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Abstract

This paper deals with large-scale crew scheduling problems arising
at the Dutch railway operator, Netherlands Railways (NS). NS oper-
ates about 30,000 trains a week. All these trains need a driver and a
certain number of conductors. No available crew scheduling algorithm
can solve such huge instances at once. A common approach to deal
with these huge weekly instances, is to split them into several daily
instances and solve those separately. However, we found out that this
can be rather inefficient.

In this paper, we discuss several methods to partition huge in-
stances into several smaller ones. These smaller instances are then
solved with the commercially available crew scheduling algorithm TURNI.
We compare these partitioning methods with each other, and we re-
port several results where we applied different partitioning methods
after each other. The results show that all methods significantly im-
prove the solution. With the best approach, we were able to cut down
crew costs with about 2% (about 6 million euro per year).

Keywords: crew scheduling, large-scale optimization, partitioning
methods
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1 Introduction

Netherlands Railways (NS) is the main Dutch railway operator of passenger
trains, and it operates about 4,700 trains on a working day in the new 2007
timetable effective from December 10, 2006. These were about 200 trains
more than in the previous timetable. All these trains need a driver and
several conductors (depending on the length of the train). At the end of
2006, NS employed about 2,700 drivers and 3,000 conductors. Since it was
expected a year ahead that this amount of crew was not sufficient to operate
the new timetable, further optimization of the crew schedules was necessary.
This resulted in the research described in this paper.

Because a crew member can be relieved at all major stations, every train
drive results in about 3 trips on average. A trip is here defined as the part of
a train drive that has to be assigned to one crew member. Crew members are
either driver or conductor. A typical crew scheduling instance of NS related
to a single working day requires assigning about 15,000 timetabled trips to
1,000+ duties for drivers and about 18,000 timetabled trips to 1,300+ duties
for conductors. However, many labor rule constraints are defined per week.
Therefore, it could be attractive to solve the problem for a complete week
instead for each day individually. As a consequence, this results in huge crew
scheduling instances.

Most literature describing Operations Research (OR) models and tech-
niques to solve crew scheduling problems deal with the airline industry, see
e.g. Barnhart et al. (1998), Desrosiers et al. (1995) and Hoffman & Padberg
(1993). In the railway industry the sizes of the crew scheduling instances are,
in general, a magnitude larger than in the airline industry. Moreover, crew
can be relieved during the drive of a train resulting in much more trips per
duty than typical in airlines. In other words, the combinatorial explosion
is much higher. The latter has made the application of these models in the
railway industry prohibitive until recently. Developments in hardware and
software enabled the railway industry to use these models nowadays as well,
see Caprara et al. (1999b); Kohl (2003); Kroon & Fischetti (2001); Fores
et al. (2001), among others. Kohl (2003) claims to solve the largest Crew
Scheduling Problem (CSP) in the world, namely the instance for one day of
the German long-distance traffic. The instances that we will consider in this
paper are at least of the same magnitude.

As described in Abbink et al. (2005), due to the complex set of labor
rules, automated support in the crew scheduling process is absolutely neces-
sary. Therefore, NS has been using the automated crew scheduling algorithm
TURNI since 2000. TURNI was developed by Double-Click sas, which has
customized it several times to cope with the complex rules that govern NS
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crew schedules. For NS, the software is considered to be a black box where
data are inserted and duties are returned. During the years of using the
software, we got the impression that although the system was capable of
handling quite large instances, the results could be improved using the char-
acteristics of our problem. This was based on two observations. The first
observation is that, as explained in the example below, the global constraints
are to be validated on a weekly basis. The original method used a static par-
titioning of the complete problem into separate days of the week. Before a
solution was computed an estimate was made on the effect the sub-problem
would have on the complete problem. We observed that planning for a com-
plete week and taking into account the real week constraint could lead to a
better overall solution. The second observation was that in some cases the
solution was improved if, for instance, the solution for one crew base was
re-scheduled. For this the duties and tasks for that base were given to the
TURNI software and the solution for this smaller problem was better than
the original solution. This also indicated that solving the larger instance was
becoming difficult for the current implementation.

To explain the possible benefits of validating the global constraints on a
weekly basis, we present Figure 1. In this figure, a few possible duties are
plotted. They are assigned to a certain base (A or B) and have a certain
length. The vertical line indicates the moment in the night where no trains
are operated. For each individual day all kind of averages are calculated.
However, the rules deal with averages over the whole week. E.g. the maxi-
mum average duration of the duties for a crew base is 8:00 hours. Originally,
based on many years of planner’s experience, this was replaced by a limit of
7:40 hours on the average duty duration of a working day and a limit of 9:30
hours in the weekend. In this way the global average would be approximately
8:00 hours. However, it is obvious that applying these bounds in a rigid way
does not guarantee optimality.

Figure 1: Duties example
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In this paper we will describe how we applied new ways of partitioning,
based on the two observations, in order to improve the solution of the CSP.
The remainder of this paper is organized as follows. The concept of crew
scheduling at NS is explained in more detail in Section 2. We will describe
the characteristics of the problem which are used in the iterative approach.
In Section 3, we briefly discuss some theory which is the basis for our method.
Afterwards, in Section 4, we will present our method and we will analyze some
examples of sub-problems that are constructed. The computational results
of our method are presented in Section 5. Finally, we finish this paper with
some concluding remarks.

2 Crew planning at NS

In Figure 2, we give a schematic overview of the crew planning process for
drivers and conductors at NS. Other crew members (at ticketing offices, the
call center, mechanics, etc.) fall outside the scope of this paper. The crew
scheduling problem (CSP) is the problem of assigning tasks to anonymous
duties. These tasks are given by the timetable and by the rolling stock
schedule (see Huisman et al. (2005) for a discussion on all planning problems
at NS). More formally, a task is the smallest amount of work that has to be
assigned to one driver. At NS, a task typically contains one or two trips
defined by the timetable. A duty is the work for one crew member from a
specific crew base on a certain day.

At NS, the crew scheduling process has been split in two stages. First,
the crew schedules for the annual plan are constructed. Secondly, the crew
rosters are created, where the crew members are assigned to operate the
duties. This paper will focus on the first phase, the generation of the duties
for the annual plan. This plan deals with a generic Monday, Tuesday and
so on. This generic annual plan is modified about 6 times a year as a result
of changes in timetable and rolling stock schedules. The other parts of the
process fall outside the scope of this paper (for crew rostering, we refer to
Hartog et al. (2006) and for crew re-scheduling to Huisman (2007)). In the
CSP that is solved for generating the generic annual plan, some rostering
aspects are also taken into account. For instance, the average duty length
over all duties on a certain crew base should not exceed 8 hours. The reason
is that, if this time is exceeded, then it is impossible to construct rosters
where the average working time per week is less than 36 hours (in principle
each full-time crew member works 9 days in two weeks). The number of night
duties (duties with a working period between 1:00h and 5:00h) in a roster
is also limited. This constraint should also be validated at a weekly basis.
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Figure 2: Crew planning process

Moreover, it is important that to obtain a fair division of the work over the
week for the different crew members, the work should be fairly spread over
the different bases. The latter constraints are typical for the Dutch situation
and are known as “Sharing Sweet & Sour” rules. They aim at allocating the
popular and the unpopular work as fairly as possible among the different crew
bases. For instance, some routes are more popular than others and intercity
trains are preferred over regional trains. One example is the percentage of
work on intercity trains. Of the work assigned to a base for a week, at least
25% should be on the intercity trains. Again, we could require every weekday
to contain at least 25% of this work but it is better to check this constraint
for a complete week. For a more detailed description of these rules, we refer
to Abbink et al. (2005).

Finally, notice that the timetables for Monday until Friday are very sim-
ilar. Therefore, NS uses one (the Friday) of the working days as a pattern
working day. At the end, the solution for this working day is used as a so-
lution for the other working days too. The differences between the working
days are handled manually. Of course, one should take into account here
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that for computing the averages over a week the Friday is counted 5 times.

3 Models and Algorithms for CSP

In this section, we give a short overview on models and algorithms that are
used to solve the CSP. Moreover, we provide a mathematical formulation for
a CSP containing 2 days without tasks overnight.

The CSP can be modeled as a set covering problem with additional con-
straints. If we consider the problem for a whole week where there is only a
minor interaction between the different days, we get a special structure of
the mathematical program. To show this, we give a mathematical formula-
tion for the problem with two days. Let T 1 and T 2 be the set of tasks for
day 1 and 2, respectively. Furthermore, D1 and D2 denote the set of duties
for these days. The subset D1

i (D2
i ) of D1 (D2) consists of the set of duties

containing task i. The binary decision variables xj (and yj) indicate whether
duty j ∈ D1(D2) is included in the solution or not. Every duty j has positive
costs cj . Furthermore, let S be the set of additional constraints and let ls
and us be the lower and upper bound for constraint s ∈ S. Finally, let vs

j

(and ws
j) be the weight of duty j ∈ D1(D2)for constraint s. Then we can

formulate this CSP as follows:

min
∑

j∈D1

cjxj +
∑

j∈D2

cjyj (1)

∑

j∈D1

i

xj ≥ 1 ∀i ∈ T 1, (2)

∑

j∈D2

i

yj ≥ 1 ∀i ∈ T 2, (3)

ls ≤
∑

j∈D1

vs
jxj +

∑

j∈D2

ws
jyj ≤ us ∀s ∈ S, (4)

xj ∈ {0, 1} ∀j ∈ D1, (5)

yj ∈ {0, 1} ∀j ∈ D2. (6)

Equation (1) is the objective function, which states that the sum of the
duty cost is minimized. Constraints (2) and (3) guarantee that for each task
i, at least one duty that contains this task is selected. Note that only duties
of day 1 (2) can contain tasks of day 1 (2). It may sometimes be better to
perform a task more than once. If, for example, the number of tasks going out
of a crew base differs from the number of tasks going into the crew base on a
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day, overcovering is necessary. Moreover, even if overcovering is unnecessary,
it may be cheaper to allow overcovering. By allowing overcovered tasks it
can be that other tasks can be covered easier, resulting in a larger decrease
in costs than the extra money for the overcovered task. Constraints (4) are
additional constraints. Consider as an example of an additional constraint,
a crew base for which the total number of duties on both days is limited to
50. Then ls = 0, us = 50 and vs

j (w
s
j ) = 1 for all duties belonging to this

base and vs
j (w

s
j ) = 0 for all other duties. For some additional constraints it is

allowed to violate the constraint at the cost of a penalty. These constraints
are moved to the objective function, along with the penalty. The last two
sets of constraints (5,6) indicates that the decision variables are binary.

Even if the CSPs are solved day by day, the resulting set covering prob-
lems are extremely large. TURNI uses column generation combined with
a Lagrangian-basic heuristic. This Lagrangian-based heuristic, called CFT-
heuristic, in which CFT stands for Caprara, Fischetti and Toth, forms the
bases of TURNI (see Caprara et al. (1999a)). The main characteristics of
the heuristic are a dynamic pricing scheme for the variables, coupled with
subgradient optimization and greedy algorithms, and the systematic use of
column fixing to obtain improved solutions. To tackle the large number of
potential duties, TURNI uses column generation to generate feasible duties
(“columns”). These duties are generated by solving a resource constrained
shortest path problem in an acyclic network. In this network, the nodes cor-
responds to the tasks, and there are arcs between two nodes if the two tasks
can be assigned to the same crew member. Moreover, a path in the network
corresponds now to a feasible duty when it starts and finishes in the same
base, and all kind of additional constraints such as duty length and break
rules are satisfied. The costs of the arcs are defined such that the total cost
of a path is equal to the reduced cost of a duty. By finding the shortest,
feasible path and checking whether its cost is negative or not, it is possible
to check if there are still duties with negative reduced costs. If not, the col-
umn generation is stopped. We refer the reader for details about the theory
of column generation to a few recent surveys on this topic: Barnhart et al.

(1998); Lübbecke & Desrosiers (2005); Desaulniers et al. (2005).
For a more detailed description how TURNI works, we refer to Kroon

& Fischetti (2001). The only relevant detail to follow the remainder of the
paper, is the fact that the in TURNI output, not only the final set of created
duties is presented, but also a large number of “good” duties are available,
which are generated throughout the process. We will use this additional
information for constructing our sub-cases as described in Section 4.4.
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4 The partitioning method

As mentioned before, our method is based on two observations. The first
observation was that global constraints are to be validated on a weekly basis.
The second observation was that in some cases the solution was improved
if, for instance, the solution for one crew base was re-scheduled. Combining
the two observations, we reasoned that we could possibly improve the overall
solution if we would take the solution for one or more bases for the separate
days and combine them into a case for the complete week. Furthermore,
we reasoned that it would be good to have several iterative combinations of
bases in order to reduce the negative effect of optimizing over a sub-problem.
We are also interested in the effect of varying the sizes of the cases. The most
important dimensions in scheduling are time and location of the activities. It
seems natural to use these dimensions to partition the overall problem. We
will now describe the four different partitioning methods one by one.

4.1 Weekday partitioning

In this method we create a sub-problem per weekday. All trips belonging
to the same weekday are combined in a sub-problem. For the Friday (as
representative for a working day), the Saturday and the Sunday a separate
solution is created. The advantage of this method is that it can be used
without an initial solution. Because tasks of different weekdays cannot be
scheduled together in a single duty at NS, this method is a good option
to create an initial solution. In fact, this method was used as the only
partitioning method during the first years of using the system.

4.2 Geographical partitioning

The primary geographical partitioning is the base to which a duty is created
and assigned. After an initial solution is created we can combine all duties
assigned to a base for all weekdays. This results in 29 sub-problems, one
for each base. These sub-problems are very small and do not provide much
room for improvement. Therefore, we create some larger cases by clustering
some bases based on the geographical location. For this, we split the country
into a number of equally sized regions. We create small partitions where on
average 3 bases are clustered and we create large partitions where on average
7 bases are clustered.
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4.3 Line based partitioning

The railway product is defined by railway lines. Trains are operated along
several railway lines at a certain frequency. For example, consider the 800 line
in Figure 3. This line passes through several bases, which can be grouped into
one cluster. We have done this for 4 important long-distance lines, obtaining
four clusters.

Alkmaar

Amsterdam

Utrecht

Den Bosch

Eindhoven

Maastricht
Heerlen

Figure 3: The 800-line with adjacent bases

4.4 Partitioning based on column information

The last partitioning method we present is based on the information that is
generated by the scheduling algorithm. As indicated in Section 3, TURNI
uses a mechanism to rank duties according to their likelihood to be selected
in an optimal solution. In this way good duties are created which have a
high probability to be part of the optimal solution. Duties that have no
contribution to a good solution are removed from the set, while new duties
that have a positive contribution are added. Therefore the total set of duties
is continually improving. TURNI not only returns the duties which are in
the final solution, but it also returns these good duties which were generated
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during the solution process. These duties can be used to give the information
we look for. If two tasks appear together in many duties, it is likely that these
two tasks will be assigned to the same duty in the optimal solution. If, on
the other hand, two tasks (almost) never appear together in a duty, these
tasks will probably be assigned to different duties in the optimal solution.
Now, it is possible to give each pair of duties in the current solution a score
which can be used as a measure for inserting a pair into a partition. This
score is based on how often tasks from these two duties appear together in
the set of all duties. We calculate the score for each pair as follows. First,
we count for each combination of tasks in these duties, say t1 and t2, the
number of duties in the whole set that covers task t1 and t2. Then, we add
all these numbers. In this way, we can construct a graph G = (V, E), where
the duties are represented by the vertices, and the edges represent the fact
that the score is positive. We define a weight q(u, v) for each edge (u, v) ∈ E.
This weight corresponds to the score calculated above. We want to find a
partition of the vertices of G into k equal subsets V1, ..., Vk, such that the
total weight of the edges between different subsets is minimized, or more
formally

min
∑

(u,v)∈E,u∈Vi,v∈Vj ,i6=j

q(u, v). (7)

We use a generic algorithm for graph partitioning based on Kernighan &
Lin (1970) to solve this problem. For the details, we refer to Van ’t Wout
(2007).

5 Results

5.1 Experimental Design

All experiments were carried out on the same hardware (Intel Quoad Core,
2.6GHz, 4Mb RAM). First we evaluated the different partitioning methods
by running them after a base run in which we used the weekday partitioning.
We set up several experiments in which we tested the performance of a par-
titioning method based on the results of the base run. Next to that we have
performed experiments in which all methods were applied sequentially. We
terminated TURNI with solving a sub-problem if there was no improvement
anymore. The results we obtain are based on both optimizing over the week
constraints and on iteratively solving smaller sub-problems. To evaluate both
aspects, we also performed runs in which we did not optimize over the week
but only applied the method on separate weekday cases. Furthermore, we
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wanted to evaluate the method for both drivers and conductors, so we made
separate experiments for them.

5.2 Computational results

In the Tables 1-4, we present the results of the experiments. The first line
corresponds to the different partitioning methods explained in Section 4 that
we applied:

• weekday partitioning (columns “Day”),

• geographical partitioning with about 7 bases together (columns “Geo
L”),

• geographical partitioning with about 3 bases together (columns “Geo
S”),

• line based partitioning (column “Line”)

• partitioning based on column information (columns “Info”).

The numbers in the columns corresponding to the different methods in-
dicate the order in which the methods are applyied. An empty cell indicates
that the method was not used in the experiment. In the last two columns, we
report the number of duties and the relative improvement compared to the
base case. We choose to report the number of duties instead of the objective
function, because the value of the objective function is mainly determined
by the number of duties.

The first series of experiments, as reported in Table 1, deal with a driver’s
instance (all trips to be operated by the drivers for a complete week) and
a limit on the average duration of 7:40h for the weekday and 9:30h for the
Saturday and Sunday. In these experiments, we have not relaxed any of the
global constraints meaning that we have dealt with the real-world problem.
Moreover, in these experiments, we applied only the partitioning to the indi-
vidual days. In other words, we have not optimized over the week constraints.
We can see that the partitioning method shows a significant reduction in the
number of duties (1.8%). Applying the sequence of partitioning methods does
not improve the solution compared with only the geographic partitioning.

The second type of experiments (Table 2) also deal with the same driver’s
instance as in the previous experiments. The differences are that the con-
straints on variation and number of duties are relaxed, and that we optimized
over the whole week. We can see in these experiments that the initial solu-
tion is worse although several constraints are relaxed. It seems that this is
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Day Geo L Geo S Line Info #Duties Av. Dur. ∆Duties
1 1 6072 7:31 -
2 1 2 5964 7:37 -1.8%
6 1 2 3 4 5 5964 7:45 -1.8%

Table 1: Results of a week instance for drivers with all constraints

difficult for the TURNI algorithm. Therefore, the potential improvement is
larger, which is also achieved by the partitioning methods. The final solu-
tion is even better than in the first range of experiments, which could also
be expected because some constraints are relaxed.

Day Geo L Geo S Line Info #Duties Av. Dur. ∆Duties
1 1 6180 7:39 -
2 1 2 5969 7:54 -3.4%
6 1 2 3 4 5 5944 7:54 -3.8%

Table 2: Results of a week instance for drivers based on different average
durations

The third range of experiments shown in Table 3 is again the instance
for drivers. These experiments were similar to the previous ones except that
we have used a maximum average duration of 8:00h for all sub-problems.
Compared to the previous range of experiments, we can see that the initial
solution is worse because the wrong maximum average duration is chosen.
We can see that the partitioning method works very well giving an overall
efficiency improvement of 4.2% after sequentially applying all methods. We
can also see that the second partitioning method has the largest efficiency
improvement if you apply it after the weekday instances. Unfortunately, al-
though the relative improvement is larger, we do not get such a good solution
as in the previous experiments. It seems that the bad solution of the weekday
runs has its effect on the final solution. This indicates that making a good
guess on the average in the weekday instances has a significant effect. This
guess was based on the experience of the planners who seem to be right.

The last set of experiments, presented in Table 4, is on an instance for
conductors (all trips to be operated by the conductors for a complete week).
This instance has 18,000 trips compared to 15,000 for the drivers, because
on several trains two conductors are required. In these experiments we used
the averages 7:40h for the weekday and 9:30 for the Saturday and Sunday
as used in the planning of the previous years. Next to that we have applied
the very tight constraints on the number of duties per base. In this case we
did apply the optimization over the week constraints. We can see that two
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Day Geo L Geo S Line Info #Duties Av. Dur. ∆Duties
1 1 6235 7:43 -
2 1 2 6006 7:53 -3.7%
3 1 2 6045 7:54 -3.0%
4 1 2 6022 7:53 -3.4%
5 1 2 6064 7:50 -2.7%
6 1 2 3 4 5 5971 7:54 -4.2%

Table 3: Results of a week instance for drivers based on an average duration
of 8:00h a day

methods outperform the solution were we apply all methods sequentially. The
best results are obtained by applying the partitioning into small geographical
oriented sub-problems. It seems that due to the fact that the conductors case
is larger than the drivers case, it helps to reduce the size of the sub-problems
by using the small geographical partitioning which creates the smallest sub-
problems compared to the other methods.

Day Geo L Geo S Line Info #Duties Av. Dur. ∆Duties
1 1 7432 7:49 -
2 1 2 7339 7:56 -1.3%
3 1 2 7318 7:55 -1.5%
4 1 2 7335 7:56 -1.3%
5 1 2 7331 7:54 -1.4%
6 1 2 3 4 5 7335 7:57 -1.3%

Table 4: Results of a week instance for conductors with all constraints

Overall we see that we all partitioning methods give more or less the same
results. By applying them all after each other, the largest improvement can
be gained. Moreover, this approach has as advantage that parallel comput-
ing can be applied such that the throughput time of the whole process can
be reduced. This can speed up the whole crew scheduling process to a large
extend. The best solution of the iterative partitioning methods was imple-
mented in practice for the crew schedules corresponding to the timetable of
the year 2007. Together with some other small improvements in the process,
this has led to an efficiency improvement of about 2%. In this way, the ex-
pected shortage of crew was solved and a total saving of about 6 million euro
was achieved.
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6 Conclusions

In this paper, we described a method that improved the usage of an advanced
crew scheduling algorithm using iterative partitioning of the problem. The
method is being used to create a weekly crew schedule for drivers and con-
ductors. We have shown that applying some basic partitioning techniques
can have a significant added value when combined with an advanced crew
scheduling algorithm.

Overall the efficiency was improved with almost 2%. In this way, the
expected shortage for the 2007 timetable could be reduced significantly such
that the timetable went smooth in operation. The method is automated
which not only enables us to create an efficient production plan, but also
gives us the possibility to use it for what-if scenario analysis. In the past
the scenarios were only studied for a single weekday. With this method, the
analysis are more reliable because the complete week is taken into account.
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