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Abstract
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uses econometric models that are rarely, if ever, used elsewhere. This chap-
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1 Introduction

In their recent bestseller, Kotler et al. (2002, page x) state that ”Today’s businesses

must strive to satisfy customers’ needs in the most convenient way, minimizing the

time and energy that consumers spend in searching for, ordering, and receiving

goods and services”. Obviously, these authors see an important role for marketing

activities to support that objective.

At the same time this statement indicates that marketing activities can be tar-

geted at the level of an individual consumer’s level, and that time is an important

factor. Time can consider the speed at which consumers can respond, but it also

concerns the ability to evaluate the success or failure of marketing activities. For a

quick evaluation, one benefits from detailed data, observed at a high frequency, and

preferably including performance data of competitors. With the advent of advanced

data collection techniques, optic scanner data and web-based surveys, today’s deci-

sions on the relevant marketing activities can be supported by econometric models

that carefully summarize the data. These basically concern links between perfor-

mance measures as sales with marketing input like prices and advertising. Direct

mailings for example can now be targeted at specific individuals, bonus offers in

retail stores can be given to only a selected set of consumers, and the shelf position

of certain brands is chosen with meticulous precision.

One of the academic challenges in this area is to design econometric models

that adequately summarize the marketing data and that also yield useful forecasts,

which in turn can be used to support decision-making1. The last few decades have

witnessed the development of models that serve particular purposes in this area,

and this chapter will describe several of these. The second feature of this chapter

is to demonstrate how forecasts from these models can be derived. Interestingly,

many of these models are intrinsically non-linear, and as will be seen below, so

simulation-based techniques become mandatory.

The outline of this chapter is as follows. Section 2 briefly reviews the type of

1This chapter will be dedicated to models and how to derive forecasts from these models.
The implementation of these forecasts into decision-making strategies is beyond the scope of this
chapter, see Franses (2005a,b) for further discussion.
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measures that are typically used to evaluate the performance of marketing efforts.

These performance measures are sales, market shares, purchases, choice and time

between events2. These variables are the outcomes of marketing activities that can

concern pricing strategies, promotional activities, advertising, new product intro-

duction, but can also concern the consequences of competitors’ actions. Section 3

discusses a few models that are typically used in marketing, and less so, if at all, in

other disciplines. Section 4 demonstrates how forecasts from these models can be

generated. This section adds to the marketing literature, where one often neglects

the non-linear structure of the models. Section 5 concludes this chapter with a few

further research topics. The aim of this chapter is to demonstrate that there is an

interesting range of econometric models used in marketing, which deserves future

attention by applied econometricians and forecasters.

2 Performance measures

One of the challenging aspects of marketing performance data is that they rarely

can be treated as continuous and distributed as conditionally (log) normal. Perhaps

sales, when measured as quantity purchased times actual price, can be assumed to

fit the classical assumptions of the regression model, but sales measured in units

might sometimes be better analyzed using a count data model. Other examples of

performance measures are market shares, with the property that they sum to 1 and

are always in between 0 and 1, and the amount or the percentage of individuals

who have adopted a new product. This adoption variable is also bounded from

below and from above (assuming a single adoption per consumer). One can also

obtain data on whether an individual makes a purchase or not, hence a binomial

variable, or on whether s/he makes a choice amongst a range of possible products or

brands (multinomial data). Surveys using questionnaires can result in data that are

multinomial but ordered, like ranging from ”strongly disagree” to ”strongly agree”

2This chapter abstains for a discussion of how conjoint analysis, where stated preferences for
hypothetical products are measured, can help to forecast revealed preferences measuring actual
sales or adoption. This is due to the fact that the author simply has not enough experience with
the material
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on for example a 5-point scale. Finally, there are marketing data available which

measure the time between two events, like referrals to advertising cues or, again,

purchases.3

2.1 How do typical data sets look like?

To narrow focus towards the models to be reviewed in the next section, consider a

few typical data sets that one can analyze in marketing.

Sales

Sales data can appear as weekly observed sales in a number of stores for one or

more chains in a certain region. The sales data can concern any available product

category, although usually one keeps track of products that are not perishable, or

at least not immediately. Typical sample sizes range from 2 to 8 years. Usually,

one also collects information on marketing instruments as ”display”, ”feature”, and

”price”. Preferably, the price variable can be decomposed into the regular price

and the actual price. As such, one can analyze the effects of changes in the regular

price and in price promotions (the actual price relative to the regular price). When

one considers product categories, one collects data on all brands and stock keeping

units (SKUs). Subsequently, these data can be aggregated concerning large national

brands, private label brands and a rest category including all smaller brands. The

data are obtained through optic scanners. With these data one can analyze the

short-run and long-run effects of, what is called, the marketing-mix (the interplay of

price setting, promotions, advertising and so on), and also the reactions to and from

competitors. A typical graph of such weekly sales data is given in Figure 1, where

a large amount of substantial spikes can be noticed. Obviously, one might expect

that these observations correspond with increased marketing efforts, and hence one

should not delete these data points.

An important area concerns the (dynamic) effects of advertising (or any other

3Of course, as with any set of data in any discipline, marketing data can contain outliers,
influential data, missing data, censored data, and so on. This aspect is not considered any further
here.
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Figure 1: Sales of a brand and category sales, weekly data, 1989-1994, Dominick’s
Finer Foods

instrument) on sales. How long do these effects last? And, what is most interesting to

econometricians, what is the appropriate data interval to estimate these effects? This

topic has important implications for marketers, policy makers, and legal scholars.

For managers, the duration of the advertising effects has implications for planning

and cost allocation. If the effects of advertising last beyond the current period, the

true cost of that advertising must be allocated over the relevant time period. And,

if the effects of advertising decay slowly and last for decades, advertising may have

to be treated as an investment rather than as an expense.

The duration of this so-called advertising carryover can have important legal

implications. If the effects of advertising last for decades, firms involved in deceptive

advertising would have to be responsible for remedies years and even decades after

such a deception occurred. Similarly, firms might be responsible for the advertising

they carried out several decades earlier.

The available data on sales and advertising often concern annual or at best

monthly data. Unfortunately, for the analysis of short-run and carry-over effects, one
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may want to have data at a higher frequency. An intriguing data set is presented and

analyzed in Tellis, Chandy, and Thaivanich (2000). The advertiser in their study is a

medical referral service. The firm advertises a toll free number which customers can

call to get the phone number and address of medical service providers. Consumers

know the service by the advertised brand name that reflects the toll free number

that is advertised. When a customer calls the number, a representative of the firm

answers the call. The representative queries the customer and then recommends a

suitable service-provider based on location, preferences, and specific type of service

needed. Typically, the representative tries to connect the customer to the service-

provider directly by phone, again bearing in mind the quoted statement in Kotler

et al. (2000). Any resulting contact between a customer and the service provider is

called a referral. Customers do not pay a fee for the referral, but service providers

pay a fixed monthly fee for a specific minimum number of referrals a month. The firm

screens service providers before including them as clients. The firm began operations

in March 1986 in the Los Angeles market with 18 service providers and a USD 30,000

monthly advertising budget. Around 2000 it advertised in over 62 major markets

in the U.S., with a multi-million dollar advertising budget that includes over 3500

TV advertising exposures per month. The primary marketing variable that affects

referrals is advertising. A nice aspect of this data set is that it contains observations

per hour, and I will return to this particular data set below.

Market shares

Market shares are usually defined by own sales divided by category sales. There

are various ways to do calculate market shares, where choices have to be made

concerning how to measure sales and prices. Next, one might weight the sales of

competitors depending on the availability across outlets.

One reason to analyze shares instead of sales is that their time series properties

can be more easy to exploit for forecasting. Outlying observations in category sales

and in own sales might cancel out, at least approximately. The same holds for

seasonality, and even perhaps for trends of the unit root type. Indeed, various

empirical studies suggest that, at least for mature markets, market shares tend to
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be stationary, while sales data might not be. A second reason to analyze market

shares is that it directly shows how well the own brand or product fares as compared

with competitors. Indeed, if category sales increase rapidly, and own sales only little,

then own market share declines, reflecting the descending power of the brand within

the category.

An argument against using market shares is that models for sales allow to include

and jointly forecast category sales. Also, the introduction of new brands in the

observed sample period is more easy to handle than in market share models4.

It is important for the material below to reiterate the obvious relation between

market shares and sales, as it is a non-linear one. Take St as own sales and CSt as

category sales, then market share Mt is defined as

Mt =
St

CSt

. (1)

As the right hand side is a ratio, it holds that

E(Mt) 6= E(St)

E(CSt)
, (2)

where E denotes the expectations operator. Additionally, CSt contains St, and hence

the denominator and the numerator are not independent.

Typical graphs of weekly market shares appear in Figure 2. Again one can infer

various spikes in one series, and now also similar sized spikes but with different signs

for the competitive brands’ market shares.

New product diffusion

The data on the adoption of a new product, which usually concerns durable products

like computers, refrigerators, and CD-players, typically show a sigmoid shape. Often

the data concern only annual data for 10 to 20 years. See for example the data

depicted in Figure 3, which concern the fraction of music recordings that are sold

on compact discs, see Bewley and Griffiths (2003). This sigmoid pattern reflects a

typical product life cycle, which starts with early innovators to purchase the product,

and which ends with laggards who purchase a new product once almost everyone

else already has it.

4Fok and Franses (2004) provide a solution for the latter situation.
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Figure 2: Market shares for four brands of crackers (one is ”rest”), weekly data,
1989-1994, Dominick’s Finer Foods
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Figure 3: Market penetration of compact discs, 1983-1996
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Figure 4: Histogram of the number of days between two liquid detergent purchases

If the diffusion process is measured in terms of fractions of households owning a

product, such data are bounded from below and from above. Hence, the model to

be used shall somehow need to impose restrictions also as the data span usually is

rather short and as one tends to want to make forecasts closer towards the beginning

of the diffusion process than towards the end.

Panels with N and T both large

Finally, various data in marketing are obtained from observing a sample of N house-

holds over T periods. There are household panels with size N around 5000. These

keep track of what these households purchase as the households have optic scanners

at home, which they use again to document what they had bought on their latest

shopping trip. This way one can get information on the choice that individuals make,

whether they respond to promotions, and their time between purchases. A typical

graph of such interpurchase time appears in Figure 4. In fact, such data allow for a

full description of consumption behavior, see for example van Oest et al. (2002).
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Retail stores keep track of the behavior of their loyalty program members and

keep track of everything they purchase (and not purchase). Charities store past

donation data of millions of their donators, and insurance firms keep track of all

contacts they have with their clients. Those contacts can be telephone calls made

by the client to ask for information, but can also be direct mailings sent to them.

Sometimes these data are censored or truncated, like in the case of a charity’s direct

mailing where only those who received a mailing can decide to donate a certain

amount or not to donate.

2.2 What does one want to forecast?

Usually, these performance measures are of focal interest in a forecasting exercise.

Depending on the data and on the question at hand, this can be done either for new

cross sections or for future time series data. For example, for new product diffusion

it is of interest to forecast whether a product that was recently launched in country

A, will also fly in country B. Another example concerns a new list of addresses

of potential donators to charity, which cannot all be mailed and a selection will

have to made. One then looks for those individuals who are most likely to donate,

where these individuals are somehow matched with similar individuals whose track

record is already in the database and who usually donate. Additionally, one wants

to forecast the effects of changes in marketing instruments like price and promotion

on own future sales and own market shares.

In at least two situations forecasting in marketing concerns a little less straight-

forward situation. The first concerns sales and market shares. The reason is that one

usually not only wants to forecast own sales and category sales, but preferably also

the response of all competitors to own marketing efforts. This entails that econo-

metric models will contain multiple equations, even in case the interest only lies in

own market shares.

A second typical forecasting situation concerns the adoption process of a new

product. Usually one wants to make a forecast of the pattern of new to launch prod-

ucts, based on the patterns of related products that have already been introduced.

This should also deliver a first guess value of the total amount of adoptions at the
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end of the process. For that matter, one needs a certain stylized functional form

to describe a typical adoption process, with parameters that can be imposed onto

the new situation. Moreover, once the new product is brought to the market, one

intends to forecast the ”take-off” point (where the increase in sales is fastest) and

the inflection point (where the level of the sales is highest). As will be seen in the

next section, a commonly used model for this purpose is a model with just three pa-

rameters, where these parameters directly determine these important change points

in the process.

3 Models typical to marketing

The type of data and the research question guide the choice of the econometric model

to be used. In various situations in marketing research, one can use the standard

regression model or any of its well-known extensions. Also, one sees a regular use of

the logit or probit model for binomial data, and of the ordered regression model for

ordered data, and of the multinomial logit or probit model for unordered multinomial

data. Interestingly, the use of the, not that easy to analyze, multinomial probit

model is often seen, and this perhaps due to the assumption of the independence of

irrelevant alternatives is difficult to maintain in brand choice analysis. Furthermore,

one sees models for censored and truncated data, and models for duration and count

data. Franses and Paap (2001) provide a summary of the most often used models in

marketing research. However, they do not address in detail the econometric models

that are specifically found in marketing, and less so elsewhere. This is what I will do

in this chapter. These models are the Koyck model to relate advertising with sales,

the attraction model to describe market shares, the Bass model for the adoption of

new products, and the multi-level regression model for panels of time series. Each

of these four types of models will be discussed in the next four subsections.

3.1 Dynamic effects of advertising

An important measure to understand the dynamic effects of advertising, that is,

how long do advertising pulses last, is the so-called p-percent duration interval, see
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Clark (1976), Tellis (1988), and Leone (1995), among others. A p-percent duration

interval measures the time lag between an advertising impulse and the moment that

p percent of its effect on sales has decayed.

Denote St as sales and At as advertising, and assume for the moment that there

are no other marketing activities and no competitors. A reasonable model to start

with would be an autoregressive distributed lags model of order (p,m) (ADL(p,m)).

This model is written as

St = µ + α1St−1 + . . . + αpSt−p + β0At + β1At−1 + . . . + βmAt−m + εt. (3)

This model implies that

∂St

∂At

= β0

∂St+1

∂At

= β1 + α1
∂St

∂At

∂St+2

∂At

= β2 + α1
∂St+1

∂At

+ α2
∂St

∂At

...

∂St+k

∂At

= βk +
k∑

j=1

αj

∂St+(k−j)

∂At

where αk = 0 for k > p, and βk = 0 for k > m. These partial derivatives can be

used to compute the decay factor

p(k) =
∂St

∂At
− ∂St+k

∂At

∂St

∂At

(4)

Due to the very nature of the data, this decay factor can only be computed for dis-

crete values of k. Obviously, this decay factor is a function of the model parameters.

Through interpolation one can decide on the value of k for which the decay factor is

equal to some value of p, which is typically set equal to 0.95 or 0.90. This estimated

k is then called the p-percent duration interval.

Next to its point estimate, one would also want to estimate the confidence bounds

of this duration interval, taking aboard that the decay factors are based on non-linear

functions of the parameters. The problem when determining the expected value of

p(k) is that the expectation of this non-linear function of parameters is not equal to
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the function applied to the expectation of the parameters, that is E(f(θ)) 6= f(E(θ)).

So, the values of p(k) need to be simulated. With the proper assumptions, for the

general ADL model it holds that the OLS estimator is asymptotically normal dis-

tributed. Franses and Vroomen (2003) suggest to use a large number of simulated

parameter vectors from this multivariate normal distribution, and calculate the val-

ues of p(k). This simulation exercise also gives the relevant confidence bounds.

The Koyck model

Although the general ADL model seems to gain popularity in advertising-sales mod-

eling, see Tellis et al. (2000) and Chandy et al. (2001), a commonly used model still

is the so-called Koyck model. Indeed, matters become much more easy for the ADL

model if it is assumed that m is ∞, all α parameters are zero and additionally that

βj = β0λ
j−1, where λ is assumed to be in between 0 and 1. As this model involves

an infinite number of lagged variables, one often considers the so-called Koyck trans-

formation (Koyck, 1954). In many studies the resultant model is called the Koyck

model5.

The Koyck transformation amounts to multiplying both sides of

St = µ + β0At + β0λAt−1 + β0λ
2At−2 + . . . + β∞λ∞At−∞ + εt (5)

with (1− λL), where L is the familiar lag operator, to get

St = µ∗ + λSt−1 + β0At + εt − λεt−1. (6)

The short-run effect of advertising is β0 and the long-run or total effect is β0

1−λ
. As

0 < λ < 1, the Koyck model implies that the long-run effect exceeds the short-

run effect. The p-percent duration interval for this model has a convenient explicit

expression and it is equal to log(1−p)
log λ

.

Even after 50 years, the Koyck model is often used and still stimulates new

research, see Franses (2004). For example, the Koyck model involves the familiar

Davies (1987) problem. That is, under the null hypothesis that β0 = 0, the model

St = µ∗ + λSt−1 + β0At + εt − λεt−1, (7)

5Leendert Marinus Koyck (1918-1962) was a Dutch economist who studied and worked at the
Netherlands School of Economics, which is now called the Erasmus University Rotterdam.
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collapses into

St = µ∗ + εt, (8)

where λ has disappeared. Solutions based on the suggestions in Andrews and

Ploberger (1994) and Hansen (1996) are proposed in Franses and Van Oest (2004),

where also the relevant critical values are tabulated.

Temporal aggregation and the Koyck model

Temporal aggregation entails that one has to analyze data at a macro level while the

supposedly true link between sales and advertising happens at a higher frequency

micro level. This is particularly relevant nowadays, where television commercials

last for just 30 seconds, while sales data are available perhaps only at the daily

level. There has been substantial interest in handling the consequences of temporal

aggregation in the marketing literature, see Bass and Leone (1983), Assmus et al.

(1984), Clarke (1976), Leone (1995) and Russell (1988). These studies all impose

strong assumptions about the advertising process. A common property of all studies

is that they warn about using the same model for micro data and for macro data,

as in that case the duration interval will be overestimated, when relying on macro

data only.

Recently, Tellis and Franses (2004) argue that only a single assumption is needed

for the Koyck model parameters at the micro frequency to be retrievable from the

available macro data. This assumption is that the macro data are K-period sam-

pled micro data and that there is only a single advertising pulse at time i within

that K−period. The size of the pulse is not relevant nor is it necessary to know

the dynamic properties of the advertising process. This is because this particular

assumption for advertising entails that the K−period aggregated pulse data match

with the size of the single pulse within that period.

Consider again the K−period data, and assume that the pulse each time happens

at time i, where i can be 1, 2, or, K. It depends on the location of i within the K

periods whether the pulse will be assigned to AT or AT−1, where capital T indicates

the macro data. Along these lines, Tellis and Franses (2004) show that the Koyck

model for the micro data leads to the following extended Koyck model for K-period
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aggregated data, that is,

ST = λKST−1 + β1AT + β2AT−1 + εT − λKεT−1, (9)

with

β1 = β0(1 + λ + ... + λK−i), (10)

and

β2 = β0(λ
K−i+1 + ... + λK−1), (11)

and where β2 = 0 if i = 1.

As the parameters for ST−1 and εT−1 are the same, Franses and van Oest (2004)

recommend to use estimation by maximum likelihood. The total effect of advertising,

according to this extended Koyck model for K−period aggregated data, is equal to

β1 + β2

1− λK
=

β0(1 + λ + ... + λK−i) + β0(λ
K−i+1 + ... + λK−1)

1− λK
=

β0

1− λ
. (12)

Hence, one can use this extended model for the aggregated data to estimate the

long-run effects at the micro frequency. Obviously, λ can be estimated from λK , and

therefore one can also retrieve β0.

To illustrate, consider the Miami market with 10776 hourly data, as discussed in

Tellis, Chandy and Thaivanich (2000). Given the nature of the advertising data, it

seems safe to assume that the micro frequency is 30 seconds. Unfortunately, there

are no sales or referrals data at this frequency. As the hour is the least integer time

between the exposures, K might be equal to 120, as there are 120 times 30 seconds

within an hour. As the advertising pulse usually occurs right after the entire hour,

it is likely that i is close to or equal to K. The first model I consider is the extended

Koyck model as in (9) for the hourly data. I compute the current effect, the carry-

over effect and the 95 percent duration interval. Next, I estimate an extended Koyck

model for the data when they are aggregated up to days. In this case daily dummy

variables are included to capture seasonality to make sure the model fits adequately

to the data. The estimation results are summarized in Table 1.

Table 1 shows that the 95 percent duration interval at the 30 seconds frequency

is 1392.8. This is equivalent with about 11.6 hours, which is about half a day. In
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Table 1: Estimation results for extended Koyck models for hourly and
daily data.

Parameter Hourly frequency1 Daily frequency2

Current effect (β0) 0.008648 1.4808

Carry-over effect ( β0

1−λ
) 4.0242 5.2455

95 per cent duration interval 1392.8 (30 seconds) 218.77 (days)

1 The model estimated for the hourly frequency assumes that the micro frequency
is 30 seconds, and that the aggregation level is 120, amounting to hours. The λ
parameter is estimated to be equal to 0.997851, as λ̂K is 0.772504. There are
10776 hourly observations. The parameter β2 is not significant, which suggests
that i is indeed close to or equal to K.

2 The model for the 449 daily data is again the extended Koyck model, which
includes current and lagged advertising. The model also includes 6 daily dummy
variables to capture deterministic seasonality. The λ parameter is estimated to
be equal to 0.9864.

sharp contrast, if I consider the Koyck model for daily data, I find that this duration

interval is about 220 days, or about 7 months. This shows that using the same model

for different frequencies can lead to serious overestimation of the duration interval.

Of course, the proper model in this case is the extended Koyck model at the hourly

frequency, which takes into account that the micro frequency is 30 seconds.

3.2 The attraction model for market shares

A market share attraction model is a useful tool for analyzing competitive structure

across, for example, brands within a product category. The model can be used to

infer cross-effects of marketing-mix variables, but one can also learn about the effects

of own efforts while conditioning on competitive reactions. Various details can be

found in Cooper and Nakanishi (1988) and various econometric aspects are given in

Fok et al. (2002).

Important features of an attraction model are that it incorporates that market

shares sum to unity and that the market shares of all individual brands are in

between 0 and 1. Hence, also forecasts are restricted to be in between 0 and 1. The
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model (which bears various resemblances with the multinomial logit model) consists

of two components. There is a specification of the attractiveness of a brand and a

definition of market shares in terms of this attractiveness.

First, define Ai,t as the attraction of brand i, i = 1, . . . , I at time t, t = 1, . . . , T .

This attraction is assumed to be an unobserved (latent) variable. Commonly, it

assumed that this attraction can be described by

Ai,t = exp(µi + εi,t)
I∏

j=1

K∏

k=1

x
βk,j,i

k,j,t (13)

where xk,j,t denotes the k-th explanatory variable (such as price level, distribution,

advertising spending) for brand j at time t and where βk,j,i is the corresponding

coefficient for brand i. The parameter µi is a brand-specific constant. Let the

error term (ε1,t, . . . , εI,t)
′ be normally distributed with zero mean and Σ can be

non-diagonal. Note that data availability determines how many parameters can be

estimated in the end, as in this representation (13) there are I + I + I × I ×K =

I(2 + IK) parameters. The xk,j,t is assumed to be non-negative, and hence rates of

change are usually not allowed. The variable xk,j,t may be a 0/1 dummy variable to

indicate the occurrence of promotional activities for brand j at time t. Note that in

this case one should transform xk,j,t to exp(xk,j,t) to avoid that attraction becomes

zero in case of no promotional activity.

The fact that the attractions are not observed makes the inclusion of dynamic

structures a bit complicated. For example for the model

Ai,t = exp(µi + εi,t)A
γi

i,t−1

I∏
j=1

K∏

k=1

x
βk,j,i

k,j,t (14)

one can only retrieve γi if it is assumed that γ = γi for all i. Fok et al. (2002)

provide a detailed discussion on how to introduce dynamics into attraction models.

The second component of the model is simply

Mi,t =
Ai,t∑I
j=1 Aj,t

, (15)

which states that market share is the own attraction divided by total attraction.

These two equations complete the attraction model.
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To enable parameter estimation, one simply takes one of the brands as the bench-

mark, say, brand I. Next, one divides both sides of (15) by MI,t, takes natural

logarithms of both sides to arrive at a (I − 1)-dimensional set of equations given by

log Mi,t − log MI,t = (µi − µI) +
I∑

j=1

K∑

k=1

(βk,j,i − βk,j,I) log xk,j,t + ηi,t (16)

for i = 1, . . . , I − 1. Note that the µi parameters (i = 1, . . . , I) are not identified.

In fact, only the parameters µ̃i = µi − µI , and β̃k,j,i = βk,j,i − βk,j,I are identified.

This is not problematic for interpretation as the instantaneous elasticity of the k-th

marketing instrument of brand j on the market share of brand i is given by

∂Mi,t

∂xk,j,t

xk,j,t

Mi,t

= βk,i,j −
I∑

r=1

Mr,tβk,r,j (17)

= (βk,j,i − βk,j,I)(1−Mi,t)−
I−1∑

r=1∧r 6=i

Mr,t(βk,j,r − βk,j,I). (18)

The attraction model has often been applied in marketing, see Leeflang and Reuyl

(1984), Naert and Weverbergh (1981), Kumar (1994), Klapper and Herwartz (2000)

and several recent studies. Usually, the model is used for out-of-sample forecasting

and to evaluate competitive response, see Bronnenberg, Mahajan and Vanhonacker

(2000). Fok and Franses (2004) introduce a version of the model that can be used

to describe the consequences of a new entrant in the product category.

Despite the fact that the model is often used for forecasting, the proper way to

generate forecasts is not trivial, and in fact, rarely considered in detail. The reason

for this non-triviality is that the set of seemingly unrelated regression equations is

formulated in terms of the logs of ratios of market shares. However, in the end

one intends to forecast the market shares themselves. In the next section, I will

demonstrate how appropriate forecasts can be generated.

3.3 The Bass model for adoptions of new products

The diffusion pattern of adoptions of new products shows a typical sigmoid shape.

There are many functions that can describe such a shape, like the logistic function or

the Gompertz function. In marketing research, one tends to focus on one particular
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function, which is the one proposed in Bass (1969). Important reasons for this are

that the model captures a wide range of possible shapes (for example, the logistic

function assumes symmetry around the inflection point while the Bass model does

not) and that the model parameters can be assigned a workable interpretation.

The Bass (1969) theory starts with a population of m potential adopters. For

each of these, the time to adoption is a random variable with a distribution function

F (τ) and density f(τ), and a hazard rate assumed to be

f(τ)

1− F (τ)
= p + qF (τ), (19)

where τ refers to continuous time. The parameters p and q are associated with

innovation and imitation, respectively. In words, this model says that the probability

of adoption at time t, given that no adoption has occurred yet, depends on a constant

p, which is independent of any factor, hence innovation, and on a fraction of the

cumulative density of adoption, hence imitation.

The cumulative number of adopters at time τ , N(τ), is a random variable with

mean N̄(τ) = E[N(τ)] = mF (τ). The function N̄(τ) satisfies the differential equa-

tion

n̄(τ) =
dN̄(τ)

dτ
= p[m− N̄(τ)] +

q

m
N̄(τ)[m− N̄(τ)]. (20)

The solution of this differential equation for cumulative adoption is

N̄(τ) = mF (τ) = m

[
1− e−(p+q)τ

1 + q
p
e−(p+q)τ

]
, (21)

and for adoption itself it is

n̄(τ) = mf(τ) = m

[
p(p + q)2e−(p+q)τ

(p + qe−(p+q)τ )
2

]
, (22)

see Bass (1969) for details. Analyzing these two functions of τ in more detail reveals

that N̄(τ) indeed has a sigmoid pattern, while n̄(τ) is hump-shaped. Note that the

parameters p and q exercise a non-linear impact on the pattern of N̄(t) and n̄(t). For

example, the inflection point T ∗, which corresponds with the time of peak adoptions,

equals

T ∗ =
1

p + q
log(

q

p
). (23)
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Substituting this expression in (21) and in (22), allows a determination of the amount

of sales at the peak as well as the amount of the cumulative adoptions at that time.

In practice one of course only has discretely observed data. Denote Xt as the

adoptions and Nt as the cumulative adoptions, where t often refers to months or

years. There are now various ways to translate the continuous time theory to models

for the data on Xt and Nt. Bass (1969) proposes to consider the regression model

Xt = p(m−Nt−1) +
q

m
Nt−1(m−Nt−1) + εt

= α1 + α2Nt−1 + α3N
2
t−1 + εt, (24)

where it is assumed that εt is an independent and identically distributed error term

with mean zero and common variance σ2. Note that (p, q, m) must be obtained from

(α1, α2, α3), but that for out-of-sample forecasting one can use (24), and hence rely

on ordinary least squares (OLS).

Recently, Boswijk and Franses (2005) extend this basic Bass regression model

by allowing for heteroskedastic errors and by allowing for short-run deviations from

the deterministic S-shaped growth path of the diffusion process, as implied by the

differential equation in (20). The reason to include heteroskedasticity is that, in the

beginning and towards the end of the adoption process, one should be less uncertain

about the variance of the forecasts than when the process is closer to the inflection

point. Next, the solution to the differential equation is a deterministic path, and

there may be various reasons to temporally deviate form this path. Boswijk and

Franses (2005) therefore propose to consider

dn(τ) = α
[
p[m−N(τ)] +

q

m
N(τ)[m−N(τ)]− n(τ)

]
dτ + σn(τ)γdW (τ), (25)

where W (τ) is a standard Wiener process. The parameter α in (25) measures the

speed of adjustment towards the deterministic path implied by the standard Bass

model. Additionally, by introducing σn(t)γ, heteroskedasticity is allowed. A pos-

sible choice is to set γ = 1. Boswijk and Franses (2005) further derive that the

discretization of this continuous time model is

Xt −Xt−1 = β1 + β2Nt−1 + β3N
2
t−1 + β4Xt−1 + Xt−1εt, (26)
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where

β1 = αpm (27)

β2 = α(q − p) (28)

β3 = −α
q

m
(29)

β4 = −α, (30)

which shows that all parameters in (26) depend on α.

Another empirical version of the Bass theory, a version which is often used in

practice, is proposed in Srinivasan and Mason (1986). These authors recognize that

the Bass (1969) formulation above may introduce aggregation bias, as Xt is simply

taken as the discrete representative of n(τ). Therefore, Srinivasan and Mason (1986)

propose to apply non-linear least-squares (NLS) to

Xt = m[F (t; θ)− F (t− 1; θ)] + εt, (31)

where θ collects p and q. Van den Bulte and Lilien (1997) show that this method is

rather unstable if one has data that do not yet cover the inflection point. How to

derive forecasts for the various models will be discussed below.

3.4 Multi-level models for panels of time series

It is not uncommon in marketing to have data on a large number of cases (households,

brands, SKUs) for a large number of time intervals (like a couple of years with weekly

data). In other words, it is not uncommon that one designs models for a variable

to be explained with substantial information over dimension N as well as T . Such

data are called a panel of time series. Hence, one wants to exploit the time series

dimension, and potentially include seasonality and trends, while preserving the panel

structure.

To set notation, consider

yi,t = µi + βixi,t + εi,t, (32)

where subscript i refers to household i and t to week t. Let y denote sales of a

certain product and x be price, as observed by that particular household (where a

household can visit a large variety of stores).
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Hierarchical Bayes approach

It is not uncommon to allow the N households to have different price elasticities.

And, from a statistical perspective, if one were to impose βi = β, one for sure

would reject this hypothesis in most practical situations. On the other hand, the

interpretation of N different price elasticities is also not easy either. Typically, one

does have a bit more information on the households (family life cycle, size, income,

education), and it might be that these variables have some explanatory value for

the price elasticities. One way to examine this would be to perform N regressions,

to retrieve the β̂i, and next, in a second round, to regress these estimated values on

household-specific features. Obviously, this two-step approach assumes that the β̂i

variables are given instead of estimated, and hence, uncertainty in the second step

is underestimated.

A more elegant solution is to add a second level to (32), that is for example

βi ∼ N(β0 + β1zi, σ
2), (33)

where zi is an observed variable for a household, see Blattberg and George (1991).

Estimation of the model parameters can require simulation-based techniques. An

often used method is termed Hierarchical Bayes (HB), see Allenby and Rossi (1999)

among various others.

An exemplary illustration of this method given in Van Nierop, Fok and Franses

(2002) who consider this model for 2 years of weekly sales on 23 items in the same

product category. The effects of promotions and distribution in xi,t are made a

function of the size of an item and its location on a shelf.

Latent class modeling

As segmentation is often viewed as an important reason to construct models in

marketing, another popular approach is to consider the panel model

yi,t = µi + βi,sxi,t + εi,t, (34)

where βi,s denotes that, say, household-specific price elasticity, can be classified into

J classes, within which the price elasticities obey βi,s = β(Si), where Si is element
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of 1,2,...,J , with probability Pr(Si = j) = pj. In words, βi,s corresponds with

observation i in class j, with j = 1, 2, ..., J . Each household has a probability pj,

with p1 + p2 + ... + pJ = 1, to get assigned to a class j, at least according to the

values of βi,s. Such a model can be extended to allow the probabilities to depend

on household-specific features. This builds on the latent class methodology, recently

summarized in Wedel and Kamakura (1999). As such, the model allows for capturing

unobserved heterogeneity.

This approach as well as the previous one involves the application of simulation

methods to estimate parameters. As simulations are used, the computation of fore-

casts is trivial. They immediately come as a by-product of the estimation results.

Uncertainty around these forecasts can also easily be simulated.

Panels of time series in other areas

These two classes of models have recently found their way to other disciplines, like

macroeconomics. Fok, Franses and van Dijk (2005) introduce a multi-level smooth

transition model for a panel of time series, which can be used to examine the presence

of common non-linear business cycle features across many variables. The model is po-

sitioned in between a fully pooled model, which imposes such common features, and

a fully heterogeneous model, which allows for unrestricted non-linearity. They intro-

duce a second-stage model linking the parameters that determine the timing of the

switches between business cycle regimes to observable explanatory variables, thereby

allowing for different lead-lag relationships across panel members. The model is suc-

cessfully illustrated using quarterly industrial production in 19 US manufacturing

sectors.

Paap, Franses and van Dijk (2005) address the question whether countries on

the sub-Saharan African continent have lower average growth rates in real GDP per

capita than countries in Asia, Latin and Middle America and the Middle East. In

contrast to previous studies, they do not a priori assign countries to clusters based

on geographical location or other characteristics. Instead, they propose a so-called

latent class panel time series model, which allows a data-based classification of coun-

tries into clusters such that within a cluster, countries have the same average growth
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rate. The empirical results suggest that three clusters are sufficient to describe the

different growth paths of the countries involved. 26 African countries can be as-

signed to the low growth cluster, but 8 African countries show growth rates which

are comparable with many countries in Asia, Latin and Middle America and in the

Middle East.

A multi-level Bass model

This section is concluded with a brief discussion of a Bass type model for a panel

of time series. Talukdar et al. (2002) introduce a two-level panel model for a

set of diffusion data, where they correlate individual Bass model parameters with

explanatory variables in the second stage.

Following the Boswijk and Franses (2005) specification, a panel Bass model would

be

Xi,t −Xi,t−1 = β1,i + β2,iNi,t−1 + β3,iN
2
i,t−1 + β4,iXi,t−1 + Xi,t−1εi,t. (35)

As before, the β parameters are functions of the underlying characteristics of the

diffusion process, that is,

β1,i = αipimi, (36)

β2,i = αi(qi − pi) (37)

β3,i = −αi
qi

mi

, (38)

β4,i = −αi. (39)

As the effects of p and q on the diffusion patterns are highly non-linear, it seems more

appropriate to focus on the inflection point, that is, the timing of peak adoptions,

T ∗
i , and the level of the cumulative adoptions at the peak divided by mi, denoted as

fi. The link between pi and qi and the inflection point parameters is given by

pi = (2fi − 1)
log(1− 2fi)

2T ∗
i (1− fi)

(40)

qi = − log(1− 2fi)

2T ∗
i (1− fi)

, (41)

see Franses (2003a).
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Fok and Franses (2005) propose to specify β1,i, . . . , β4,i as a function of the total

number of adoptions (mi), the fraction of cumulative adoptions at the inflection

point (fi), the time of the inflection point (T ∗
i ), and the speed of adjustment (αi) of

Xi,t to the equilibrium path denoted as βk,i = βk(mi, fi, T
∗
i , αi). The adoptions that

these authors study are the citations to articles published in Econometrica and in

the Journal of Econometrics. They relate mi, fi, T
∗
i , and αi to observable features

of the articles. In sum, they consider

Xi,t −Xi,t−1 = β1(mi, fi, T
∗
i , αi) + β2(mi, fi, T

∗
i , αi)Ni,t−1+

β3(mi, fi, T
∗
i , αi)N

2
i,t−1 + β4(mi, fi, T

∗
i , αi)Xi,t−1 + Xi,t−1εi,t, (42)

where εi,t ∼ N(0, σ2
i ) with

log(mi) = Z ′
iθ1 + η1,i, (43)

log(
2fi

1− 2fi

) = Z ′
iθ2 + η2,i, (44)

log(T ∗
i ) = Z ′

iθ3 + η3,i, (45)

αi = Z ′
iθ4 + η4,i, (46)

log σ2
i = Z ′

iθ5 + η5,i, (47)

where the Zi vector contains an intercept and explanatory variables.

This section has reviewed various models that are often applied in marketing,

and some of which seem to slowly diffuse into other economics disciplines.

4 Deriving forecasts

The previous section indicated that various interesting measures (like duration in-

terval) or models (like the attraction model) in marketing research imply that the

variable of interest is a non-linear function of variables and parameters. In many

cases there are no closed-form solutions to these expressions, and hence one has

to resort to simulation-based techniques. In this section the focus will be on the

attraction model and on the Bass model, where the expressions for out-of-sample

forecasts will be given. Additionally, there will be a discussion of how one should

derive forecasts for market shares when forecasts for sales are available.
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4.1 Attraction model forecasts

As discussed earlier, the attraction model ensures logical consistency, that is, market

shares lie between 0 and 1 and they sum to 1. These restrictions imply that (functions

of) model parameters can be estimated from a multivariate reduced-form model with

I − 1 equations. The dependent variable in each of the I−1 equations is the natural

logarithm of a relative market share, that is, log mi,t ≡ log
Mi,t

MI,t
, for i = 1, 2, . . . , I−1,

where the base brand I can be chosen arbitrarily, as discussed before.

In practice, one is usually interested in predicting Mi,t and not in forecasting the

logs of the relative market shares. Again, it is important to recognize that, first of

all, exp(E[log mi,t]) is not equal to E[mi,t] and that, secondly, E[
Mi,t

MI,t
] is not equal to

E[Mi,t]

E[MI,t]
. Therefore, unbiased market share forecasts cannot be directly obtained by

these data transformations.

To forecast the market share of brand i at time t, one needs to consider the

relative market shares

mj,t =
Mj,t

MI,t

for j = 1, 2 . . . , I, (48)

as m1,t, . . . , mI−1,t form the dependent variables (after log transformation) in the

reduced-form model. As MI,t = 1−∑I−1
j=1 Mj,t, it holds that

MI,t =
1

1 +
∑I−1

j=1 mj,t

(49)

Mi,t = MI,tmi,t =
mi,t

1 +
∑I−1

j=1 mj,t

(50)

Note that mI,t =
MI,t

MI,t
= 1 and hence (50) can be summarized as

Mi,t =
mi,tPI

j=1 mj,t
, (51)

for i = 1, 2, . . . , I.

Fok, Franses and Paap (2002) propose to simulate the one-step ahead forecasts

of the market shares as follows. First draw η
(l)
t from N(0, Σ̃), then compute

m
(l)
i,t = exp(µ̃i + η

(l)
i,t )

I∏
j=1

(
K∏

k=1

x
β̃k,j,i

k,j,t )

)
, (52)
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with m
(l)
I,t = 1 and finally compute

M
(l)
i,t =

m
(l)
i,t∑I

j=1 m
(l)
j,t

for i = 1, . . . , I, (53)

where l = 1, . . . , L denotes the simulation iteration. Each vector (M
(l)
1,t , . . . , M

(l)
I,t)

′

generated this way is a draw from the joint distribution of the market shares at time

t. Using the average over a sufficiently large number of draws one can calculate the

expected value of the market shares. This can be modified to allow for parameter

uncertainty, see Fok, Franses and Paap (2002). Multi-step ahead forecasts can be

generated along similar lines.

4.2 Forecasting market shares from models for sales

The previous results assume that one is interested in forecasting market shares based

on models for market shares. In practice, it might sometimes be more easy to make

models for sales. One might then me tempted to divide the own sales forecast by

a forecast for category sales, but this procedure leads to biased forecasts for similar

reasons as before. A solution is given in Fok and Franses (2001) and will be discussed

next.

An often used model (SCAN*PRO) for sales is

log Si,t = µi +
I∑

j=1

K∑

k=1

βk,j,ixk,j,t +
I∑

j=1

P∑
p=1

αp,j,i log Sj,t−p + εi,t, (54)

with i = 1, . . . , I, where εt ≡ (ε1,t, . . . , εI,t)
′ ∼ N(0, Σ) and where xk,j,t denotes the

k-th explanatory variable (for example, price or advertising) for brand j at time t

and where βk,j,i is the corresponding coefficient for brand i, see Wittink et al. (1988).

The market share of brand i at time t can of course be defined as

Mi,t =
Si,t∑I
j=1 Sj,t

. (55)

Forecasts of market shares at time t + 1 based on information on all explanatory

variables up to time t + 1, denoted by Πt+1, and information on realizations of the

sales up to period t, denoted by St, should be equal to the expectation of the market
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shares given the total amount of information available, denoted by E[Mi,t+1|Πt+1,St],

that is,

E[Mi,t+1|Πt+1,St] = E

[
Si,t+1∑I
j=1 Sj,t+1

∣∣∣∣∣ Πt+1,St

]
. (56)

Due to non-linearity it is therefore not possible to obtain market shares forecasts

directly from sales forecasts. A further complication is that it is also not trivial to

obtain a forecast of Si,t+1, as the sales model concerns log-transformed variables, and

it is well known that exp(E[log X]) 6= E[X]. See also Arino and Franses (2000) and

Wierenga and Horvath (2005) for the relevance of this notion when examining mul-

tivariate time series models. In particular, Wierenga and Horvath (2005) show how

to derive impulse response functions from VAR models for marketing variables, and

they demonstrate the empirical relevance of a correct treatment of log-transformed

data.

Fok and Franses (2001) provide a simulation-based solution. Naturally, unbiased

forecasts of the I market shares should be based on the expected value of the market

shares, that is,

E[Mi,t+1|Πt+1,St] =∫ +∞

0

. . .

∫ +∞

0

si,t+1∑I
j=1 sj,t+1

f(s1,t+1, . . . , sI,t+1|Πt+1,St)ds1,t+1, . . . , dsI,t+1, (57)

where f(s1,t+1, . . . , sI,t+1|Πt+1,St) is a probability density function of the sales condi-

tional on the available information, and si,t+1 denotes a realization of the stochastic

process Si,t+1. The model defined in the distribution of St+1, given Πt+1 and St, is

log-normal, but other functional forms can be considered too. Hence,

(exp(S1,t+1), . . . , exp(SI,t+1))
′ ∼ N(Zt+1, Σ), (58)

where Zt = (Z1,t, . . . , ZI,t)
′ is the deterministic part of the model, that is,

Zi,t = µi +
I∑

j=1

K∑

k=1

βk,j,ixk,j,t +
I∑

j=1

P∑
p=1

αp,j,i log Sj,t−p . (59)

The I-dimensional integral in (57) is difficult to evaluate analytically. Fok and

Franses (2001) therefore outline how to compute the expectations using simulation
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techniques. In short, using the estimated probability distribution of the sales, re-

alizations of the sales are simulated. Based on each set of these realizations of all

brands, the market shares can be calculated. The average over a large number of

replications gives the expected value in (57).

Forecasting h > 1 steps ahead is slightly more difficult as the values of the lagged

sales are no longer known. However, for these lagged sales appropriate simulated val-

ues can be used. For example, 2-step ahead forecasts can be calculated by averaging

over simulated values M
(l)
i,t+2, based on draws ε

(l)
t+2 from N(0, Σ̂) and on draws S

(l)
i,t+1,

which are already used for the 1-step ahead forecasts. Notice that the 2-step ahead

forecasts do not need more simulation iterations than the one-step ahead forecasts.

An important by-product of the simulation method is that it is now also easy to

calculate confidence bounds for the forecasted market shares. Actually, the entire

distribution of the market shares can be estimated based on the simulated values.

For example, the lower bound of a 95% confidence interval is that value for which

it holds that 2.5% of the simulated market shares are smaller. Finally, the lower

bound and the upper bound always lie within the [0,1] interval, and this should be

the case for market shares indeed.

4.3 Bass model forecasts

The Bass model is regularly used for out-of-sample forecasting. One way is to have

several years of data on own sales, estimate the model parameters for that particular

series, and extrapolate the series into the future. As Van den Bulte and Lilien (1997)

demonstrate, this approach is most useful in case the inflection point is within the

sample. If not, then one might want to consider imposing the parameters obtained

for other markets or situations, and then extrapolate.

The way the forecasts are generated depends on the functional form chosen, that

is, how one includes the error term in the model. The Srinivasan and Mason (1986)

model seems to imply the most easy to construct forecasts. Suppose one aims to

predict Xn+h, where n is the forecast origin and h is the horizon. Then, given the
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assumption on the error term, the forecast is

X̂n+h = m̂[F (n + h; θ̂)− F (n− 1 + h; θ̂)]. (60)

When the error term is AR(1), straightforward modifications of this formula should

be made. If the error term has an expected value equal to zero, then these forecasts

are unbiased, for any h.

This is in contrast with the Bass regression model, and also its Boswijk and

Franses modification, as these models are intrisically non-linear. For one-step ahead,

the true observation at n + 1 in the Bass scheme is

Xn+1 = α1 + α2Nn + α3N
2
n + εn+1. (61)

The forecast from origin n equals

X̂n+1 = α̂1 + α̂2Nn + α̂3N
2
n (62)

and the squared forecast error is σ2. This forecast is unbiased.

For two steps ahead matters become different. Due to the term N2
n, it can be

shown that the expected forecast error is

E(X̂n+2 −Xn+2) = −α3σ
2. (63)

It is straightforward to derive that if h is 3 or more, this bias grows exponentially

with h. Naturally, the size of the bias depends on α3 and σ2, which both can be

small. As the sign of α3 is always negative, the forecast is upward biased.

Franses (2003b) shows that to obtain unbiased forecasts for the Bass-type regres-

sion models for h = 2, 3..., one needs to resort to simulation techniques. Consider

again the Bass regression, now written as

Xt = g(Zt−1; π) + εt, (64)

where Zt−1 contains 1, Nt−1 and N2
t−1, and π includes p, q and m. A simulation-based

one-step ahead forecast is now given by

Xn+1,i = g(Zn; π̂) + ei, (65)
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where ei is a random draw from the N(0, σ̂2) distribution. Based on I such draws,

an unbiased forecast can be constructed as

X̂n+1 =
1

I

I∑
i=1

Xn+1,i. (66)

Again, a convenient by-product of this approach is the full distribution of the fore-

casts. A two-step simulation-based forecast can be based on the average value of

Xn+2,i = g(Zn, Xn+1,i; π̂) + ei, (67)

again for I draws, and so on.

4.4 Forecasting duration data

Finally, there are various studies in marketing that rely on duration models to de-

scribe interpurchase times. These data are relevant to managers as one can try to

speed up the purchase process by implementing marketing efforts, but also one may

forecast the amount of sales to be expected in the next period, due to promotion

planning. Interestingly, it is known that many marketing efforts have a dynamic

effect that stretches beyond the one-step ahead horizon. For example, it has been

widely established that there is a so-called post-promotional dip, meaning that sales

tend to collapse the week after a promotion was held, but might regain their original

level or preferably a higher level after that week. Hence, managers might want to

look beyond the one-step ahead horizon.

In sum, one seems to be more interested in the number of purchases in the

next week or next month, than that there is an interest in the time till the next

purchase. The modelling approach for the analysis of recurrent events in market-

ing, like the purchase timing of frequently purchased consumer goods, has, however,

mainly aimed at explaining the interpurchase times. The main trend is to apply a

Cox (mixed) Proportional Hazard model for the interpurchase times, see Seethara-

man and Chintagunta (2003) for a recent overview. In this approach after each

purchase the duration is reset to zero. This transformation removes much of the

typical behavior of the repeat purchase process in a similar way as first-differencing
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in times series. Therefore, it induces important limitations to the use of time-varying

covariates (and also seasonal effects) and duration dependence in the models.

An alternative is to consider the whole path of the repeat purchase history on the

time scale starting at the beginning of the observation window. Bijwaard, Franses

and Paap (2003) put forward a statistical model for interpurchase times that takes

into account all the current and past information available for all purchases as time

continues to run along the calendar timescale. It is based on the Andersen and

Gill (1982) approach. It delivers forecasts for the number of purchases in the next

period and for the timing of the first and consecutive purchases. Purchase occasions

are modelled in terms of a counting process, which counts the recurrent purchases

for each household as they evolve over time. These authors show that formulating

the problem as a counting process has many advantages, both theoretically and

empirically.

5 Conclusion

This chapter has reviewed various aspects of econometric modeling and forecasting

in marketing. In many marketing research studies there are quite a number of

observations and typically the data are well measured. Usually there is an interest

in modeling and forecasting performance measures such as sales, shares, retention,

loyalty, brand choice and the time between events, preferably when these depend

partially on marketing-mix instruments like promotions, advertising, and price.

Various marketing models are non-linear models. This is due to specific struc-

tures imposed on the models to make them more suitable for their particular purpose,

like the Bass model for diffusion and the attraction model for market shares. Other

models that are frequently encountered in marketing, and less so in other areas (at

least as of yet) concern panels of time series. Interestingly, it seems that new econo-

metric methodology (like the Hierarchical Bayes methods) has been developed and

applied in marketing first, and will perhaps be more often used in the future in other

areas too.

There are two areas in which more research seems needed. The first is that
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it is not yet clear how out-of-sample forecasts should be evaluated. Of course,

mean squared forecast error type methods are regularly used, but it is doubtful

whether these criteria meet the purposes of an econometric model. In fact, if the

model concerns the retention of customers, it might be worse to underestimate the

probability of leaving than to overestimate that probability. Hence the monetary

value, possibly discounted for future events, might be more important.

Second, the way forecasts are implemented into actual marketing strategies is

not trivial, see Franses (2005a,b). In marketing one deals with customers and with

competitors, and each can form expectations about what you will do. The successful-

ness of a marketing strategy depends on the accuracy of stake-holders’ expectations

and their subsequent behavior. For example, to predict whether a newly launched

product will be successful might need more complicated econometric models than

we have available today.
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