likelihood, which assumes a specific conditional distribution of the errors. In many situ-

ations, assuming Gaussian innovations provides consistent maximum likelihood estimates

even if this assumption is wrong. In that case we speak of quasi maximum likelihood

estimation. In some cases, consistent quasi maximum likelihood estimation under mis-

specification may also be available assuming non-Gaussian innovations, see Newey and

Steigerwald (1997). But for our purpose we restrict QML to the common assumption

of Gaussian innovations. In formalizing this approach in the following, we suppress the

subscript (m) from all variables and parameters for notational simplicity.

Denote by θ the parameter vector that characterizes ht = vech(Ht), the best linear

predictor of ηt, i.e., θ = vec(ω, A, B). To stress the dependence of Ht on this parameter

vector we write it as Ht(θ). Suppose that there is an underlying data generating process

characterized by the unknown parameter vector θ0 which one wants to estimate using a

given sample of T observations. The quasi maximum likelihood (QML) approach estimates

θ0 by maximizing the log likelihood function assuming normality.

Definition 2 (QML) The quasi maximum likelihood estimator is defined by

θ̂QML = arg max
θ∈Θ

T∑
t=1

lt(θ) (21)

where

lt(θ) = −N

2
ln(2π)− 1

2
ln |Ht(θ)| − 1

2
ε′tH

−1
t (θ)εt (22)

conditional on some starting value for H0.

Bollerslev and Wooldridge (1992) have discussed the properties of QML estimates θ̂QML

in a general conditional heteroskedasticity model framework. One of their conditions for

consistency is that the first two conditional moments of εt are correctly specified. As we

have seen from the previous section, however, this is not the case for weak multivariate

GARCH models, where the conditional variance can differ from the predictor Ht(θ). More

specifically, Jeantheau (1998) assumes a semi-strong multivariate GARCH model to prove

consistency of QML, and the same was done by Comte and Lieberman (2003) to prove

asymptotic normality.

Of course one can still do estimation and inference using QML, hoping that the differ-

ence between Ht(θ) and the true conditional variance is negligible. If the model is correctly
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specified, that is, in the semi-strong and strong case, then QML estimates are asymptoti-

cally normally distributed, even in the case of non-normally distributed innovations. The

asymptotic distribution is given by
√

T (θ̂QML − θ0)
D−→ N

(
0,J −1IJ −1

)
, (23)

where

I = E

[
∂lt(θ)

∂θ

∂lt(θ)

∂θ′

∣∣∣∣
θ0

]
, J = −E

[
∂2lt(θ)

∂θ∂θ′

∣∣∣∣
θ0

]

and where the expectation is taken with respect to the true process. The matrix I is the

expectation of the outer product of the score vector evaluated at the true parameter vector

θ0 and is often called the information matrix, whereas J is the negative expectation of the

Hessian evaluated at θ0. If the error process εt is conditionally Gaussian, then I = J and

the asymptotic covariance matrix reduces to I−1, the Cramer-Rao lower bound.

We can now do QML estimation of the temporally aggregated process by maximizing

the quasi log-likelihood (22). Inference is done by using the empirical counterparts of the

matrices I and J , replacing the expectations by sample means, evaluated at θ̂QML. These

are used for the estimation of the asymptotic covariance matrix in (23).

A second possibility is to use nonlinear least squares (NLS) estimation, as proposed by

Francq and Zakoian (2000) for univariate weak GARCH models. The justification for this

approach lies in the linear regression form of the VARMA representation (3). Least squares

estimation of VAR models is known to be consistent and asymptotically efficient under

quite general conditions and if the error distribution is multinormally distributed, see e.g.,

Lütkepohl (1993). The moving average part complicates the estimation, since no closed

form solution to the normal equations are available. However, numerical techniques can

be used just as in QML estimation. Since the error term ut of the VARMA representation

(3) is not Gaussian, the least squares estimation is likely to be quite inefficient. However,

it will still be consistent under mild conditions. One of the objectives of this paper is to

assess the empirical performances of both QML and NLS estimates.

Formally, the NLS estimator is defined as follows.

Definition 3 (NLS) The nonlinear least squares estimator is defined by

θ̂NLS = arg min
θ∈Θ

T∑
t=1

ut(θ)
′ut(θ) (24)

where

ut(θ) = ηt − ω − (A + B)ηt−1 + But−1(θ) (25)
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conditional on some starting values u0 and η0.

In a univariate framework, Francq and Zakoian (2000) show that θ̂NLS is consistent and

asymptotically normally distributed under mild conditions and proposes a method to esti-

mate the asymptotic covariance matrix.

When the data of the high frequency process are available it is of course possible to

first estimate the high frequency parameters by maximum likelihood and then transform

the estimates according to the above functions to obtain parameter estimates of the ag-

gregated series. It is then also possible via the delta method to obtain the asymptotic

covariance matrix of the low frequency parameter estimates by using the corresponding

matrix of the high frequency estimates and the nonlinear functions that link the former to

the latter. Standard errors are likely to be smaller when high frequency data are used, as

more observations are used for estimation.

5 A simulation study

In this section we investigate the properties of the QML and NLS estimators applied to

temporally aggregated data coming from a high frequency multivariate GARCH process.

The parameters of the high frequency process are chosen such that they resemble typical

values for financial data, see for example the empirical analysis in Section 6. We study

the behavior of the two estimators for different levels of aggregation using a bivariate

GARCH(1,1) model.

5.1 The high frequency process

The high frequency process (m = 1) is assumed to be a strong MGARCH process. We

choose a diagonal VEC model with innovations that are generated either from a bivariate

normal distribution or from a bivariate student t distribution with 8 degrees of freedom.

This allows us to assess the effect of alternative kurtosis and co-kurtosis coefficients on the

parameter estimates. The parametrization of the process is as follows.

εt = H
1/2
t ξt (26)

vech(Ht) = ht =




1

ω2

1


 +




0.07 0 0

0 0.08 0

0 0 0.085


 ηt−1 +




0.9 0 0

0 0.9 0

0 0 0.9


 ht−1(27)
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where

(i) ξt ∼ i.i.d.N(0, I2)

(ii) ξt ∼ i.i.d.t8(0, I2)

and where ω2 = ρ
√

200/15 and ρ is the unconditional correlation coefficient. We choose five

alternative values for ρ: 0, 0.1, 0.3, 0.5, and 0.7. The sample size is chosen to be T = 5000.

The process in (26) and (27) is stationary with maximum eigenvalue of A + B equal to

0.985. The unconditional variances of εt are given by 33.33 and 66.66, respectively. In the

case of Gaussian (t8) innovations, the unconditional kurtosis of ε1t is 3.60 (6.34), that of

ε2t is 5.83 (29.86) and the unconditional co-kurtosis is 1.46 (3.26). Let us first consider

the case ρ = 0. While the unconditional covariance is zero in this case, the conditional

covariance fluctuates around zero. By restricting ρ to zero in the diagonal vec model, the

estimation problem using the aggregated data involves 8 parameters less than in the case

where ρ is different from zero. Therefore we present detailed results for the case ρ = 0 and

summary results for the other cases.

Table 2 reports the results for the high frequency model. Results using the multivariate

t distribution are not given here to economize on space, but they are included in Hafner and

Rombouts (2003). The process in (26) and (27) is generated 500 times and then estimated

by QML and NLS. Reported are summary statistics of the distribution of parameter esti-

mates, as well as the total mean squared error (MSE), i.e., the trace of the mean squared

error matrix. Comparing the QML results for normal innovations with t8 innovations, the

bias is very similar but the standard deviations are higher for the t8 innovations, giving a

slightly higher mean squared error (MSE). This is at least partly due to the fact that QML

is inefficient in this case. There are small differences between the biases measured by the

mean and the median for the QML method, showing that the finite sample distribution of

QML parameter estimates is slightly asymmetric. In the tables, significant deviations of

the mean from the true value are indicated with asterisks, one for the 5% level and two

for the 1% level. As the high frequency process is generated as strong GARCH, it may be

somewhat surprising that QML estimates of the parameters in ω and B are significantly

different from the true values. However, note that the median is slightly closer to the

true values. Given that asymptotically median and mean should be the same (because the

asymptotic distribution is normal), we conjecture that our sample size may not suffice to

obtain unbiased QML estimates. It should also be emphasized that estimation of bivariate

GARCH models is by far more complicated than that of univariate GARCH models, so
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the small absolute values of the biases should be satisfactory from a practical viewpoint.

As expected, the nonlinear least squares results are decidedly worse than the quasi

maximum likelihood results for both the normal and the student t innovations, due to the

inefficiency as outlined in the previous section. The parameter estimates of the A and

B matrices have a reasonably low bias, but the constants ω1 and ω2 are systematically

overestimated. This overestimation of the constants in the conditional variance matrix

interacts with the underestimation of b11 and a33 for respectively the first and second

constant. We also perform a simulation exercise, the results of which are not reported

here, using the variance targeting technique of Engle and Mezrich (1996), which means

that we fix ω = (I3−A−B) σ̂ where σ̂ contains the empirical variances and the covariance

of the high frequency data. We do this to evaluate whether the NLS biases of b11 and a33

are somewhat reduced, but the results did not change substantially. The high standard

deviations of the NLS estimates indicate the inefficiency of this method. As a consequence,

the total mean square errors are much higher than those of QML, 2.1262 and 3.0805 for the

normal case and the student t case respectively. The difference between the total MSE’s

is larger than for the QML estimator, i.e. the NLS estimator is more sensitive to the

kurtosis of the innovations. The parameter space for the NLS estimation is restricted to

avoid extreme values for the parameter estimates. For example ω1 and ω3 are restricted to

be smaller than 6 which can be noticed by inspection of the maxima in the NLS panels.

The distribution of the NLS parameter estimates is in most cases quite asymmetric, which

can be seen by the difference between the mean and median. The median bias is larger

than the mean bias for the A parameters but smaller for ω and B, which holds for both

normal and student t innovations.

We now turn to the case ρ 6= 0. Rather than reporting estimation results for the

nine parameters, Table 5 reports the mean square errors of the one-step predictions of

conditional variances and conditional covariance. This measure has also been used by

Francq and Zakoian (2000) in the univariate setting to evaluate the relative forecasting

performance of QML and NLS. We find that in general, QML has a smaller mean square

prediction error. Taking into account the standard error of the simulations, which we do not

report to economize on space, the difference between QML and NLS is not significant. Note

that the MSPE decreases for the conditional variances and increases for the conditional

covariance when ρ is increased.
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5.2 Low frequency processes

For the aggregation level of the low frequency process, we consider two cases: m = 2 and

m = 10. The true parameters of the aggregated process are obtained by (13), (14) and (17).

In order to obtain the same number of observations of the low frequency process whatever

the value of m, we generate T = 5000 m observations of the high frequency process. As

mentioned above, the scenario ρ = 0 of the high frequency process allows us to estimate

also a restricted VEC model for the low frequency process, although not a diagonal one.

Recall that even if the high frequency parameter matrices are diagonal, the low frequency

parameters are in general not diagonal anymore. In other words, the class of diagonal VEC

models is not closed under temporal aggregation. Thus, the model we estimate for the case

ρ = 0 is given by

h
(m)
mt =




ω
(m)
1

0

ω
(m)
3


 +




a
(m)
11 0 a

(m)
13

0 a
(m)
22 0

a
(m)
31 0 a

(m)
33


 η

(m)
m(t−1) +




b
(m)
11 0 b

(m)
13

0 b
(m)
22 0

b
(m)
31 0 b

(m)
33


 h

(m)
m(t−1). (28)

Note that the solution for ω
(m)
i , a

(m)
ij and b

(m)
ij depends on the innovation distribution, i.e.

the true parameter values are different when we switch from normal innovations to student

t innovations.

Table 3 presents the results of the simulation exercise for m = 2. The initial data of the

high frequency process are divided by
√

m in order to obtain series with the same uncondi-

tional variance. For the diagonal elements in (28), the QML method still yields reasonably

small biases but larger standard deviations compared with m = 1, for both normal inno-

vations and student t innovations. The true off-diagonal elements of the aggregated model

are close to zero and the QML biases and standard deviations for these parameters are

still quite small. Again, there are tiny differences between the mean bias and the median

bias for the QML method, indicating that the parameter distribution is almost symmetric.

Overall, the median bias tends to be smaller than the mean bias. Generally speaking,

QML still works well in the setting with m = 2. The total MSE is 0.6109 and 0.4790 for

the normal case and the student t case respectively.

The results for NLS and m = 2 show that some parameters such as b
(2)
11 and a

(2)
33 are

underestimated, which corresponds to the large biases for ω
(2)
1 and ω

(2)
2 , respectively.2 The

2In GARCH type models, the constant is typically negatively correlated with the α and with the β

parameter. This is plausible from the formula for the unconditional variance, which should match the
empirical variance, a given value.
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inefficiency of NLS is again clearly demonstrated by the large standard deviations. Unlike

QML, some NLS parameter estimates are not symmetrically distributed, and again the

median biases of the parameters in ω and B are smaller than the mean biases, but that of

A is larger. The difference in total MSE between normal (8.2043) and student t (52.8210)

innovations is quite pronounced. As for m = 1, variance targeting does not improve the

results. Thus, for m = 2 one would also clearly prefer QML over NLS, as the latter does

not help in reducing the finite sample bias but has a much higher variation.

Turning to m = 10, Table 4 summarizes the results. A general impression is that QML

biases become more pronounced compared to the m = 2 case, especially for the aggregated

b
(10)
ii parameters. The underestimation of the parameters in B and the overestimation of

those in ω corresponds exactly to the results reported by Meddahi and Renault (2004) for

the univariate case. Also, the variation of the parameter estimates rises importantly.

The least squares results are comparable to the m = 2 case with often a smaller median

bias than mean bias. However, the total MSE’s are still more than ten times larger than

those of QML. In any practical situation one would clearly prefer to use QML estimation.

We also examined the case m = 50 for which the results are not reported here. The

main conclusions for this case are that neither QML nor NLS perform satisfactorily. Both

methods provide intolerable biases and standard deviations. Furthermore, it happens fre-

quently that convergence of the estimation algorithm can not be achieved. We can therefore

conclude that in our setting QML outperforms NLS, but for large m QML seems to be

biased for the parameter matrix B. This shows that the conclusion of Meddahi and Re-

nault (2004) of significantly biased QML estimates at large aggregation levels carries over

to the multivariate case. Given the conjectured consistency of NLS (extending the results

of Francq and Zakoian (2000) to the multivariate case), one would expect a critical sample

size above which NLS is preferable to QML, provided that QML is inconsistent. But even

if QML is inconsistent, the critical sample size above which NLS should be preferred is

likely to be so large that NLS will be irrelevant in most practical situations.

Finally, Table 5 reports results of the mean square prediction errors for alternative

values of ρ and m = 2. Comparing QML and NLS, the result is that on average QML

outperforms NLS, but taking into account the variation across the 500 replications, the

difference between the two methods is again not significant. Thus, we cannot conclude

that NLS provides superior predictions in terms of mean square prediction error.
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6 Empirical example

In this section we present an application to a bivariate stock index series. We use the Dow

Jones Industrial Average index (DOW) and the NASDAQ index from January 1980 to

June 2003. Summary statistics of the log returns are provided in Table 6. Note that the

NASDAQ has a higher standard deviation but a lower skewness and kurtosis. The skewness

and kurtosis are strongly affected by the 1987 crash, where the DOW fell stronger than

the NASDAQ. This holds for daily, weekly, and bi-weekly returns.

We estimated a diagonal VEC model for two aggregation levels. In theory, some off-

diagonal elements of the parameter matrices of the aggregated model should be non-zero,

but these were found to be very small and insignificant. QML estimation results are

reported in Table 7.

Figure 1 plots the estimated conditional correlations and volatilities using the daily

series, whereas Figures 2 and 3 do the same for the weekly and bi-weekly series. In each

figure, the upper panel shows the estimated conditional correlation and the lower panel

the estimated conditional variances. Consider first the conditional correlations. For most

of the time until about 1993, the correlation between DOW and NASDAQ was on a high

level around 0.8. After that it drops somewhat, where the drop is more pronounced for

the weekly and bi-weekly returns than for the daily returns. The biggest change occurs

in 2000, where correlation drops to zero for all considered aggregation levels, and then

slowly increases again to attain the pre-2000 level. This is due to the decoupling of the

two markets during the new economy boom, where NASDAQ stock prices increased much

stronger than DOW stock prices.

Looking at the estimated conditional variances, one notes the enormous effect of the

October 1987 crash in the DOW, which was remarkably smaller in the NASDAQ. Inversely,

the NASDAQ was much more volatile than the DOW in the years of the new economy

boom, i.e., 1996 to 2000. This is apparent in daily returns, but even more so in weekly

and bi-weekly returns.

Also reported in Table 7 are the parameters of A(m) + B(m) implied by the estimation

of the high frequency process, based on equation (17). That is, we calculate (A + B)5 and

(A + B)10 to obtain the weekly and bi-weekly parameters implied by the daily estimates,

and further calculate (A(5) + B(5))2 to obtain the bi-weekly parameters implied by the

weekly estimates. Note that for the diagonal VEC model used here for the high frequency

process, all matrices A(m) + B(m) of the aggregated process are diagonal as well. The

15



eigenvalues of this matrix are just given by the diagonal elements, and the largest of these

is often considered as a coefficient measuring persistence. It is striking from the results

in Table 7 that the daily estimates imply low frequency models with smaller persistence

than the estimates of the low frequency models. On the other hand, the weekly estimates

imply bi-weekly persistence that closely matches the persistence estimated with bi-weekly

data. In other words, estimation results using daily data on the one hand and weekly and

bi-weekly data on the other hand suggest that the model used is not coherent with respect

to the sampling frequency, whereas only considering weekly and bi-weekly data it appears

to be coherent. This hints at a possible mis-specification of the model used for daily data.

It also confirms previous results, e.g. by Andersen and Bollerslev (1997), that financial

time series tend to become more complicated and different from simple GARCH models if

the sampling frequency is increased.

7 Conclusions and Outlook

We have investigated the performance of two estimation techniques, quasi maximum like-

lihood (QML) and nonlinear least squares (NLS), for temporally aggregated multivariate

GARCH models. In a simulation study, we draw the main conclusion that for small ag-

gregation levels one would prefer to use QML due to the higher efficiency relative to NLS.

We could not find any strong bias in the QML estimates for typical example processes,

allowing for alternative unconditional correlations, and NLS estimation did not reduce the

bias substantially. For very large aggregation levels neither method performed well and

convergence of the optimization algorithms became a non-trivial task. We conjecture that

this is due to the remaining large kurtosis after temporal aggregation, where the dynamics

are already close to white noise. We have also tried semiparametric estimation methods as

in Hafner and Rombouts (2004), but this did not improve the results for QML. Altogether,

our study suggests that in most practical situations, there will be no better choice than

QML for parameter estimation.
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Table 1: Summary of moments of high and low frequency processes

xt Em(t−1)(xt) E(xt) vech(V arm(t−1)(xt)) V ar(xt) Cov(xmt, xm(t−τ))

εt 0 0 ht Σε 0

ut 0 0 (c GK − IN2)(ht ⊗ ht) Σu 0

ηt ht σ (c GK − IN2)(ht ⊗ ht) Γη(0) Γη(τ)

ht ht σ 0 Γh(0) Γh(τ)

ε
(m)
mt 0 0 (29) mΣε 0

u
(m)
mt 0 0 ∗ Σ

(m)
u 0

η
(m)
mt (29) mσ ∗ Γ

(m)
η (0) Γ

(m)
η (τ)

w
(m)
mt 0 0 ∗ Σ

(m)
w 0

The ∗-sign indicates that these expressions can be derived following the same type of
calculations of Hafner (2003a). The matrix GK is given by 2(D+

K ⊗D+
K)(IK ⊗CKK ⊗

IK)(DK ⊗ DK) + IN2 . The scalar c is the cokurtosis of the innovations, DK is the
duplication matrix, D+

K its generalized inverse and CKK the commutation matrix.
See Lütkepohl (1996) for definitions of these matrices. Expression (29) is given by

Em(t−1)[η
(m)
mt ] = (I −A−B)−1 (I − (A + B)m) hm(t−1)+1 +

m−2∑

i=0

(m− 1− i)(A + B)iω (29)

where the second term of (29) is zero for m = 1.
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Table 2: Simulation results for m = 1 with normal innovations
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Table 3: Simulation results for m = 2 with normal innovations21
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Table 4: Simulation results for m = 10 with normal innovations
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Table 5: Mean squared prediction errors

m = 1 QML NLS

ρ h11 h12 h22 h11 h12 h22

0.1 2604 2716 15060 2607 2732 15347

0.3 2580 2907 14689 2591 2941 14928

0.5 2540 3337 14369 2542 3357 14348

0.7 2315 3476 11737 2343 3573 12166

m = 2 QML NLS

ρ h11 h12 h22 h11 h12 h22

0.1 2942 3008 17328 2973 3074 17601

0.3 2935 3278 17196 2950 3304 17065

0.5 2870 3704 16490 2912 3775 16850

0.7 2641 4032 14269 2678 4117 14562

Mean squared errors of one-step predictions of conditional
variances and covariances for alternative unconditional cor-
relations ρ and for the high frequency (m = 1) and low
frequency (m = 2) processes. The reported values are av-
erages over 500 replications of our bivariate VEC example
process.
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Table 6: Summary statistics

m = 1 m = 5 m = 10

Dow Jones returns

Observations 6110 1222 611

Mean 0.00039 0.00193 0.00387

Standard Deviation 0.01078 0.02416 0.03291

Maximum 0.09666 0.1195 0.10746

Minimum −0.25632 −0.30924 −0.32524

Skewness −2.3318 −1.7404 −1.8541

Kurtosis 60.146 26.348 19.865

NASDAQ returns

Observations 6110 1222 611

Mean 0.00039 0.00195 0.00389

Standard Deviation 0.01327 0.03170 0.04385

Maximum 0.13255 0.12725 0.15141

Minimum −0.14002 −0.19518 −0.21701

Skewness −0.41565 −0.95124 −0.47162

Kurtosis 14.296 8.1694 5.3898

Descriptive statistics for the Dow Jones returns and NASDAQ returns
from 02/01/1980 to 10/06/2003 on a daily, weekly and bi-weekly
basis.
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Table 7: Diagonal VEC estimates for different time aggregation frequencies

Daily (m = 1) Weekly (m = 5) Bi-weekly (m = 10)

Coefficient Std error Coefficient Std error Coefficient Std error

ω
(m)
11 0.017145 (0.00469) 0.120609 (0.05622) 0.530121 (0.28656)

ω
(m)
21 0.011888 (0.00267) 0.097031 (0.03687) 0.316104 (0.22101)

ω
(m)
22 0.015078 (0.02416) 0.174297 (0.06415) 0.452082 (0.21156)

α
(m)
11 0.071864 (0.01740) 0.069882 (0.01263) 0.091380 (0.04568)

α
(m)
22 0.070409 (0.01154) 0.063831 (0.00990) 0.065885 (0.03219)

α
(m)
33 0.095909 (0.01164) 0.093720 (0.01914) 0.089211 (0.02807)

β
(m)
11 0.915186 (0.01645) 0.916838 (0.02023) 0.872395 (0.04961)

β
(m)
22 0.914904 (0.01160) 0.922681 (0.01645) 0.907624 (0.04174)

β
(m)
33 0.893063 (0.01168) 0.890637 (0.02485) 0.886542 (0.03237)

α
(m)
11 + β

(m)
11 0.98897 0.98672 0.97575

α
(m)
22 + β

(m)
22 0.98705 0.98651 0.97351

α
(m)
33 + β

(m)
33 0.98531 0.98435 0.96377

(α
(1)
11 + β

(1)
11 )m 0.94605 0.89502

(α
(1)
22 + β

(1)
22 )m 0.93434 0.87779

(α
(1)
33 + β

(1)
33 )m 0.92416 0.86244

(α
(5)
11 + β

(5)
11 )2 0.97361

(α
(5)
22 + β

(5)
22 )2 0.97320

(α
(5)
33 + β

(5)
33 )2 0.96894

Std error means the QML standard error.
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Figure 1: Estimated daily conditional correlations and variances of the Dow Jones and

NASDAQ from 02/01/1980 to 10/06/2003. Solid line: Dow Jones. Dashed line: NASDAQ
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Figure 2: Estimated weekly conditional correlations and variances of the Dow Jones and

NASDAQ from 02/01/1980 to 10/06/2003. Solid line: Dow Jones. Dashed line: NASDAQ
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Figure 3: Estimated bi-weekly conditional correlations and variances of the Dow Jones and

NASDAQ from 02/01/1980 to 10/06/2003. Solid line: Dow Jones. Dashed line: NASDAQ
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