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Abstract

The dynamics of hourly electricity prices in day-ahead markets is an important
element of competitive power markets that were only established in the last decade.
In electricity markets, the market microstructure does not allow for continuous
trading, since operators require advance notice in order to verify that the schedule
is feasible and lies within transmission constraints. Instead agents have to submit
their bids and offers for delivery of electricity for all hours of the next day before a
specified market closing time. We suggest the use of dynamic semiparametric factor
models (DSFM) for the behavior of hourly electricity prices. We find that a model
with three factors is able to explain already a high proportion of the variation in
hourly electricity prices. Our analysis also provides insights into the characteristics
of the market, in particular with respect to the driving factors of hourly prices and
their dynamic behavior through time.
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1 Introduction

Since the early 1990s, structural reforms and deregulation have lead to sig-
nificant changes in worldwide electricity markets. Like other commodities,
electricity is now traded under competitive rules what has lead to the creation
of market places where electricity spot and forward contacts for different de-
livery periods are offered. The liberalization of these markets has not only
lead to new challenges for market participants but also created a new field of
research. Electricity markets are subject to a very specific price behavior since
electricity is a very unique commodity that cannot be economically stored,
see e.g. Clewlow and Strickland (2000); Kaminski (1999); Pilipovic (1997);
Weron (2006). Further, end user demand is subject to strong seasonal behav-
ior and sometimes problems with the transmission grid can lead to extreme
price changes.

In the European Energy Exchange (EEX) that will be examined in this study,
the spot is an hourly contract with physical delivery such that every day
is divided into 24 hourly contracts. One particular feature of most electricity
markets is that the spot electricity market is actually a day-ahead market that
does not allow for continuous trading. The reason for this is that a classical
spot market would be difficult to implement, since system operators require
advance notice in order to verify that the schedule is feasible and lies within
transmission constraints. In these day-ahead markets agents submit their bids
and offers for delivery of electricity during each hour of the next day before a
certain market closing time. Thus, dealing with the modeling and forecasting
of hourly prices it is important to recall that the prices for all hours of the next
day are determined at the same time using the same available information.
The system price is then calculated as the equilibrium point for the aggregated
supply and demand curves for each of the 24 hours.

Electricity spot prices often exhibit specific characteristics like seasonality (on
the annual, weekly and daily level), mean reversion, extreme volatility and
price spikes. The seasonal character of the prices is a direct consequence of
demand fluctuations that mostly arise from business hours at the daily or
weekly level or changing climate conditions like e.g. temperature or the num-
ber of daylight hours at the yearly scale. In addition to seasonality and mean
reversion, electricity prices exhibit a remarkably huge price volatility and in-
frequent, but large price spikes. The price volatility - which can be as high as
50% on the daily scale - is higher than for any other commodity. A reason for
this is on the one hand the above-mentioned strong seasonality of demand.
On the other hand it is due to price spikes that are mainly caused by extreme
load fluctuations, generation outages or transmission failures. Thus, spot prices
can increase tenfold during a single hour, but these spikes are normally quite
short-lived.
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The specific behavior of electricity prices, in particular extreme volatility and
the described price spikes have forced producers and wholesale consumers to
hedge not only against volume risk but also against price movements. This
in turn has significantly propelled research in electricity price modeling and
forecasting. One of the first models which has been examined in the context of
electricity markets is the classical mean-reversion or Vasiček-process, see e.g.
Lucia and Schwartz (2002); Knittel and Roberts (2005). On the other hand,
by making certain assumptions on the functional form of the supply and de-
mand curve, Barlow (2002) derives a non-linear Ornstein-Uhlenbeck process as
appropriate model for electricity prices. Early publications on models for elec-
tricity prices with a jump component include Deng (1999); Johnson and Barz
(1999); Bhanot (2000); Clewlow and Strickland (2000); Knittel and Roberts
(2005) and are typically based on a jump-diffusion approach as in Merton
(1976). Kluge (2004) suggests a specification of a jump diffusion model includ-
ing both a mean-reverting diffusion and mean-reverting jump-process. More
recently, Geman and Roncoroni (2006) suggest to model electricity log-prices
with a one-factor Markov jump diffusion model. A particular nice feature of
their model is that the jump direction and intensity is dependent on the cur-
rent level of the spot price.

Also different GARCH models have been applied to the structure of electric-
ity prices, see e.g. Garcia et al. (2005); Knittel and Roberts (2005). These
studies find that the additional use of GARCH error terms outperforms the
predictive power of several other models. On the other hand, Misiorek et al.
(2006) find that despite the heteroscedastic nature of the residuals in the au-
toregressive models, the addition of a GARCH component in the specification
does not improve the accuracy of point forecasts though it slightly improves
interval forecasts. Further, Hadsell (2006) applies TARCH models in order to
study the return-volume relationship in electricity futures markets, while in a
more recent study Koopman et al. (2007) suggest an approach using periodic
dynamic long memory regression models with GARCH errors.

Recently, also regime-switching models have gained popularity for modeling
of electricity spot prices. Initially introduced in various different contexts by
Quandt (1958); Goldfeld and Quandt (1973); Hamilton (1989, 1994), their
use for power markets has first been suggested by Ethier and Mount (1998);
Huisman and De Jong (2003) and Weron et al. (2004a). Since then, more re-
fined regime-switching models with e.g. time-varying transition probabilities
(Mount et al., 2006) as well as transition probabilities dependent on demand
level relative to the supply capacity (Kanamura and Ohashi, 2008) or temper-
ature variables (Huisman, 2008) have been suggested. Further, Haldrup and
Nielsen (2006) develop a regime-switching nonperiodic long memory model for
hourly electricity prices.

While several of the models mentioned above deal with daily data, also the
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interest in modeling hourly electricity prices has increased, see e.g. Ramsay
and Wang (1997); Wolak (1997); Szkuta et al. (1999); Borenstein et al. (2002);
Saravia (2003); Longstaff and Wang (2004); Knittel and Roberts (2005); Huis-
man et al. (2007); Munoz et al. (2009). Clearly, there are market participants
with specific demand or supply profiles only during a few hours of the day.
Such profiles cannot be resembled by standard baseload and peakload con-
tracts such that for valuating these contracts market makers need to assess
the expectations and risks for those specific hours and cannot rely on daily
average prices only. Further applications of examining the hourly structure of
electricity prices include also issues like the management of price spike risk or
derivative pricing in electricity markets. Thus, several studies have focused in
particular on the structure of hourly electricity prices and tried to investigate
the factors that determine this structure.

Ramsay and Wang (1997) and Szkuta et al. (1999) apply neural networks to
model the dynamics of intraday prices. Borenstein et al. (2002) and Saravia
(2003) investigate the spread between day-ahead and real-time hourly prices
in U.S. power markets. They find a significant spread between the two series
that can be attributed to speculation activity and market power of partici-
pants. Longstaff and Wang (2004) study the day-ahead hourly risk premium,
calculated as the difference between the day-ahead price and the expected real
time price. Their findings suggest that premiums are significantly affected by
demand and sales figures and price variation. Finally, Huisman et al. (2007)
propose a panel framework for modeling the characteristics of hourly electric-
ity prices in day-ahead markets. They suggest that hourly prices do not follow
a time series process but should rather be considered as a panel of 24 cross-
sectional hours that vary from day to day. They find different hourly specific
mean-reversion rates around varying hourly mean price levels. In particular
they suggest that peak hours exhibit significant less mean-reversion.

Among the mentioned studies, some model each hour separately or assume a
specific correlation pattern between the hours while others treat the hourly
prices as a time series. However, it should be pointed out that generally hourly
prices cannot be considered as a pure time series process, since time-series
models assume that the information set is updated by moving from one obser-
vation to the next in time. Given the specific structure of day-ahead markets
in the electricity business, this is not a valid assumption in our opinion.

The literature on the application of factor models to electricity spot markets
in general and the modeling of hourly prices in particular is very limited. As
pointed out by Munoz et al. (2009), despite the fact that dynamic and static
factor models have been extensively used in many different financial applica-
tions, they have not been exploited yet for the modeling and forecasting of
short term electricity market prices. Exceptions include the studies by Wolak
(1997); Vehviläinen and Pyykkönen (2005); Munoz et al. (2009); Alonso et al.
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(2008) that will be briefly reviewed in the following.

In a pioneer study, Wolak (1997) examines the hourly price formation of day-
ahead electricity markets of various countries, including England, Scandinavia,
Australia and New Zealand. In his model a Principal Component Analysis
(PCA) is applied to the error covariance matrix obtained from a VAR hourly
(or half hourly) price system. He finds that generally greater price volatility in
systems dominated by fossil fuels relative to those dominated by hydroelectric
power. Therefore, for markets like e.g. England and Wales that are domi-
nated by fossil fuels, prices are very difficult to forecast and a high number of
24 factors is required to explain 90% of the variation. On the other hand, for
Scandinavian data, only three factors explain approximately the same amount
of data for Nordpool prices. Vehviläinen and Pyykkönen (2005) provide a sto-
chastic factor based approach where the fundamentals affecting the spot price
are modeled independently and then a market equilibrium model is used to
combine them to determine spot prices. The model is rather designed for mid-
term modeling and forecasting of electricity spot prices. Alonso et al. (2008)
investigate factor models for the difficult task of long term forecasting of elec-
tricity prices in the Spanish market. Hereby, they apply a seasonal extension
of non-stationary dynamic factor analysis in order to take into account the
seasonality of electricity prices that is due to strong dependence of prices and
demand on weather as well as economic and social activities. Overall, while
their approach offers many features that are relevant for electricity markets,
the focus is rather on long-term forecasting of prices what makes the appli-
cation quite different from ours. Probably, the most similar approach to ours
is Munoz et al. (2009) where factor models are applied in order to forecast
hourly electricity spot prices with a short-term horizon in the Iberian electric-
ity market. However, their approach applies standard factor model techniques
to the data that unlike the Dynamic Semiparametric Factor Models (DSFM)
are not able to include additional explanatory variables.

Our paper contributes to the literature in two dimensions. On the one hand, we
extend the rare number of studies on application of factor models to electricity
markets in gerneral and the modeling and forecasting of hourly electricity
prices in particular. Hereby, we consider data from one of the largest power
exchanges in the world, the European Electricity Exchange (EEX) in Leipzig
where a substantial fraction of traded electricity is produced using fossil fuels.
We further provide a pioneer study on the application of DSFM to hourly
electricity spot prices. Given the structure of the model, it is well-suited to
describe the complex dynamics of such a market with 24 observations per day.
The remainder of the article is organized as follows. Section 2 gives a review on
DSFM models and illustrates their application to modeling hourly electricity
spot prices. Section 3 presents the data and empirical results of our study and
Section 4 concludes.
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2 A dynamic semiparametric factor model (DSFM) for hourly elec-
tricity prices

In this section we describe the dynamic semiparametic factor model (DSFM)
that can be used to study the dynamics of hourly electricity prices in the
functional form. Hereby, we consider the whole term structure of the hourly
contracts to better understand the dynamics of the entire system. We apply
the DSFM, which offers flexible modeling and allows for dimension reduction.
The model was first proposed by Fengler et al. (2007) for studying the dy-
namics of implied volatility surfaces and further refined by Park et al. (2009)
who implemented a series based estimator instead of a kernel smoother for the
estimation. So far applications of this model to commodity and in particular
electricity markets have been limited. Exceptions include Borak and Weron
(2008) who use the model for approximation of electricity forward curve dy-
namics and Trück et al. (2009) who study the term structure dynamics of the
EU-ETS spot and futures market.

Generally, the objective of factor analysis is dimension reduction in order to
describe fluctuations over time in a set of usually high-dimensional variables
through those experienced by a small set of factors. Hereby, observed variables
are assumed to be linear combinations of the unobserved factors, with the
factors being characterized up to scale and rotation transformations. In an
orthogonal L-factor model an observable J-dimensional random vector Yt =
(Yt,1, ..., Yt,J) can be represented as

Yt,j = m0,j + Zt,1m1,j + ...+ Zt,LmL,j + εt,j , (1)

where Zt,l are common factors, εt,j are errors or specific factors and the co-
efficients mt,j are factor loadings. Normally, the index t = 1, ...T represents
time evolution of the observed vectors of variables and Yt can be considered
as a multi-dimensional time series. The advantage of applying factor analysis
is that if a sufficiently high fraction of the variation of Yt can be explained
by the L factors, the study of high-dimensional Yt can be simplified to the
modeling of Zt = (Zt,1, ..., Zt,L), which is a more feasible task, in particular
when L << J .

In comparison to a standard factor model, the DSFM allows also for the
incorporation of observable covariates Xt,j while the factor loadings ml are
now generalized to functions of Xt,j, so that the standard factor model is
extended to
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Yt,j = m0(Xt,j)
L∑

l=1

Zt,lml(Xt,j) + εt,l. (2)

As pointed out by Park et al. (2009), the DSFM can be regarded as a regression
model with embedded time evolution. However, the model is different from
varying-coefficient models, like in Fan et al. (2003) or Yang et al. (2006), since
the series Zt is actually unobservable. However, some linear models which allow
time-varying coefficients, as considered in Hansen et al. (2004) and Brumback
and Rice (1998), may be recognized as a special case of the DSFM setting.

For the task of modeling hourly electricity prices, the DSFM structure can
be exploited in order to reduce the dimension of 24 observed price series to
a smaller number of factors. Hereby, Yt,j is the electricity price for hour j
observed on day t and variables Xt,j denote the actual hour j on day t. The
index j = 1, ..., Jt represents the particular traded hour; in our study for
each day prices for 24 different hours can be observed such that on any day
Jt = 24. Furthermore, ml are fixed nonparametric basis functions and εt,l

describe the random error. The dynamics of hourly electricity prices through
time is then explained by the time propagation of the L factors and can be
observed through the evolution of the coefficients Zt,l. Note that contrary to
a parametric approach both ml and Zt,l have to be estimated from the data.
While Fengler et al. (2007) suggest the use of a nonparametric kernel estimator
for the estimation, we follow Park et al. (2009) and implement a series based
estimator of the form

ZT
t m(X) =

L∑

l=0

Zt,l

K∑

k=1

al,kψk(X) = ZT
t Aψ(X). (3)

In this model ψ(X) = (ψ1, ..., ψK)T (X) is a vector of known basis functions,
A ∈ R(L+1)×K denotes a coefficient matrix and K is the number of basis
functions. Note that generally the loading functions ml do not need to take
a specific form, however as suggested in applications by Park et al. (2009)
and Borak and Weron (2008) they can be linearized e.g. by using B-splines.
Then K is the number of knots, ψk(X) are the splines and al,k the appropriate
coefficients. The estimation procedure then determines the loading functions
ml and time series Zt,l that minimize the following least squares criterion:

T∑

t=1

Jt∑

j=1

{
Yt,j −

L∑

l=0

Zt,l

K∑

k=1

al,kψk(X)

}2

. (4)

The estimation procedure is iterative. First the model size L is determined in
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advance. Next, starting from an initial white noise sequences Ẑ
(0)
t,l , l = 1, ..., L,

the estimates m̂
(1)
l are obtained. Then the updates Ẑ

(1)
t,l are calculated using

m̂
(1)
l . The iterative steps are repeated consequently until a convergence crite-

rion is met. Park et al. (2009) point out that the solution to this optimization
problem is not unique. The signs of Zt,l and ml cannot be identified such that
certain linear transformations like e.g. rotation yield the same model for dif-
ferent functions ml. A possible choice for the identification procedure is e.g.
to choose the m̂l to be orthogonal and then order them with respect to the
variation of the series

∑T
t=1 Z

2
t,l such that m̂new

l and Ẑnew
t,l contain as much

information on the variation as possible and explain the largest movements
of Yt. This ordering can be considered to be similar to ordering the factors
in a PCA. For further issues on the estimation procedure and convergence of
the algorithm we refer to Park et al. (2009) where also the question of sta-
tistical inference based on the estimated time series Ẑt,l instead of the ’true’
unobserved time series Zt,l is discussed.

For the choice of L we apply the following procedure. First, for different values
of L, we calculate the proportion of the variation explained by the model
compared to the simple invariate estimate given by the overall mean:

1 −RV (L) = 1 −

∑T
t

∑Jt

j {Yt,j −
∑L

l=0 Ẑt,lm̂l(Xt,j)}
2

∑T
t

∑Jt

j (Yt,j − Ȳ )2
.

Since the model is not nested, the whole estimation procedure has to be re-
peated for different L’s until the explanatory power of the model is considered
to be sufficient.

3 Empirical Results

For our empirical analysis we use hourly electricity spot prices from the Euro-
pean Electricity Exchange (EEX) in Leipzig. As mentioned above, at the EEX,
the spot market is a day-ahead market and the spot is an hourly contract with
physical delivery on the next day. The 24 hourly spot prices are determined in
a daily auction. Products range from predetermined hourly blocks for each of
the 24 hours of a day to special contracts for base load, peak load and week-
end contracts (see EEX, 2004, for more details). We consider hourly electricity
spot prices for the period July 1, 2005 - June 30, 2008. Figure 1 provides a plot
of the data for the whole period. It is easy to see that the data exhibits the
typical features of electricity prices and contains several periods of extreme
volatility, price spikes and shows a mean-reverting behavior.

A more detailed look at the hourly prices is provided in Figure 2 and 3 where
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Fig. 1. Hourly spot price for period July 1, 2005 - June 30, 2008.

the typical seasonal pattern during the day and week becomes obvious. Note
that for the week November 28 to December 4, 2005 there was a number of
consecutive spikes always around 5 pm in the late afternoon.
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Fig. 2. Hourly spot price for period October 17, 2005 - October 23, 2005.

3.1 Results for the whole period

In a first step, we calibrate the DSFM to the dataset comprising the whole
period. As pointed out in the previous section, the model is not nested and
the whole estimation procedure needs to be repeated for different L’s. We
start with L = 1 and then increase the order of the model to L = 2, 3, 4.
The higher the number of factors, the higher is the general fit, potentially
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Fig. 3. Hourly spot price for period November 28, 2005 - December 4, 2005.

No. Factors 1 −RV (L)

L=1 0.5722

L=2 0.6549

L=3 0.6800

L=4 0.6859

Table 1
Explained variance for DSFM models with L = 1, 2, 3 and 4 dynamic factors for
whole period July 2005 - June 2008.

at the cost of robustness and parsimony of the model. The results for the
different models with respect to criterion (2) are presented in Table 1. In
order to decide about the number of factors, usually one proceeds like in the
principal components analysis and limits the model to the number of factors
which explain a sufficiently high percentage of the variance. We find that a
model with only one factor already achieves an explanatory power of 0.5722
according to criterion (2) already, while the inclusion of the second and third
factor increase the power to 0.6449 and 0.6800, respectively. The inclusion of
the fourth function only slightly improves the explanatory power of the fit
and, therefore, from now on we only consider results for models with either
two or three basis functions.

The grid used for the variable X consists of j = 24 hours, such that Xj =
0, 1, 2, 3, 4, ..., 23 simply represents the hour during the day. For the basis func-
tions ψk(X), 6 cubic B-splines evaluated on equidistant knots are used. We
find that the placement of the knots and the selection of K does not sig-
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Fig. 4. Estimated functions m̂1(Xj) (blue) and m̂2(Xj) (red) for DSFM of order
L = 2 (left panel) and m̂1(Xj) (blue), m̂2(Xj) (red), m̂3(Xj) (green) for L = 3
(right panel).

nificantly change the results with respect to the basis functions ml and the
coefficients Zt,l. This is in line with other studies on the applications of DSFM
models, see e.g. Park et al. (2009); Borak and Weron (2008).

Calibration results for the estimated basis L = 2 and L = 3 are presented in
Figure 4 while the time series for Zt,l are plotted in Figure 5. The first function
mirrors the daily seasonality of hourly electricity prices. The value increases
for the peak hours during the day and is much lower for the off-peak hour in
the late evening and during the night. As it can be seen from the left panel
of Figure 5, the first factor reflects the behavior of the daily electricity price,
including some price spikes and seasonal behavior throughout the year. The
second and third basis function exhibit periodic behavior. For both models,
for the second basis function the period is approximately 16 hours, while for
L = 3 the period of the third basis function is approximately 24 hours. As
indicated in the right hand panel of Figure 5, the second and third factor show
less seasonal behavior than the first one. Further, the second and third factor
also show spiky behavior, however, for Zt,2 we find that some of the spikes
have opposite signs to those of the other series Zt,1 and Zt,3.

Investigating the in-sample fit of the DSFM model to the data, we find that
during times where no price spikes could be observed, the fit to actually ob-
served prices is remarkably good. As illustrated in the left hand panel of Figure
6, the model captures the overall daily price level and the intraday pattern
quite well. On the other hand, during periods of spikes that only last for a
single hour but on consecutive days like during the period from Nov 28 - Dec
4, 2005, the model is not able to capture the extreme price behavior. Here, a
set of time-series models model for each of the individual hours that is able
to also capture price spikes might actually provide a better fit to the data.
However, considering the fact that the EEX market has a large share of elec-
tricity generated by fossil fuels, the explanatory power of our model with three
factors is comparably high. In a similar study by Wolak (1997) for fossil fuel
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Fig. 5. Estimated time series Ẑt,1 (left panel) and Ẑt,2 (red), Ẑt,3 (green) (right
panel) for DSFM of order L = 3.
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Fig. 6. Hourly spot price (green) and in-sample fit of DSFM (blue) with L=3 for
Oct 17-23, 2005 (left panel) and Nov 28 - Dec 4, 2005 (right panel).

dominated electricity markets in England and Wales, a model with 10 fac-
tors was required to explain approximately 70% of the variation in electricity
prices.

3.2 Results for different subperiods

In a second step we divide the whole period into three different subperiods
from July 2005 - June 2006, July 2006 - June 2007 and July 2007 - June
2008. As indicated in Table 2, we find that, depending on the period under
investigation, we get significant differences with respect to the explanatory
power of the model. In particular during the less spiky periods from July 2005
- June 2006 and July 2007 - June 2008, we obtain an explanatory power of
approximately 80% for a model with three factors. This can be considered as
a very good fit for a model with such a small number of factors, in particular
for a market dominated by fossil fuels. For example, Wolak (1997) states that
a model with three factors for England and Wales markets is only able to
explain 41% of the total variantion while up to 15 factors were required to
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No. Factors Period 1 −RV (L)

L=3 2005-2008 0.6800

L=3 2005-2006 0.7907

L=3 2006-2007 0.5815

L=3 2007-2008 0.7831

Table 2
Explained variance for the models with L = 3 dynamic factors for whole period
July 2005 - June 2008 and subperiods July 2005 - June 2006, July 2006 - June 2007,
July 2007 - June 2008.
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Fig. 7. Estimated functions m̂l(Xj) for DSFM of order L = 3 for July 2005 - June
2006 (left panel) and July 2006 - June 2007 (right panel).

achieve an explanatory power of more than 80% for the model.

We further investigate the structure of the basis functions for the different
subperiods. Unlike in other studies, like e.g. Borak and Weron (2008) where
the structure of the basis functions was rather stable throughout the sample,
we find that there are obvious changes in these functions depending on the time
period under investigation. Figure 7 illustrates that not only the second and
third basis function are different, but also that there are significant changes
in the first function between the time period from July 2005 - June 2006
and July 2006 - June 2007. Similar results were observed for the last of the
three subperiods. Overall, these results indicate that if the model is applied
for forecasting, a rather shorter calibration period should probably be used,
since not only the series Zt show dynamic behavior but also the basis functions
exhibit some variability through time.
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3.3 Deseasonalized Data

In a next step we investigate the performance of the DSFM approach to desea-
sonalized electricity prices. In order to do this we follow an approach generally
suggested in the literature and split system prices Pt into a deterministic part
f(t) that comprises all kinds of seasonal behavior and a purely stochastic
component St:

Pt = f(t) + St. (5)

For the deterministic seasonal component ft sinusoidal (Pilipovic, 1997; Weron
et al., 2004a), constant piece-wise functions (Pindyck, 1999; Huisman and
De Jong, 2003; Knittel and Roberts, 2005; Haldrup and Nielsen, 2006) or
a combination of both methods (Lucia and Schwartz, 2002; De Jong, 2005;
Kosater and Mosler, 2006) have been suggested in the literature. Alternative
approaches by Simonsen (2003) and Weron et al. (2004b) approximate the un-
derlying periodical structure using a wavelet decomposition. Here, we pursue
a hybrid approach of constant piece-wise functions and a sinusoidal cycle to
capture long-term seasonal effects, similar to Bierbrauer et al. (2007). Hence,
we specify dummy variables for daily and monthly effects, a trend component
and an additional sinusoidal component with one-year cycle:

f(t) = α+ β · t+ d ·Dday +m ·Dmon + γ · sin
(
(t+ τ)

2π

365

)
, (6)

where α, β, γ and τ are all constant parameters. Note that initially for each day
(day = 1, .., 7) and month (mon = 1, .., 12) a dummy variable Dday, Dmonth

was used. Hereby d and m denote the corresponding parameter vector. In
a first step, the function f(t) is calibrated via numerical optimization using
non-linear least squares regression. The initial results roughly validated general
assumptions about intra-week and intra-year price patterns for power markets,
see e.g. Pindyck (1999): Prices are higher at the beginning of the week reaching
their peak on Tuesday and then, from the middle of the week, they constantly
decline to reach their lowest level over the weekend. A similar cycle can be
observed during the year: Prices usually tend to be higher during the cold
winter months and are somewhat lower during the rest of the year.

After the deseasonalization, we fit the DSFM models with different number
of factors to the data. Results for the explained variance of the models are
displayed in Table 3. We find that a model with one factor now achieves an ex-
planatory power of 0.6063 according to criterion (2), while the inclusion of the
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No. Factors Original Deseasonalized

L=1 0.5722 0.6063

L=2 0.6549 0.6719

L=3 0.6800 0.7037

L=4 0.6859 0.7085

Table 3
Explained variance for DSFM models with L = 1, 2, 3 and 4 dynamic factors for
original and deseasonalized data.

second and third factor increase the power to 0.6719 and 0.7037, respectively.
Again, the inclusion of the fourth function only slightly improves the explana-
tory power of the model. Overall, the model fit is only slightly improved in
comparison to using deseasonalized data. This might be due to using a mea-
sure based on a squared distance where the main weight is put to errors that
are comparably large and most likely due to spikes in the price series. An-
other explanation could be that the flexible DSFM approach is able to model
a substantial amount of the seasonal variation such that using deseasonalized
data does not lead to a significantly improved in-sample fit. In particular the
series Ẑt,1 in Figure 5 exhibits strong seasonal behavior and seems to capture
the overall variation of daily price levels. Further investigation of this issue
should be conducted in future research.

3.4 Forecasting Study

In the following we will apply the DSFM approach in a forecasting study
considering data for the period July 1, 2007 to June 30, 2008. Due to the
variability of the estimated basis functions for different subperiods, the DSFM
model is calibrated on a shorter period from July 1, 2007 to May 31, 2008
while the out-of-sample period is chosen from June 1, 2008 to June 30, 2008.
We further decided to consider deseasonlized data in order to improve the
forecasting performance of the model and a DSFM model with L = 3 factors.
The explanatory power of the model according to criterion (2) is 0.8133 for
the in-sample period.

In a next step, the series Ẑt,i, (i = 1, 2, 3) are modeled using a time-series
approach. Figure 8 provides a plot of the considered deseasonalized data and
the estimated time series Ẑt,2 for the calibration period. As it can be seen, the

series Ẑt,2 shows a behavior similar to that of electricity spot prices with a
number of short-lasting spikes and different regimes of volatility. Therefore, it
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Fig. 8. Deseasonalized hourly prices (left panel) and estimated time series Ẑt,2 for
period July 1, 2007 - May 31, 2008 for DSFM of order L = 3 (right panel).

seems to be appropriate to use a time-series model that is capable of modeling
similar features to those exhibited by electricity prices. Due to the recent
popularity of the approach in power markets, see e.g. Huisman and De Jong
(2003); Weron et al. (2004a); Haldrup and Nielsen (2006); Mount et al. (2006);
Bierbrauer et al. (2007); Huisman (2008), we decided to calibrate a regime-
switching model to each of the series Ẑt,i. To determine one-day ahead forecasts
for hourly electricity spot prices we can then use the estimated basis functions
of the DSFM in combination with forecasts for the series Ẑt,i.

Regime switching models have been introduced in various different contexts
by Quandt (1958); Goldfeld and Quandt (1973); Hamilton (1989, 1994). The
underlying idea is to model the observed stochastic behavior of a specific time
series by two separate phases or regimes with different underlying processes.
The switching mechanism is typically assumed to be governed by a time-
homogeneous hidden Markov chain with k ∈ N different possible states rep-
resenting the k different regimes. For the ease of exposition we restrict our
description of regime switching models to the discrete time case. Generally,
for electricity prices a regime switching models with two independent states
has been suggested in the literature, see e.g. Huisman and De Jong (2003);
Weron et al. (2004a); Bierbrauer et al. (2007).

The two independent regime model distinguishes between a base regime (Rt =
1) and a spike regime (Rt = 2), where (Rt)t∈I represents a time-homogeneous
hidden Markov chain. The observable stochastic process (Yt)t∈N – in our case
the estimated series Ẑt,l – are then represented in the form

Yt = Yt,Rt
, t ∈ N, (7)

where the processes (Yt,1)t∈N and (Yt,2)t∈N are assumed to be independent from
each other and independent from (Rt)t∈N. Yt equals Yt,i given that the current
regime at time t equals i, i.e. given Rt = i. The transition matrix Π of the
hidden Markov chain R contains the conditional probabilities pij of switching
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from regime i at time t to regime j at time t+ 1:

Π = (pij)i,j=1,2 = (P (Rt+1 = j | Rt = i))i,j=1,2 =




p11 1 − p11

1 − p22 p22


 (8)

The probability of being in state j at time t+m starting from state i at time
t can be expressed as:

(P (Rt+m = j | Rt = i))i,j=1,2 = (Π′)m · ei, (9)

where Π′ denotes the transpose of Π and ei denotes the ith column of the 2×2
identity matrix.

The remaining task consists of specifying the two stochastic processes Yt,1 and
Yt,2. For electricity spot prices the literature often suggests a mean-reverting
process for the base regime (Rt = 1) and a process with a higher variance
or price level for the spike regime (Rt = 1). For our application, we decided
to use a model similar to Huisman and De Jong (2003) and Bierbrauer et al.
(2007) with a mean-reversion process for Rt = 1 and a Gaussian distribution
for Rt = 2. This model is then calibrated to the stochastic process for each
series Ẑt,i with i = 1, 2, 3. Note that alternative model specifications for the

individual series Ẑt,i might be more suitable and could be tested in further
applications.
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Fig. 9. Actually observed and forecasted hourly electricity prices for period June
23, 2008 - June 29, 2008 for DSFM of order L = 3.

In the next step, using the estimated regime-switching models and the esti-
mated probabilities for being in either of the regimes, one-day ahead forecasts
Ẑt+1,i for each series are determined. Then the forecasts for Ẑt+1,i and the
estimated basis functions m̂i can be used to derive forecasts for each hour
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of the next day. Updating the probabilities for being in either of the regimes
using the most recent information of Ẑt,i, one-day ahead forecasts for each
hour of the out-of-sample period can be determined. Figure 9 provides a plot
of actually observed and forecasted electricity spot prices for the period June
23, 2008 - June 29, 2008. We find that during the out-of-sample period the
explanatory power of the model is not reduced. In fact, using criterion (2),
the proportion of variation explained by the model compared to the simple
invariate estimate is 0.8261 and therefore slightly higher than during the cal-
ibration period. Overall, our results suggest that DSFM models seem to be
a promising approach for dimension reduction and modeling the dynamics of
hourly electricity prices. In combination with an appropriate time-series model
for the estimated series Ẑt,i the models may also be used for forecasting hourly
electricity prices in further applications.

4 Conclusion

In this paper we have analyzed the dynamics of hourly electricity prices in
day-ahead markets using dynamic semiparametric factor models (DSFM). In
order to verify that the schedule is feasible and lies within transmission con-
straints, in these markets operators usually require advance notice of hourly
load profiles such that there is no continuous trading. Instead bids and offers
for delivery of electricity for all hours of the next day are submitted by agents
before a specified market closing time. Therefore, the direct application of a
time-series approach is not appropriate since such models assume that the in-
formation set is updated by moving from one observation to the next in time.
Instead we suggest to consider the data rather as a time series of a (24 × 1)
vector or a panel with 24 cross-sectional hours in the spirit of e.g. Wolak (1997)
or Huisman et al. (2007).

We have provided a pioneer study on the application of DSFM to hourly
electricity prices. The model utilizes a linear combination of nonparametric
loading functions being linearized with B-splines and parametrized common
factors for the representation of the high-dimensional data set. The model is
then calibrated within a least squares iterative scheme. We find that a model
with a small number of factors (L = 3) explains up to 80% of the variation
in hourly prices of the European Energy Exchange (EEX) in Leipzig. In a
similar study by Wolak (1997) for fossil fuel dominated electricity markets in
England and Wales, a model with 15 factors was required to explain approx-
imately 80% of the variation in electricity prices. However, we find that the
explanatory power significantly decreases for periods with a higher number
of price spikes. Interestingly, the model performance is only slightly improved
when deseasonalized data is considered. In an out-of-sample forecasting study,
using regime-switching models for the estimated time-series Ẑt,i, we obtain an
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explanatory power of the same magnitude as the in-sample fit of the model.

Overall, DSFM seem to be an approach that is very well suited to represent the
structure of hourly electricity prices. This study provided a first application of
this class of models to spot electricity prices. The full potential of the model
might be explored in future studies where additional explanatory variables
like capacity limits, load profiles, trading volume, weather variables etc. are
also included into the modeling strategy. The approach may also be applied
using alternative time-series models for the derived series Ẑt,i. Further the
approach should be applied to other electricity markets, e.g. markets with less
or even more price spikes in order to compare the performance of the models
dependent on the market structure.
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