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Abstract - -  Zusammenfassung 

The Asymptotic Behaviour of a Distributive Sorting Method. In the distributive sorting method of 
Dobosiewicz, both the interval between the minimum and the median of the numbers to be sorted and 
the interval between the median and the maximum are partitioned into n/2 subintervals of equal length; 
the procedure is then applied recursively on each subinterval containing more than three numbers. We 
refine and extend previous analyses of this method, e.g., by establishing its asymptotic linear behaviour 
under various probabilistic assumptions. 

AMS Subject Classifications: 68 E 05. 
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Zum asymptotischen Verhalten eines distributiven Suehverfahrens. Bei dem distributiven Sortierverfahren 
von Dobosiewicz wird sowohl das Intervall zwischen Minimum und Median als auch das Intervall 
zwischen Median und Maximum in n/2 Teilintervalle gleicher L/~nge zertegt; die Prozedur wird dann 
rekursiv in jedem, mindestens vier Zahlen enthaltenden Teilintervall angesetzt. In dieser Arbeit werden 
einige Aspekte des Verfahrens verfeinert und erweitert. Insbesondere wird das asymptotisch lineare 
Verhalten unter verschiedene Wahrscheinlichkeits-Aimahmen untersucht. 

I. Introduction 

The distributive sorting method, proposed by W. Dobosiewicz in [51, has drawn 
considerable attention. The main reason for this is its attractive combination of 
worst case and average case properties. As shown by Dobosiewicz, the method 
combines an O (n log n) worst case running time (number of comparisons) on one 
hand, with an O (n) expected running time for the case that the numbers to be sorted 
are drawn from a uniform distribution on the other hand. Below, we refine and 
extend these results. 

In Section 2, we briefly consider the worst case analysis of the method, primarily to 
correct a deficiency in Dobosiewicz's proof. 

In Section 3, we briefly report on some computational experiments that led us to 
believe that linear expected running times are the rule rather than the exception for 
this sorting method and should be establishable for many distributions other than 
the uniform one. 
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In Section 4, this intuition is confirmed. We show that linear expected running time 
can be demonstrated for any distribution satisfying two conditions: one to avoid 
excessively peaked distribution functions and one to avoid very thick tails. These 
conditions are complementary in the sense that if a more stringent version of one is 
satisfied, then a less stringent version of the other suffices. 

In Section 5, we return to the uniform distribution. For a Slightly different version of 
the algorithm, introduced only to simplify the notation, we show that the running 
time is not only asymptotically linear in expectation but also in probability. We 
conjecture that the result even holds with probability one i.e. almost everywhere, 
and establish a theorem that comes very close to proving this conjecture. 

Section 6 contains some open problems and:concluding remarks. 

2. Worst Case Analysis 

Let X be a set containing n numbers xl, ..., x,. The following distributive method can 
be used to sort X. 

1. Find the minimum x (t), the maximum x ("~ and the median (the [n/21-th smallest 
number, where [P] is the integer rounddown of p) x (E"/2~) of X. 

2. Partition the interval Ix (1), x(t"/21) 1 into In/2] subintervals I1 . . . .  , !L,i21 of equal 
length and the interval Ix (L"/21~, x(") 1 into @/2)  ( (p )  is the integer~roundup of p) 
subintervals IE,/z I + 1,..., I,  of equal length. 

3. Distribute the numbers over the subintervals to form 9roups G1, ..., G,. 

4. Repeat the procedure for every group Gi whose cardinality 9i is larger than 3. 

If we denote the running time (i.e., the number of comparisons) of the above 
procedure by T(X),  the worst case running time is defined by 

w(n) z2 max { T(X)} (1) 

The analysis of W(n) is based on the intuitive notion that the worst that can happen 
is for the n/2 elements smaller than the median as well as for the n/2 elements larger 
than the median to fall in a single group. Since the first three steps can be carried out 
in linear time [81, i.e. using at most cn comparisons, for some constant c, this leads to 
a recurrence relation of the form 

W(n) <_ en + 2 W(n/2) (2) 

which provides intuitive justification of the first theorem. 

Theorem 1 : 
W(n) = 0 (n log n). (3) 

Proof: In providing a rigorous proof of (3) [11, Dobosiewicz uses the inequality 

W(2 m) > 2 W(m) (4) 

which is not obviously true a priori. We start our analysis by correcting this 
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deficiency. To do so, we consider the worst case running time of the above procedure 
under the additional assumption that the first three steps require exactly cn 
comparisons, and show that this running time T(X) has a worst case behaviour 
defined by the equation 

IYV (n) = cn + 2 ffZ(n/2), 

which can be solved to yield 

with 
g/'(n) = C n log n 

(5) 

(6) 

(7) C = c/log 2. 

Since obviously W(n) <_ W(n), (3) is an immediate consequence. 

We prove (5) by induction on n. Suppose that (5) and hence (6) have been established 
for all m<_n/2, and consider a problem instance for which J X t = n :  

T(X) = cn + ~ T(Gi) < 

< cn + ~ W(g3 = 
[=1 

=cn+ ~ Cgiloggi= 
i=1 

i/[n12] 

=cn+C~i~=, gil~ ' 
<_ cn + 2 C n/2 logn/2= 

9i log gi) < 

= cn + 2 g/(n/2). (8) 

Since the inequality (8) is satisfied for each X, it is easily verified that it is satisfied as 
an equality for 

g/(n) = max { ~(X)}, 
Ixl =n 

completing the inductive step. [] 

3. Computational Experiments 

In [5], Dobosiewicz also considers the average case running time of the distributive 
sorting method, and proves that the procedure runs in O (n) (linear) expected time if 
the numbers are drawn from a uniform distribution on [0, 1]. This result is intuitively 
not surprising, and indeed one suspects that, for many non-uniform distributions, 
the recursive nature of the method ensures that after only a few steps the numbers 
under consideration are evenly spread, so that the above result applies again. 

To test this intuition, we programmed the method in ALGOL and ran two sets of 
experiments, in which the numbers were drawn from a uniform and an exponential 

19" 
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distribution respectively. The results are depicted in Figs. 1 and 2, and suggest that 
linear expected running time should occur for many distributions. The analysis in 
the next section confirms this impression. 
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4. Average Case Analysis 

Suppose that xl, ..., x, are drawn according to a density function f that is positive on 
every finite interval and continuous on [0, oo] and that satisfies the two following 
conditions: 

(i) there are positive constants 6 and D such that for all I h [ _< 

lira sup f ( x  + h) <_ D" (9) 
:,-'~ f (x )  
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(ii) there is a positive constant K such that 

lira sup x log x (1 - F (x)) < K (10) 
x--+ o0 

where F is the distribution function corresponding to f .  

Condition (i) is a peakedness-condition: it prevents the density function from being 
excessively steep. 

Condition (ii) is a tail condition" it prevents the tail of the distribution from being too 
thick. 

For an average case analysis under these conditions, we define 

A ( n )  ~ E T ( { _ x 1 ,  . . .  , x n }  ) (11) 

and prove the following theorem. 

Theorem 2: If f satisfies (i) and (ii), then 
A (n) 

lim sup < oo. (12) 
n-~ ~ 

Proof: Our proof starts by separate treatment of the case that the maximum is very 
large. We define the event 

L , ~  {_x(") > ~ n }  (13) 

and write 
A (n) = E (T({_~I, ..., _~,}) I L,)  Pr {L,} + 

(14) 
+ E (T({_xl, ..., x,}) ] L~) Pr {L~,}. 

In view of the worst case analysis in Section 2, 

E (T({_xl, ..., x,}) [ L,) �9 Pr {L,} < C n log n Pr {L,}. (15) 

Condition (ii) implies that 
K 

1 - F (x) < x l o g ~ "  (16) 

Hence, for n sufficiently large, 

" 6 
Pr {x_(")>~ n} < ~ Pr lx~>~ n}=O(1/logn). (17) 

- - i = 1  k -  - -  " " 

By substituting into (15), it follows immediately that 

E(:r ({_~ . . . .  ,_x.})lL.).  e r  {L.} = O (n). (18) 

We analyze the second expectation in (14) by conditioning on values x (~), x {L"/21) and 
x (") for the minimum, median and maximum respectively, with 

< X ( 1 ) <  ( [n /2 ] )<  (n) • .. (19) 0 _  _X x < - - n .  
4 
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We define 
P,  ix" (1), x([n/2])) ~-~ Pr {_x (a) < x (1), _x (~"/21) < x (t"/21)} (20) 

P', (x (~"/21), x") - & Pr {x (w21)_ _< x (t"/21), X (")_ _< x (")} (21) 

and observe from the discription of the procedure that  

E(T({_xl, ...,x_,})l U , ) < c n  + 

//[n/2] ) 
-~ 5SE~i~l__ V ( G i ) ] x ( l ' = x  {1), x([n/2])=x([n/2]) d P n ( x  (1), x([n/2]))"~ (22) 

+ ~  E T(_Gi) I _x (wal) -- x (w2~), _x (") -- x (") dP'. (x (w2~), x(")). 
i=[ ]+1 

The first integral in (22) can be rewritten as follows: 

[n/2] _ _ t E \i~= '- T(G_i)[x (1) = x (1), x ([n/2])= x ([n/21) = 

[n/2] 

= Z Z E(T(G_,)Ig_,=O,)�9 (23) 
i=1 gl +... + g[n/2]=[n/2] 

�9 Pr {gl = gl, .-., _gt,/21 = 9[,/21} 

where (_gl,...,_gw2j) satisfy a multinomial distribution with cell probabilities 

f ( x ) d x  

P,- ', (i= 1, [,/2]). (24) 
- -  x ( [ , / / 2 l  ) �9 . .  

f f ( x ) d x  
x(1) 

It follows that  (23) is equal to 

[n/2l in/2] 
Z Z E(T(G-,)Ig_,=gi)" P r { 9 , = g i }  (25) 

i=1 gi=O 

where _gi satisfies a binomial distribution with parameters  In/2] and Pi 
(i = 1, ..., In/2]). We now complete our analysis by proving that for all i there exists a 
constant M (independent of i, x (1) and x (["/21) such that  

E (T(G_~) I e_i = g,) <- M g , .  (26) 

If we substitute this result in (25), we immediately obtain that  the first integral in (22) 
is 0 ([-n/2]). In a similar way, the second one is 0 (<n/2)) and together with (18), this 
concludes the proof. 

To prove (26) for all i, we map the interval I i = [-Yi, Yi + 1"l onto  [0, 1] by means of a 
transformation,  which consists of a translation followed by a multiplication�9 Since 
the sorting method is invariant  under such a t ransformation,  we obtain immediately 
that  

E (T(G,) I g_i = g,) = E T({_x1, ... , _Xo,)) (27) 

where _xj are r andom variables on [0, 1] with distribution function 
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F (~ x + yi) - F (y,) 
F,(x)- (28) 

F (yi + I) - E (Yi) 
where 

~ (x (["/21) - x(1))/[n/2] (29) 

so that 
y~ = x (1) + ( i -  1) ~ (i = 1,..., En/2]). (30) 

The density function corresponding to (28) is given by 

? f ( T x + Y i )  
f~ (x) - F (y, +1) - F (Y3" (31) 

Since f is positive and continuous, the mean value theorem ([7, p. 23]) implies that 
there exists 0 e [0, 1] such t:hat the denominator of (31) can be written as 7f(7 0 + y~). 
By taking z = y x + y z ,  this implies that, for some 0' depending on x and i, with 
10'1___1, 

f~ (X) -  f ( z )  . (32) 
f (z + 70') 

Now, condition (i) implies that for all i and all ~0 ), x (["/21) satisfying (19), we have that 

f~ (x) < M. (33) 

However, this implies that the:conditions for application of Theorem 1 in [4] are 
satisfied. This theorem establishes~that (33) implies expected linear running time and 
hence we may conclude that (33) implies the validity of (26) for every i. []  

Conditions (i) and (ii) are in a sense complementary: one can be relaxed at~the 
expense of the other: Moreprecisely, Theorem :Zcan be establishedunder the two 
conditions that' forsome, k 

(I)~ there are positive ~constants~ 6~and D such that for I xk- ~'h [ < 6 

f ( x  + h) 
lim sup - < D; (3~-), 

. . . .  f (x) - 

(H)~ r.her~'is~ ~ trosifive constant K such that 

limsupx.ktog x ( L -  F (x)) < K. (35) 

The proof f011ows~the same line~:as above:and is left to the reader.. 

~,~ Distribution 

In this section, we retum-~ to the uniform distribution. As mentioned above, 
Dobosiewicz provedqinear:expectedTunning time for this casein (5]. It is interesting 
to observe that his analysis hardly exploits the recursive: nature of the method; 
indeed, a simple O (Oi!og gl) upper bound on the effort required to sort the groups G~ 
formed initially is all thatis required for the proof. This feature has been ,made use of 
in several nonrecursive variations on distributive sorting (Eli, V9]). 
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Below, we present an analysis that  is essentially recursive and that  allows us to 
extend Dobosiewicz's initial result so as to prove convergence to linear running time 
in probability. To facilitate the exposition we prove this result for a simplified version 
of the method,  in which the median is not used; rather, in Step2,  the interval 
between x (t) and x (") is divided into n equal length subintervals 11, . . . , I , ,  again 
corresponding to groups G1, . . . ,G, .  All results, however,  apply to the original 
version as well. 

The  first steps of our analysis are very similar to those in the previous section. We 
observe that  in the case of a uniform distribution, the distribution of the order  
statistics _x (2), ..., x ("- 1) given x ~  X (1), X " ( " ) =  X (") is equal to the distribution of n -  2 
order statistics drawn from a uniform distribution on [x (1), x(")]. Hence, for all x (1), 
x (") with 0 _< x (1) < x(")_< 1, (_91, ...,_9,) satisfy a multinomial distribution of size n - 2  
with cell probabilities all equal to 1In. If, as in Section 2, we analyze T(n) rather  than 
T(n), we find (cf. (25)) that  

(n) ~ E T({_x 1 . . . . .  _x,)} = cn + 
, - 2  (36) 

+ ~ E ~ E(T(G_,)I_9,=g,). Pr(_gi=g,)dP'~'(x~ 
i = l  gi=O 

with 
P" (x (1), x (")) = Pr {x (1) < x (1) , x (n) • x(n)}.  (37) 

Again, we map each interval I~ onto [0, 1] to obtain that  

e (T(G,) I _g, = 9,) = e T({_~I . . . .  , -~o,}) (38) 

where in this case x j (j = 1, ..., g )  are independent  uniformly distributed on [0, 1]. 
Since (38) does not depend on i, x m and x ("), we find from (36) that  A (n) satisfies the 
following recurrence: 

(n) = cn + n Eft (u,_ 2) (39) 

where u,_ z satisfies a binomial distribution with parameters  n - 2  and 1/n. 

In a similar fashion, we now want to establish a recurrence for 

~'(n) ~= E T 2 ({_xl,..., x,}). (40) 
We find that 

fZ(n)=c2n2 + Zcn ~ ~ ET(Gi) dP", (xm, x("))+ 
i = 1  

+ ~I E T(G_i) dP2 (x 0~, x (")1 
i 

=c2n2 + 2cn ~ fl E$(G-~ldP"(x(X),x(")) + 
i = l  

-I- ~, ~ I~ E(T(Gi )  T(GJ)) dv:(x(1),X(n))-}- 
i = 1  j = l  

j~=i 

n 

+ Y, S~ E i "2 (_o,) dP2 (x% x("~). 
, = i  

(41) 
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converges to 

and we find that 

Let us consider the term 
~ E (T(G_i) i'(G_ j)) dP': (x (1), x(")). (42) 

Again we condition on possible values of gx, ..., g, to find that (42) is equal to 
n - 2  

IS Z 
~176 (43) 

�9 P r  {g_i = g~, 9 j  = g j} dP" ( x  (1), x (")) 

where, for all i, j and x m, x (") such that 0 < x m < x ( " ) < l ,  (gl,_g~) now satisfies a 
trinomial distribution with parameters n - 2, p~ = l/n, pj = 1In. Because of the mutual 
independence between Ii and It, (42) is therefore equal to 

n - 2  

A (g~) 4 (g j) Pr {9_i = g~, 9j = g j} (44) 
gi+gj=O 

and by summing over all i and j  (j :~ i) we obtain that the third term in (41) is equal to 

n (n - 1) E (A (v,_ z) 4 (_w,_ 2)), (45) 

where (v,_2, w,_2) is trinomially distributed with parameters n - 2 ,  1/n and 1In. 

The other terms in (41) can be dealt with analogously, and we obtain 

P'(n) = c 2 n 2 + 2 en 2 E (7t (v,_ z)) + n (n - 1) E (A (v,_ 2) 4 (w,_ z)) 
(46) 

+ nEP'(_v,_2). 

We shall now analyze the asymptotic form of recurrences (39) and (46). 

We start with (39). It is well known ([3], [-6]) that u,_ 2 converges in distribution to a 
random variable _u that is Poisson distributed with parameter 1. Lemma A in the 
Appendix extablishes that E4 ( ~ n - - 2 )  converges to EA (_u) as well, and we have 
arrived at the following refinement of Dobosiewicz's original result. 

Theorem 3: I f  the numbers x j are drawn from a uniform distribution on [0, 1], then 

71 (n) 
lira = c + EA (u). (47) 

n-~ oo n 

Recurrence (46) can be analyzed in a similar manner. It is easy to verify that 
(v,_ 2, w,_ 2) converges in distribution to (_v, _w) with 

1 1 
Pr{v -=v 'w-=w}=e-2  v! w! (48) 

(Note that v and w are independent.) Lemm~ A from the Appendix can again be used 
to prove that 

E (A (_~,_ ~)4 (_w,_ z)) 

E (A (v) 4 (_w)) = E4  (v). E4 (_w) (49) 

lira ~ = c 2 + 2 c E4 (_u) + (EA (_u)) z . 
n-~ ~x3 

(50) 
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We conclude from (47) and (50) that  

lim v a r -  = lira ~ 5 - -  = 0 .  
n ~ c o  n n - ~ o o  

Through  Chebyshev's  inequality, we arrive a~ the desired result. 

(51) 

Theorem 4 :. ~f the number~ x_ i are drawn from a uniform distribution on [0, 1], then 

T(ixl,..,,,,_x,)) 
+c + E A  (u_) in probability. (52) 

n, 

We now would like to p rove  that  rSe conYergence result established in  T h e o r e m 4  
does not only hold in probabili ty,  but with probabil i ty 1 or almost everywhere (a: e.). 
We have not  quite been able to prove this result, but  have established the following 
slightly weaker version. 

Theorem ~: 

then 

I f  {a.}.~ N is a~ sequence o f  natural numbers such that 

o o  

1/a. < oo , 
n = l  

P({x_l,..., x_,,)) 
an 

c + EA (u), a.e: (53) 

To prove this theorem, we establish the speed of  eo~vergenee of (47)i and ~5"1): 

Lemma~ r :, 

(n) (_U) <oO.  lira sup n -- c -- E-d (54) 
n - >  (x) ]'~ 

Proof: In Lemma B of the Appendix, we establish the speed a~t which EA~(y,) 
converges to EA (u): 

lim sup n l E A  ( u . ) -  EA:(,,_u),I < c o .  ~5'5) 
n - ~  oo 

T h e  lemma is an immediate  consequence of thiS.: result.. [ ]  

Lemma 2: 

lim sup n vat- / . . . .  / �9 (56) 
,,~oo \ n ] 

Proof: The proof  is an immediate  consequence of Lemma  B~in the Appendix and its 
generalization Lemma C.. [ ]  

L e m m a  2 and the Borel-Cantell i  l emma 17211 imply that, if - -  < o% 
. = l  a .  

T({-Xr '" '"-xJ) i  ET({-Xl ' '"-x""}) ,0 (a.e). (57) 

an: an 
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L e m m a  1 implies that  

E T ( { _ x  1 . . . . .  ,_Xan}) 
an 

and hence 
/~({_xl, ...,_x,.)) 

an 

complet ing the proof  of  Theo rem 5. 

. c  + E ~  (_u) (58) 

*c + E.4 (_u) (a. e.), (5:9), 

We note that  all tha t  would be required to convert  Theorem 5 into the strongest  
possible result 

T~_x~, ..., x,}) 
~c + EA (_u) (a.e.) (60) 

n 

is the truth of the followi.ng conjecture:  

(C) there is a constant  c~ E (0, I) and: a positive constant  M such t ~ t  

T({x_a, ..., _x,}) < ~({_xa . . . .  , xn,_x,+a}) + M n  ~ (a.e.). (61) 

To  see why (C) implies (60), we take an = n 1 + '  with 0 < ~ < 1 - ~ and  choose k (n) sttc~ 
that  

i , e~  

so that  

Hence,  f rom (C) 

ak(n) <_ n <aktn)  + I (.62) 

k (n) = [n 1/~1 + ~)3 ('6'3) 

n - ak(.) = O (n ~) (64) 

ak(n) +1 - -  n = o (he). (65) ! 

/'({_xl . . . . .  _xok,.,))-o(n ~+~) 7"({_xl . . . .  ,_Xn}) < /- 

ak (n) + 1 rt 
(66) 

T({_X 1 . . . . .  X-ak(n)~ +~}) -  o(n  "+~) 
<__ 

ak(n~, 

and because ak~ n + 1)~akin)~ 1, (66) implies (68),,. 

Condi t ion  (C) seems to be a very mild one:: it says that  T({_xl,...,_x,}) cannot  
decrease too fast as a function of n. We have been unable  to  convert  ot~r intuitive 
belief that  this must  be the case into a r igorous proof.  

We conclude this section by observing that  the case ~n ~l~ch, xr ,  ...... ,.x n a, r e  sampled 
from an arb i t ra ry  distr ibution on [0, 1] with po, sitive arid co,ntinuous density 
functio~n can be analyzed much  along the same fines.. I~, p~x~cular,  we obta in  a 
formula  for the asymptot ic  behaviour  of s] (n)/n tha t  is a d~eet  generalization of (47). 
We omit  the laborious proofs.  
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6. Concluding Remarks 

The analysis of the preceding sections leaves two interesting questions unanswered. 

The first one is whether conjecture (C) in the previous section can be proved. We 
believe that this should be possible; it would establish the linear running time of the 
distributive sorting method for the uniform case in the strongest possible way. 

The second one is even more interesting. In spite of persistent efforts, we have been 
unable to construct a distribution for which the sorting method yields a superlinear 
expected running time. We know that such a distribution would have to violate the 
conditions (I) and (II) of Section4, and indeed one would guess that such a 
distribution would be very peaked or would have a very thick tail, to achieve the 
worst possible configuration at the deepest possible level of the recursion. However, 
we have been unable to construct such a distribution; the ones that we considered 
moreover had the property that the numerical precision required to differentiate 
between the numbers drawn would grow very fast with n. If any finite precision is 
assumed, then linear expected running time can indeed be established without 
conditions (I) and (II). 

We continue to feel, none the less, that even stronger results can be proved about this 
remarkable sorting method. 
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Appendix 

In this appendix we provide a proof of some results, which are partly known from the 
literature. 

The first lemma is a fairly general result on convergence of moments. The second and 
third lemma strengthen those results for some special cases. 

Lemma A: 

Suppose {F~},~ N is a sequence of distributions on ~k and that F, converoes in 
distribution to F. Let h: Nk~N and p: Nk___>N be continuous with 

I h (x) 
lim IP(X) l=~  and lim =0 .  

Ixl-,~ Ixl-,~ p(x) 
Then 

implies that 

lim sup ~ Ip(x)ldF,(x)<oo 
n ~  00 ~k 

lim ~ h (x) dF, (x) = ~ h (x) dF (x). (67) 
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Proof: By assumption 

Define 

Since 

MZXlim sup ~ Ip(x)ldF.(x)<oo. 

ApZX {x~ ff~k []xgl~p(i=l, ...,k)}. 

h(x) ~0 
p(x) 

there exists a positive constant M 1 such that if x s A~u,, then 

h(x) < ~ . 
p (x) - M 

This implies that 

[h(x)ldF(x)<_lim inf ~ [h(x)ldF.(x)<_ 
~k n ~ co ~k 

< C + - - l i m s u p  f [p(x)ldF,,(x)<oe. 

In view of (70) we can find a positive constant M z such that 

[ h (x)[ dF (x) < e 
A~t2 

Hence with M 3 ~ max (M1, M2), 

(68) 

(69) 

(70) 

(71) 

(73) b(k;n,p)~(~)pk(l _p),-k, 

the trinomial distribution by 

lira sup [ ~ h (x) dF. (x)-  ~ h (x) dF (x)[ _< 

< l imsup  [ ~ h(x)dF. (x ) -~  h(x)dF(x)[+ 
.-~oo AM, A m (72) 

+l imsup  ~ [h(x)ldF,(x)+ 
t1-7 o0 A~/3 

+ ~ Ih(x)ldF(x). 
.4~t  3 

Since F, converges in distribution to F and h is continuous we obtain that the first 
term of (72) tends to zero. 

(For a proof of this result in the case that k =  1, see [3, p. 163].) By (68), (69) and (71) 
the second and third term of (72) are negligible and so we obtain the desired result. 

[] 

Before proving the next two lemmas, we introduce some notation. 

The binomial distribution will be denoted by 



300 W. B, van Dam, J. B. G. Frenk, and A. H. G. Rinnooy Kan 

b(k'l;n'pl'P2) ~ n! = p] pl 2 (1 - p ~  - p 2 )  " - k - l ,  (74) 
k ! l ! (n -k - l ) !  

the Poisson distribution by 
~k 

p(k;2)~e - ~ -  (75) 
k! 

and the two-dimensional Poisson distribution by 

p(k,l; )q , ) .2 )~e  - ~  " q e  - ' h  - - .  (76) 
kt I! 

Lemma B: 

Suppose that {_U,},EN is a sequence of random variables with 

Then 

(a) u_, converges in distribution to u_ with 

Pr  {_u = k} -- p (k; 1); (77) 

(b) lira sup n lEh(u,)- Eh(u)] < oo for every positive sequence {h(n)}~ N with 
n - ~  oo 

h(p) p~< oo. (78) 
~=1 P! 

Proof: We only state the proof  of (b), since (a) is well known.  

Eh(u,)-Eh(u_)= ~ h(k) ;n, - p ( k ; 1 )  - 
k = 0  

(79) 
<x) 

- ~ h(k)p(k;1) 
k = n + l  

Using an inequality for the binomial  distr ibution ([6; exercise 34, p. 172]) we obtain 
from (79) 

Eh(u_.)-Eh(u_)<_ ~ h(k) ; exp - p ( k ; 1 )  _< 
k = 0  (80) 

We now establish a lower bound on Eh (u_,)-Eh (u_). 

Applying [6, exercise 34, p. 172] we find that  

b (k;n, n--~ 2 )>_p(k;1) exp(-k2/n-lc) exp(-  2k/n) (81) 

for n sufficiently large and 0 < k _< n -  1. 
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This implies that 
nk 

Eh (un) - Eh (u_) > ~ h (k) p (k; 1)(exp ( -  2 k/n) exp ( -  k2/n- k) - 1) 
k=O 

- ~ h(k)#(k;l)>_ 
k = n §  

> - - 0 ( 1 ~ +  ~ h(k )p(k ;1) (exp( -2kZ/n-k ) - l )  
\ n /  k = 2  

> _ 0 ( 1  ~ h(k)k2) ( 1 )  
- k :o  ~ / > _ _ - O  . 

,Corribining (80)and (82) yields the desired result. 

(82) 

[] 

Lemma C: 
Suppose {v_,, w_,},~N is a sequence of random vectors with 

Pr{v_=k,w_n=l}=b ,1;n, . 

T h e n  

(a) (v., w,) converges in distribution to (v, w) with 

Pr {_u =k ,v  = 1} =p  (k; 1) p (/; 1); 

(b) lira sup n I E (g (_v,) h (_w,)) - E (g (v) h (w))l < oo 
n-~ oo 

(83) 

(84) 

for every pair of positive sequences {h (n)}.~ u and {9 (n)}nsN with 
h (p) p2 

< oo 
p=l P! 

and 
O:3 

E g(P)P2 <oo. 
p=l P! 

Proof: As in Lemma B we only prove (b) since (a) is well known ([6, exercise 38, 
p. 172]). 

Before considering E (9 (_v,) h (_%))- E (9 (_v) h (_w)) we need the following inequalities 
which can be proved in a similar way as in [-6]�9 

( b k , l ;n ,n+2 ,n+2-  <p k, l ;n+2 n + 2  exp(2(k+l)/n+2) (85). 

b k,l;n, , >P n+ n+2 n + 2  n+2- k,l; - 2 '  exp(-(k+l)2/n-(k+l)  " 

�9 exp ( -  4/n + 2). 
(86) 
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By assumption g and h are nonnegative, and 

G1 ~= ~ g(k)p(k;1), G2 ~= ~ h(I)p(1;1) 
k=0 1=0 

are finite. 

Hence we can construct two independent random variables _v*, w* such that 

Pr {_v* =k} =g  (k) p(k; 1) G~ -~ 
and 

Pr {w* =/} =h(1)p(l; 1) G~ -1 (87) 

In view of (85), (87) implies that 

E(g(v_.)h(u_.))-E(g(v_)h(u_))<_ 

<~g(k)h(l)p(k,l;1,1)(exp(4+2(k+l)/n+2)-l)<_ (88) 
k+l<<_n 

We now prove the required lower bound. 

Using (86) we obtain 

E (g (v,) h (_w,)) - E (g (_v) h (_w)) > 

~, ~ g(k) h(l)p(k, l; 1, 1). 
k+l~_n "5 

(89) 
�9 (exp ( -  2 (k + l)/n) exp ( -  (k + l)2/n - (k  + l)) exp ( -  4/n + 2) - 1) 

- ~ E g(k) h(l)p(k, l; 1, 1). 
k+t>n'~ 

Consider the first term of (89)�9 

It follows easily that this term is bounded by 

1 
- -  O ( E  ((y* + _w*)2)). (90) 

The second term of (89) can be bounded by 

G1 G2 E E PF {_l) $ = ~} Pr {_w* : l} _< 
k+l>_n ~ 

<< G 1 G 2 ~, ~ Pr {_w* +v_* = k + I} -= G 1 G2 Pr {_w* +v* _> n~}. 
k+l>_n'~ 

Hence by Chebyshev's inequality, it is bounded by 

e + 
G1 G2 (91) 

n 

Combining (89), (90), (91) yields a lower bound which implies the result. []  
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