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Abstract. We visualize a a web server log by means of multidimensional
scaling. To that end, a so-called dissimilarity metric is introduced in
the sets of sessions and pages respectively. We interpret the resulting
visualizations and find some interesting patterns.

1 Introduction.

This paper describes the investigation of the data of a Web server log, as part of
the ECML/PKDD 2005 Discovery Challenge [1]. The Web server data comprise
a listing of page requests. In each request a session-id and a page-id can be iden-
tified. A set of requests corresponding to the same session-id defines a session.
We made two analyses, based on sessions and pages respectively.
The technique used in our analyses is MDS, short for multidimensional scaling.
MDS is a technique suitable for visualizing objects that are not given by nu-
merical coordinates. When only a distance measure between objects is defined,
MDS is able to embed the objects in an n-dimensional Euclidean space. If this
embedding is conducted in a 2-dimensional space, the resulting picture might
reveal some interesting patterns to a human observer. The patterns can be in-
vestigated further, possibly with different tools. In this way MDS is applied as
exploratory data analysis.
In the current situation, we focus on the interdependencies between sessions
and pages. To visualize the interdependencies using MDS, we introduce distance
measures between sessions as well as between pages. Two sessions are close to
each other if they have many pages and many mutual transitions in common.
Likewise, two pages are similar if they have may sessions in common.

This paper is structured as follows. Section 2 describes the preprocessing of
the data. Here we show, how the sets of objects which are subject to MDS, is
obtained. In Section 3 we introduce the distance measures between those objects.
In MDS a distance is also called a dissimilarity metric. Section 4 gives an intro-
duction to multidimensional scaling. The results of our analysis are presented in
Section 5. Finally, we give some conclusions in Section 6.
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2 Preprocessing the Data.

As is the case in nearly any data mining project, we need to preprocess the
data set. The data set has been provided as a large collection of web-server log
files of some web-shop. Each log file comprises the clicks of one hour on the
site of that shop. The name of the log-files conforms to the following template
yyyy mm dd hh stream.log. Each line in the log-files has the following format.

[shopNo];[timestamp];[IP-address];[sessionId];[page];[referrer]

We call such a line a visit. To illustrate this format, we randomly selected a
line, including the following values:

- shopNo=12, the number of the department or subshop, the web-shop is
divided into multiple subshops;

- timestamp=1074592807, the time stamp according to the unix standard;
- IP-address=80.188.69.175, the IP-address of the visitor;
- sessionID=1b835c20458a82ac6e26ac8015f6eddc;
- page=/dt/?c=11642, the tail of the url of the requested page; ”dt” is a

page reference and ”c = 11642” is an optional parameter value representing
the id of a product or product type;

- referrer=/ls/?id=3, the previous page that requested the current page.

We have used two types of objects in our analysis, viz. sessions and pages. The
precise description of them is discussed below.

Sessions. First of all, the set of visits is partitioned into subsets. The session-id
is the criterion for this partitioning, i.e., the visits with identical session-id values
make up a subset. A session is defined as a set of visits with the same session-id.
As mentioned before, a page name may contain a parameter c indicating a prod-
uct id. Next to the log files a list of products with corresponding parameter
values was provided in [2]. Since the range of products is very large, we have
defined our own set of product groups. Five groups are distinguished:

1 Computers,
2 Audio,
3 Video,
4 White goods,
5 Mobile.

The second preprocessing step is renaming the pages by replacing the product
id with the group name the product belongs to. In some cases the product id of
a page could not be identified. Those pages are not considered.
In order to take the transitions between pages into account, the next step is
transforming sessions into graphs. A graph G is associated with each session S.
Each page name in S is a vertex in G. The edges of G are defined as follows. We
order the visits in session S by time stamp. An edge from a vertex or page p1 to



a vertex p2 is included in G if and only of p1 and p2 are pages in two consecutive
visits in the ordering by time stamp of S.
The collection of graphs obtained in this way is subject to MDS, to be described
in Section 4. We found out that the total number of sessions in the data set is
approximately 500, 000. This number is far too large for MDS, since, when ap-
plying MDS to a set of n objects, an n×n matrix must be processed. Therefore,
we randomly selected one sessions from each log file, resulting in only 576 ob-
jects, a feasible number.
Note that the referrer attribute was neglected, since the information included
was too poor.

Pages. We have considered only the pages including descriptions of products
or product categories. These pages are identified by the denotation ”dt” or ”ct”
in their url, indicating that the page concerns a product or product category
respectively. The dt-pages far dominate the ct-pages. We merged all 576 files
into one database. We defined two sets of pages, viz., the set of ct-pages with a
frequency of ≥ 100 in the database and the set of dt-pages with a frequency of
≥ 250. The first set contains 63 unique pages, the second set 940.

3 Dissimilarities

As mentioned before, a dissimilarity metric between objects is needed in order
to apply MDS to a set of objects. Therefore, we introduce dissimilarity metrics
for the set of graphs obtained by the preprocessing as well as for the set of pages.
First of all, we present some definitions. The first one is the common definition
of a directed graph.

Definition A directed graph G is a tuple < V,E > where

- V is the finite set of vertices
- E ⊆ V ∗ V is the finite set of directed edges

Since the vertices in our graphs represent web pages, we may say that the ver-
tices have unique labels. In case of unique labels the definition of a common
subgraph reduces to the following simple one.

Definition Given two graphs (V1, E1) and (V2, E2), a common subgraph G0

of G1 and G2, is a graph G0 = (V0, E0) such that V0 ⊆ V1∩V2 and E0 ⊆ E1∩E2.

The size of a graph G, denoted by |G|, is defined as |G| = |V | + |E|. A maxi-
mal common subgraph of G1 and G2, denoted by mcs(G1, G2), is defined as a
common subgraph of G1 and G2 with maximal size. For finding a distance or
a metric between graphs, we rely on [4] and [5]. A slight modification of their
definitions is utilized. Given two non-empty graphs G1 and G2, the distance
between G1 and G2 is defined as:

d(G1, G2) = 1 −
|mcs(G1, G2)|

max(|G1|, |G2|)
. (1)



The following properties hold for this distance measure d:

a) 0 ≤ d(G1, G2) ≤ 1
b) d(G1, G2) = 0 ⇔ G1 and G2 are identical
c) d(G1, G2) = d(G2, G1)

In [4] it is proved that this distance measure satisfies the triangle inequality.

Analogously, we define the dissimilarity between two pages. A page P is iden-
tified with the set of sessions that include page P . Hence, by |P | we mean the
number of sessions including P . Accordingly P1 ∩ P2 is defined as the set of
sessions including both P1 and P2.

d(P1, P2) = 1 −
|P1 ∩ P2|

max(|P1|, |P2|)
. (2)

Again the above three properties hold for this metric.

4 Multidimensional Scaling

MDS [3] is a collection of techniques for embedding objects in a space with
a chosen dimensionality based on dissimilarities between these objects. MDS
provides insight in the underlying structure of relationship between the objects
that are embedded. The MDS techniques can be subdivided in two groups, metric
MDS and non-metric MDS. Metric MDS assumes the dissimilarities between
objects to be proportional to Euclidean distances, non-metric MDS only assumes
the dissimilarities to be related to Euclidean distances by an unknown monotone
transformation.

A C D H L M NY SF S W | A C D H LA M NY SF S W
Atlanta 0 | 0
Chicago 58 0 | 4 0
Denver 121 92 0 | 22 13 0
Houston 70 94 87 0 | 8 15 12 0
Los Angeles 193 174 83 137 0 | 34 31 11 24 0
Miami 60 118 172 96 233 0 | 6 21 29 18 39 0
New York 74 71 163 142 245 109 0 | 10 9 27 25 42 20 0
San Francisco 213 185 94 164 34 259 257 0 | 35 32 16 28 2 44 43 0
Seattle 218 173 102 189 95 273 240 67 0 | 36 30 19 33 17 45 40 7 0
Washington D.C. 54 59 149 122 230 92 20 244 232 0 | 3 5 26 23 37 14 1 41 38 0

Fig. 1. Dissimilarity matrices containing distances (l) and ranks (r).

Figures 1 and 2 show an example application of MDS. The left matrix in Figure
1 is a distance matrix (measured in units of 100 miles) of inter-city distances
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Fig. 2. Embedding for matrices in Figure 1. Left: metric MDS (left matrix embedded).
Right: non-metric MDS (right matrix embedded).

in the USA. The left plot in Figure 2 shows the metric MDS embedding for
this matrix. This embedding closely resembles the map of the USA. In the right
matrix, the distances are replaced by their rank order. (This is a monotone
transformation.) The plot on the right shows the embedding obtained with non-
metric MDS, which is a rotated version of the USA-map. Surprisingly, non-metric
MDS is able to recover the relative positions of the objects using these distorted
distances.
A nice feature of MDS, that makes it especially useful for clickstream analysis,
is that it does not require vectors of numerical values in order to create an
embedding. It merely requires dissimilarity values, and these are often more
easily obtained than numerical vectors.
The quality of an MDS embedding is usually measured using a criterion called
stress. This expresses the discrepancy between the dissimilarities δ between the
objects in the dissimilarity matrix and the distances d between the objects in
the embedding:

stress =
∑

ij,i6=j

(δij − dij)
2,

where i, j sum over the objects. In the case of non-metric MDS the dissimi-
larities are replaced by transformed dissimilarities, often called disparities. See
[3] for details. Below, we report relative stress values w.r.t. the embedding in
0-dimensional space, where all d’s are 0.

5 Experiment & Results

As stated before, we ran two sets of experiments: Embedding http-sessions and
embedding http page-requests. We briefly describe both experiments below.



5.1 Embedding the Sessions

We constructed two sets of 576 random sessions in which one session was se-
lected randomly from each log file. We refer to these session sets as subset1 and
subset2 For each subset we computed a dissimilarity matrix using the graph
distance metric described in Section 3.
These dissimilarity matrices were subsequently embedded in two-dimensional
space with MDS. The MDS analysis was performed using the public domain
software package R [6]. Library MASS contains the routine isoMDS, which is an
implementation of non-metric MDS.
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Fig. 3. Embedding obtained for subset1. 1= PC, 2= Video, 3= Audio, 4= White
goods, 5= Mobile. The stress of this 2-dimensional solution is approximately 47%.

Figure 3 shows the resulting embedding for subset1. The numbers in the plot
refer to the number of the sessions in the subset. This helps to interpret clusters
and other patterns in the embedding, since we are able to identify a session and
see what page requests it contains.
The first thing we notice when looking at Figure 3 is the tripod-like structure of
the plot. It looks asif we can identify 4 different clusters: the center (where the
sessions are plotted very close to each other), and the clusters with the 4-arrow,
2-arrow and 3-arrow. The cluster for group 4 (White goods) seems to be the
biggest, followed by group 2 (Video) and group 3 (Audio). Next, we notice that
groups 1 and 5, respectively PC and Mobile, are not represented by a distinct



cluster. In fact, it turns out that sessions with page request to these groups are
very few in number.

Observation The most predominant product categories on this web site are
2 (Video), 3 (Audio) and 4 (White goods).

Fig. 4. Cluster group 4, example of head and tail.

If we take a closer look at a cluster, for example cluster group 4, we can identify
a head and a tail, as shown in Figure 4. When analyzing the sessions in the
group 4 cluster we notice that the more one follows the arrow and analyzes the
tail, the more sessions only exist out of page request of products from group 4
(White goods). But when we analyze sessions located towards the head of the
cluster we notice more sessions with mixed page request. Although page request
to products of group 4 are still present, page requests to things like search pages,
contact pages, mail pages, advice pages and shopping carts pages are present as
well. This is here where we also find the buyers, these are the sessions with page
request to udaje.php (filling-in details of contract). The same head/tail analogy
can be followed if we look at the other two clusters, group 2 and 3 (not the
center cluster). Note that also in these clusters the buyers are in the head area.
Furthermore, if we follow the arrow to the tail, again we will find that in this
area only sessions with page request to their respective product groups exists.
Like we saw in group 4 cluster.

Observation A fairly large proportion of site visitors interested in categories 2,
3 and 4 (Video, Audio and White Goods) are only interested in pages directly
related to the products in the group, presumably product information. The effect
appears to be strongest for Video products (category 2). This may indicate that



the site serves as an information source for customers making the actual pur-
chase elsewhere.

A big difference between clusters for groups 4, 3 and 2, is that groups 2 and 3
seem to have an overlap, which is absent between 4 and 3, or 4 and 2. A possible
explanation is that people who are looking for video products will also look for
audio products in the same session, and vice versa. It is less likely that people
who are looking for white goods (freezers, washing machines etc.) will also look
for audio or video in the same session.

Observation It frequently happens that pages from the Video and Audio depart-
ment are visited in the same session. These are the only two product categories
that have an association. This information could, e.g., be used to generate cross
category recommendations.

An interesting question arises when we look at non-buyer sessions very close
to buyer sessions. Could these sessions be potential buyer sessions? This is a
possibility, but it does not necessarily have to be the case. Sessions in the head
area of clusters are closest to the center. The center contains only the sessions
that have no page request to any product group. Sessions in the center have
page request of mail pages, advice pages, search pages etc. So, sessions in close
vicinity of buyer sessions may include a request to one or more of these ‘non
product pages’ as well.
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Fig. 5. Separate MDS plot for center cluster subset1.



As stated earlier the center cluster consists of sessions plotted very close to each
other. This makes it difficult to analyze them. Therefore, we created a separate
MDS plot for sessions located in the center cluster. The resulting plot is shown in
Figure 5. We can clearly identify four (sub)clusters, named North(N), East(E),
South(S) and West(W).
When analyzing these clusters, we found that sessions in cluster N and E consist
of page request to product group 1. Because of the small amount of sessions
involved in this cluster, compared to the other product groups clusters (4,3 and
2), it becomes clear again that product group 1 (PC’s) is not popular in the
web-shop. Cluster S consists of small sessions only visiting the main page, and
sometimes another non-product page.
Cluster W actually has a few little sub-clusters. One sub-cluster consists of
sessions with page request to product group 5. Note that this product group is
even less popular than group 1.
Another sub-cluster contains sessions with page request to udaje.php. This is
the page where the actual purchase transaction takes place. The strange thing is
that no products where visited in the session. A possible explanation is that the
products were already chosen and stored in a cookie on the customers computer.
Finally, there is a small cluster with sessions that consists out of page request
to advice pages only.
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Fig. 6. Embedding obtained for subset2. Left: 1= pc, 2= video, 3= audio, 4= white
goods, 5= mobile. Right: separate embedding for center.

The embeddings found for subset2 look highly similar to those found earlier,
apart from rotation. The embeddings are shown in Figure 6.

5.2 Embedding the Pages

As stated before, we embedded both the ct-page requests and de dt-page requests.
Ct refers to product categories, dt to product details.
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Figure 7 shows the embedding obtained for the ct-page requests. If two ct re-
quests appear close together in the embedding it means that the frequently
appear together in a session. This embedding clearly displays a number of clus-
ters, each with a clear interpretation: A contains only ct requests related to
white goods. K,L concern cookers and dishwashers respectively. B concerns digi-
tal cameras. C concerns computers. D concerns PDA’s. E concerns film cameras
and lenses. F concerns audio. G concerns car audio. H concerns home cinema.
I,M,N concern television, plasma & projection TV’s and camcorders respectively.
J concerns MP3 players.

Observation The MDS embedding displays a natural clusting of product cat-
egories based only on co-occuring page requests. Moreover, clusters with ‘simi-
lar’ product categories appear in eachother’s vicinity in the embedding. E.g., car
audio appears next to audio.

The embedding for the dt-page requests is shown in Figure 8. This embedding
clearly shows some clusters and other structure as well, but unfortunately we
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Fig. 8. Embedding for dt-pages. The relative stress-value for this embedding was 31%.

were not able to interpret this plot because the meaning of most (app. 95%) of
dt-codes was unknown.

6 Conclusion and future research

In this paper we performed exploratory data analysis by MDS on clickstream
data. We embedded both sessions and page-requests. MDS was used because of
the non-numerical nature of the http-requests, for which feature vectors can not
be constructed easily, but dissimilarities can.
The dissimilarity matrix for the embedding of sessions was constructed by ap-
plying a graph distance metric to graphs representing http sessions. For the
embedding of pages it was based on counting co-requests within sessions.
The resulting embedding of sessions put us on track of some interesting patterns,
e.g., people often visit pages from product categories 2 (video) and 3 (audio) in
one session, whereas category 4 (white goods) appears in isolation. In the video
product category there are many browsers that do not make any purchases.
Furthermore, we looked at the possibility to identify a group of potential buyers.
It could be possible that sessions that not made a contract, but are plotted near
the buyer-sessions, are potential buyers. Unfortunately we could not give an
definite answer to this question. Future research is needed for this matter.
The embedding of product categories revealed a number of clusters, which all
had a clear interpretation. Clusters were positioned in a natural way relative to
eachother. The embedding of separate products showed structure as well, but
we were unable to interpret it due to missing meta-data.



Although these conclusions might seem trivial, keep in mind that they were
obtained using exploratory analysis. In constrast, most learning- and statisti-
cal methods either test a specific hypothesis or attempt to find a specific in-
put/output relationship, thus they require a-priori assumptions. Exploratory
data analysis does not require the user to make these assumptions — Rather,
they help the user in formulating suitable topics for further investigation.
We plan to do a number of additional analyses in the near future. We observed
that the resulting projections are highly dependent on dissimilarity measure that
is used — we plan to experiment with alternative dissimilarity measures. (In the
case of session dissimilarities we experimented with an alternative graph distance
without positive results.) Dissimilarity measures that focus on different aspects
may lead to different embeddings and consequently new interpretations. Finally,
we would like to scale up our analyses to a larger number of sessions.
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