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Abstract
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1 Introduction

Understanding changes in individuals’ opinions and attitudes is of fundamental in-

terest in the social sciences. To measure such changes, it is desirable to conduct a

longitudinal, or panel study, where the same individuals are surveyed at multiple

points in time. This allows the researcher to study changes in opinions and attitudes

over time at the individual level and to capture the dynamic relationships between

events and behavior. Secondly, it is desirable to conduct the survey on a frequent

basis. This allows the researcher to establish whether certain changes are permanent

or transitory over time.

One can easily appreciate however that frequent surveying of the very same

individuals likely deteriorates the quality of the survey. People get irritated and

they disconnect from the panel, thereby making the panel less efficient. Or perhaps

worse, respondents’ (reported) opinions and attitudes may change due to being a

member of a panel, which is called panel conditioning.

In sum, monitoring individuals at a high frequency is useful, but proper data

collection is not trivial. It is precisely this topic that we address in our paper, that

is, can we design ways of better data collection? We do believe we can, as we will

argue in theory and as we show with various experiments.

The main contribution of our paper is that we propose a general framework

to study the effects of panel design characteristics on response rates and response

quality. We demonstrate that response rates and response quality can be significantly

improved if the design of the panel is carefully calibrated. This makes the survey

more efficient. As such, our approach helps to design efficient panels that are cost

effective.

Although nonresponse bias can be handled quite effectively a posteriori using

model-based procedures, obviously, preventing nonresponse at the data collection

stage is to be preferred as nonresponse due to irritation may harm the relationship

with the respondents. This approach has been successful in the field of questionnaire

design, where the effects of design characteristics such as incentives, the length, and

the presentation of the questionnaire have been examined, see for example the work

on mail surveys by Adams and Darwin (1982) and Yu and Cooper (1983), and the

more recent books by Dillman (2000) and Couper et al. (2004), among others. It
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also relates to the literature on consumer psychology, where the effect has been

studied that respondents are often induced by the measurement process to form

judgements, see Simmons et al. (1993), Dholakia and Morwitz (2002) and Morwitz

and Fitzsimons (2004), among others. Other interesting contributions have been

made in optimal experimental design theory, where the aim is to design experiments

such that statistical inference is most efficient, see for example Atkinson and Donev

(1992) for a general exposition, the work in psychological research by Allison et al.

(1997) and McClelland (1997), and the work in econometrics by De Stavola (1986),

Nijman et al. (1991) and Ouwens et al. (2002). In contrast, to the best of our knowl-

edge, the effects of panel design characteristics on response and response quality

have not been studied extensively yet, and that is what we do here.

Our paper is organized as follows. In the next section we discuss various types of

response bias relevant to panel surveys, and review several panel designs that have

been proposed in the literature to reduce these biases. In Section 3 we formulate our

hypotheses regarding the effects of panel design on response rates and response qual-

ity. In Section 4 we introduce a flexible panel design. Together with a dynamic panel

Tobit-II model the design is employed to test our hypotheses. Section 5 presents our

empirical results. Finally, Section 6 concludes.

2 Background

In order to provide context for our discussion, this section provides the relevant

background on types of survey nonresponse, response quality, and panel design.

Finally, we touch upon the issue of modelling incomplete panels.

2.1 Nonresponse and Response Quality

Survey nonresponse

Once an individual has agreed to become a member of a panel, three different types

of nonresponse may occur, see Verbeek (1991) and Schafer and Graham (2002),

among others. The weakest form is item nonresponse, where panel members do not

answer one or more particular questions of the survey. More serious is wave nonre-

sponse. In this case, panel members do not participate in the survey during one or

more particular waves. Ultimately, attrition or dropout occurs when panel members
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disconnect from the survey prematurely.

Response quality

Besides response rates, also response quality may be at stake if a panel design de-

mands much from participants. Response quality is used as an all-embracing term

that covers the desire to obtain survey data that is not biased by the survey en-

vironment. For example, an often demonstrated threat to response quality is the

mere-measurement effect, which is the effect that measuring an individual’s prefer-

ences may change his or her subsequent behavior, see Dholakia and Morwitz (2002)

and Morwitz and Fitzsimons (2004). In our paper we are particularly concerned

with potential biases in response due to panel participation. This form of response

bias is usually referred to as panel conditioning or time-in-sample bias. Following

Trivellato (1999), we distinguish two different types of panel conditioning bias. First,

as a consequence of being a panel member, respondents may change their report-

ing behavior. For example, because panel members are typically asked to complete

similar surveys repeatedly, they tend to get less involved in completing them. For

example they may incorrectly report exactly the same now as they did during the

previous wave. Alternatively, respondents may give socially desirable responses as

they start to be aware of being monitored, an effect usually referred to as the Big

Brother effect. Second, a respondent may change his or her attitudes or opinions

due to panel participation. For example, having to report an opinion repeatedly

may cause a respondent to think more about his or her opinion, reconsider it, and

even change it.

As opposed to nonresponse bias, measuring panel conditioning bias through re-

vealed preference data is not trivial. It requires a careful comparison of the responses

given in the first wave of data collection, which is free of panel conditioning bias by

definition, and in the next waves. We extend the notion of Hansen (1980)1 who

argues that there should not be a difference in the response distribution of differ-

ent subgroups of panel members who have been exposed to different methods of

data collection. In our case, this implies that responses should not depend on the

particular panel design chosen, nor on the wave of data collection.

1See Deutskens et al. (2004) for a recent application of this notion.
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2.2 Panel Design

The extremes: complete panels and repeated cross-sections

Complete panel data sets, as illustrated in Figure 1, Panel (a), allow a researcher to

study changes in individuals’ opinions over time at the individual level. Typically

the individuals are indexed by i, i = 1, ..., N , and time is index by t, t = 1, ..., T .

Using complete panels one may capture the dynamic relationships between events

and behavior, and control for time-varying and individual-specific characteristics.

One can also account for unobserved heterogeneity by exploiting the time invariance

of the unobserved individual characteristics. However, since such complete panels

are most vulnerable to nonresponse and to a low quality of response, this is often

not feasible. In this subsection we therefore explore several pseudo-panel designs,

mostly designed with the aim to reduce costs and respondent burden. We discuss

whether these designs are attractive from a statistical point of view.

Perhaps the most rigorous way to reduce respondent burden is to collect repeated

cross-sectional data instead of complete panel data, as illustrated in Figure 1, Panel

(b). In this design, at each point in time, a unique group of individuals, to be de-

noted by j, where j = 1, ..., J , is requested to complete a survey. Since in this case

individuals are surveyed only once, this ensures that individuals’ current opinions

are not biased by previous panel participation. As a consequence, there is no panel

conditioning bias. Several scholars have argued that the estimation of dynamic mod-

els at the individual level is possible on the basis of repeated cross-sections, see for

example Deaton (1985), Verbeek and Nijman (1993), Moffitt (1993) and Collado

(1997). However, the identification conditions for these estimators are very strong,

and potentially unrealistic in many empirical applications (Verbeek and Vella, 2005).

Alternatively, one may use matching techniques to match similar individuals and

form a pseudo panel, but their assumptions are no less strong.

Rotation

In general, one wants to preserve the possibility to study individual dynamics. Still,

individuals can only be monitored for a short period of time. A natural compromise

is therefore to apply a panel refreshment strategy. This pertains to requesting each

panel member to only join the panel for a fixed period of, say T ∗ time periods.
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Second, each wave (or block of waves), a new group of individuals is invited to

join the panel, with the aim to keep the total number of panel members constant.

The latter strategy is also referred to as rotation, see Patterson (1950) and Kish

and Hess (1959). An example of a rotating panel is shown in Figure 1, Panel (c).

For analysis-of-variance models, Nijman et al. (1991) demonstrated how to set up

a rotating panel to maximize estimation efficiency. They showed that the efficiency

gains from using an optimal rotation strategy can be quite substantial, even if the

costs of a reinterview equal the costs of acquiring a new panel member.

- Insert Figure 1 about here -

Continuous sampling and time sampling

Once one has decided upon the number of time periods T ∗ that an individual will

be requested to join the panel and possibly upon a particular rotation strategy,

naturally, a next step would be to decide upon the number of survey requests within

this period, to be labelled n. Note that T ∗ and n together constitute the sampling

frequency f = n/T ∗ of the survey, which is equal to the reciprocal of the time

between subsequent waves. Often the sampling frequency is set equal to the desired

data frequency f d. We will refer to this situation as continuous sampling. For

example, suppose that the aim is to ask individuals to join a panel for two months

and the desired sampling frequency f d is weekly, but the maximum accepted number

of survey requests n is four. A continuous sampling strategy would then imply that

each panel member is interviewed weekly, but only during the first four weeks. See

Figure 2, Panel (a), for an illustration.

In many cases, however, panel members are better observed over the longest

horizon possible to detect possible changes in opinions in the longer run. This

suggests to space the observations as much as possible, which in our example would

imply to interview biweekly. In order to still be able to monitor on the desired weekly

basis, one may opt to ask one-half of the panel members to complete a survey in the

even weeks and the other half to complete a survey in the odd weeks, as illustrated in

Figure 2, Panel (b). This approach, known as time sampling, has gained attention

in recent years. It has been accepted as the natural way to lower the sampling

frequency while keeping the data frequency unchanged.
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- Insert Figure 2 about here -

Randomized sampling

Recall that we are interested in measuring individuals’ attitudes and opinions and

their changes over time. Hence we are interested in the autocorrelations of these

attitudes and opinions. From this perspective it seems also appealing to consider

choosing the n survey occasions at random, independently for each panel member,

as illustrated in Figure 2, Panel (c). We argue as follows. To reveal the underlying

correlation structure in the data it is important to measure autocorrelations at many

different lags. This facilitates the identification of any type of individual dynamics

in the data and efficient estimation.

For the three different sampling strategies given in Figure 2 we obtain the fol-

lowing (expected) numbers of observations of the k−th autocorrelation that are

collected, A(k):

• For continuous sampling (CS):

ACS(k) =

{

n− k for k = 1, 2, ..., n− 1
0 elsewhere

(1)

• For time sampling (TS) with frequency f = n/T :

ATS(k) =

{

n− kf for k = 1/f, 2/f, ..., (n− 1)/f
0 elsewhere

(2)

• For randomized sampling (RS)2:

E[ARS(k)] =

{

(T−2

n−2)
(Tn)

(T − k) =
(n2)
(T2)
(T − k) for k = 1, 2, ..., T − 1

0 elsewhere
(3)

The three functions are depicted in Figure 3. In the case of randomized sampling,

data is collected to measure every possible autocorrelation up to T − 1 lags, where

the lower lag orders are sampled most frequently. Conceptually, it is convenient to

2To see that this result is correct, note that we can position a pair of surveys, being k time
periods from one another to obtain one autocorrelation of the k-th order, at (T −k) different points
in time. The remaining (n − 2) surveys can be positioned in any of the (T − 2) remaining time
periods. If we now divide this by the total number of different time-series possible, which is

(

T
n

)

,
we obtain the result as stated.
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interpret the sampling frequency f in this case as the participation request proba-

bility. In the next section we will argue that the randomization approach may not

just seem attractive from an estimation point of view but also from the respondent’s

point of view.

- Insert Figure 3 about here -

Obviously, different survey designs may be combined or applied to different sub-

samples of individuals. One may combine repeated cross sections with complete

panel data, see Nijman and Verbeek (1990) and Hirano et al. (2001). This approach

facilitates testing for possible sampling biases, as will be discussed later. One may

also decide to split the questionnaire and expose different groups of respondents

to different subsets of questions in an efficient way. This approach is commonly

known as matrix sampling. See, for example, Shoemaker (1973), Johnson (95-110),

Raghunathan and Grizzle (1995) and the recent paper by Graham et al. (2006). In

our paper, however, we restrict our attention to pure panel design aspects, exposing

every panel member to the same questionnaire.

2.3 Modelling incomplete panels

As a result of using any of the above advanced panel designs, typically one is con-

fronted with two types of missing data. First, parts of the panel are missing inten-

tionally due to the design of the panel. Second, parts of the panel may be missing

due to nonresponse.

Missingness by design

Observations that are missing intentionally due to the design of a panel are not

related to the variables to be collected in any of the cases mentioned above. There-

fore, following the typology of Rubin (1976), they are missing completely at random

(MCAR). As a result, missingness by design can be ignored, in the sense that an-

alyzing the incomplete panel will not bias our results. Still, especially in the case

of randomization, the panel that is collected may seem rather intractable, as the

individual time series are unequally spaced. Modern techniques are readily available

however to deal with such data sets.
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First of all, autoregressions which include only one lag order can be rewritten

such that they match the unequally spaced data. This amounts to rewriting the

model for the panel yi,t in terms of yi,t and yi,t−dt
. Here yi,t−dt

denotes the previous

observation, which is measured dt time periods before yi,t. To illustrate this, consider

the basic first-order panel autoregressive model with fixed effects

yi,t = ρyi,t−1 + (αi + εi,t), εi,t ∼ N(0, σ2
ε), (4)

where we treat the αi’s, for i = 1, ..., N , ρ and σ2
ε as fixed unknown parameters.

This model can be rewritten as

yi,t = ρ
(

ρyi,t−2 + (αi + εi,t−1)
)

+ (αi + εi,t)

yi,t = ρ

(

ρ
(

ρyi,t−2 + (αi + εi,t−2)
)

+ (αi + εi,t−1)

)

+ (αi + εi,t)

...

yi,t = ρdi,tyt−di,t
+

( di,t−1
∑

τ=0

ρτ

)

(αi + εi,t)

yi,t = ρdi,tyi,t−di,t
+
1− ρdi,t

1− ρ
(αi + εi,t)

yi,t = ρdi,ty1−di,t
+ (α∗

i + ε∗i,t)

The factor ρdi,t is a finite duration adjustment of the geometric lag or Koyck model,

see Ansari et al. (2006) and Van Diepen et al. (2006) for recent applications. Using

this representation, the unequally spaced time series can be analyzed directly.

To estimate more complex dynamic models, one may use multiple imputation or

likelihood-based techniques, see the excellent survey of Schafer and Graham (2002),

and the books by Schafer (1997) and Little and Rubin (2002). In the first case, each

missing value in the panel is substituted by a set of estimated or predicted values

based on the available data. The resulting complete panels are then analyzed using

conventional complete-data techniques and the results are combined. A widely used

likelihood-based approach is maximum likelihood coupled with the EM algorithm

of Dempster et al. (1977). In this case, the E-Step imputes the best predictors of

the missing values, using current estimates of the parameters. It also calculates the

adjustments to the estimated covariance matrix needed to allow for imputation of

the missing values Little and Rubin (2002). A second likelihood-based approach is

to reformulate the model as a state space model, where in the observation equa-

tion the incomplete panel is transformed into a latent complete panel. In the state
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equation the complete panel is then regressed on its past values and additional regres-

sors. By alternating between Kalman filtering, smoothing recursions and maximum

likelihood estimators, estimation is relatively straightforward, see Palma and Chan

(1997), Shumway and Stoffer (1982) and Shumway and Stoffer (2006).

Missingness due to nonresponse

In contrast to missingness due to the panel design, missingness as a result of nonre-

sponse can generally not be ignored, as the tendency to drop out is often systemati-

cally related to the variables of interest. In some cases, however, the distribution of

missingness only depends on observed data and not on missing data. In these cases,

the missing data are said to be missing at random (MAR), and multiple imputation

or likelihood-based techniques can still be applied. If the variables of interest also

depend on the unseen responses then the missing data are missing not at random

(MNAR), see Schafer and Graham (2002) and the references cited there for a more

thorough discussion.

In case one does not want to make the MAR assumption, one usually employs ei-

ther selection models or pattern mixture models. The first amounts to incorporating

the response decision explicitly in an econometric model, as a form of non-random

selection (Hausman and Wise, 1979). The usual approach is to formulate a two-step

model. In the first step, the response decision is modelled. Conditional on response,

in the second step, the dependent variables of interest are modelled, see Amemiya

(1984) and Heckman (1976, 1979) for details. Pattern mixture models stratify the

sample by the pattern of missing data and then model differences in the distribution

of the variables of interest over these patterns, see Little (1995), among others.

3 The Effects of Panel Design Characteristics

In this section we hypothesize the effects of panel design characteristics on response

rates and response quality. In our empirical section below we will collect data to

examine the empirical plausibility of these hypotheses.

The sampling frequency and the number of waves

We assume that participating in a survey is a social exchange, similar to responding
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to a mailing, for example, of a charity organization. Therefore, to hypothesize the

effects of the sampling frequency and the number of waves of a panel survey we

adopt the well-known Recency, Frequency, Monetary value (RFM) framework. The

sampling frequency, and thus the (average) time between subsequent waves, is a

recency variable. The higher the sampling frequency, the higher the (expected)

recency of the last participation request. As, in general, recency has a negative

effect on the probability of (high quality) response, we hypothesize

H1: The higher the sampling frequency, the lower (a) the response rate

and (b) the response quality.

In the same vein, the number of waves can be seen as a frequency effect. The higher

the number of waves, the higher the frequency in an RFM context, and hence the

lower the probability of (high quality) response. We hypothesize

H2: As the number of participation requests increases, (a) the response

rate and (b) the response quality decrease.

Randomized sampling

To increase response rates it has been argued that potential respondents should not

be requested directly to join a panel. Instead, they should only be requested to

complete a first survey and to grant permission to be contacted again for follow-up

surveys. If respondents are persuaded initially to comply with this smaller request,

subsequent requests may less likely be declined (Reingen and Kernan, 1977). This

effect is referred to as the foot-in-the-door effect. As a result, overall response may

be higher in the first waves. Nevertheless, as the survey evolves, respondents may

quickly learn they are members of a panel with a particular sampling frequency and

disconnect from the survey after all. In the case of randomized sampling, learning

the (average) sampling frequency of the panel may take long, however. As a result,

in this case, we expect respondents to participate longer.

An often reported source of panel conditioning bias is negativity bias. This is the

tendency of individuals to be more negative in their judgements if they expect to be

evaluated, see, for example, Ofir and Simonson (2001). If we survey at random time

intervals, panel members are less likely to develop expectations as to when they will
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be surveyed again. As a result, we expect less panel conditioning bias in this case,

which may contribute to a higher quality of response.

Thus we hypothesize the following

H3: Randomized sampling increases (a) the response rate and (b) the

response quality.

4 Research Design

Setup

In order to be able to study the effects of panel design characteristics on response

rates and response quality, we choose a flexible panel design. Our design is charac-

terized by the collective answers to the following questions:

(i) How many times n should we request a panel member to be surveyed at the

maximum?

(ii) Within which time span T ∗ should this occur?

(iii) Given the number of requests and the time span chosen, at which dates should

we survey each panel member? In particular, should we apply a time sampling

or a randomized sampling approach?

Note that when the average sampling frequency f = n/T ∗ is equal to one, both time

sampling and randomized sampling reduce to continuous sampling. We therefore

focus only on time sampling and randomized sampling, and consider different values

of f .

We perform two field studies. In the first we follow a foot-in-the-door approach by

not informing our subjects about the panel design to be employed. We request each

potential panel member to fill in one questionnaire. Additionally, we ask whether

they agree to be contacted in the future for further research. To each respondent

who reacts positively, we assign a sampling strategy (time sampling or randomized

sampling) and a sampling frequency f . We do not fix the total number of survey

requests n nor the number of time periods T ∗. Obviously, these increase as the

survey evolves. We expect our panel members to learn about the design through
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experience, and we assume that they base their further participation decision on this

experience.

In the second study, we first ask our potential panel members to complete the

same questionnaire as before. We then explain again that we would like to contact

our respondents in the future for further research. In order for us to learn what they

find an acceptable way to do this, we sequentially present ten randomly generated

sampling strategies. Here we do not only randomize over the sampling strategy and

the sampling frequency f , but also over the number of requests n. The respondents

are requested to indicate which of the sampling strategies are acceptable to them, if

any. We then select and use one of their accepted strategies at random. In personal

following up mailings the respondents are informed about the design chosen. In this

second study, the respondents thus have full information about the panel design used

and we assume that possible effects through learning are eliminated.

Model and estimation

To study the effects of panel design characteristics on the response decision and

subsequent responses separately, it is convenient to use a selection model. We sum-

marize the responses as a result of our participation requests in the response indicator

matrix R, where its elements, ri,t, for i = 1, ..., N and t = 1, ..., T , register:

ri,t =







1 Member i is requested to participate at time t and did so
0 Member i is requested to participate at time t but did not so
· Member i is not requested to participate at time t

(5)

For those values of i and t for which ri,t equals 1, we additionally observe our ques-

tionnaire data, summarized in the variable Y = (Y1, ..., YZ). For ease of presentation,

we denote any panel Yz, z = 1, ..., Z in Y , by Y , with elements yi,t. To allow for the

possibility that respondents resume their participation after one or more waves of

nonresponse, our model below seeks to explain wave response rather than attrition.

To explain the measurement process R as well as the questionnaire data Y , our

workhorse model will be a dynamic panel Tobit-II model, which consists of a Probit

model for R being 0 or 1 and a standard regression model for each censored panel

Y . It can be written as

ri,t = 0 if y∗i,t = f(X,θ1, u1,i,t) ≤ 0 (6)

ri,t = 1 and yi,t = f(X,θ2, u2,i,t) if y∗i,t = f(X,θ1, u1,i,t) > 0
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where X represents all regressors, us,i,t are the error terms and θs the parameter

vectors, for s = 1, 2. The Tobit-II model allows X to have a different effect on

R and on Y . The model parameters can conveniently be estimated by maximum

likelihood.

5 Empirical Results

Our two field studies have been conducted among students at Erasmus University

Rotterdam over the period September 2004 to March 2007. Our desired frequency of

data collection f d was weekly, and the sampling frequencies ranged from bimonthly

to weekly (f = 0.125 to 1). The experiments were conducted online through an in-

teractive website. All correspondence, including personalized participation requests,

was generated automatically and sent by e-mail. The general task we asked the

respondents to complete was a test for their knowledge of recent news events. In

the test we presented 20 news headlines, among which 10 were literally quoted from

newspapers published in the previous week and 10 were slightly altered. The respon-

dents had to indicate which 10 headlines were indeed literally quoted and which were

not. The headlines were selected from five different news categories (domestic news,

foreign news, politics, economics, sports & culture) and were carefully pretested to

ascertain that they were equally familiar in each week. On average, respondents

completed the test in three minutes.

Additional to the news test, we surveyed the respondents about their attitude

towards the experiment, with the aim to measure possible signs of irritation and

panel conditioning bias. For this purpose, at each wave we posed three statements

per construct, randomly selected out of ten, which had to be rated on a seven-point

Likert scale. As a consequence, the overall size of the questionnaire remained con-

stant, but the statements were different. We summarized the scores in two variables,

which measure self-reported irritation and self-reported panel conditioning bias3. As

an incentive to continue participation, we raffled out a $25 gift voucher at each wave

of data collection among the respondents of that particular wave.

3For this purpose, we performed a principal components analysis on the scores obtained on the
ten different statement which supposedly measure the same construct. Next, we selected the first
component. This component explains over 75% of the variation in the data in both cases.
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To complete the model in (6) for our field studies, we specify the error terms

us,i,t in (6) as

us,i,t = (αs,i + τs,t + εs,i,t), αs,i ∼ N(0, σ2
αs
), εs,i,t ∼ N(0, σ2

εs
) for s = 1, 2 (7)

where αs,i are individual-specific random effects to account for unobserved hetero-

geneity among respondents. The parameters τs,t are time-specific fixed effects to

account for possible variation in response due to the particular week of data collec-

tion and the particular news test. For example, these parameters may capture lower

response rates during examination periods or higher news scores due to a relatively

easy test. The random variables εs,i,t are idiosyncratic shocks.

Next we have to specify the regression part f(X,θs, us,i,t), for s = 1, 2. We

assume that our respondents learn about the design parameter n through the number

of times they have been requested to be surveyed previously, which is n − 1. The

sampling frequency f may be learned through the number of weeks since the previous

request, which is 1/f in expectation. Therefore we include these two variables in

our model, together with a dummy variable indicating whether time sampling or

randomized sampling has been applied. We summarize the three design variables

in the vector P . Additional to the design parameters, we include an AR(1) term

which captures possible dynamics in response, through a finite duration adjustment

as discussed in Section 2.3. Finally we include several individual specific regressors

such as demographics, self-reported irritation and panel conditioning, to be denoted

by V . In sum, the regression equations can now be written as:

f(xi,t,θs, us,i,t) = ρ
di,t

j xi,t−di,t
+ ζpi,t + βvi,t + (αs,i + τs,t + εs,i,t) for s = 1, 2 (8)

Study 1: No information provided about the design

Among the 623 students we contacted, 290 agreed to participate in the first study.

The total sample period of the study was 26 weeks. In Table 1 we summarize the

response rates, where we classify the respondents to four groups according to the

sampling frequency assigned to them. It is already apparent from this table that the

sampling frequency negatively influences response. For example, after six waves of

data collection, the response rate among those respondents who have been surveyed

monthly to biweekly is 23% (0.68− 0.45) higher as compared to the group that has

been surveyed three times per month to weekly.
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- Insert Table 1 about here -

Table 2 shows the estimation results of the dynamic panel Tobit-II model. In the

first panel the results of the Probit part of the model are presented. The second panel

presents the results of the regression part. In this part we consider four different

explanatory variables Y , and as a consequence we estimated our model four times.

The estimates within the Probit part are the same across all variables Y .

Inspecting the results for the Probit part, we find that the number of weeks

between subsequent participation requests has a positive effect on the probability of

response. Hence the higher the sampling frequency f , the lower the response rate,

as hypothesized in H1a. Second, the number of waves n has the expected significant

negative effect. Perhaps more surprising, the dummy variable which distinguishes

between randomized sampling (1) and time sampling (0) is significantly positive.

This indicates that it is beneficial to request panel members to be surveyed at random

points in time rather than at fixed time intervals. We thus find support for both

hypotheses H2a and H3a. As can be seen from the hitrate, the model predicts 70%

of the responses correctly. Moreover, it does not seem to seriously overpredict either

response or nonresponse.

Next, we inspect the results of the regression part with the purpose to test our

hypotheses regarding the effects of panel design characteristics on response quality.

The first two variables we consider here are the individuals’ scores on the news test

and the time needed to complete this test. There is a positive effect of the number

of weeks since the previous request both on the score and on the time needed to

complete the test. This implies that as the time between subsequent waves gets

shorter, respondents tend to score lower on the test and spend less time to complete

it, which is a clear signal of panel conditioning bias. The second two variables are our

measures for the stated level of irritation of an individual and the extent to which he

or she feels his or her (reporting) behavior has changed due to participation in the

panel study. As these variables are self-reported, they have to be interpreted with a

bit more care. First of all, although there is a weak effect on irritation, the sampling

frequency f does seem to influence respondents’ stated level of panel conditioning

bias. We did find an effect on the news test score however. This suggests that, even

though respondents are biased in their (reporting) behavior due to the sampling
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frequency, they do not perceive this effect. In contrast, the number of waves n

does seem to drive stated panel conditioning bias. Randomization seems to lower

both irritation and panel conditioning bias. These two variables did not significantly

influence the test performance however. In sum, we find support for hypothesis H1b

in the revealed data, but support for H2b and H3b only in the stated data.

Finally, we discuss the results for the additional regressors and demographics.

The highly significant estimates of ρ suggest there is a strong relationship between

current and past responses, which cannot be ignored. The effects of respondents’

news consumption levels on their performance on the news test are positive, as

expected. Looking at the effects of demographics, we observe that women tend to

be slightly more loyal to the experiment, as can be seen from the negative effect of

gender on response and irritation. Also they tend to score slightly higher on the

news test.

- Insert Table 2 about here -

Study 2: Full information provided about the design

For the second study, we found 148 students willing to participate out of a sample

of 292. In the first part of the experiment, we presented ten panel designs to each

respondent and requested them to state which of these designs would be acceptable

to them. Among the accepted designs, we found the median of the maximum number

of waves to be 5.5, and the median of the maximum frequency to be biweekly, which

is high considered the actual participation to Study 1. There were 22 respondents

who did not accept any design. To study the effects of panel design parameters on

stated acceptance, we first estimate the acceptance decision using the Probit part of

our Tobit-II model. The estimation results are shown in Table 3. Again, the effects

of the sampling frequency and the number of waves are prominent. It is interesting

to see, however, that a respondent’s probability of acceptance is not influenced by

the choice for a randomized or a time sampling strategy. Respondents state to be

indifferent between the two strategies.

- Insert Table 3 about here -

Next, we check whether our respondents’ stated participation matches their re-

vealed participation, by indeed surveying them according to one of their accepted
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designs. The results are shown in Table 4. Clearly, there is a big distinction be-

tween respondents’ promised participation and actual participation as there still is

considerable nonresponse in this experiment (1 − 0.755 = 24.5%). Finally, we ex-

amine whether there are differences in behavior between the informed respondents

of Study 2 and the uninformed respondents of Study 1. The informed respondents’

probability of response, performance on the news test, stated level of irritation and

panel conditioning bias still seem to be influenced by the design parameters n and

f in the same manner as they did in Study 1. This indicates that providing in-

formation about the design of the experiment does not alleviate response or panel

conditioning bias. In contrast, the influence of randomized sampling on any of our

dependent variables disappeared in the informed case. This supports our conjecture

that randomization has an effect on response rates and response quality as a result of

learning about the design. Response rates are improved as panel members actually

have low awareness of being such a member when they are uninformed about the

panel design. Response quality gets improved as respondents are less likely develop

expectations as to when they will be surveyed again.

We summarize the testing results for our hypotheses in Table 5, where we dis-

tinguish between the informed and uninformed case.

- Insert Tables 4 and 5 about here -

Panel calibration

One of the advances of our approach is that it can be used to calibrate the design

of a new panel survey. To illustrate this, suppose that we conducted Study 1 as a

pilot study with the aim to calibrate a continuous monitor for students’ knowledge

of recent news events. Using our parameter estimates, we can now simulate data

from the model for various values of the design parameters P . These data can be

used to compute the expected response rates under different scenario’s. In Figure 4

we plot the response curves, which are the expected response rates as a function of

the sampling frequency f . Windows (a)-(c) show the curves for the 2nd, 6th and

12th wave, respectively, where we distinguish between the expected response rates

obtained using a time sampling and a randomized sampling strategy.

Since the sampling frequency has an effect on a student’s news score, which is

undesirable, but the sampling strategy and the number of waves have not, it is
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advisable to adopt randomized sampling, to choose a high number of waves, but

with a low sampling frequency. Suppose now that our budget restricts us to have at

least 50% expected response in the last wave. As can be read from the graph, in this

case, if we want to collect as much as 12 waves of data, we should set the sampling

frequency f equal to 0.47, which is close to biweekly, or lower. In case time sampling

is to be preferred, then the frequency should be equal to 0.35 or lower.

- Insert Figure 4 about here -

6 Conclusions

Response rates of panel surveys may be low and responses given by panel members

may depend highly on the panel design chosen. Therefore researchers must choose

their design carefully. To facilitate this choice, in this paper we studied the effects of

panel design characteristics on response rates and response quality. We hypothesized

that response rates and response quality decrease as the sampling frequency and the

number of waves of a panel increase. Further, we proposed a new sampling strategy,

labelled randomized sampling, where at each wave only a random subsample of the

panel is selected to be surveyed. We hypothesized that, as compared to the often

applied time sampling strategy, randomized sampling improves response rates and

response quality. To test our hypotheses, we proposed a two-step selection model,

where in the first step we explained the response decision and in the second step

we explained subsequent responses, conditional on response in the first step. Two

empirical studies indeed confirmed the above hypotheses. We did find, however,

that the effect of randomized sampling is only significant in a setting where panel

members are not informed about the dates they will be surveyed, because in this case

respondents are less likely to develop expectations as to when they will be surveyed

again.

The main advantage of our approach is that it can be used to calibrate new panels.

Careful calibration should lead to an efficient panel design where expected response

is maximized and threats to response quality due to the design are suppressed. This

in turn reduces the survey costs, since fewer respondents need to be acquired and

higher quality data is collected. The methodology may also be used to capture

residual response bias and panel conditioning bias, to the extent that these biases
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are explained by our model.

Further research could focus on explaining attrition rather than wave response,

since attrition is a bigger concern than wave nonresponse in many cases. Finally,

it would be interesting to understand more about the learning process of panel

members over time.
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A Tables and Figures

Figure 1: Alternative sampling strategies across individuals

(a) Complete panel

(b) Repeated cross-sections

(c) Rotating panel
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Figure 2: Alternative sampling strategies over time
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Figure 3: (Expected) number of autocorrelations observed under different sampling
strategies

(a) Continuous sampling

(b) Time sampling

(c) Randomized sampling

26



Figure 4: Response curves

(a) Expected response rates of the 2nd wave

(b) Expected response rates of the 6th wave

(c) Expected response rates of the 12th wave
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Table 1: Response rates

Frequency Wave
2 3 4 6 12

Three times per month - weekly 0.67 0.69 0.59 0.45 0.06
(0.75 < f ≤ 1.00) (0.50) (0.46) (0.49) (0.50) (0.24)

Biweekly - three times per month 0.80 0.75 0.65 0.59 0.22
(0.50 < f ≤ 0.75) (0.40) (0.44) (0.48) (0.50) (0.31)

Monthly - biweekly 0.83 0.82 0.76 0.68 −

(0.25 < f ≤ 0.50) (0.37) (0.38) (0.43) (0.26)

Once every eight weeks - monthly 0.88 0.84 0.77 − −

(0.125 ≤ f ≤ 0.25) (0.33) (0.39) (0.37)

Sample standard deviations are in parentheses. The response rates for the
bottom right cases are missing, due to the studies’ time window of 26 weeks.
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Table 2: Results of the panel Tobit-II model for Study 1

Variable Probit part (R) Regression parts (Y )
News score Time needed Irritation Panel conditioning
(0 - 20) (in mins.) (stated; − 1.0 - 1.0) (stated; − 1.0 - 1.0)

Design parameters
No. of weeks since previous request (1/f) 0.322** (0.143) 0.249** (0.095) 0.670** (0.305) 0.017* (0.010) 0.012 (0.014)
No. of times requested before (n− 1) −0.728*** (0.054) −0.014 (0.044) 0.001 (0.207) 0.001 (0.003) 0.011** (0.005)
Randomized sampling 0.585*** (0.201) 0.567 (0.409) 1.070 (0.978) −0.102*** (0.038) −0.098* (0.051)

Additional regressors
Dynamics (ρ) 0.939*** (0.290) 0.397*** (0.036) 0.465*** (0.048) 0.547*** (0.041) 0.682*** (0.040)
No. of hours spent consuming news 0.139** (0.065) −0.091 (0.062) −0.003 (0.002) −0.004 (0.003)
Subscribing to a newspaper 0.459* (0.259) −0.524 (0.616) −0.044 (0.044) −0.052 (0.032)

Demographics
Age 0.046 (0.034) −0.003 (0.037) −0.074 (0.085) −0.001 (0.003) 0.008* (0.004)
Gender (0: female; 1: male) −0.389* (0.237) 0.688* (0.411) −0.154 (0.961) −0.120** (0.059) −0.110** (0.051)

Additional model parameters
Intercept −5.557*** (0.908) 6.308*** (1.115) 5.190* (3.155) −0.232** (0.099) −0.014 (0.130)
Cross-section random st. dev. 0.362 2.306 5.385 0.163 0.233
Idiosyncratic random st. dev. 1.0001 1.466 9.594 0.161 0.190

Mean of the dependent 0.683 10.223 3.255 −0.646 −0.126
McFadden / Adjusted R2 0.555 0.583 0.379 0.756 0.768

Hitrate 0.702
Prop. of correctly predicted response 0.730
Prop. of correctly predicted nonresponse 0.642

*** Significant at the 1% level, ** at the 5% level, * at the 10% level. White heteroskedasticity-consistent standard errors are in parentheses. 1 Standardized
for identification purposes. The estimates of the period fixed effects are not displayed for ease of presentation.
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Table 3: Results of the panel Probit model for Study 2

Variable

Design parameters
No. of weeks since previous request (1/f) 0.135*** (0.016)
No. of times requested before (n− 1) −0.161*** (0.011)
Randomized sampling 0.162 (0.117)

Demographics
Age −0.024 (0.035)
Gender (0: female; 1: male) 0.131 (0.500)

Additional model parameters
Intercept 0.777 (0.784)
Cross-section random st. dev. 0.750
Idiosyncratic random st. dev. 1.0001

Mean of the dependent 0.362
McFadden / Adjusted R2 0.569

Hitrate 0.728
Prop. of correctly predicted acceptance 0.626
Prop. of correctly predicted rejection 0.785

*** Significant at the 1% level, ** at the 5% level, * at the 10%
level. White heteroskedasticity-consistent standard errors are in
parentheses. 1 Standardized for identification purposes. The
estimates of the period fixed effects are not displayed for ease of
presentation.
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Table 4: Results of the panel Tobit-II model for Study 2

Variable Probit part (R) Regression parts (Y )
News score Time needed Irritation Panel conditioning
(0 - 20) (in mins.) (stated; − 1.0 - 1.0) (stated; − 1.0 - 1.0)

Design parameters
No. of weeks since previous request (1/f) 0.282*** (0.072) 0.329** (0.167) 0.524** (0.272) 0.020** (0.011) 0.008 (0.031)
No. of times requested before (n− 1) −0.583*** (0.101) −0.071 (0.062) −0.167 (0.304) 0.003 (0.005) 0.013** (0.007)
Randomized sampling 0.193 (0.197) −0.777 (0.735) −0.698 (1.910) −0.022 (0.068) −0.092 (0.097)

Additional regressors
Dynamics (ρ) 0.931*** (0.296) 0.471*** (0.055) 0.698*** (0.063) 0.484*** (0.064) 0.575*** (0.063)
No. of hours spent consuming news 0.143*** (0.042) −0.106 (0.095) −0.006 (0.036) −0.003 (0.005)
Subscribing to a newspaper 0.300 (0.639) −0.102 (1.764) 0.172 (0.193) 0.173 (0.182)

Demographics
Age 0.016 (0.029) −0.101 (0.073) −0.243 (0.197) −0.018* (0.015) 0.004 (0.010)
Gender (0: female; 1: male) −0.287 (0.199) 1.118* (0.599) 1.881 (1.651) −0.113* (0.060) −0.136* (0.085)

Additional model parameters
Intercept −4.712*** (1.066) 8.955*** (1.811) 8.353 (5.551) −0.095 (0.168) −0.154 (0.237)
Cross-section random st. dev. 0.276 2.214 4.502 0.166 0.233
Idiosyncratic random st. dev. 1.0001 1.401 5.621 0.184 0.264

Mean of the dependent 0.755 9.746 2.879 −0.611 −0.143
McFadden / Adjusted R2 0.639 0.594 0.555 0.741 0.780

Hitrate 0.690
Prop. of correctly predicted response 0.720
Prop. of correctly predicted nonresponse 0.598

*** Significant at the 1% level, ** at the 5% level, * at the 10% level. White heteroskedasticity-consistent standard errors are in parentheses. 1 Standardized
for identification purposes. The estimates of the period fixed effects are not displayed for ease of presentation.
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Table 5: Summary of hypothesis-testing results

Effect Hypothesis Information about
the panel design

Not provided Provided

The sampling frequency on response rates H1a Supported Supported
The sampling frequency on response quality H1b Supported Supported

The number of participation requests on response rates H2a Supported Supported
The number of participation requests on response quality H2b Weak support1 Weak support1

Randomized sampling on response rates H3a Supported Not supported
Randomized sampling on response quality H3b Weak support1 Not supported

1 Only supported by stated preference data.
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