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Abstract
Binary choice models occur frequently in economic modeling. A measure of
the predictive performance of binary choice models that is often reported is
the hit rate of a model. This paper develops a test for the outperformance
of a predictor for binary outcomes over a naive prediction method, which
predicts the outcome that is most often observed. This is done for a general
class of prediction models, including the well known Probit and Logit models.
In many cases the test is easy to compute. The test is then applied and com-
pared to a general test of Pesaran and Timmermann (1992) for dependence
between predictors and realizations.
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1 Introduction

Binary choice models are often used in economic modeling, either because
data is available only in a binary format, think of yes/no or above/below, etc.,
or one is mainly interested in whether something is bought or not, whether
the stock market increases or not, etc. Other situations in which binary choice
models are used include labor supply decisions, product purchase decisions,
market entry decisions, and many more.

The evaluation of econometric models dealing with binary outcomes is not
straightforward. Various measures for the goodness of fit exist, see Wind-
meijer (1995) and Cramer (1999). With respect to the (in-sample) predic-
tive performance of binary choice models, the hit rate of the model is a
frequently reported measure (see Harrison, 1998, Neelamiegham and Jain,
1999, Birchenhall et al., 1999, and Shipchandler and Moore, 2000). The (in-
sample) hit rate is defined as the percentage of the observations (in-sample)
that is correctly predicted by the model. However, a high hit rate does not
always imply good prediction properties of the model. The most important
reason for this is that in many applications of binary choice models the sam-
ple has an uneven distribution among the two possible outcomes. When 90%
of the observations have the same outcome, it is not difficult to predict 90%
of the data correctly, while this might be rather difficult when the variable
of interest has a more equal distribution.

For this reason it makes sense to use the (in-sample) hit rate of a naive
predictor, which predicts the outcome that is most often observed in the
data, as a benchmark for the evaluation of the predictive performance of
a model under consideration.2 Such a naive prediction results from most
binary choice models when no explanatory variables (except the constant
term) are used. We call a prediction model that predicts correctly a larger
number of observations than the naive model a prediction model that has
(positive) predictive performance. This paper develops a test for predictive
performance, i.e., a test for the hypothesis that a certain model outperforms
the predictive performance of the naive prediction model. This test enables
researchers not only to compare the hit rate of a model with the hit rate of
the naive predictor, but also to test whether the model under consideration
predicts (in-sample) statistically significantly better than a naive model. It
turns out that in many cases, including the regular Probit and Logit models,
the test is very easy to compute.

In the literature some other benchmark models have been used, which

2As Birchenhall et al. (1999) note, it has become traditional to compare the results
from probability models for business-cycle regimes to the “naive” predictor.
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can be outperformed with lower hitrates than the simple benchmark model
we propose. The simplest model predicts randomly with equal probabil-
ities on both outcomes, resulting, on average, in 50% correctly predicted
observations. A more sophisticated test is the test developed in Pesaran
and Timmermann (1992), who test whether there is dependence between the
predictions of a model and the outcomes (and whose test can be special-
ized to the binary choice case).3 Although such dependence is, of course,
a desirable feature of a predictor, it does not guarantee a high number of
correct predictions. However, as we will show, a predictor that outperforms
the naive model also has positive dependence between the predictor and the
outcomes. Therefore, dependence is a necessary, but not a sufficient condi-
tion for predictive performance. To distinguish between the two tests we call
the test of Pesaran and Timmermann (1992) a test for predictive dependence
(or predictor dependence) and the test that will be developed in this paper
a test for predictive performance. A detailed discussion of the Pesaran and
Timmermann test for the binary choice model is presented in Franses (2000).

Much of the theoretical literature on the performance of prediction mod-
els has focused on the evaluation of out of sample predictions, see Diebold
and Mariano (1995) and McCracken(2000). However, often one would like
to select a prediction model for out of sample prediction, based on its in
sample performance. We develop our test for the evaluation of in sample
predictive performance and show how it is adapted to evaluate the out of
sample predictive performance, comparable to McCracken (2000).

As an application we consider a model explaining whether a household
owns a certain type of insurance. In principle, a good prediction model
should predict well both in-sample and out-of-sample. Therefore, a test for
predictive performance should result in similar conclusions for the estimation
and the validation sample. Both Pesaran and Timmermann’s and our test are
applied to an estimation sample and a validation sample. In the application
the difference between the two tests becomes very clear. It turns out that
our test results in similar conclusions for the estimation and the validation
sample, while this is not the case for the test of predictor dependence.4

The structure of the paper is as follows: Section 2 develops the test
statistic. The application of the test is presented in Section 3, while Section
4 concludes. Formal proofs are presented in the appendix.

3This test is similar to the test of Henriksson and Merton (1981).
4This result might be due to different small sample properties, but the sample size used

is representative of many empirical applications.
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2 The test

2.1 Definition

Our interest is in whether a prediction model, M, outperforms a naive pre-
diction model in terms of the number of correct predictions. Let i = 1, . . . , N
denote the observations in a random sample (yi, x

′
i)
′, where yi ∈ {0, 1} de-

notes the realization of the endogenous variable for observation i and let
P̂M
i ∈ {0, 1} denote the prediction of model M for observation i, based on
xi and possibly estimated parameters (as indicated by the hat). Define the
(average) hit rate of a model, M, as:

HM =
1

N

N∑
i=1

(
yi × P̂M

i + (1− yi)× (1− P̂M
i )
)
, (1)

so HM is the fraction of the observations that is correctly predicted by the
model.

The naive prediction model, which we shall indicate by the superscript S
(of simple), predicts the same for each observation and this prediction is the
realization that has been observed most frequently in the estimation sample.
Without loss of generality we assume that the naive model predicts 1, so the
hit rate of the naive model equals HS = 1

N
ΣN
i=1yi. Our test is based on the

difference in hit rates between the model under consideration and the naive
model:

T ≡ HM −HS

=
1

N

N∑
i=1

(
yi × P̂M

i + (1− yi)× (1− P̂M
i )
)
− 1

N

N∑
i=1

yi

=
1

N

N∑
i=1

(
(1− 2yi)× (1− P̂M

i )
)
.

Under appropriate conditions, the sample average hit rate HM will con-
verge to its population analogue HM

∗ = E{yiPM
i + (1 − yi)(1 − PM

i )} as N

goes to infinity (with PM
i the population analogue of P̂M

i ). Similarly, HS

will converge to HS
∗ = P{yi = 1}. The hypotheses we are interested in are

H0 : HM
∗ ≤ HS

∗ , stating that the prediction model under consideration per-
forms at best equally well as the naive model in terms of average hit rates,
and H1 : HM

∗ > HS
∗ , stating that the prediction model performs better than
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the naive model. The alternative hypothesis corresponds to what we define
as positive prediction performance of the prediction model.

So far we have not discussed the predictor, P̂M
i , and its population ana-

logue, PM
i . We consider predictors that can be written in the following way:

P̂M
i = I(k̂,∞)(x

′
iθ̂).

Here, IA(.) denotes the usual indicator function, and the hats indicate that
the parameters are possibly estimated. Thus, the predictor equals 1 if the
estimated index x′iθ̂ exceeds a threshold level k̂, which can be estimated or
fixed in advance. This class of predictors includes the predictors based on
the standard Probit and Logit models. The population analogue of P̂M

i is
defined as

PM
i ≡ I(k0,∞)(x

′
iθ0),

with k0 and θ0 the (pseudo-)true values of k̂ and θ̂, respectively.

2.2 Limit distribution

In order to derive the limit distribution of the test statistic under the as-
sumption HM

∗ = HS
∗ , we make the following assumptions.

A1 (yi, x
′
i)
′, i = 1, ..., N is a random sample from the population of

interest.

This is a standard assumption in a cross sectional analysis. In case of
time series data it can be relaxed to stationarity and ergodicity, but at the
cost of a more complicated limit distribution of the test statistic.

A2 (θ̂′, k̂)′ is a
√
N−consistent estimator of (θ′0, k0)′.

This assumption is twofold. First of all, we assume that (θ̂′, k̂)′ is a con-
sistent estimator of its (pseudo-)true value (θ′0, k0)′. In addition, we assume√
N−consistency. In case of, for example, Probit or Logit models, this as-

sumption will be satisfied.

In the following two assumptions we suppress the sub-index i referring to
observation i.

A3 (i) x = (x1, x̃
′)′, θ0 = (θ01, θ̃

′
0)′, θ01 6= 0;
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(ii) F (x1, x̃) = P{y = 1 | x1, x̃} is continuous in its first argument;
(iii) the distribution x1 | x̃ has a density gx1|x̃

with respect to the Lebesgue measure;
(iv) the density function gx1|x̃ is continuous;
(v) 0 < P{x′iθ0 > k0} < 1.

This assumption requires the existence of at least one continuously dis-
tributed variable x1, whose (pseudo-true) coefficient θ01 in the predictor PM

i is
unequal to zero, where x1, conditional upon x̃ has a continuous density with
respect to the Lebesgue-measure. In addition, the assumption guarantees
sufficient smoothness conditions on the underlying population distribution.
The final part (v) ensures that, at least asymptotically, there is variation in
the predictions of the model, i.e. the models predictions, PM

i , differ from the
naive models predictions with positive probability. When the predictions of
the two models are identical, the test statistic is degenerate.

As final assumption we make

A4 F (k0−x̃′θ̃0
θ01

, x̃) = 0.5.

This assumption can be interpreted as an assumption about the thresh-
old level, k0, requiring that when x′iθ0 equals the threshold level k0, both
events are equally likely to occur. This assumption greatly simplifies the
limit distribution of the test statistic. Notice that in terms of, for instance,
a correctly specified standard Probit model of the form P{y = 1 | x1, x̃} =

Φ(θ01x1 + θ̃′0x̃), with Φ the standard normal distribution function, this as-
sumption will be satisfied for k0 = 0, since in this case

F (
k0 − x̃′θ̃0

θ01

, x̃) = Φ(θ01

(
k0 − x̃′θ̃0

θ01

)
+ θ̃′0x̃) = Φ(k0).

Thus, for the standard Probit (and Logit) models, assumption A4 requires
using a threshold k0 = 0, as is usually done. Examples of situations where

F (k−x̃
′θ̃0

θ01
, x̃) can be different from 0.5 are predictors that are based on mis-

specified models, or, for instance, predictors that use the rule discussed in
Cramer (1997). However, this rule, in general, reduces the total number of
correct predictions, which contrasts with our aim to predict as well as pos-
sible. As we will discuss below, it is still feasible to obtain the asymptotic
properties of the test statistic in these situations, but additional assumptions
have to be made.

To motivate the limit distribution under A1-A4, suppose we would know
the parameters (θ′0, k0)′ appearing in the predictor; then we could have used
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as predictor PM
i = I(k0,∞)(x

′
iθ0). The limit distribution of the statistic T

under the assumption HM
∗ −HS

∗ = 0 would be

√
NT

d−→ N(0, E{(1− 2yi)
2(1− PM

i )2}).

But E{(1 − 2yi)
2(1 − PM

i )2} = E{(1 − PM
i )}, which can be estimated by

1
N

∑N
i=1(1 − PM

i ). In practice, we have to estimate (θ′0, k0)′ (and PM
i ). As a

consequence, we will obtain a correction term in the limit distribution of the
statistic T. As shown in the Appendix, this correction term vanishes under
assumption A4. So, we obtain the following theorem:

Theorem
Under assumptions A1-A4 and HM

∗ = HS
∗

T√
1
N2

∑N
i=1(1− P̂M

i )

d−→ N(0, 1). (2)

Proof: See Appendix

To indicate what happens if we do not impose assumption A4, consider
the correction term in the limit distribution of the test statistic, as derived
in the appendix

E{(1− 2F (
k0 − x̃′θ̃0

θ01

, x̃))gx1|x̃(
k0 − x̃′θ̃0

θ01

)×

(
−(k0 − x̃′θ̃0)/θ2

01

... −x̃′/θ01
... 1/θ01

)
}
√
N

 θ̂1 − θ01̂̃
θ − θ̃0

k̂ − k0

 .

From this correction term we see that, without assumption A4, we need ad-

ditional assumptions about the estimates θ̂ = (θ̂1,
̂̃
θ′)′ and k̂ and we also need

an estimate of gx1|x̃(
k−x̃′θ̃0
θ01

), the conditional density of x1, given x̃. Moreover,
depending on the choice of the model, we might have to estimate the distri-
bution function F. Since in applications, A4 is usually imposed (under the
assumption of a correctly specified model), we do not consider the case where
A4 is violated in further detail.

The same test can also be used for out-of-sample testing: let sample A
with sample size NA be used to estimate (θ′0, k0)′, and let sample B with sam-
ple size NB be used to predict whether yi = 0 or yi = 1, using as prediction
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P̂M
i , with the estimate of (θ′0, k0)′ based upon sample A. Under assumptions

A1-A4, with A1 in terms of sample B, and A2 in terms of sample A, together
with the assumption that NB/NA → c <∞, the theorem remains valid (with
N replaced by NB).5

2.3 Relationship between prediction performance and
positive dependence.

The test we propose has a completely different starting point compared to the
test developed by Pesaran and Timmermann (1992), which tests for depen-
dence between the predictors and the quantities to be predicted. However,
when a model has positive predictive performance (in terms of our defini-
tion), there has to be dependence between the predictions and the quantities
to be predicted. This can be shown as follows. Suppose that the predictor
(PM

i ) and the quantity to be predicted (yi) are independent. Moreover, we
still assume (without loss of generality) that the naive model predicts 1, so
(if the sample size is large enough) E{yi} ≥ 1

2
. From the independence of

the predictor and the predicted quantity it now follows that

HM
∗ −HS

∗ = E
{

(1− 2yi)× (1− PM
i )
}

= E{1− 2yi} × E{1− PM
i }.

Substituting E{yi} ≥ 1
2

shows that HM
∗ − HS

∗ ≤ 0; thus, there is no posi-
tive predictive performance without dependence. Conversely, however, if all
you know is that there is dependence between predictor and quantity to be
predicted, there is obviously no guarantee that HM

∗ −HS
∗ > 0.

Predictor dependence is therefore a necessary, but not a sufficient con-
dition for predictive performance. Moreover, using the naive model as a
benchmark model turns out to demand more from a prediction model than
the benchmarks that have been used.

3 Application

The application is based on the research in Verhoef and Donkers (2001), who
investigate the prediction of customer potential value of the customers of an
insurance company. The potential value of a customer is the potential profit

5In fact, all we need is that NB/NA stays bounded away from ∞. Moreover, if
NB/NA → 0, the correction terms vanishes without assumption A4. See also McCracken
(2000) for a comparable derivation of these out-of-sample results in a more abstract con-
text.
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a company can make from this customer (Grant and Schlesinger, 1995). An
estimate of a customer’s potential value can be used, for example, to increase
the service level to customers with a high potential value. This might lead
to a higher share of such a customer’s potential value that is earned by the
company, and consequently to higher profits for the company.

In the insurance industry, the potential value of a customer is the total
profit earned on the insurance policies purchased by a customer. In this
context predictions are needed for the ownership of the different types of
insurances by the companies’ customers. Based on these predictions the
potential value of a customer can be computed. Moreover, information on
who owns which insurance policies is highly relevant for the company under
consideration, since the company is a direct writer. As a direct writer, the
insurance company only has direct contact with its customers; no use is
made of, for example, intermediate insurance agencies. Often the insurance
company sells new insurance policies by offering a particular insurance policy
to customers in a letter. The success of these mailings, which are called
direct mailings, as a marketing instrument depends crucially on whether the
respondents are willing to own the insurance policy offered or not.

The insurance company sells the following types of insurance policies:
car, damage, disability, funeral, furniture, health, house, liability, legal aid,
life, travel, and continuous travel insurance. For reasons of confidentiality,
we do not identify the insurance types in the analysis. A survey has been
held among the customers of the company about which types of these insur-
ances they own. A total of 1565 customers of the insurance company have
completely answered this survey. In practice one would use more observa-
tions for model estimation than for validation of the model. However, to fit
in this paper, we decided to estimate the model on about half the sample –
800 observations – and use the other half – 765 observations – as a valida-
tion sample. In this way possible differences in significance levels of the tests
between the estimation and validation sample are not caused by differences
in the sample sizes.

For each type of insurance, a separate Probit model is used with as ex-
planatory variables a small set of demographic variables and information on
which insurances are purchased with the company under consideration. The
Probit model has been estimated with Maximum Likelihood for each insur-
ance type separately. Based on the resulting parameter estimates, a customer
is predicted to own a certain type of insurance when the probability of own-
ership according to the Probit model exceeds 0.5. In terms of the notation
of this paper, the predictor for ownership of insurance type j by customer i
is I(0,∞)(x

′
iθ̂j), where xi is the vector of explanatory variables used and θ̂j is

the ML-estimate of θj in the Probit model for ownership of insurance type
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j. In this model the threshold k is not estimated but fixed at 0.
Table 1 presents sample characteristics, hit rates, and test statistics for

eight different types of insurance policies that are sold by the insurance com-
pany for the estimation sample. The first row of this table reports the fraction
of the households that owns the particular type of insurance, i.e., the frac-
tion of the population with yi = 1. The second row reports the fraction of
households predicted to own such an insurance policy by the model, i.e., the
fraction of the population with P̂M

i = 1. Rows three and four report the
hit rates of the naive and the Probit model, HS and HM , respectively. The
fifth row presents the standardized test statistic for predictive performance,
presented in (2), while the last row presents the test statistic for predictor de-
pendence, which asymptotically has a N(0, 1) distribution, see equation (6)
in Pesaran and Timmermann (1992).

From the last two rows of Table 1 it is clear that the two tests arrive at dif-
ferent conclusions for which insurance types the Probit model results in good
predictions for the estimation sample. The test for predictive performance
indicates that the Probit model has predictive performance for insurance
type 5, and, depending on the desired level of significance, also for insurance
type 6. The test for predictor dependence indicates that there is positive
dependence between the predictions and the realizations for insurance types
1, 2, 3, 5, 6, and 8. It is clear that the test on predictive performance rejects
the null hypothesis less often than the test on predictor dependence. Notice
here that the tests are based on the same sample, so the test results for the
different insurance types are not independent.

The question that remains is how well the model actually performs in
out-of-sample prediction, which is what prediction models are generally used
for. Table 2 presents the sample statistics and test results for the validation
sample, like Table 1 does for the estimation sample. The results of the
test for predictive performance and the test for predictor dependence for the
validation sample are presented in the last two rows of the table. The test
on predictive performance finds strong evidence against the null hypothesis
for insurance type 5 and weak evidence for this for insurance type 6. These
outcomes are perfectly in line with the findings in the estimation sample.
The behavior of the test on predictor dependence is less stable across the
estimation and validation sample. For four out of the six insurance types,
for which the hypothesis of no dependence was rejected in the estimation
sample, the test yields the same conclusion in the validation sample.

Although this in itself might not be very worrying, the test results for
insurance types 1 and 8 are. For these insurance types strong evidence for
positive dependence between the predictions and the realizations was found in
the estimation sample. This is in contrast with the results for the validation
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sample, where the conclusion for these types of insurance would be that there
is no dependence and, if anything, it would be negative dependence instead of
positive dependence. One reason for the instability of the conclusions might
be the fact that the asymptotic properties of the test are nor accurate enough
in the finite sample used. However, an estimation sample of 800 observations
is not that small and increasing the estimation sample to 1200 observations
did not change the findings. Moreover, results in the estimation sample
are highly significant. Notice also that the results for insurance type 4 in
the validation sample illustrate that positive predictor dependence, although
insignificant, does not imply outperformance of the naive model.

4 Conclusion

In the empirical economics literature researchers using binary choice models
frequently report the hit rate of their model. The benchmarks against which
the predictive performance of the model can be tested, however, only im-
posed low standards onto the models. Benchmark models are either random
prediction, resulting in a hit rate of 50%, or random prediction, conditional
on the number of times each outcome is predicted, which boils down to a test
on dependence of the predictor and the realization. Models that pass these
tests, however, are sometimes beaten by a very simple prediction model,
which just predicts the outcome that is observed most frequently.

This paper develops a test for predictive performance where the hit rate
of such a naive model is the benchmark. When a model passes this test, it
also satisfies the criteria imposed by the other two tests, so the test is more
demanding. The advantages of the test are that it tests a highly relevant
aspect of prediction models, which is the number of correct predictions, and
in most practical situations the test is very easy to compute. The large
number of papers that report the hit rate of their models can now accompany
this hit rate with a significance level for predictive performance of the model.

In the application there is a clear difference between our test and the test
on predictor dependence as it is developed by Pesaran and Timmermann
(1992). Since prediction performance is a characteristic that has relevance
for both estimation and validation samples, one would expect that tests come
to similar conclusions when applied to an estimation and a validation sample.
For the test on predictive performance this is found in the application, while
for the predictor dependence tests we found highly significant positive values
in the estimation sample but negative values in the validation sample.
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Appendix. Proofs

In this appendix we derive the limit distribution of the test statistic

√
NT =

√
N

1

N

N∑
i=1

(1− 2yi)×
(

1− P̂M
i

)
=
√
N

1

N

N∑
i=1

(1− 2yi)×
(

1− I(k̂,∞)(x
′
iθ̂)
)

=
√
N

1

N

N∑
i=1

(1− 2yi)× I(−∞,k̂](x
′
iθ̂)

under Assumptions A1-A4, together with HM
∗ − HS

∗ = 0. In this appendix
we shall make use of the following notation:

θ̂ : estimator; θ0 : (pseudo-)true value; θ : any parameter value;

k̂ : estimator; k0 : (pseudo-)true value; k : any parameter value;

x = (x1, x̃
′)′; θ = (θ1, θ̃

′)′; θ0 = (θ01, θ̃
′
0)′;

hθ = (hθ1, h̃
′
θ)
′; hθn = (hθn1, h̃

′
θn)′ (of the same dimension as θ);

PN : empirical distribution function (y, x);

P : (population) distribution (y, x); Px : (population) distribution x;

P (y = 1 | x) = F (x) = F (x1, x̃);

dPx = gx1|x̃dx1dPx̃;

X̃ : Support Px̃.

First, consider the following decomposition of the test statistic:
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√
NT =

√
N

1

N

N∑
i=1

(1− 2yi)× I(−∞,k̂](x
′
iθ̂)

=
√
N

∫
(1− 2y)× I(−∞,k̂](x

′θ̂)dPN

=
√
N

∫
((1− 2y)× I(−∞,k̂](x

′θ̂)− (1− 2y)× I(−∞,k0](x
′θ0))d(PN − P )

+
√
N

∫
((1− 2y)× I(−∞,k̂](x

′θ̂)− (1− 2y)× I(−∞,k0](x
′θ0))dP

+
√
N

∫
(1− 2y)× I(−∞,k0](x

′θ0)dPN .

In the sequel, we shall investigate the behaviour of the three terms in this
decomposition.

We start with the first term

√
N

∫
((1− 2y)× I(−∞,k̂](x

′θ̂)− (1− 2y)× I(−∞,k0](x
′θ0))d(PN − P ).

This term converges to zero in probability. To show this, we shall apply,
for instance, Pakes & Pollard (1989, Lemma (2.17)): The set of functions
{f(y, x; θ, k) = (1 − 2y) × I(−∞,0](x

′θ − k); θ ∈ Rk, k ∈ R} is clearly a
Euclidean class (terminology Pakes & Pollard), with envelope G(y, x) = 1.
Moreover, assuming θ01 > 0, and θ1 sufficiently close to θ01, so that we can
assume θ1 > 0 as well, we have
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∫
[(1− 2y)× I(−∞,0](x

′θ − k)− (1− 2y)× I(−∞,0](x
′θ0 − k0)]2dP

=

∫
(1− 2y)2[I(−∞,0](x

′θ − k)− I(−∞,0](x
′θ0 − k0)]2dP

=

∫ [
I(−∞,0](x

′θ − k)− 2I(−∞,0](x
′θ − k)× I(−∞,0](x

′θ0 − k0) + I(−∞,0](x
′θ0 − k0)

]
dP

=

∫
X̃

 (k−x̃′θ̃)/θ1∫
−∞

gx1|x̃(x1)dx1 − 2

min{(k−x̃′θ̃)/θ1,(k0−x̃′θ̃0)/θ10}∫
−∞

gx1|x̃(x1)dx1+

(k0−x̃′θ̃0)/θ10∫
−∞

gx1|x̃(x1)dx1

 dPx̃,
which clearly converges to 0 as (θ′, k)′ −→ (θ′0, k0)′, showing L2(P )−continuity

(in the terminology of Pakes & Pollard). Thus, according to their Lemma
(2.17), we have for each sequence of positive numbers {δN} converging to 0
that

sup
|(θ′,k)′−(θ′0,k0)′|<δN

[
√
N

∫
((1− 2y)× I(−∞,k](x

′θ)−

(1− 2y)× I(−∞,k0](x
′θ0))d(PN − P )

] p−→ 0. (∗)

Define

QN =
√
N

∫
((1− 2y)× I(−∞,k̂](x

′θ̂)− (1− 2y)× I(−∞,k0](x
′θ0))d(PN − P ).

Then

P {|QN | > ε}

≤ P
{
|QN | > ε, | (θ̂′, k̂)′ − (θ′0, k0)′ |< δN

}
+ P

{
|QN | > ε, | (θ̂′, k̂)′ − (θ′0, k0)′ |≥ δN

}
≤ P{ sup

|(θ′,k)′−(θ′0,k0)′|<δN
|QN | > ε}+ P{| (θ̂′, k̂)′ − (θ′0, k0)′ |≥ δN}.
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The first term at the right hand side converges to zero due to (∗), the second

term converges to zero due to the
√
N−consistency of (θ̂′, k̂)′.

Next, consider the second term in the decomposition

√
N

∫
((1− 2y)× I(−∞,k̂](x

′θ̂)− (1− 2y)× I(−∞,k0](x
′θ0))dP.

For θ01 > 0, this term has the same limit distribution as

E{(1− 2F (
k0 − x̃′θ̃0

θ01

, x̃))gx1|x̃(
k0 − x̃′θ̃0

θ01

)
(
−(k0 − x̃′θ̃0)/θ2

01 −x̃′/θ01 1/θ01

)
} ×

√
N

 θ̂1 − θ01̂̃
θ − θ̃0

k̂ − k0

 .

This follows from (Hadamard) differentiability of

(θ, k)→
∫

((1− 2y)× I(−∞,0](x
′θ − k))dP,

with derivative

(hθ, hk) −→ E

{(
1− 2F (

k − x̃′θ̃0

θ01

, x̃)

)
gx1|x̃(

k − x̃′θ̃0

θ01

)×

(
−(k − x̃′θ̃0)/θ2

01 −x̃′/θ01 1/θ01

)}
×

 hθ1
hθ̃
hk


Indeed, let (hθn, hkn) −→ (hθ, hk) and ε ↓ 0, then

15



1

ε
[

∫
((1− 2y)× I(−∞,k+εhkn](x

′(θ0 + εhθn)))dP −
∫

((1− 2y)× I(−∞,k0](x
′θ0))dP ]

=
1

ε
[

∫
((1− 2F (x))× I(−∞,k+εhkn](x

′(θ0 + εhθn)))dPx −∫
((1− 2F (x))× I(−∞,k0](x

′θ0))dPx]

=
1

ε
[

∫
X̃

 ((k+εhkn)−x̃′(θ̃0+εh
θ̃n

))/(θ01+εhθn1)∫
−∞

((1− 2F (x))gx1|x̃(x1)dx1−

(k0−x̃′θ̃0)/θ01∫
−∞

((1− 2F (x))gx1|x̃(x1)dx1

 dPx̃ −→
E{(1− 2F (

k0 − x̃′θ̃0

θ01

, x̃))gx1|x̃(
k0 − x̃′θ̃0

θ01

)
(
−(k − x̃′θ̃0)/θ2

01 −x̃′/θ01 1/θ01

)
}

 hθ1
hθ̃
hk

 .

Finally, consider the term

√
N

∫
(1− 2y)× I(−∞,k0](x

′
iθ0)dPN =

√
N

1

N

N∑
i=1

(1− 2yi)× I(−∞,k0](x
′
iθ0).

Notice that E{(1− 2yi)× I(−∞,k0](x
′
iθ0)} = HM

∗ −HS
∗ , so that, as discussed

in the main text, under the assumption HM
∗ − HS

∗ = 0 this term converges
in distribution to N(0, E{1− PM

i }).

To complete the proof, we need to verify

1

N

N∑
i=1

(
1− P̂M

i

)
p−→ E{1− PM

i }.

Consider

16



∣∣∣∣∣ 1

N

N∑
i=1

(
1− P̂M

i

)
− E{1− PM

i }

∣∣∣∣∣
≤

∣∣∣∣∣ 1

N

N∑
i=1

(
1− P̂M

i

)
− E{1− P̂M

i }

∣∣∣∣∣+
∣∣∣E{1− P̂M

i } − E{1− PM
i }
∣∣∣

≤ sup
(θ′,k)

∫ (
1− I(−∞,k](x

′θ)
)
d(PN − P ) +

∣∣∣E{1− P̂M
i } − E{1− PM

i }
∣∣∣ .

The first term on the right hand side converges to zero, due to lemma (2.8)
of Pakes and Pollard (1989), since the set of functions {g(y, x; θ, k) = 1 −
I(−∞,0](x

′θ − k); θ ∈ Rk, k ∈ R} is clearly a Euclidean class (terminology
Pakes & Pollard), with envelope H(y, x) = 1. The second term of the right

hand side converges to zero due to consistency of (θ̂′, k̂)′ in combination with
continuity of (θ′, k)′ → E{1− I(k,∞)(x

′θ)}. Indeed,

E{1− I(k,∞)(x
′θ)} =

∫
I(−∞,0](x

′θ − k)dP

=

∫
X̃

 (k−x̃′θ̃)/θ1∫
−∞

gx1|x̃(x1)dx1

 dPx̃,
from which continuity follows, given our assumptions.
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Table 1: Descriptive statistics and test results for eight types of insurance
policies. Estimation sample. (N=800)

Type of insurance

1 2 3 4 5 6 7 8

Sample fraction with yi=1 0.875 0.691 0.646 0.626 0.595 0.504 0.431 0.393

Sample fraction with P
M
i =1 0.999 0.995 0.955 0.963 0.698 0.448 0.053 0.020

H
S

0.875 0.691 0.646 0.626 0.595 0.504 0.569 0.607

H
M

0.876 0.694 0.649 0.629 0.645 0.551 0.574 0.615

Predictive performance test 0.100 0.127 0.119 0.116 2.222∗ 1.907∗ 0.215 0.339

Predictor dependence test 2.649∗∗ 1.916∗ 2.236∗ 1.184 6.745∗∗ 2.940∗∗ 1.565 2.443∗∗

Note: ∗ significant at 5%, ∗∗ significant at 1%

Table 2: Descriptive statistics and test results for eight types of insurance
policies. Validation sample. (N=765)

Type of insurance

1 2 3 4 5 6 7 8

Sample fraction with yi=1 0.895 0.718 0.647 0.651 0.550 0.514 0.420 0.429

Sample fraction with P
M
i =1 0.995 0.991 0.950 0.953 0.660 0.452 0.054 0.020

H
S

0.895 0.718 0.647 0.651 0.550 0.514 0.580 0.571

H
M

0.890 0.719 0.650 0.638 0.618 0.554 0.571 0.567

Predictive performance -0.447 0.068 0.122 -0.612 2.804∗∗ 1.607 -0.391 -0.166

Predictor dependence -0.686 1.708∗ 2.296∗ 0.156 6.001∗∗ 3.091∗∗ -0.066 -0.227

Note: ∗ significant at 5%, ∗∗ significant at 1%
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