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Abstract

Distances in the well known fuzzy c-means algorithm of Bezdek
(1973) are measured by the squared Euclidean distance. Other dis-
tances have been used as well in fuzzy clustering. For example,
Jajuga (1991) proposed to use the L1-distance and Bobrowski and
Bezdek (1991) also used the L∞-distance. For the more general case
of Minkowski distance and the case of using a root of the squared
Minkowski distance, Groenen and Jajuga (2001) introduced a ma-
jorization algorithm to minimize the error. One of the advantages
of iterative majorization is that it is a guaranteed descent algorithm,
so that every iteration reduces the error until convergence is reached.
However, their algorithm was limited to the case of Minkowski pa-
rameter between 1 and 2, that is, between the L1-distance and the
Euclidean distance. Here, we extend their majorization algorithm to
any Minkowski distance with Minkowski parameter greater than (or
equal to) 1. This extension also includes the case of the L∞-distance.
We also investigate how well this algorithm performs and present an
empirical application.
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1 Introduction

Since Ruspini (1969) first proposed the idea of fuzzy partitions, fuzzy clus-
tering has grown to be an important tool for data analysis and modelling.
Especially after the introduction of the fuzzy c-means algorithm (Dunn, 1973;
Bezdek, 1973), objective function-based fuzzy clustering has received much
attention from the scientific community as well as the practitioners of fuzzy
set theory (Bezdek & Pal, 1992; Yang, 1993; Baraldi & Blonda, 1999a, 1999b;
Höppner, Klawonn, Kruse, & Runkler, 1999). Consequently, fuzzy clustering
has been applied extensively for diverse tasks such as pattern recognition,
data analysis, data mining, image processing, and engineering systems de-
sign. Objective function-based fuzzy clustering has also become one of the
key techniques in fuzzy modelling, where they are used for partitioning the
feature space from which the rules of a fuzzy system can be derived (Babuška,
1998).

In general, objective function-based fuzzy clustering algorithms partition
a data set into overlapping groups by minimizing an objective function de-
rived from the distance between the cluster prototypes and the data points
(or objects). The clustering results are largely influenced by how this distance
is computed, since it determines the shape of the clusters. The success of
fuzzy clustering in various applications may depend very much on the shape
of the clusters. As a result, there is a significant amount of literature on
fuzzy clustering, which is aimed at investigating the use of different distance
functions in fuzzy clustering, leading to different cluster shapes.

One way of influencing the shape of the clusters is to consider prototypes
with a geometric structure. The fuzzy c-varieties (FCV) algorithm uses linear
subspaces of the clustering space as prototypes (Bezdek, Coray, Gunderson,
& Watson, 1981b), which is useful for detecting lines and other linear struc-
tures in the data. The fuzzy c-elliptotypes (FCE) algorithm takes convex
combinations of fuzzy c-varieties prototypes with fuzzy c-means prototypes
to obtain localized clusters (Bezdek, Coray, Gunderson, & Watson, 1981a).
Kaymak and Setnes (2002) proposed using volumes in the clustering space
as the cluster prototypes.

Another way for influencing the shape of the clusters is modifying the
distance measure that is used in the objective function. Distances in the
well known fuzzy c-means algorithm of Bezdek (1973) are measured by the
squared Euclidean distance. Gustafson and Kessel (1979) use the quadratic
Mahanalobis norm to measure the distance. Jajuga (1991) proposed to use
the L1-distance and Bobrowski and Bezdek (1991) also used the L∞-distance.
Further, Hathaway, Bezdek, and Hu (2000) studied the Minkowski semi-norm
as the dissimilarity function.
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In this paper, we consider fuzzy clustering with the more general case of
the Minkowski distance and the case of using a root of the squared Minkowski
distance. The Minkowski norm provides a concise, parametric distance func-
tion that generalizes many of the distance functions used in the literature.
The advantage is that mathematical results can be shown for a whole class
of distance functions, and the user can adapt the distance function to suit
the needs of the application by modifying the Minkowski parameter. By con-
sidering the additional case of the roots of the squared Minkowski distance,
we introduce an extra parameter that can be used to control the behaviour
of the clustering algorithm with respect to outliers. This provides an addi-
tional way of dealing with outliers, which is different than the “noise cluster”
approach proposed in Dave (1991).

Our analysis follows the approach that Groenen and Jajuga (2001) in-
troduced previously. Minimization of the objective function is partly done
by iterative majorization. One of the advantages of iterative majorization is
that it is a guaranteed descent algorithm, so that every iteration reduces the
objective function until convergence is reached. The algorithm in Groenen
and Jajuga (2001) was limited to the case of a Minkowski parameter be-
tween 1 and 2, that is, between the L1-distance and the Euclidean distance.
Here, we extend their majorization algorithm to any Minkowski distance
with Minkowski parameter greater than (or equal to) 1. This extension also
includes the case of the L∞-distance. We also explore the behaviour of our
algorithm with an illustrative example using real-world data.

The outline of the paper is as follows. We expose the formalization of the
clustering problem in Section 2. The majorizing algorithm for fuzzy c-means
with Minkowski distances is given in Section 3. We discuss in Section 4
the behaviour of our algorithm by using an illustrative example based on
empirical data concerning attitudes about the Internet. Finally, conclusions
are given in Section 5.

2 Formalization

In this paper, we focus on the fuzzy clustering problem that uses a root of the
squared Minkowski distance. This problem can be formalized by minimizing
the objective (or loss) function

L(F,V) =
n∑

i=1

K∑

k=1

f s
ikd

2λ
ik (V) (1)
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Table 1: Special distances obtained by specific choice of λ and p and some
of their properties.

p λ Distance Assumed cluster shape Robust
1 1.0 Squared L1 box/diamond no
1 0.5 L1 box/diamond yes
2 1.0 Squared Euclidean circular no
2 0.5 Unsquared Euclidean circular yes
∞ 1.0 Squared Dominance box no
∞ 0.5 Dominance box yes

under the constraints

0 ≤ fik ≤ 1, i = 1, ..., n k = 1, ..., K∑K
k=1 fik = 1, i = 1, ..., n

(2)

where n is the number of objects, K is the number of fuzzy clusters, fik is the
membership grade of object i in fuzzy cluster k, s is the weighting exponent
larger than 1. The distance between object i given by the i-th row of the
n ×m data matrix X and fuzzy cluster k of the K ×m cluster coordinate
matrix V is given by

d2λ
ik (V) =

(
m∑

j=1
|xij − vkj|p

)2λ/p

, 1 ≤ p ≤ ∞, 0 ≤ λ ≤ 1 (3)

where λ is the power of the squared Minkowski distance d2λ
ik (V) with 1 ≤

p ≤ ∞.
The introduction of the power λ allows to control the loss function against

outliers. For large λ, e.g., λ = 1, outliers may dominate the loss function,
whereas the loss function will be more robust if λ is small.

The use of Minkowski distances allows to vary the assumptions of the
shape of the clusters by varying p. The most often used value is p = 2 that
assumes a circular cluster shape. Using p = 1 assumes that the clusters are in
the shape of a (rotated) square in two dimensions or a diamond like shape in
three or more dimensions. For p = ∞, the clusters are assumed to be in the
form of a box with sides parallel to the axes. Both p = 1 and p = ∞ can be
used in cases where the data structures have “boxy” shapes, i.e., shapes with
sharp “edges” (Bobrowski & Bezdek, 1991). A summary of combinations of
λ and p and some properties of the distances are presented in Table 1 (taken
from Groenen and Jajuga 2001).

Groenen and Jajuga (2001) note that (1) has several known fuzzy clus-
tering models as a special case. For example, for p = 2 and λ = 1, the
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important member of fuzzy isodata family is obtained that corresponds to
squared Euclidean distances (while assuming the identity metric). A fuzzy
clustering objective function that is robust against outliers can be obtained
by choosing λ = 1/2 and p = 1 so that the L1-norm is used. Note that this
choice implicitly assumes a “boxy” shape of the clusters. A robust version
of fuzzy clustering with a circular shape can be specified by λ = 1/2 and
p = 2 that implies the unsquared Euclidean distance. Thus, λ takes care
of robustness issues and p of the shape of the clusters. Dodge and Rousson
(1998) named the cluster centroids for λ = 1/2 and p = 1 ‘L1-medians’, for
λ = 1 and p = 1 ‘L1-means’, for λ = 1/2 and p = 2 ‘L2-medians’, and for
λ = 1 and p = 2 the well known ‘L2-means’.

3 The Majorizing Algorithm for Fuzzy c-

means with Minkowski Distances

Depending on the particular function, the minimization method of itera-
tive majorization has some nice properties. The most important one is that in
each iteration of the iterative majorization the loss function is decreased until
this value converges. Such guaranteed descent methods are useful because no
step in the wrong direction can be taken. Note that this property does not
imply that a global minimum is found unless the function exhibits a special
property such as convexity. Some general papers on iterative majorization
are De Leeuw (1994), Heiser (1995), Lange, Hunter, and Yang (2000), Kiers
(2002), and Hunter and Lange (2004); an introduction can be found in Borg
and Groenen (2005).

The majorization algorithm of Groenen and Jajuga (2001) worked for all
1 ≤ p ≤ 2. Below we expand their majorization algorithm to the situation
of all p > 1. Each iteration of their algorithm consists of two steps: (1)
update the cluster memberships F for fixed centers V and (2) update V for
fixed F. For Step (2) we use majorization. Below, we start by explaining
some basic ideas of iterative majorization. Then, the update of the cluster
memberships is given. This is followed by some derivations for the update of
the cluster centers V in the case of 1 ≤ p ≤ 2. Then, the update is derived
for 2 < p < ∞ and a special update for the case of p = ∞.

3.1 Iterative Majorization

Iterative majorization can be seen as a gradient method with a fixed step
size. However, iterative majorization can also be applied to functions that
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are at some points nondifferentiable. Central to iterative majorization is the
use of an auxiliary function similar to the first order Taylor expansion used
as an auxiliary function in a gradient method and second order expansion
for Newton’s method. The unique feature of the auxiliary function in itera-
tive majorization—the so-called majorizing function— is that it touches the
original function or is located above it. In contrast, the auxiliary functions of
the gradient method or Newton’s method can be partially below and above
the original function.

Let the original function be presented by ϕ(X), the majorizing function
by ϕ̂(X,Y), where Y is the current known estimate. Then, a majorizing
function has to fulfil the following three requirements: (1) ϕ̂(X,Y) is a more
simple function in X than ϕ(X), (2) it touches ϕ(X) at the known supporting
point Y so that ϕ(Y) = ϕ̂(Y,Y), and (3) ϕ̂(X,Y) is never smaller than
ϕ(X), that is, ϕ(X) ≤ ϕ̂(X,Y) for all X. Often, the majorizing function is
either linear or quadratic.

To see how a single iteration reduces ϕ(X), consider the following. Let
Y be some known point and let the minimum of the majorizing function
ϕ̂(X,Y) be given by X+. Note that for a majorizing algorithm to be suffi-
ciently fast, it should be easy to compute X+. Because the ϕ̂(X,Y) is always
larger than or equal to the ϕ(X), we must have ϕ(X+) ≤ ϕ̂(X+,Y). This
property is essential for the so-called sandwich inequality, that is, the chain

ϕ(X+) ≤ ϕ̂(X+,Y) ≤ ϕ̂(Y,Y) = ϕ(Y) (4)

that proves that the update X+ never increase the original function. For the
next iteration, we simply set Y equal to X+ and compute a new majorizing
function. For functions that are bounded from below or are sufficiently con-
strained, the majorization algorithm always gives a convergent sequence of
nonincreasing function values, see, for example, Borg and Groenen (2005).

One property that we use here is that if a function consists of a sum
of functions and that each of these functions can be majorized, then the
sum of the majorizing functions also majorizes the original functions. For
example, suppose that ϕ(X) =

∑
i ϕi(X) and ϕi(X) ≤ ϕ̂i(X,Y) then ϕ(X) ≤∑

i ϕ̂i(X,Y).

3.2 Updating the Cluster Membership

For fixed cluster centers V, Groenen and Jajuga (2001) derive the update of
the cluster memberships F as

fik =

(
d2λ

ik (V)
)−1/(s−1)

∑K
l=1

(
d2λ

il (V)
)−1/(s−1)

(5)
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for fixed V and s > 1, see also Bezdek (1973). These memberships are
derived by taking the Lagrangian function, setting the derivatives equal to
zero, and solving the equations.

There are two special cases. The first one occurs if s is large. The larger s,

the closer −1/(s−1) approaches zero. As a consequence
(
d2λ

ik (V)
)−1/(s−1) ≈ 1

for all ik so that update (5) will yield fik ≈ 1/K. Numerical accuracy can
produce equal cluster memberships, even for not too large s, such as, s = 10.
If this happens for all fik, then all cluster centers collapse into the same
point and the algorithm gets stuck. Therefore, in practical applications s
should be chosen quite small, say, s ≤ 2. The second special case occurs if
s approaches 1 from above. In that case, update (5) approaches the update
for hard clustering, that is, setting

fik =

{
1 if dik = minl dil

0 if dik 6= minl dil,
(6)

where it is assumed that minl dil is unique.

3.3 Updating the Cluster Coordinates

We follow the majorization approach of Groenen and Jajuga (2001) for find-
ing an update of the cluster coordinates V for fixed F. Our loss function
L(F,V) may be seen as a weighted sum of the λth root of squared Minkowski
distances. Because the weights f s

ik are nonnegative, it suffices for now to con-
sider d2λ

ik (V), the root of squared Minkowski distances. Let us focus on the
root for a moment. Groenen and Heiser (1996) proved that for root λ of a,
with 0 ≤ λ ≤ 1, a ≥ 0 and b > 0, the following majorization inequality holds:

aλ ≤ (1− λ)bλ + λbλ−1a, (7)

with equality if a = b. Using (7), we can obtain the majorizing inequality

d2λ
ik (V) ≤ (1− λ)d2λ

ik (W) + λd
2(λ−1)
ik (W)d2

ik(V), (8)

with W is the estimate of V from the previous iteration and we assume for
the moment that dik(W) > 0. Thus, the root λ of a squared Minkowski
distance can be majorized by a constant plus a positive weight times the
squared Minkowski distance.

The next step is to majorize the squared Minkowski distance. To do so,
we distinguish three cases: (a) 1 ≤ p ≤ 2, (b) 2 < p < ∞, and (c) p = ∞.
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For the case of 1 ≤ p ≤ 2, Groenen and Jajuga (2001) use Hölder’s
inequality to prove that

d2
ik(V) ≤

∑m
j=1(xij − vkj)

2|xij − wkj|p−2

dp−2
ik (V)

=
m∑

j=1

a
(1≤p≤2)
ijk (xij − vkj)

2,

=
m∑

j=1

a
(1≤p≤2)
ijk v2

kj − 2
m∑

j=1

b
(1≤p≤2)
ijk vkj + c

(1≤p≤2)
ik (9)

where

a
(1≤p≤2)
ijk =

|xij − wkj|p−2

dp−2
ik (V)

,

b
(1≤p≤2)
ijk = a

(1≤p≤2)
ijk xij,

c
(1≤p≤2)
ik =

m∑

j=1

a
(1≤p≤2)
ijk x2

ij.

For p ≥ 2, (9) is reversed, so that it cannot be used for majorization.
However, Groenen, Heiser, and Meulman (1999) have developed majorizing
inequalities for squared Minkowski distances with 2 < p < ∞ and p =
∞. We first look at 2 < p < ∞. They proved that the Hessian of the
squared Minkowski distance always has the largest eigenvalue smaller than
2(p−1). By numerical experimentation they even found a smaller maximum
eigenvalue of (p − 1)21/p but they were unable to prove this. Knowing an
upper bound of the largest eigenvalue of the Hessian is enough to derive
a majorizing inequality if it is combined with the requirement of touching
at the supporting point (that is, at this point the gradients of the squared
Minkowski distance and the majorizing function must be equal and the same
must hold for their function values).

This majorizing inequality can be derived as follows. For notational sim-
plicity, we express the squared Minkowski distance as d2(t) = (

∑
j |tj|p)2/p.

The first derivative ∂d2(t)/∂tj can be expressed as 2tj|tj|p−2/dp−2(t). Know-
ing that the largest eigenvalue of the Hessian of d2(t) is bounded by 2(p−1),
a quadratic majorizing can be found (Groenen et al., 1999) of the form

d2(t) ≤ 4(p− 1)
m∑

j=1

t2j − 2
m∑

j=1

tjbj + c

with

bj = 4(p− 1)uj − 1

2

∂d2(u)

∂uj

= uj

[
4(p− 1)− |uj|p−2

dp−2(u)

]
,
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c = d2(u) + 4(p− 1)
m∑

j=1

u2
j −

m∑

j=1

uj
∂d2(u)

∂uj

= 4(p− 1)
m∑

j=1

u2
j − d2(u),

and u the known current estimate of t. Substituting tj = xij − vkj and
uj = xij − wkj gives the majorizing inequality

d2
ik(V) ≤ 4(p− 1)

m∑

j=1

(xij − vkj)
2

−2
m∑

j=1

(xij − vkj)(xij − wkj)[4(p− 1)− |xij − wkj|p−2/dp−2
ik (W)]

+4(p− 1)
m∑

j=1

(xij − wkj)
2 − dik(W).

Some rewriting yields

d2
ik(V) ≤ a(2<p<∞)

m∑

j=1

v2
kj − 2

m∑

j=1

b
(2<p<∞)
ijk vkj +

m∑

j=1

c
(2<p<∞)
ijk , (10)

where

a(2<p<∞) = 4(p− 1)

b
(2<p<∞)
ijk = a(2<p<∞)wkj − (xij − wkj)|xij − wkj|p−2/dp−2

ik (W)

c
(2<p<∞)
ik = a(2<p<∞)

m∑

j=1

w2
kj − d2

ik(W) + 2
m∑

j=1

xij(xij − wkj)|xij − wkj|p−2/dp−2
ik (W).

If p gets larger, a(2<p<∞) also becomes larger, thereby making the majorizing
function steeper. As a result, the steps taken per iteration will be smaller. For
the special case of p = ∞, Groenen et al. (1999) also provided a majorizing
inequality. This one can be (much) faster than using (10) with a large p. It
depends on the difference between the two largest values of |xij − wkj| over
the different j.

Let us for the moment focus on d2(t) again. And let ϕj be an index that
orders the values |tj| decreasingly, so that |tϕ1| ≤ |tϕ2| ≤ . . . ≤ |tϕm |. The
majorizing function for p = ∞ becomes

d2(t) ≤ a
m∑

j=1

t2j − 2
m∑

j=1

tjbj + c

with

a =





|uϕ1|
|uϕ1| − |uϕ2| if |uϕ1| − |uϕ2| > ε

ε + |uϕ1|
ε if |uϕ1| − |uϕ2| ≤ ε
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bj =





a
|uϕ2|uj

|uj| if j = ϕ1

auj if j 6= ϕ1

c = d2(u) + 2
∑

j

ujbj − a
∑

j

u2
j .

Note that the definition of a for |uϕ1|−|uϕ2| ≤ ε takes care of ill conditioning,
that is, values of a getting too large. Strictly speaking, majorization is not
valid anymore, but for small enough ε the monotone convergence is retained.

Backsubstitution of tj = xij− vkj and uj = xij−wkj gives the majorizing
inequality

d2
ik(V) ≤ a

(p=∞)
ik

∑

j

(xij − vkj)
2 − 2

∑

j

(xij − vkj)b
(p=∞)
ijk + c

(p=∞)
ik

= a
(p=∞)
ik

∑

j

v2
kj − 2

∑

j

vkjb
(p=∞)
ijk + c

(p=∞)
ik (11)

where

a
(p=∞)
ik =





|xiϕ1 − wkϕ1|
|xiϕ1 − wkϕ1| − |xiϕ2 − wkϕ2| if |xiϕ1 − wkϕ1| − |xiϕ2 − wkϕ2| > ε,

ε + |xiϕ1 − wkϕ1|
ε if |xiϕ1 − wkϕ1| − |xiϕ2 − wkϕ2| ≤ ε,

b
(p=∞)
ijk =





a
(p=∞)
ik

[
xij − |xiϕ2 − wkϕ2|(xiϕ1 − wkϕ1)

|xiϕ1 − wkϕ1|
]

if j = ϕ1,

a
(p=∞)
ik wkj if j 6= ϕ1,

c
(p=∞)
ik = d2

ik(W)− 2
∑

j

b
(p=∞)
ijk (xij − wkj)−

∑

j

a
(p=∞)
ik w2

kj + 2
∑

j

a
(p=∞)
ik x2

ij.

Recapitulating, the loss function is a weighted sum of the root of the
squared Minkowski distance. The root can be majorized by (8) that yields
a function of squared Minkowski distances. For the case 1 ≤ p ≤ 2, (9)
shows how the squared Minkowski distance can be majorized by a quadratic
function in V (see, Figure 1), (10) how this can be done for 2 < p < ∞,
and (11) for p = ∞. These results can be combined to obtain the following
majorizing function for L(F,V), that is,

L(F,V) ≤ λ
m∑

j=1

K∑

k=1

v2
kj

n∑

i=1

aijk − 2λ
m∑

j=1

K∑

k=1

vkj

n∑

i=1

bijk + c +
n∑

i=1

K∑

k=1

cik,(12)

where

aijk =





f s
ikd

2(λ−1)
ik (W)a

(1≤p≤2)
ijk if 1 ≤ p ≤ 2

f s
ikd

2(λ−1)
ik (W)a(2<p<∞) if 2 < p < ∞

f s
ikd

2(λ−1)
ik (W)a

(p=∞)
ik if p = ∞
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bijk =





f s
ikd

2(λ−1)
ik (W)b

(1≤p≤2)
ijk if 1 ≤ p ≤ 2

f s
ikd

2(λ−1)
ik (W)b

(2<p<∞)
ijk if 2 < p < ∞

f s
ikd

2(λ−1)
ik (W)b

(p=∞)
ijk if p = ∞

cik =





f s
ikd

2(λ−1)
ik (W)c

(1≤p≤2)
ik if 1 ≤ p ≤ 2

f s
ikd

2(λ−1)
ik (W)c

(2<p<∞)
ik if 2 < p < ∞

f s
ikd

2(λ−1)
ik (W)c

(p=∞)
ik if p = ∞

c =
n∑

i=1

K∑

k=1

f s
ik(1− λ)d2λ

ik (W).

It is easily recognized that (12) is a quadratic function in the cluster
coordinate matrix V that reaches its minimum for

v+
kj =

∑n
i=1 bijk∑n
i=1 aijk

. (13)

3.4 The Majorization Algorithm

The majorization algorithm can be summarized as follows.

1. Given a data set X. Set 0 ≤ λ ≤ 1, 1 ≤ p ≤ ∞, and s ≥ 1. Choose ε,
a small positive constant.

2. Set the membership grades F = F0 with 0 ≤ f 0
ik ≤ 1 and

∑K
k=1 f 0

ik = 1
and the cluster coordinate matrix V = V0. Compute Lprev = L(F,V).

3. Update F by (5) if s > 1 or by (6) if s = 1.

4. Set W = V. Update V by (13).

5. Stop if (Lprev − L(F,V))/L(F,V)) < ε.

6. Set Lprev = L(F,V) and go to Step 3.

4 Internet Attitudes

To show how fuzzy clustering can be used in practice, we apply it to an
empirical data set. Our data set is based on a questionnaire on attitudes
towards the Internet. It consists of evaluations of 22 statements about the
Internet by 194 students gathered around 2002 before the wide availability

11



a.

b.

c.

Figure 1: The original function d2(t) and the majorizing functions for p = 1,
p = 3, and p = ∞ using supporting point u = [2,−3]′.
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Table 2: Results of fuzzy clustering for internet data set using K = 3.

Cluster volumes
λ s p L(F,V) Cluster 1 Cluster 2 Cluster 3
.5 1.2 1 4087 1.315 1.411 1.267
.5 1.2 2 1075 1.227 1.326 1.268
.5 1.2 ∞ 421 1.355 1.408 1.341
.5 1.5 1 2983 0.965 0.965 0.979
.5 1.5 2 773 0.920 0.920 0.920
.5 1.5 ∞ 310 0.973 0.973 0.973
1 1.2 1 103115 1.281 1.363 1.236
1 1.2 2 7358 1.177 1.328 1.173
1 1.2 ∞ 1123 1.257 1.588 1.284
1 1.5 1 83101 0.965 0.997 0.979
1 1.5 2 5587 0.920 0.920 0.920
1 1.5 ∞ 878 0.977 0.977 0.977

of broadband Internet access. The statements were evaluated using a seven-
point Likert scale, ranging from 1 (completely disagree) to 7 (completely
agree).1

The respondents are clustered using the fuzzy clustering algorithm to
study their attitudes towards the Internet. We use K = 3. The convergence
criterion ε of the majorization algorithm was set to 10−8. The monotone
convergence of the majorization algorithm generally leads to a local mini-
mum. However, depending on the data and the different settings of p, s, and
λ several local minima may exist. Therefore, in every analysis, we applied
10 random starts and report the best one. We tried three different values of
p (1, 2,∞) to examine the cluster shape, two values of s (1.2, 1.5) to study
the sensitivity for the fuzziness parameter s, and two values for λ (.5, 1.0) to
check the sensitivity for outliers.

Table 2 shows some results for this data set using different values for λ, s,
and p. The final value of the loss function and the volumes of the three clus-
ters are calculated in every instance. As there is no natural standardization
for L(F,V), the values can only be used to check for local minima within a
particular choice of λ, s, and p.

The labelling problem of clusters refers to possible permutations of the
clusters among different runs. To avoid this problem, we took the V obtained

1We would like to thank Peter Verhoef for making these data available.
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by λ = 1, p = 1, and s = 1.2 as a target solution V∗ and tried all permutation
matrices P of the rows of V (with V(Perm) = PV) for other combinations
of λ, p, and s and choose the one that minimizes the sum of the squared
residuals

∑

k

∑

j

(v∗kj − v
(Perm)
kj )2 = ‖V∗ −PV‖2. (14)

The permutation P that minimizes (14) is also applied to the cluster mem-
berships, so that F(Perm) = FP′. By using this strategy, we assume that the
clusters are the same among the different analyses.

To measure the size of a cluster, we consider its volume by computing the
cluster covariance matrix with elements

Gk =

∑n
i=1 f s

ik(xi − vk)
′(xi − vk)∑n

i=1 f s
ik

,

where xi is the 1 × j row vector of row i of X and vk row i of V. Then,
as a measure of the volume of cluster k one can use det(Gk). However,
we take det(Gk)

1/m, which can be interpreted as the geometric mean of the
eigenvalues of Gk and has the advantage that it is not sensitive to m. Table
2 shows that for s = 1.5 the cluster volumes are all the same with a slight
difference among the clusters of p = 1. For s = 1.5, Cluster 2 is generally
the largest and the other two have about the same size. The more robust
setting of λ = .5, generally shows slightly larger clusters, but the effect does
not seem large. Therefore, outliers do not seem to be a problem of this data
set.

To interpret the clusters, we have to look at V. As it is impossible to
show the clusters in a 22-dimensional space, they are represented by parallel
coordinates (Inselberg, 1981, 1997). Every cluster k defines a line through the
cluster centers vkj, see Figure 2 for s = 1.2 and λ = 1. Note that the order of
the variables is unimportant. This figure can be interpreted by considering
the variables that have different scores for the clusters. The patterns for
p = 1, 2, and ∞ are similar and p = 1 shows them the clearest.

For p = 1 and λ = 1, each cluster center is a (weighted) median of a
cluster. Because all elements of the internet data set are integers, the cluster
centers necessarily have integer values. The left most panel in Figure 2 shows
the parallel coordinates for p = 1. The solid line represents Cluster 1 and is
characterized by respondents saying that the Internet is easy, safe, addictive,
and who seem to form an active user community (positive answers to variables
16 to 22). However, the strongest difference of Cluster 1 to the others is given
by their total rejection of regulation of content on the Internet. We call this
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Disagree

strongly

Neutral Agree

strongly

Disagree

strongly

Neutral Agree

strongly

Disagree

strongly

Neutral Agree

strongly

1. Paying using Internet is safe

2. Surfing the Internet is easy

3. Internet is unreliable

4. Internet is slow
5. Internet is user-friendly

6. Internet is the future’s means of communication

7. Internet is addictive

8. Internet is fast

9. Sending personal data using the Internet is unsafe
10. The prices of Internet subscriptions are high

11. Internet offers many possibilities for abuse

12. The costs of surfing are high

13. Internet offers unbounded opportunities
14. Internet phone costs are high

15. The content of web sites should be regulated

16. Internet is easy to use

17. I like surfing

18. I often speak with friends about the Internet
19. I like to be informed of important new things

20. I always attempt new things on the Internet first

21. I regularly visit websites recommended by others

22. I know much about the Internet

p = 1 p = 2 p = ∞

Figure 2: Parallel coordinates representation of clusters with λ = 1, p = 1,
and s = 1.2. The lines correspond to clusters 1 (solid line), 2 (dashed line),
and 3 (dotted line).

cluster the experts. Cluster 2 (the dashed line) refers to respondents that are
not active users (negative answers to variables 18 to 22), find the Internet not
user friendly, unsafe to pay, not addictive, and they are neutral on the issue
of regulation of the content of websites. This cluster is called the novices.
Cluster 3 looks in some respects like Cluster 1 (surfing is easy, paying is not
so safe) but those respondents do not find the Internet addictive, are neutral
on the issue of the speed of the Internet connection, and seem to be not such
active users as those of Cluster 1. They are mostly characterized by finding
the costs of Internet high and allowing for some content regulation. This
cluster represents the cost-aware Internet user.

As we are dealing with three clusters and the cluster memberships sum to
one, they can be plotted in a triangular 2D scatterplot—called a triplot—as in
Figure 3. To reconstruct the fuzzy memberships from this plot, the following
should be done. For Cluster 1, one has to project a point along a line parallel
to the axis of Cluster 3 onto the axis of Cluster 1. We have done this with
dotted lines for respondent 112 for the case of p = 1, s = 1.2, and λ = 1.
We can read from the plot that this respondent has fuzzy memberships fi1

of about .20. Similarly, for Cluster 2, we have to draw a line horizontally
(parallel to the axis of Cluster 1) and project it onto the axis of Cluster 2
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Figure 3: Triplot showing the cluster membership in F for each respondent
for s = 1.2, 1.5, λ = 1, and p = 1, 2,∞.

showing fi2 of about .65. Finally, fi3 is obtained by projecting onto the axis
of Cluster 3 along a line parallel to Cluster 2, yielding fi3 of about .15. In
four decimals, these values are .2079, .6457, and .1464. Thus, a point located
close to a corner implies that this respondent has almost solely assigned to
this cluster. Also, a point exactly in the middle of the triangle implies an
equal memberships of 1/3 to all three clusters. Finally, points that are on
a straight line from a corner orthogonal to a cluster axis have equal cluster
memberships of two clusters. For the case of p = ∞, Figure 3 shows a vertical
line (starting in Cluster 2 and orthogonal to the Cluster 1 axis) implying that
the memberships for Clusters 1 and 3 are the same for those respondents.

For the choice p = 2 and s = 1.5 and p = 2 or ∞, all clusters centers
are in close proximity to each other in the center. In other words, all fuzzy
memberships are about 1/3 and consequently the three cluster centers are
the same. Therefore, s = 1.5 is too large for p = 2 or ∞. This finding is
an indication of overlapping clusters. For a value of s = 1.2, the triplot for
p = 1 shows more pronounced clusters because most of the respondents are
in the corners. For p = 2 and s = 1.2, the memberships are more evenly
distributed over the triangle although many respondents are still located in
the corners. For p = ∞ and s = 1.2, some respondents are on the vertical line
(combining equal memberships to Clusters 1 and 3 for varying membership
of Cluster 2). The points that are located close to the Cluster 1 axis at .5
have a membership of .5 for Clusters 1 and 3, those close to .5 at the Cluster
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Figure 4: Triplot showing the cluster membership in F for each respondent
for s = 1.2, 1.5, λ = .5, and p = 1, 2,∞..

2 axis have .5 for Clusters 1 and 2, those close to the Cluster 3 axis at .5
have .5 for Clusters 2 and 3.

For the robust case of λ = 1/2, the triplots of the fuzzy memberships are
given in Figure 4. One of the effects of setting λ = 1/2 seems to be that the
fik are more attracted to the center and, hence, respondents are less attracted
to a single cluster than in the case of λ = 1. Again, for s = 1.5 and p = 2
and ∞, all clusters merge into one cluster and the parallel coordinates plots
of the clusters would show a single line. For s = 1.2, the parallel coordinates
plots of the clusters resemble Figure 2 reasonably well. For s = 1.2 and
p = 2, the lines in the parallel coordinates plot are closer together than for
λ = 1.

For this data set, the clusters cannot be well separated because for a
relatively small s of 1.5, the clusters coincide (except for p = 1). The cluster
centers seem to be better separated when p is small, especially for p = 1.
The fuzziness parameter s needs to be chosen small in this data set to avoid
clusters collapsing into a single cluster. The effect of varying λ seems to be
that the cluster memberships are less extreme for λ = 1/2 than for λ = 1.
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5 Conclusions

We have considered objective function based fuzzy clustering algorithms us-
ing a generalized distance function. In particular, we have studied the exten-
sion of the fuzzy c-means algorithm to the case of the parametric Minkowski
distance function and to the case of the root of the squared Minkowski dis-
tance function. We have derived the optimality conditions for the member-
ship values from the Lagrangian function. For cluster centers, however, we
have used iterative majorization to derive the optimality conditions. One of
the advantages of iterative majorization is that it is a guaranteed descent
algorithm, so that every iteration reduces the objective function until con-
vergence is reached. We have derived suitable majorization functions for the
distance function that we study. Extending results from Groenen and Jajuga
(2001), we have given a majorization algorithm for any Minkowski distance
with Minkowski parameter greater than (or equal to) 1. This extension also
included the case of the L∞-distance and the roots of the squared Minkowski
distance.

By adapting the Minkowski parameter p, the user influences the distance
function to take specific cluster shapes into account. We have also introduced
an additional parameter λ for computing the roots of the squared Minkowski
distance. This parameter can be used to protect the clustering algorithm
against outliers. Hence, more robust clustering results can be obtained.

We have illustrated some key aspects of the behaviour of our algorithm
using empirical data regarding attitudes about the Internet. With this par-
ticular data set, we have observed extremely overlapping clusters, already
with a fuzziness parameter of s = 1.5. This finding deviates from the general
practice in fuzzy clustering, where this parameter is often selected equal to
2. Apparently, the choice of s and p has to be done with some care for a
given data set.
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