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Experimental Investigation of Consumer Price Evaluations

Abstract

We develop a procedure to collect experimental choice data for estimating consumer

preferences with a special focus on consumer price evaluations. For this purpose we

employ a heteroskedastic mixed logit model that measures the effect of the way prices

are specified on the variance of choice. Our procedure is based on optimal design ideas

from the statistics literature and on some algorithms for constructing choice designs

published in marketing journals.

In an empirical application on mobile phone preferences we find evidence that the

way prices are specified significantly affects the variance of choice. In a simulation study

we show that our design is significantly more efficient than randomly generated designs,

which can be regarded as equivalent to most commonly used experimental designs in

the literature.

JEL No.: C25, C81, C9.

Key words: demand, heterogeneity, task complexity, Bayesian design, quasi-random.

2



1 Introduction

In numerous situations when real-life data are not available researchers use experimental

data. Such situations may occur, for example, when one would like to estimate, or test

hypotheses about, consumer preferences. In several disciplines of economics and related

fields choice experiments are conducted and the obtained data are analyzed through

discrete choice models. The recent literature has witnessed a growing interest for such

choice experiments in various demand studies, for example, on environmental issues

(e.g., Adamowicz et al. 1997, Layton and Brown 2000), on transportation problems

(e.g., Brownstone and Train 1999, Hensher and Sullivan 2003), on health care issues

(e.g., Scott 2001, San-Miguel et al. 2002), in marketing (where the literature is huge;

we only mention a pioneering work by Louviere and Woodworth 1983) and on other

demand problems (Revelt and Train 1998, van Ophem et al. 1999).

In many of these studies observations from several thousands of consumers were

collected in the experiments, which incurred large costs for conducting the experiments.

However, in many of the above studies, by carefully designing the experiment, it is

possible to reduce the number of respondents significantly and still obtain the same

amount of information on the quantities of interest. This has been done for experiments

in biology, physics, chemistry, etc., and it has led to the optimal design literature in

statistics, where these techniques have been investigated for several decades. Starting in

the 1990’s a number of papers published in marketing journals considered the problem

of optimal design of choice experiments (e.g., Huber and Zwerina 1996, Arora and Huber

2001, Sándor and Wedel 2001), and this line of research gradually adopted more and

more advanced techniques from the statistics literature. For example, Sándor and Wedel
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(2003) demonstrate that their procedure produces designs, which, although not optimal,

have highly improved efficiency compared to its predecessors.

Despite the need for designs with improved efficiency and despite the advances in

constructing such designs, there is hardly any empirical study that considers efficiency

aspects for designing a choice experiment concerning consumer preferences. Some of the

marketing papers mentioned above contain empirical analyses but these are focused on

illustrating specific features in the proposed design procedures and hence fail to study

important practical aspects that these imply. We attempt to fill this gap in the present

paper. More precisely, we design an experiment based on efficiency considerations,

in which we adopt a number of ideas from the optimal design literature in statistics

combined with some advances in the experimental choice design literature in marketing.

We discuss in detail the problems that occur during the process of design construction

for commonly used discrete choice models. Some of these problems are not trivial and

not yet encountered in the literature.

The designs we construct have two novel features. The first is that we construct so-

called Bayesian designs (i.e., designs based on the prior distribution of the parameters)

for a version of the mixed (i.e., random coefficient) logit model (McFadden and Train

2000). This involves a large computational burden in terms of Monte Carlo simulations,

which we solve by employing so-called quasi-random samples (e.g., Niederreiter 1992)

instead of the pseudo-random samples used in Monte Carlo simulations. The second

novel feature is that we construct our design with improved efficiency so that it accounts

for choice task complexity in the design. This aspect is important because explicit

modelling of the effect of the experimental setup on the outcome of the experiment
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enables the experiment to better approximate the real-life preferences. In this respect

we rely on recent results by Swait and Adamowicz (2001) and DeShazo and Fermo

(2002), who made important steps in measuring the effects of the experimental setup

on the overall precision of the estimates.

In this paper we design a choice experiment and collect data for estimating pref-

erences for mobile phones with a special focus on measuring the effect of specifying

the price. This problem is motivated by the question whether consumers are able to

consciously evaluate prices in the presence of much distracting information, like price

discounts and other characteristics of the product. We provide more details about this

topic in Section 2, where in addition we put forward our model, and discuss how we

incorporate the choice complexity. In Section 3, we describe how we construct the ex-

perimental design. In Section 4, we discuss specific issues regarding the collection of

the data and present the estimation results on mobile phone preferences. We conclude

the paper with a section containing a summary and various possible topics for further

research.

2 The model

We use a mixed logit model modified so that it accounts for choice task complexity.

The mixed logit model has been successfully employed in the econometrics and related

literature (e.g., Allenby and Lenk 1994, Berry et al. 1995, Brownstone and Train 1999)

to model consumer heterogeneity, which we believe is relevant for our investigation as

well. The effect of task complexity on the variance of choice is an important aspect
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in choice experiments. A choice task that is more complex is expected to have a less

precise choice response. If task complexity is significant and not captured by the model

then it will yield less precise estimates of the parameters of interest.

In a typical choice experiment a respondent faces the task of choosing the best from

one or more sets of hypothetical products. Suppose that each respondent is given S

choice sets, each consisting of J hypothetical products, to choose the most preferred

from each. We define the utility for a respondent i who chooses hypothetical product j

from choice set s as a heteroskedastic mixed logit, that is,

uijs = x0ijs (β + Visσ) + σisεijs,

where xijs is a K × 1-vector of characteristics of product j from choice set s, β is the

mean and σ is the standard deviation parameter of the random coefficient of xijs, Vis is a

diagonal matrix with standard normal random variables on its diagonal, which represent

latent consumer characteristics, and εijs is an iid type I extreme value random variable

that is common to logit models. Since it has a coefficient σis, the variance of the utility

depends on the choice set. Throughout this paper we sometimes refer to σ2is as the

variance of choice.

Note that respondents are assumed to have different latent characteristics Vis in dif-

ferent choice sets. There are two reasons for adopting this assumption. The first is that

the implied model is more general than the one that assumes the same latent character-

istics Vi over the choice sets, and there are reasons to believe that respondents may treat

different choice tasks differently (Louviere 2003). We note that some authors use the
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model with the same latent characteristics over the choice sets (e.g., Revelt and Train

1998). The second reason for adopting the model with different latent characteristics

is that it simplifies the computation of the information matrix needed in the design

construction.2

For incorporating the effect of task complexity on the variance of choice we rely on

Swait and Adamowicz (2001) and DeShazo and Fermo (2002). In fact, in our formulation

from the previous paragraph we follow the latter paper. We define σis so that it depends

on the characteristics of the hypothetical products and the price specification in choice

set s as well as some parameters, that is, σis = exp (−c0isγ), where cis is a column vector

characterizing the complexity of the choice task in choice set s. The parameter vector

γ then measures the effect of task complexity on the variance of choice. We give more

details on the vector cs below in section 2.2 when discussing the experiment.

2.1 Price evaluations

Much of the literature on consumer choice assumes that consumers are rational utility

maximizers. One reason for this assumption is that it allows for the application of

reasonably easy to analyze models for observed consumer choice. In contrast, there is

also substantial literature on consumer decision making which allows for the possibility

that consumers do not always behave perfectly rational, even in case they intend to do

so, see Bettman et al. (1993). This phenomenon is often coined as bounded rationality,

see Rubinstein (1998). The drivers of this bounded rationality are found in the effort

2We may view this as a situation where we have two rival models, and prior to estimation we are
not able to decide which represents our data. It is possible to take such model uncertainty into account
when constructing the design; see for example Ponce De Leon and Atkinson (1991) and Montepiedra
and Yeh (1998).
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that consumers have to exercise to make a choice. This effort depends on the difficulty

of the choice task, and hence it can depend on the number of alternatives, on the way

the choice alternatives are specified, on the number of product characteristics involved

and also on other factors (e.g., Tyebjee 1979, Johnson and Payne 1985).

In this paper we examine whether it can happen that choice complexity leads to

making mistakes about prices of products. Price is just one of the many possible features

of a product, and it may well be that other product information may distract consumers

from paying explicit attention to only the price.

One may now wonder whether consumers are able to consciously evaluate prices,

in the presence of much distracting information. For example, and as we will consider

below, can consumers understand that 135 Euro is the same price as 150 Euro with

a 10 per cent discount, in case the product also has a variety of other features? Our

experimental investigation below will illustrate that consumers do indeed face difficulties

here.

2.2 Task complexity variables

In the model we use two variables for measuring choice task complexity. For specifying

the first variable we rely on DeShazo and Fermo (2002). We define this variable for

choice sets with two alternatives, since we only use such choice sets. For choice set s we

define

cs1 =
SD1 + SD2

2
, where for alternative j, SDj =

vuut 1

K

KX
k=1

ik (zjk − zj)
2. (1)
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Here ik is 0 if z1k = z2k and 1 otherwise, that is, it cancels the effect on cs1 of those

characteristics for which the levels are the same. We note that in our study we have

characteristics with two and three levels (see Table A2 in Appendix A) and zjk is the

characteristic k of alternative j recoded so that it takes -1, 0, 1 for each three-level char-

acteristic and -0.5, 0.5 for each two-level characteristic, increasing as the attractiveness

of the characteristic increases (e.g., for the highest price it is -1 and for the lowest price

it is 1).

The variable SDj captures the dispersion within an alternative excluding the char-

acteristics with the same levels in the two alternatives. If the dispersions for the alter-

natives are large then so will cs1 be. For example, if a choice set contains hypothetical

products that have either only highly attractive or only highly unattractive characteris-

tics then cs1 will be small reflecting that the task of choosing from this choice set is easy.

We note that cs1 is a combination of two variables defined by DeShazo and Fermo, that

is, the average dispersion and the number of characteristics whose levels differ across

alternatives. These authors also included the standard deviation of the dispersions as

another variable that can potentially affect choice task complexity. Although they find

this variable significant in their empirical analysis, its effect on the variance of choice

turns out to be minor, so we do not include it in our model.

We define our second task complexity variable cs2 as the variable by which we measure

the effect of price evaluation on the variance of choice. This is a dummy variable that

takes value 1 if the price of one of the alternatives in choice set s is given by a discount

and 0 otherwise (see the survey form in Table A1 in Appendix A). This is the main

variable of interest in our model. If its coefficient turns out to be significantly negative
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then we can draw the conclusion that the way prices are specified causes the respondents

to have significant difficulties in making the choice.

2.3 Estimation and information matrix

The parameters of the model can be estimated by the method of maximum likelihood.

The log-likelihood function can be expressed as a constant plus

L =
NX
i=1

SX
s=1

JX
j=1

yijs ln πijs, (2)

where yijs is 1 if respondent i chooses alternative j in choice set s and 0 otherwise,

and πijs is the probability that yijs = 1. This probability is given by the formula

πijs =
R
RK pjs (v)φ (v) dv, where

pijs (v) =
exp

¡
exp (c0isγ)x

0
ijs (β + V σ)

¢PJ
r=1 exp (exp (c

0
isγ) x

0
irs (β + V σ))

and φ (v) is the probability density function of the K-dimensional standard normal

distribution. Note that the probability πijs depends on i only through xijs, j = 1, ..., J

and cis; the latent characteristics Vis are integrated out.

In order to design the experiment in an efficient way we need to use the variance of

the parameter estimator, or equivalently, the Fisher information matrix (for more details

on the efficiency of the experimental design see subsection 3.1). This can be computed

as the variance of the first order conditions of the log-likelihood evaluated at the true

parameter values. We denote the vector of all parameters by θ = (β0, σ0, γ0)0 and its true
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value by θ0 = (β
0
0, γ

0
0, σ

0
0)
0
. The information matrix is given by

I (X, c; θ0) =
NX
i=1

SX
s=1

e2c
0
isγ0


M 0

isΠ
−1
is Mis M 0

isΠ
−1
is Qis A0

Q0
isΠ

−1
is Mis Q0

isΠ
−1
is Qis B0

A B C

 , (3)

where

A = cisβ
0
0M

0
isΠ

−1
is Mis + cisσ

0
0Q

0
isΠ

−1
is Mis,

B = cisβ
0
0M

0
isΠ

−1
is Qis + cisσ

0
0Q

0
isΠ

−1
is Qis,

C = cisβ
0
0M

0
isΠ

−1
is Misβ0c

0
is + cisβ

0
0M

0
isΠ

−1
is Qisσ0c

0
is + cisσ

0
0Q

0
isΠ

−1
is Misβ0c

0
is

+cisσ
0
0Q

0
isΠ

−1
is Qisσ0c

0
is,

Πs is the diagonal matrix with diagonal πs = (π1s, ..., πJs)
0,

Mis =

Z
RK
[Pis (v)− pis (v) p

0
is (v)]Xisφ (v) dv and

Qis =

Z
RK
[Pis (v)− pis (v) p

0
is (v)]XisV φ (v) dv.

Here Pis (v) is the diagonal matrix with diagonal pis (v) = (pi1s (v) , ..., piJs (v)) andXis =

(xi1s, ..., xiJs)
0. We provide a short derivation of the information matrix in Appendix B.

3 Experimental design

We design the experiment with the purpose of collecting data for the model presented

above. For this we need to create a so-called design X, which is a matrix containing
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the characteristics of all hypothetical products from all choice sets given to all the

respondents. In order to make the choice tasks easier for the respondents, we adopt a

commonly used idea and specify each characteristic by a limited number of levels. Any

hypothetical product (i.e., row of X) is just a combination of the characteristic levels.

An easy way to construct the design matrix would be to generate it randomly. This

strategy is followed in many of the papers mentioned in the Introduction. We note

that, although these papers do not explicitly state, the fact that they do not take any

design efficiency criterion into account when constructing the design makes their design

equivalent to a randomly generated design, at least from a design efficiency point of

view. In the next section we show in a Monte Carlo experiment that, assuming that

our estimates are sufficiently close to the true values of the parameters, our design is

significantly more efficient than a random design.

In order to make the data collection more effective, one respondent is given several

choice sets. In our case the number of choice sets we will give to a respondent is

S = 12. So, strictly speaking, we work with a multi-response design but, in view of the

independence of the latent respondent characteristics Vis across different choice sets, the

design can be regarded as single-response design.

For determining the number of choice sets per respondent and the number of alter-

natives in a choice set we rely on empirical results by Swait and Adamowicz (2001).

Our purpose is to determine the design size so that the complexity of the choice task

is moderate. Swait and Adamowicz find that the subjects in the experiment provided

responses with no fatigue for the first half of choice sets of a 16-choice set design, in

which each choice set has three alternatives. Our interpretation of this finding is that
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respondents can evaluate 24 hypothetical products grouped in small choice sets without

getting significantly distracted. This is the fact that provided us the reason to give each

respondent 12 choice sets with two alternatives.

3.1 Design efficiency

The efficiency feature of experimental designs has been the main focus in the statistics

literature. A design that is more efficient requires fewer responses and thus reduces

the cost of the experiment. The efficiency of a design is measured by the information

it provides on the parameters, and this is measured by the Fisher information matrix.

The Fisher information matrix provides only an asymptotic approximation of the infor-

mation but is commonly accepted in the optimal design literature (e.g., Chaloner and

Verdinelli 1995). In order to produce a design with improved efficiency, it is desirable

to maximize the information matrix. One way to do so is by optimizing a monotonic

scalar transformation of its determinant. A design that achieves the optimum is called

a D-optimal design.

For our model, and in general for nonlinear models, the determinant of the infor-

mation matrix depends on the true values of the parameters of the model (see the

information matrix in (3)), which are obviously unknown. A natural simple solution is

to take some best guess values for the parameters and maximize the design criterion

using these. This leads to a so-called locally (D-) optimal design. A better solution

is to take a best guess probability distribution of the parameters and maximize the

expectation of the D-optimality criterion. This leads to a (D-) optimal Bayesian design.

Taking the above considerations into account we choose the design X and the task
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complexity variables c by

min
X,c

DB (X, c; θ) , where DB (X, c; θ) = Eθ

h
det (I (X, c; θ))−1/d

i
.

Here d is the dimension of the information matrix. In this paper we will refer to DB (·)

as the Bayesian design criterion and to DL (X, c; θ) = det (I (X, c; θ))−1/d as the local

design criterion. We note that normalizing the determinant by the dimension of the

information matrix gives a convenient design criterion because it is inversely proportional

to the number of respondents in the experiment. Similar Bayesian D-optimality criteria

have been discussed by Atkinson and Donev (1992, Chapter 19), Chaloner and Verdinelli

(1995) and Firth and Hinde (1997). The design criterion proposed by the latter authors,

though not completely the same as ours, yields the same optimal design as our design

criterion.

It is important to observe that there is no need to optimize the design criterion

with respect to c. As explained at the beginning of this section, c consists of two

components. The first component depends on the characteristics (see equation (1)),

so its optimality is incorporated in optimizing DB with respect to X. The second

component consists of a dummy variable that reflects the price specification. Out of

the 12 dummies corresponding to the 12 choice sets given to a respondent, we take

5 values equal to 1 and the rest of 7 equal to 0. We can arbitrarily fix this variable

prior to design construction for each 12-tuple of choice sets and determine the optimal

design conditional on these. This yields the unconditional optimal design because the

information matrix remains unchanged whenever we interchange two different choice

14



sets. Consequently, we determine the second component of the task complexity variable

prior to design construction in an arbitrary way, and keep it fixed. For simplifying

notation, we ignore the task complexity variables from the arguments of the design

criteria and use DL (X; θ) and DB (X; θ).

The Bayesian design criterion is a multidimensional integral of the normalized inverse

of the determinant of the information matrix, which itself involves multidimensional in-

tegrals (see the explanatory formulas below equation (3)). None of these integrals can

be computed analytically. The traditional approach to deal with such analytically in-

tractable integrals is to approximate them either by a numerical method (e.g., Gaussian

quadratures) or by Monte Carlo simulations. Both methods require a very large number

of function evaluations if one wants to achieve reasonably precise approximations. In or-

der to reduce the computational burden we employ a more advanced technique, namely

quasi-random simulations (e.g., Niederreiter 1992). Randomized versions of these (Owen

1995) are similar to Monte Carlo simulations in that they use random samples to esti-

mate the integrals, but, instead of using computer-generated pseudo-random samples,

they generate the samples so that they fill out the sample space more efficiently. In this

paper we employ so-called randomized (0,m, s)-nets in bases 4 and 8 (see Niederreiter).

These are used to replace pseudo-random samples of the uniform distribution on the unit

hypercube and then transformed to produce a sample from any parametric distribution.

The asymptotic behavior of these samples for estimating integrals was studied by Tang

(1993) and Owen (1994). Their small sample behavior, in the context of a mixed logit

model estimation, was investigated by Sándor and Train (2004) and, in the context of

estimating multivariate normal probabilities, by Sándor and András (2004). In the next
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subsection, when discussing the specific design construction problems, we give more de-

tails on the performance of our quasi-random samples as compared to pseudo-random

samples.

3.2 Design procedure

In order to construct the design we adopt a two-stage procedure. This is motivated by

the fact that without having any observations we have little knowledge of the parameter

values. Still, we have some expectations about the signs, which we incorporate in their

first stage prior distribution. Then, based on the observations collected for the design

constructed in the first stage, we obtain more precise information about the parameters,

which allows us to construct a more efficient design in the second stage.

In the first stage we construct a Bayesian design X1 based on a uniform prior dis-

tribution of the parameters. Then we collect data, say y1, based on this design and

estimate the parameters. Denote the estimate by bθ (X1, y1), about which it is known

that it is asymptotically normally distributed, so we use the asymptotic approximation

bθ (X1, y1) ≈ N
¡
θ0, I (X1; θ0)

−1¢, where we recall that θ0 is the true value of θ. Then we
use this approximate distribution of the estimate to construct a second-stage Bayesian

design X2. We do so by determining X2 that solves minX2 DB

¡
(X 0

1, X
0
2)
0 ; θ
¢
, where θ

has the above distribution. At this stage we replace θ0 by the estimate bθ (X1, y1); this

is the way we use the information from the first stage. Once we have X2 we collect data

based on it and we estimate the full model. In practice the two-stage procedure in our

problem is not as straightforward. We give more details about it in subsection 4.1.

We make a remark about an issue regarding the construction of two-stage opti-
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mal Bayesian designs. In order to treat this problem properly one should take a

priory into account that the design is constructed in two stages and optimize it ac-

cordingly. Zacks (1977) demonstrated such a fully optimal procedure in the case of

a one-parameter model. His procedure determines the designs employed in the two

stages to be simultanously optimal. For example, when determining the design used in

the first stage, the procedure takes optimally into account that there is also a second

stage. For our design problem note that X2 determined in the second stage depends

on X1, so that we can put X2 (X1). This implies then the first stage design optimiza-

tion minX1 DB

³¡
X 0
1,X2 (X1)

0¢0 ; θ´, where θ has a prior distribution. In the case of our
problem this minimization is a very complex computational exercise because it is not

possible to determine the dependence of X2 (X1) on X1 analytically. So we do not follow

the fully optimal approach, on the one hand because of the above problem, and on the

other hand, because the gains in design efficiency may turn out to be minor (see Ridout

1995).

We note that since the main goal of our study is to examine the null hypothesis

that price evaluations influence the variance of choice, a procedure more natural than

the one we follow would be to construct the design that is optimal for testing this null

hypothesis. This would imply a design criterion different from ours, so the optimal

design would also be different. Such procedures have been discussed in the literature

(Ponce De Leon and Atkinson 1991). The reason that we do not follow such a procedure

is that our goal is to obtain estimates for all parameters of the model in order to judge

more globally the outcome of our experiment. Our goal is also to assess the correctness

of the model for the experimental data generating process by verifying the estimates,
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for example, by their signs.

3.3 The algorithm

The algorithm we employ for optimizing the design criterion has been used successfully

to construct designs for choice experiments. It is related to the exchange algorithm pro-

posed by Fedorov (1972) and modified by Cook and Nachtsheim (1980) (see Atkinson

and Donev 1992, Chapter 15, for a comprehensive review of algorithms for design con-

struction). For choice experiments this exchange algorithm has been tailored according

to the specific features of the discrete choice models used.

Here we describe the main features of the algorithm. As it will become clear below,

the exchange idea is adapted by modifying the choice sets of a randomly generated start-

ing design successively. There are two procedures that are employed for this purpose,

that is, swapping and cycling. Swapping (Huber and Zwerina 1996) works by evaluating

the criterion function after each successive swap of the characteristics levels within the

choice sets and if no improvement is found then it goes to the next choice set, and so on.

Cycling (Sándor and Wedel 2001, 2002) modifies the levels of a characteristic in a choice

set successively so that eventually all level-pairs of this characteristics are considered,

and evaluates the criterion function after each modification. After considering the first

characteristic in the first choice set it continues with the first characteristic in the next

choice sets; after exhausting all choice sets it goes to the other characteristics. For both

swapping and cycling, if an improvement is found, the procedure goes back to the first

characteristic of the first choice set. The procedures stop when they arrive at the last

characteristic of the last choice set and find no improvement in the criterion function.
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We note that swapping is more restrictive than cycling because it keeps the same levels

of a characteristic in a choice set, namely, it only changes them across the alternatives.

In the algorithm we apply first swapping and then cycling. This way we try to avoid

obtaining a design that is a local optimum of the design criterion, but still there is no

guarantee that the globally optimal design is obtained.

Due to this fact, this algorithm, as most exchange algorithms, does not yield an

optimal design in general but rather a design with improved efficiency (see also Atkinson

and Donev 1992, Chapter 15). Its efficiency can be assessed to some extent by applying

it in special cases. Sándor and Wedel (2001, footnote 2) consider a class of very small

designs for which all different designs could be evaluated. They find that the algorithm

yields an optimal design or a very closely optimal design. Sándor andWedel (2003) verify

the efficiency of the algorithm in a design class for paired comparison models, which are

a restricted version of mixed logit. Street et al. (2001) and Street and Burgess (2004)

derived the optimal designs, which can be compared to the outcome of the swapping

part of the algorithm. Just like above, this turns out to produce either an optimal design

or a very closely optimal design.

Applying swapping and cycling to all choice sets of our design is not a feasible task

with the currently available computing power. Therefore, we reduce the number (i.e.,

N ·12) of different choice sets to 120. There are reasons to believe that the efficiency per

one respondent remains approximately the same (Sándor and Wedel 2003). Further,

we employ a ’greedy’ approach by splitting the 120-choice set design into 10 smaller

subdesigns of 12 choice sets each and construct the design in a sequential fashion. More

precisely, we apply swapping and cycling to a randomly generated starting design X0
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with 12 choice sets. This way we obtain the first subdesign X∗
1 . Then we consider the

design with two subdesigns X∗
1 and X0 and we apply swapping and cycling to X0 while

keeping X∗
1 fixed. This way we obtain the second subdesign X∗

2 . Then we continue

in this fashion until the 10’th subdesign X∗
10 is constructed. The computational gain

with respect to the case of full 120 choice sets is that at each stage we apply swapping

and cycling only to 12 choice sets. We note that this sequential feature of the algorithm

provides yet another reason why our design cannot be guaranteed to be globally optimal.

4 Data collection and results

We collect data from students on mobile phone preferences. For the hypothetical mo-

bile phones we use the following characteristics: price, price per minute, extras, network,

SMS price and design. The levels of these characteristics are presented in Table A2 in

Appendix A. The first three characteristics have three levels and the last three charac-

teristics have two levels. The characteristics price and price per minute are assumed to

be quantitative, while the characteristic "extras" is assumed to be qualitative (see Table

A2 for its coding).3

Because the student population, which is considered for data collection, is expected

to be less heterogeneous than the whole population of consumers, and also for reasons

of parsimony in the design construction and estimation, we assume that preferences are

heterogeneous only with respect to certain characteristics (price, extras1 and design).

3We note that the cycling procedure tends to select only the extreme levels in the case of a three-
level quantitative characteristic. For reasons of realism our purpose is to maintain all three levels of
the characteristics price and price per minute. Therefore we modified slightly the algorithm described
above by omitting cycling to these two characteristics. This modification reduces the efficiency of the
design we obtained but enhances the realism of our experiment.
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This way we obtained a model with 12 parameters of which two are parameters related

to choice task complexity and three are standard deviation parameters.

4.1 Specific issues

As explained above, we construct our experimental design in two stages. Here we discuss

specific issues regarding the first and second stage designs. We pay special attention to

a problem we believe is common for design construction for the mixed logit or probit

models. This is a problem that may occur due to the fact that the estimates obtained

in the first stage are based on a too small sample and hence they may not even exist.

In the first stage we construct the design by assuming uniform prior distributions for

the mean parameters (presented in Table A2) and values equal to 1 for the three standard

deviation parameters. We optimize the Bayesian design criterion DB with respect to the

levels of the characteristics. So the design problem in the first stage involves a mixture

of Bayesian and local optimality, or in other words, Bayesian optimality with degenerate

prior distributions for the standard deviation parameters. We do not consider optimizing

the design with respect to the two task complexity variables in the first stage.

Based on the design constructed in the first stage we collected 116 observations. For

numerical maximization of the log-likelihood we employed the nonderivative simplex

search algorithm.4 In several runs of the maximization algorithm with random starting

values this algorithm found several local maxima of the log-likelihood. Out of these

there is a sequence of local maximum points which go away from the origin while their

4The Gauss code for this algorithm written by Bo Honore and Ekaterini Kyriazidou is publicly
available on the internet.
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function values slightly increase (see Table A3 in Appendix A). Hence, we are tempted

to draw the conclusion that there exists no global maximum to the log-likelihood, or in

other words, the maximum likelihood estimator does not exist. We note that this is not

an uncommon phenomenon when estimating mixed logit or probit models with a small

sample size, so researchers who intend to construct designs with improved efficiency for

these models may encounter the same problem.

Still it is possible to use the information from the first stage observations, and for this

we propose the following procedure. First we note that if we knew the standard devia-

tion parameters then we could estimate the rest of the parameters and the (asymptotic)

distribution of these estimates using the restricted mixed logit model with task complex-

ity variables. This restricted model turns out to have excellent convergence properties.

If we were to follow this procedure we could assume some (second stage) prior values for

the standard deviation parameters and use the corresponding (asymptotic) distribution

of the obtained estimates of the other parameters as the (second stage) prior distribu-

tion. This would then imply a mixture of Bayesian and local optimality of the design,

similar to the first stage. Formally, we would optimize the criterion

Eβ,γ

£
DL

¡
(X 0

1, X
0
2)
0
; β (σ) , γ (σ) , σ

¢¤

with respect to X2. Based on the asymptotic normality of the first stage estimates, this

can be approximated by

Eu

£
DL

¡
(X 0

1,X
0
2)
0
;µ (σ) + Λ (σ)u, σ

¢¤
,

22



where µ (σ) and Λ (σ) are the mean and the Cholesky decomposition of the asymptotic

variance of the estimates of β0 and γ0 for a given value of σ, and u is a standard

normal random vector. However, we would like to use a fully Bayesian design criterion.

Therefore, instead of assuming some value for the standard deviation parameters, we

assume a distribution for them. Formally, the design criterion in this case becomes

Eu,σ

£
DL

¡
(X 0

1,X
0
2)
0
;µ (σ) + Λ (σ)u, σ

¢¤
. (4)

In practice this expectation needs to be approximated. We note that for the integrals

involved in the information matrix (below equation (3)) we employed a randomized

(0, 3, s)-net in base 4 of dimension s = 3. This sample has been shown to reduce

computation time by a factor of eight with respect to pseudo-random samples in a mixed

logit estimation problem (Sándor and Train 2004). Abstracting from these integrals, the

expectation in (4) involves a 12-dimensional integral. We use two independent samples

of size 64 each for simulating u and σ, namely, a randomized (0, 2, s)-net in base 8 of

dimension s = 9 for u and a randomized (0, 3, s)-net in base 4 of dimension s = 3 for σ.

We assume independent normal distributions with means 1.5 and standard deviations

0.7 for its components. We implement the application of these samples by drawing 64

values σ1, ..., σ64 for σ, estimating the reduced model and computing µ (σi) and Λ (σi)

for each i = 1, ..., 64, then drawing 64 values u1, ..., u64 for u, and finally computing

1
64

P64
i=1DL

¡
(X 0

1, X
0
2)
0 ;µ (σi) + Λ (σi)ui, σi

¢
.

In a small simulation experiment we compare the performance of these samples to

pseudo-random samples of the same size. We use a specific design and prior values
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obtained from the first stage as described above. We obtain estimates of the mean of

the Bayesian design criterion 0.0684 and 0.0656 with standard deviations 0.00062 and

0.00226 with the quasi-random samples and the pseudo-random samples, respectively.

This suggests that we need pseudo-random samples of size about 840 in order to obtain

the same precision as with quasi-random samples. In other words, using pseudo-random

samples we need about 13 times as much computing time as with our quasi-random sam-

ples. This is a remarkable reduction of computing time, especially because constructing

the second stage design takes about 55 hours (on a Pentium II PC). We believe that

quasi-random samples yield similar computational gains in other Bayesian design con-

struction problems as well.

For each σi for i = 1, ..., 64 we estimate the other parameters of the model. Based

on several maximization runs with random starting values we find that there is a unique

maximum point of the reduced log-likelihood in each case. This property appears to

hold in spite of the fact that, due to the inclusion of the task complexity variables, the

concavity of the log-likelihood cannot be proved theoretically in the same way as for the

restricted mixed logit.

4.2 Results

Based on the design constructed in the second stage we collect 350 observations. Then

we estimate the model using the data collected in both stages. In the estimation, in

order to achieve very high precision for the integral estimates of πijs involved in the log-

likelihood (2), we employed quasi-random samples based on a (0, 4, s)-net of dimension

s = 3 and sample size 256. The estimates and their standard errors are presented
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in Table 1 under the column ’2nd stage.’ The parameter estimates in this table, as

compared to their standard errors, suggest that all variables are relevant in explaining

the mobile phone preferences of the students, with the exception of task complexity

and SD design. The parameter estimates have the expected signs, in the sense that

lower prices are preferred, as well as that one seems to prefer more extras, a KPN or

Vodafone network and a trendy design of the phone. As outlined in section 2.2, our focal

variable is the “price specification”, and we expect that, due to potentially distracting

information, its parameter shall be negative, meaning that respondents find it difficult

to evaluate, for example, 135 euro versus 150 euro minus 10 per cent discount. Table 1

shows that this parameter is estimated as —0.191, with an associated standard error of

0.093. Hence, we obtain empirical evidence that price evaluations can be difficult indeed.

We do not obtain empirical evidence, however, that the choice task, as we measure it,

is difficult to the respondents. We believe that this is due to the fact that the number

of alternatives in a choice set is only two.

We conduct a simulation experiment in which we compare the local design criterion

values DL and standard errors of the two-stage design, a randomly generated design

and the first stage design. We recall that a randomly generated design can be regarded

as equivalent to designs constructed without statistical efficiency considerations. Most

experimental design studies on demand use such designs. This simulation experiment

is motivated by the question whether it is worthwhile to construct designs based on

efficiency considerations.
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Table 1. Estimates and standard errors for the two-stage, randomly generated and 1st stage 
designs 

 
      2nd stage Random 1st stage 
 Estimate St. error St. error St. error 
Price 
Price/min 
Extras1 
Extras2 
Network 
SMS price 
Design 
Task complexity 
Price specification 
S.D. Price 
S.D. Extras1 
S.D. Design 

-1.133  
-0.922  
-0.414  
-0.138  
-0.235  
-0.239  
0.211  
0.098  

-0.191  
0.868  
0.642  
0.459 

0.314  
 0.262  
 0.118  
 0.052  
 0.067  
 0.068  
 0.064  
 0.255  
 0.093  
 0.296  
 0.266  
 0.290 

0.649  
0.531  
0.233  
0.087  
0.136  
0.139  
0.122  
0.787  
0.241  
0.563  
0.431  
1.199 

0.376  
0.321  
0.147  
0.074  
0.080  
0.080  
0.089  
0.351  
0.090  
0.327  
0.295  
0.349 

Local design criterion DL             0.0037 0.0065 0.0046 
 

The results are presented in Table 1. In evaluating the local design criteria and the

standard errors we assume that the estimates are sufficiently close to the true values

of the parameters. We generated randomly a design with as many subdesigns with 12

choice sets as the number of respondents we have altogether, that is, 466. We replicate

this 100 times and compute the mean of the standard errors and of the local design

criterion values. As expected, the two-stage design has the lowest value of the local

design criterion values; it is about 1.76 times lower than that of the randomly generated

design. This implies that, in order to achieve the efficiency (as measured by the local

design criterion) of the two-stage design, we need about 819 respondents instead of 466

if we use the randomly generated design. The local design criterion of the two-stage

design is about 1.24 times lower than that of the first stage design. This means that, in

order to achieve the efficiency of the two-stage design, we need about 579 respondents
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instead of 466 if we use the first stage design.

Regarding the standard errors we can draw a similar conclusion. The standard errors

corresponding to the two-stage design are systematically lower than the standard errors

corresponding to the first stage design and these are further lower than the mean of the

standard errors corresponding to the randomly generated design.

5 Conclusion

In our experiment we have obtained an affirmative answer to the question whether price

specification affects consumer choice. An important issue is whether we can draw the

conclusion that this is so in reality. The results regarding the other parameters of the

model make us believe that the model is a reasonable approximation of the respondents’

preferences. So we believe that our conclusion on price specification is true in reality as

well.

The simulation results that compare our design to a randomly generated design

show that it is indeed worthwhile to construct two-stage designs because the gains in

estimation precision are significant. These results serve as an argument for the claim that

it is worthwhile to construct designs based on efficiency considerations for experiments

used for discrete choice models. So in this respect discrete choice models are not different

from the many statistical models considered for optimal design in the statistics literature.

A challenging topic for future research is to find out how close to the optimal design

are the designs obtained by our procedure. A possible solution to this problem is offered

by applying Wynn’s (1970) sequential design construction procedure because this yields
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designs that converge to the optimal design. The main challenge here is to implement

the procedure in a computationally parsimonious way, given the computational burden

implied by the mixed logit or probit model.

Another interesting topic is the design of experiment for models that involve demo-

graphic characteristics of consumers (as, for example, in van Ophem et al. 1999). This

generates different types of problems depending on whether the researcher is free to

determine an optimal sample of respondents or not. The former case implies an optimal

design problem similar to the problem of optimal Monte Carlo simulations. In the latter

case the researcher may or may not know the sample prior to the experiment. The case

when he/she does not is the more challenging one.

An interesting optimal design problem occurs when one intends to estimate consumer

preferences from a combination of real-life and experimental data (e.g., Adamowicz et

al. 1997). Real-life data provide estimates whith a distribution that can naturally be

employed as the prior distribution for constructing the Bayesian design. Hence in this

situation the design procedure may reduce to a single stage if the prior distribution is

sufficiently informative for constructing a good design.
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Appendix A: Additional information

Table A1. Example of a design with six choice sets 
 

 Product A Product B 
   
Price € 135  € 189, now with 10% discount 
Network other than KPN and Vodafone other than KPN and Vodafone 
Price/minute € 0.25  € 0.35  
SMS price € 0.17  € 0.23  
Design trendy trendy 
Extras games & internet & camera games & internet & camera 
   
Price € 100  € 170  
Network KPN or Vodafone other than KPN and Vodafone 
Price/minute € 0.25  € 0.30  
SMS price € 0.17  € 0.23  
Design trendy basic 
Extras games & internet games & internet & camera 
   
Price € 135  € 125, now with 20% discount 
Network KPN or Vodafone other than KPN and Vodafone 
Price/minute € 0.25  € 0.35  
SMS price € 0.17  € 0.17  
Design basic trendy 
Extras games games & internet & camera 
   
Price € 100  € 170  
Network other than KPN and Vodafone KPN or Vodafone 
Price/minute € 0.30  € 0.25  
SMS price € 0.23  € 0.17  
Design basic trendy 
Extras games & internet games 
   
Price € 135  € 170  
Network other than KPN and Vodafone other than KPN and Vodafone 
Price/minute € 0.30  € 0.35  
SMS price € 0.17  € 0.23  
Design trendy trendy 
Extras games & internet & camera games 
   
Price € 170  € 150, now with 10% discount 
Network KPN or Vodafone other than KPN and Vodafone 
Price/minute € 0.25  € 0.30  
SMS price € 0.23  € 0.17  
Design basic trendy 
Extras games & internet games & internet & camera 
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Table A2. Characteristics levels, their coding and 1st stage priors

Variable Presented Coded 1st stage prior
Price (C=) 100 -1 [-1,0]

135 0
170 1

Price/min (C=) 0.25 -1 [-2,0]
0.30 0
0.35 1

Extras games 1 0 [-4,0] [-2,0]
games & internet 0 1
games & internet & camera -1 -1

Network KPN or Vodafone -1 [-1,1]
other than KPN and Vodafone 1

SMS price (C=) 0.17 -1 [-1,0]
0.23 1

Design basic -1 [0,2]
trendy 1

Table A3. Local minima of the log-likelihood in the first stage 
 

 (1) (2) (3) (4) (5) (6) (7) 
Price 
Price/min 
Extras1 
Extras2 
Network 
SMS price 
Design 
Task complexity 
Price specification 
S.D. Price 
S.D. Extras1 
S.D. Design 

-3.539  
-4.384  
-1.698  
-0.467  
-0.986  
-0.583  
0.749  

-1.235  
-0.223  
2.499  

-1.292  
3.056  

-4.570  
-5.732  
-2.084  
-0.556  
-1.296  
-0.767  
0.913  

-1.443  
-0.265  
3.654  

-1.436  
3.973  

-8.216  
-10.917  
-4.234  
-0.725  
-2.499  
-1.598  
1.523  

-1.861  
-0.438  
8.109  

-4.067  
7.121  

-14.340  
-18.308  
-7.082  
-2.098  
-4.253  
-2.277  
3.439  

-2.543  
-0.372  
11.891  
-7.759  
13.519  

-20.058  
-26.366  
-9.946  
-2.326  
-6.686  
-3.489  
4.139  

-2.814  
-0.438  
18.370  

-10.834  
18.793  

-37.789  
-52.278  
-20.721  
-4.543  

-12.852  
-6.805  
8.099  

-3.472  
-0.494  
35.978  

-22.614  
36.076  

-55.188  
-76.725  
-30.133  
-6.485  

-18.807  
-9.731  
12.039  
-3.831  
-0.523  
54.236  

-32.647  
52.526  

Log-lokelihood -43.948 -43.930 -43.913 -43.872 -43.866 -43.843 -43.840 
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Appendix B: Derivation of the information matrix

In this appendix we derive the Fisher information matrix for the mixed logit model with

task complexity given in (3). For saving notation, we derive the formulas only for one

respondent and one choice set; then the information matrix in (3) will be the sum over

all consumers and choice sets. Also, we write integrals like
R
RK(·)φ(v1)... φ(vK)dv asR

(·)dΦ (e.g., RRK pj (v)φ(v1)...φ(vK)dv ≡
R
pjdΦ).

The log-likelihood is a constant plus

L =
JX

j=1

yj · ln πj = y0 ln π,

where yj is 1 if the consumer chooses j and 0 otherwise, πj is the probability that yj = 1,

y = (y1, ..., yJ)
0 and π = (π1, ..., πJ)

0. The Fisher information matrix is given by the

formula I (X, c; θ0) = E
£
∂L
∂θ

∂L
∂θ0
¤
, where X and c is the design matrix and the the task

complexity vector corresponding to the choice set. Using the components β, σ, γ of θ,

we can write the information matrix as

I (X, c; θ0) =


E
h
∂L
∂β

∂L
∂β0

i
E
h
∂L
∂σ

∂L
∂β0

i
E
£
∂L
∂σ

∂L
∂σ0
¤

E
h
∂L
∂γ

∂L
∂β0

i
E
h
∂L
∂γ

∂L
∂σ0

i
E
h
∂L
∂γ

∂L
∂γ0

i

 .

The upper triangular part is determined by the lower triangular part by the symmetry

of the information matrix. We need to compute the first order derivatives of L.
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We note that for a parameter λ vector that is one of β, σ, γ

∂L

∂λ
=

µ
y0
∂ ln π

∂λ0

¶0
=

µ
∂π

∂λ0

¶0
Π−1y, (5)

where Π is the diagonal matrix with diagonal π. So we need to compute ∂π
∂λ0 for λ = β,

σ, γ. Since π =
R
pdΦ, we have that ∂π

∂λ0 =
R

∂p
∂λ0dΦ. The vector p is defined as

p = (p1, ..., pJ)
0 with components

pj (v) =
exp

¡
exp (c0γ) x0j (β + V σ)

¢PJ
r=1 exp (exp (c

0γ)x0r (β + V σ))
.

Hence we obtain

∂p

∂β0
= ec

0γ (Π− ππ0)X,

∂p

∂σ0
= ec

0γ (Π− ππ0)XV,

∂p

∂γ 0
= ec

0γ (Π− ππ0)X (β + V σ) c0.

Using these, the formula ∂π
∂λ0 =

R
∂p
∂λ0dΦ and (5) we obtain

∂L

∂β
= ec

0γ
Z

X 0 (Π− ππ0) dΦΠ−1y,

∂L

∂σ
= ec

0γ
Z

V X 0 (Π− ππ0) dΦΠ−1y,

∂L

∂γ
= ec

0γ
Z

c (β + V σ)0X 0 (Π− ππ0) dΦΠ−1y.

Now we are able to compute the components of the information matrix. For this we
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introduce the notation

M =

Z
(Π− ππ0)XdΦ and Q =

Z
(Π− ππ0)XV dΦ

and use the fact that E [yy0] = Π. Then

E

·
∂L

∂β

∂L

∂β0

¸
= e2c

0γM 0Π−1E [yy0]Π−1M = e2c
0γM 0Π−1M.

The other components can be computed in a similar way. Then the information matrix

becomes

I (X, c; θ0) = e2c
0γ0


M 0Π−1M

Q0Π−1M Q0Π−1Q

A B C

 ,

where

A = cβ 00M
0Π−1M + cσ00Q

0Π−1M,

B = cβ 00M
0Π−1Q+ cσ00Q

0Π−1Q,

C = cβ 00M
0Π−1Mβ0c

0 + cβ 00M
0Π−1Qσ0c0 + cσ00Q

0Π−1Mβ0c
0

+cσ00Q
0Π−1Qσ0c0.
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