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Abstract

Innovations, be they radical new products or technology improvements
are widely recognized as a key factor of economic growth. To identify
the factors triggering innovative activities is a main concern for eco-
nomic theory and empirical analysis. As the number of hypotheses
is large, the process of model selection becomes a crucial part of the
empirical implementation. The problem is complicated by the fact
that unobserved heterogeneity and possible endogeneity of regressors
have to be taken into account. A new efficient solution to this prob-
lem is suggested, applying optimization heuristics, which exploits the
inherent discrete nature of the problem. The model selection is based
on information criteria and the Sargan test of overidentifying restric-
tions. The method is applied to Russian regional data within the
framework of a log-linear dynamic panel data model. To illustrate the
performance of the method, we also report the results of Monte-Carlo
simulations.

Keywords: Innovation, dynamic panel data, GMM, model selec-
tion, threshold accepting, genetic algorithms.
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1 Introduction
Innovative activity, “creative destruction”, is widely seen as the main factor
of economic growth. A vast literature is available on this interrelation (see,
e.g., Schumpeter (1943) and Porter (2003)). There is also a large body of
empirical research on this issue (see Bilbao-Osorio and Rodriguez-Pose (2004)
and Merivate and Pernias (2006)). However, evidence on the effectiveness of
different instruments stimulating innovations is mixed. This might also be
due to ad hoc or intuitive decisions in the model specification step.

In fact, the model selection process is crucial for the further analysis of
multiple regression models. Picking up too many regressors increases the
variance of the constructed model, and taking less regressors than needed
results in inconsistent estimates.

In our application, we face the problem of selecting relevant factors ex-
plaining the innovative performance of Russian regions based on regional
data for the period 1999–2006. For Russia as for many economies in tran-
sition this issue is of high relevance due to the necessity to set development
priorities (Savin and Winker 2009).

During the last decade several research strategies have been introduced
to extract necessary information from large databases. Among these are
Bayesian model averaging by Fernandez et al. (2001), the general-to-specific
approach (PcGets) discussed by Hendry and Krolzig (2005) and its bottom-
up alternative (RETINA) analyzed by Perez-Amaral et al. (2003). In brief,
these strategies are based on R2 and t-statistics with stepwise regression
procedures. However, in general, there will be no consensus model resulting
from the application of these methods. Another option is presented by the
least absolute shrinkage and selection operator (Lasso), which selects the
model and estimates it simultaneously. The Lasso-type estimator is found
to be more effective in comparison to the conventional methods, but has an
asymptotic bias due to shrinkage (see, e.g., Hsu et al. (2007)). An alternative
model selection approach is based on information criteria (IC) which rank
models according to their fitness and a penalty for model complexity (see,
e.g., Kapetanios (2007)).

To deal with the problem of model selection, an efficient algorithm is
required selecting the model specification with the best value of the IC or
at least a good approximation to this optimum. To this end, we compare
two selection procedures based on two heuristic optimization approaches:
Threshold Accepting and Genetic Algorithms.

An important new feature of this paper is the application of heuristic
model selection methods to a panel dataset with short time series (using the
system Generalized Method of Moments estimation method). Because of
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the unobserved heterogeneity and possible endogeneity of regressors we con-
sider both static and dynamic model specifications. Furthermore, additional
restrictions on subgroups of regressors are taken into account.

The remainder of the paper proceeds as follows. Section 2 introduces both
the economic background and the estimation framework for our application.
Section 3 presents the model selection problem and the heuristic techniques
proposed as an effective alternative to the standard procedures. Section 4
reports the results of our Monte Carlo analysis and Section 5 presents the
results for the real data. Finally, Section 6 contains concluding remarks.

2 The Concept of Innovations and Their Stim-
ulation

The practical example we analyze is the innovative performance of Russian
regions. As no data at the firm level is available, we use regionally aggregated
data for the period between 1999 and 2006 from the ’Regions of Russia:
Social-economic indicators’ database (Rosstat).

The quality of the data is not perfect. Hence, our conclusions should be
considered rather suggestive than irrevocable. Our main goal in this paper
is to introduce the new method of model selection in dynamic panel data
models.

Analyzing the data, Russian regions can be considered as ’potential in-
novative clusters’ (Porter 2003). Among the main actors of any cluster are
companies, financial and educational institutions, public authorities and spe-
cific cluster organizations specialized in transferring knowledge and providing
further services. But these clusters are potential in the sense that not in ev-
ery region, and not in the frame of a whole region effective clustering occurs.
For further details on the theory of innovative clusters see Sölvell (2008).

There are many different approaches devoted to specific factors triggering
innovative activity (see, e.g., Opitz and Sauer (1999)). Nevertheless, as far
as we know, no generally accepted model is available encompassing all the
factors of interest.

Our main indicator of innovative activity is the value of innovative output
of organizations1 in a region. This is in line with Rosenberg et al. (1992)
who argues that the better measure of innovative success is not technology
itself, but its market success. The data of Rosstat do not allow to distinguish
different types of innovations as, e.g., completely new products or technology

1Organizations according to the Russian Civil Code are public and private companies
as well as scientific institutes and high-schools.
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improvements. As a result we also consider a larger number of organizations
related to innovative processes by implementing established technologies.

2.1 Advanced Hypotheses and Data Description

To identify the driving factors of innovations, we split the database in eight
groups of variables according to the hypotheses tested in this study.

1. Product market competition. There is a long discussion in the theory of
industrial organization on whether competitive pressure induces or reduces
innovative output of companies. Firstly, according to Schumpeter (1943),
there is a negative correlation between innovative activity, ’creative destruc-
tion’, and competitive pressure as profits become too small to implement
innovations. On contrary, Blundell et al. (1999) empirically confirmed that
competition enhances R&D activity in order to gain an advantage towards
main competitors. During the last years, the idea of an inverse ’U-curve’
dependence of innovative activities on the competition intensity has become
popular (Bucci and Parello 2009). Previous empirical research based on sur-
vey data for Russia confirmed the existence of a ’U-relationship’ (Kozlov and
Yudaeva (2004)).

Dealing with the regionally aggregated data of Rosstat, we can use nei-
ther standard indices of the extent of market competition like the Lerner
Index nor a number of competitors as a proxy measure. We can only approx-
imate the number and percentage share of companies that produce innovative
output, conduct R&D activities, apply and register patents and implement
advanced technologies in their production process in a particular region. This
substitution has certain disadvantages, e.g., it does not differentiate between
industries, where innovative firms act, but is included in order to compare
results.

2. Scale of production. An intensive discussion can also be found on the
role of small businesses in developing innovative products. From one point
of view, big companies may substantially benefit from economies of scale
and scope and, therefore, are rather expected to be more innovative. But at
the same time, small and medium-sized companies (SMEs) are more willing
to undertake risks and are more flexible to react to changes in consumer
preferences (Merivate and Pernias 2006).

In our model we test the hypothesis on firm size by using variables on
SME’s activity: share of small companies in the total number of organizations
in a region and share of SME’s output in gross regional product (GRP).

3. Form of ownership. We distinguish between three types of owner-
ship. In the case of public property, there are few incentives for managers
to run a business in the best way; in the case of international corporations,
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it is believed that they carry out most of their research activities in their
headquarters; the local capital is widely seen as the most efficient owner of
innovative enterprizes (Jefferson et al. 2003). In our model we are interested
in revealing whether public ownership has an impact on the innovative ac-
tivity and in testing possible correlation between foreign investments and
innovative output.

Among variables tested in this group are foreign direct and portfolio in-
vestments, shares of equity and borrowed funds in companies’ investments
in fixed capital. In addition, percentage shares of public, municipal and pri-
vate investments in total regional investments in fixed capital and shares of
privatized public and municipal organizations are included.

4. Economic performance. There are two controversial opinions in re-
gard to dependence of innovative activities on the economic performance of
companies. On one hand, companies that face financial difficulties try to
diversify their activities by implementing innovations (Funk 2006). On the
other hand, there is empirical evidence that companies with stable profits in
previous years adopt and implement innovations more actively (Cainelli et
al. 2006), which might be a result of financial constraints (Winker 1999).

For testing this hypothesis we use data on regional companies’ aggregated
net profit, average net profits and their credit debt (regionally aggregated and
average values) in domestic and foreign currency.

5. Infrastructure. It is argued that the actual level of infrastructure has
an important impact on innovative performance. By improving infrastruc-
ture, significant reductions in transaction costs and, hence, an improvement
in the market efficiency in general may be obtained. All these factors in-
duce restructuring processes in companies and introduction of new products.
Among infrastructure factors, which accelerate innovations, the most im-
portant are transport, telecommunication and financial services, especially
banking services (Cainelli et al. 2006).

To test the impact of infrastructure on innovations the following variables
are used: investments in fixed capital, in particular on transport, communi-
cation, public health and education services; density of motor and rail roads;
turnover of goods by means of rail and motor roads; usage of communication
services and their availability; share of credit organizations and their affiliates
relative to the total number of organizations in a region.

6. and 7. Knowledge spillovers. Inter-regional spillovers describe po-
tential benefits from cooperation with other innovative clusters. Knowledge
diffusion has an important role in fostering innovative performance, especially
in developing countries. This study concentrates on two aspects.

First, on the regional trade activity and regional ability to absorb new
knowledge as factors, inducing innovations (MacGarvie 2001). Considering
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factors that improve this knowledge transfer, the level of education (Bilbao-
Osorio and Rodriguez-Pose 2004) and the above mentioned infrastructure
level are most important. The variables of regional education level are rep-
resented by the share of public and private high school graduates, doctoral
students and R&D employees. We also test the share of export and import
with CIS and other countries and the trade agreements on technologies and
export related services.

Second, we test R&D activity in neighboring regions as well as their
education level as stimulating factors for innovative activity in a particular
region. There are numerous methods to determine one’s spatial neighbors,
for instance, contiguity matrices and distance-decay-functions (Klotz 1997).
We define only direct neighbors by land as neighboring regions and calculate
respective variables as arithmetic means of those in neighboring regions.

8. Control variables. We also aim to test some general hypothesis on
regional socio-economic characteristics stimulating innovations. It is of par-
ticular interest to investigate whether innovations are rather attributed to
economically strong regions with large GRPs and budget revenues. Among
variables tested are long term assets value, shares of urban population, un-
employment and criminal activity. The full list of variables can be found in
Table 6 in Appendix 7.1.

Innovations can be explained by the economic performance of companies,
investments in infrastructure, and product market competition. However,
they also induce improvements in economic performance, further investments
in infrastructure and increase market competition (Cainelli et al. 2006).
Therefore, we face the problem of a potential simultaneity bias. In order
to tackle this problem, we use the instrumental variable approach in the
context of a dynamic model specification.

2.2 Model Specification

In spite of the huge number of models proposed to explain the innovation
process, there is no generally accepted model available encompassing all the
factors of interest. Reviewing a great diversity of models, Forrest (1991)
suggested some essential characteristics for a comprehensive model. First of
all, the model should be nonlinear capturing an interrelationship of various
stages of innovative activity. Then, it should include “identifiable” inputs and
outputs. In addition, the generalized model must incorporate external effects,
e.g., market competition and indicators of socio-economic environment. After
all, the model should take into account the possible heterogeneity of regions.

In order to set up such a generalized model, we consider the modified
Cobb-Douglas Knowledge Production Function (KPF) (Crescenzi et al. 2007,
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p. 170). Transforming it into a log-linear form approximating the initial
model with arguments according to the hypotheses stated above we obtain:

lnYi = � + �1lnPMCi + �2lnSMEi + �3lnFOi + �4lnEPi

+ �5lnInfrai + �6lnSpillAbsi + �7lnSpillNi (1)
+ �8lnMacroi + ui,

where:

Yi innovative output of region i;
� a constant;
PMCi indicators of market competition in region i;
SMEi indicators of SME’s activity in region i;
FOi proxies for ownership structure of companies;
EPi proxies for companies’ economic performance;
Infrai proxies for regional infrastructure development;
SpillAbsi a vector of regional socio-economic characteristics, which may

improve ability to absorb new knowledge;
SpillNi socio-economic characteristics in neighboring regions;
Macroi further control variables, which address

relevant socio-economic characteristics of region i.

Moving from the KPF to (1), we approximate the stock of initial knowl-
edge by several proxies of regional socio-economic characteristics (SpillAbsi),
e.g., the number of doctoral students and employees in R&D departments.
The number of patent applications (Crescenzi et al. 2007) is used as a proxy
for the stock of initial knowledge in parallel with the number of patents
granted. Furthermore, in the dynamic specification of the model we include
the regional innovative output in the previous period (Yi,t−1) as an additional
proxy for the stock of knowledge. Regional R&D activity is proxied by some
market competition indicators (PMCi), e.g., the internal R&D costs.

Due to the logarithmic transformation in (1), � is an elasticity: the per-
cent change in Y as a function of the percent change in the respective variable.
As the transformation can be applied only to strictly positive data, some of
the variables have to be expressed as percentage shares or average values.
For these variables, � is a rate of proportional change in Y per unit change
in the respective regressor.

Gathering dependent and explanatory variables in vector y and matrix
X, respectively, model (1) can be written as:
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y = ��N +X� + u, (2)

where � is a scalar, �N stands for a N × 1 vector of ones, X is a k × N
matrix of k regressors and their values for N regions, � is a k × 1 vector of
their coefficients and u is a N × 1 vector of residuals. Here we use the panel
data subscripts i for regions and t for time.

2.2.1 Static Model Specification

Application of the Hausman test (Hausman and Taylor 1981) to preliminary
estimates of (2) indicates that regional fixed effects (�i) should be taken into
account. To deal with these fixed effects we first specify a static model (3),
where Z� stands for the matrix of regional dummies:

y = ��N +X� + Z��+ �. (3)

Transforming the data into deviations from individual means we perform
the LSDV (least squares dummy variables) estimation, which is also known
as within estimation:

yit − yi = �(xit − xi) + (�it − �i). (4)

Assuming that � ∼ iid(0, �2) and strict exogeneity of X, the LSDV is the
best linear unbiased estimator and consistent.

2.2.2 Dynamic Model Specification

As we are concerned about potential endogeneity of some of our explanatory
variables, we consider a dynamic model suggested by Blundell and Bond
(1998) with instruments in levels especially suitable for panel data with short
time dimensions:

yit = �yi,t−1 +Xit� + Z��+ �it. (5)

The GMM method for dynamic panel data models with not strictly ex-
ogenous variables was developed by Arellano and Bond (1991), introducing
some basic restrictions on the model, e.g., no serial correlation, and using
values of yit and Xit lagged two periods or more as instrumental variables
in equations with first-differences. Later, it was shown that this estimator
is weak and biased (Alonso-Borrego and Arellano 1999). The system GMM
procedure introduced by Blundell and Bond (1998) appears superior, as it
imposes additional restrictions on the initial condition process. It adds lagged
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differences of yit and Xit as additional instruments in order to improve the
efficiency for short time-series samples.

We consider two scenarios, where the explanatory variables X are con-
sidered either as endogenous or predetermined. Depending on which of these
assumptions is maintained, different numbers of lags and lagged differences
as instruments are used in the system GMM estimation. To test the validity
of the instruments we apply the Sargan test (ST). The details of the system
GMM estimation procedure are presented in Appendix 7.2.2

3 The Model Selection Procedure

3.1 The Optimization Problem

Let us first clarify the basic approach to the optimization problem. Consider
the following regression function:

yt = � + �xoptt + u, (6)

where xt = (x1,t, ..., xk,t) is a k-dimensional vector of variables with xoptt

being the subset of all possible regressors we seek to identify. This might be
the ‘true’ model in a Monte Carlo simulation setting or an optimal approx-
imation to the unknown real data generating process. A vector ! specifies
which variables are included in the model. It assigns the value of one or zero
to indicate the selected or not selected variables. To select a model IC are
implemented, which rank alternative models according to their fitness, while
taking into account a penalty for model complexity.

Over the last years IC became a standard instrument in model selection
problems ranging from lag order selection in multivariate linear (VAR and
VEC) and nonlinear (MS-VAR) autoregression models to selection between
rival nonnested models (Winker and Maringer 2004, Gatu et al. 2008).

In this study we implement Akaike’s IC (AIC), the Bayesian IC (BIC) and
the Hannan-Quinn IC (HQIC). All these criteria have a similar structure:

IC = ln(�2) + f(k, n), (7)

where �2 is the maximum likelihood estimation of the residual sum of
squares. The second term is a penalty for the number of included parameters
(k). This term also depends on the sample size (n). In particular, 2k/n,
kln(n)/n and 2kln(ln(n))/n are the AIC, BIC and HQIC penalties.

2We also apply the system GMM estimation procedure implemented in Stata 10 as a
reference to compare our results.
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Imposing some weak assumptions on the model space (xi,t and "i,t) ac-
cording to the results of Sin and White (1996) it can be shown that the
vector !i that minimizes the IC converges to !true with probability close to
1 as n → ∞. But for this to be true, it is essential that the penalty term
f(k, n) → ∞ and f(k, n)/n → 0 as n → ∞. In this sense, BIC and HQIC
are consistent, while AIC is inconsistent.

In addition to the penalty for model complexity, we impose the constraint
that at least one regressor from each group of variables specified in (1) is in-
cluded. This constraint is enforced by imposing an additional multiplicative
penalty (pj) to the objective function (7) in an optimization procedure. The
penalty increases over the iterations of the optimization algorithm to make
sure that eventually the constraint is satisfied. This constraint is optional, as
we might realize that no statistically significant variable is present for a par-
ticular group. Furthermore, for the dynamic specification of the model the
objective function is multiplicated by an additional penalty term (penST ) de-
rived from the results of the Sargan test to ensure that only valid instrument
variables are considered:

IC = (ln(�̂2) + f(k, n))

(
1 +

8∑
j=1

pj

)
(1 + penST ), (8)

where j stands for a group of variables and �̂ denotes residuals from the
two-step estimator (see Appendix 7.2) and

penST =

{
0 if STprob > 0.1

1/STprob otherwise , (9)

where STprob is the probability value of the Sargan test.

3.2 Heuristic Algorithms

Quality and precision of econometric estimation is crucially dependent on
detecting the global optimum of any objective function. Breiman (2001)
demonstrates the so called “Rashomon Effect”, where different model specifi-
cations with very similar IC values provide different conclusions. Minimizing
objective function (8) is not as simple as it might seem at first sight. In fact,
the search space of candidate models is discrete (Winker (2001, p. 192)). The
full enumeration of all possible solutions is only feasible for a small dimen-
sional xt. In our empirical problem the selection is made out of 80 variables
resulting in 280 potential sub-models. Therefore, the full enumeration is in-
feasible even using efficient algorithms (Gatu et al. 2008).
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In the last two decades, new nature-inspired optimization methods have
become available. For an overview of these optimization techniques see
Winker (2001) and Gilli and Winker (2004). In the following we describe
the two heuristic methods implemented, the Threshold Accepting (TA) and
the Genetic Algorithms (GA).

3.2.1 Threshold Accepting

The TA algorithm, suggested by Dueck and Scheurer (1990), is a refinement
of classical local search procedures. In contrast to a local search, where a
new solution is accepted only if an improvement is realized, TA also accepts
uphill moves as long as they do not exceed a given threshold value � . A
pseudocode of the TA implementation can be found in Algorithm 1.

Algorithm 1 Pseudocode for Threshold Accepting.
1: Generate at random a solution !0, initialize Imax and �
2: for I = 1 to Imax do
3: Generate at random neighbor !1 ∈ N (!0)
4: if f(!0)− f(!1) < � then
5: !0 = !1

6: end if
7: Reduce �
8: end for

In TA we generate an initial solution !0 as a vector of k binary compo-
nents corresponding to our X variables. A fixed number of variables (here
it is 2) is included in each group and they are randomly distributed across
the vector. Generating an initial solution at random instead of constructing
it based on, e.g., empirical evidence or expectations, has the advantage that
the algorithm will not start with a possible local optimum.

We generate a new solution !1 by exchanging two randomly chosen com-
ponents with components located in a close neighborhood,3 in particular in
the radius of three vector components. We choose the ’neighbor’ by means
of the uniform random distribution and if it has the same value as the first
component, than its value is changed to an opposite binary value: from 0
to 1 and vice versa. The same is true if the ’neighbor’ turns out to be the
initially chosen component.

To generate an effective threshold sequence for all three IC, we obtain
threshold values by a data driven method (Winker 2001, p. 170). To this
end, we calculate absolute differences between the initial and new objective

3Changing the value of one element makes the algorithm slower and, e.g., of four
elements causes a larger variance of results.
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Figure 1: Threshold sequences from local deviation simulations.

function values with no penalty term for the number of groups included, and
arrange them in decreasing order (Figure 1).

We use only a lower fraction % of these sequences. This is made to improve
the performance of the algorithm and not to accept solutions almost arbi-
trarily during the early iterations. The vertical line in Figure 1 corresponds
to % = 0.6 selected based on tuning experiments.

As TA is a stochastic process it may find the best possible solution in the
search space and then loose it during the searching procedure. To avoid this,
the best found solution is saved.

3.2.2 Genetic Algorithms

Unlike TA, GA, proposed by Holland (1975), are population based heuris-
tic methods that operate on a set of solutions (population). Thus, a GA
investigates the search space in many directions simultaneously so that the
probability of getting stuck into a local optimum is reduced.

The members in the GA population (chromosomes) are represented as
bit strings, in which each position (gene) has two possible values: 1 and
0. In each generation GA replaces parts of a population with new chromo-
somes (children) aimed to represent better solutions for a particular problem.
Children are generated using a crossover mechanism, that combines parts of
chromosomes (parents), and mutation, that randomly changes genes in chro-
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mosomes. For optimal model selection we implement the GA pseudocode
described in Algorithm 2.

Algorithm 2 Pseudocode for Genetic Algorithms.
1: Generate initial population K of solutions, initialize Gmax and C
2: for g = 1 to Gmax do
3: Sort chromosomes in K
4: Select K

′ ⊂ K (parents), select K∗ ⊂ K (elitist)
5: initialize K

′′
= ∅ (set of children)

6: for c = 1 to C do
7: Select individuals xparent1 and xparent2 at random from K

′

8: Apply cross-over to xparent1 and xparent2 to produce xcℎild
9: K

′′
= K

′′ ∪ xcℎild
10: end for
11: K = (K

′
,K

′′
)

12: Mutate K ∖ K∗ at 8 random points
13: end for

K is a matrix of p initial solutions. We use p = 500 considering this
number to be large enough to screen the search space in different directions
and at the same time small enough to allow for effective sorting and selection
of the best solutions.4 As in TA, chromosomes in the initial population are
generated with a fixed number of included variables, randomly distributed
over the vectors. Thereafter, the population is sorted in an ascending order
according to the objective function value. Then, the 50% of the chromosomes
with the best target values (parents, K ′) are transferred to the new popula-
tion. We also select the ten best (elitist) chromosomes (K∗). Based on K ′

we construct new chromosomes (children) by crossing them over. Generating
children we allow parents with superior objective values to be selected more
often. First, we select 200 parents at random with an equal probability for
the parents to be selected and generate 200 children. Then, the 40 parents
with the best objective values generate 40 more children. The 10 last children
are generated from the elitist solutions by changing at random one gene.

In the implementation we compare two crossover mechanisms: single-
point crossover and uniform crossover. In the single-point crossover two
parents are split at a random gene (crossover-point). From the split parts
two new children are generated by combining the first part of one parent with
the second part of the other parent. The crossover-point is placed between
the second and the next to last genes (Kapetanios 2007).

In contrast, in the uniform crossover parents may be split not only at one
particular gene, but at each gene. With probability P0 we swap genes from

4We also tested populations of 100, 300 and 1000 solutions and found that the popu-
lation of 500 solutions is more effective in terms of both CPU time and solution quality.
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xparent1 =
(
1 1 0 1 0 1 0 ... 1

)
1×k

xparent2 =
(
1 0 1 0 1 1 0 ... 1

)
1×k

———————————————————————
mask1 =

(
0 1 1 0 0 0 1 ... 1

)
1×k

mask2 =
(
1 0 0 1 1 1 0 ... 0

)
1×k

———————————————————————
xcℎild1 =

(
1 1 0 0 1 1 0 ... 1

)
1×k

xcℎild2 =
(
1 0 1 1 0 1 0 ... 1

)
1×k

Figure 2: The uniform crossover mechanism.

two parents in a child. The uniform crossover can be presented as generating
a mask of zeros and ones (see Figure 2), indicating for each gene from which
parent it has to be taken. We set P0 = 0.5 resulting in equal probability for
each entry in the masks.

Performance analysis of the uniform crossover based on several binary
function optimization problems can be found in Fogel (2006). It was shown
that the uniform crossover outperforms both one- and two-point crossover
mechanisms on average.

Testing both the single-point and uniform crossover for this particular
problem based on repeated and independent Monte-Carlo simulations with
500 restarts we see that the uniform mechanism provides high quality so-
lutions more reliably. The 95th percentiles of the results for the uniform
crossover converge to the minimum value found in all replications (see Fig-
ure 3), whereas for the single-point crossover a difference between the 5th
and the rest 95th percentiles persists.5

The uniform crossover might be criticized for destroying superior chromo-
some structures. We avoid this problem by preserving elitist solutions and,
thus, screening the search space in a more efficient way.

After a new population is formed, mutation is applied at eight random
genes with a probability of 50%.6 Mutation is applied to the whole new
population K except for the 10 elitist solutions and the 10 children generated
from the elitist solutions by mutation. This procedure is repeated for a given
number of generations Gmax.

5In Figure 3, all objective function values accepted by the GA lie within the interval
between 6.65 and 6.72.

6We examined different number of genes and rates of mutation as well. By reducing the
number of genes or the probability of mutation, the computational time increases, while
increasing both values increases the risk to miss high quality solutions.
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Figure 3: Results of the single-point and uniform crossover.

4 Monte-Carlo Study

4.1 The Data Generating Process

In order to assess the performance of the implemented heuristic methods
with an objective function as described in equations (7) and (8) we generate
artificial data based on the panel dataset of Rosstat. First, a set of regressors
(XMC) is randomly drawn from the database. Then, regression coefficients
(�MC) are estimated based on the dependent variable (y). Finally, a new
dependent variable (yMC) is generated using the estimated coefficients adding
an identically and independently distributed error term:

yMC = XMC�MC + ", " ∼ N(0, �2
"), (10)

where �2
" is the variance of the residuals.

Using a Data Generating Process (DGP) mimicking the empirical data,
i.e., also with a cross-section dimension of 75 and eight time periods, we
expect that the performance of the heuristics and the IC estimated based on
this Monte-Carlo study is a good approximation for our real data problem.

4.2 Simulation Results

Table 1 presents results of TA and GA computational performance. The two
algorithms are compared in terms of mean and minimum objective function
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values and standard deviations. The descriptive results are obtained based
on 10 restarts for each algorithm. The number of iterations for TA is taken
equal to the number of chromosomes times the number of generations for GA
resulting in the same number of function evaluations for both algorithms.

Table 1: Performance of the algorithms for different computing times.

Method
Threshold Accepting Genetic Algorithms

AIC BIC HQIC AIC BIC HQIC
50 000 iterations 100 generations

mean 6.5890 6.7322 6.6663 6.5890 6.7272 6.6556
std [0.0060] [0.0086] [0.0093] [0.0024] [0.0021] [0.0011]
min (6.5877) (6.7192) (6.6690) (6.5844) (6.7251) (6.6544)

250 000 iterations 500 generations
mean 6.5887 6.7264 6.6646 6.5848 6.7158 6.6528
std [0.0041] [0.0053] [0.0056] [0.0013] [0.0017] [0.0000]
min (6.5863) (6.7173) (6.6532) (6.5837) (6.7142) (6.6528)

1 000 000 iterations 2000 generations
mean 6.5876 6.7163 6.6536 6.5843 6.7142 6.6528
std [0.0018] [0.0008] [0.0004] [0.0011] [0.0000] [0.0000]
min (6.5854) (6.7153) (6.6529) (6.5837) (6.7142) (6.6528)

For TA with an increasing number of iterations we observe that mean,
minimum objective function values and standard deviations decrease for all
three information criteria (see Table 1).

For GA we obtain similar results, though the improvement is moderate.
Comparing the results for the two heuristics we see that GA is able to find
a good solution already with a relatively small number of generations (in
particular, with 500 generations as it is seen from Table 1). Increasing the
computational time up to 2 000 generations mainly reduces the variance of
the results. Further increases of computational time (e.g., up to 5 000 000
iterations for TA and 10 000 generations for GA) do not improve the results
significantly. As a result we conclude that GA appears superior to TA for
this particular problem. First, the GA is about 20 percent faster than the
TA for a comparable number of iterations.7 Second, GA provides us with

7Both algorithms are implemented using Matlab 7.7 on a Pentium IV 2.67 GHz. The
CPU time needed for 2 000 generations of the GA is about 700 s, while the TA implemen-
tation with 1 000 000 requires 850 s. The small difference in CPU time is due to the more
complex generation of neighbors for the TA as described above.
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smaller standard deviations and slightly better objective function values (in
terms of both mean and minimum values).

Now, to test the performance of our algorithms with an objective func-
tion of type (8) in detecting ’true’ variables we run the algorithms for ten
different artificial sets of data with eight ’true’ variables in each dataset. The
simulation results are compared using the True Positive Rate (TPR) and the
False Positive Rate (FPR)8 in the upper panel of Table 2.

Table 2: Performance of the algorithms.

Method
Threshold Accepting Genetic Algorithms
AIC BIC HQIC AIC BIC HQIC
1 000 000 iterations 2000 generations

8 years period
TPR 23% 43% 37% 30% 49% 38%
FPR 21% 8% 10% 16% 6% 9%

20 years period
TPR 30% 55% 48% 35% 58% 49%
FPR 19% 5% 8% 15% 4% 7%

As expected the objective function based on the Akaike criterion accepts
too many ’false’ variables. Accepting on average 19-20 variables, AIC cor-
rectly defines approximately 4 variables. BIC and HQIC significantly out-
perform AIC, accepting less false variables (on average 8 and 11 regressors in
total, respectively). As it is clear from Table 2 BIC is the most efficient IC
in declining ’false’ variables, while HQIC regularly allows for more ’incorrect’
variables in the final solution. It is also evident that similarly to objective
values, GA provides us with slightly better results than TA.

We believe that the main reason for the limited efficiency of all IC in
Table 2 is the relatively small sample size: 75 regional observations for a
period of eight years are not sufficient for the IC to identify the ’true’ model.
Analyzing the data for eight years and using an optimization technique we
find an IC-value smaller than the one corresponding to the ’true’ model.

In order to test the performance of the IC for a larger sample size, we
artificially increase the time-series dimension: we select ’blocks’ from the
dataset at random points (from 1 to 8) and add them to the current dataset.

8TPR is the percentage of ’true’ regressors from all regressors selected. FPR is the
percentage of selected ’false’ regressors among all ’false’ regressors.
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Selecting the blocks at the same point for all variables, we produce a new
dataset of 20 years. Although the dynamic structure of these artificial data
differs from the one of the real data, we might still use them to test the
performance of the selection criteria for larger sample sizes. Results of these
experiments are presented in the lower panel of Table 2. It is obvious that
the performance for all IC is significantly improved. Unfortunately, actual
data for a longer period is not available for Russia.

Table 3: Performance of the algorithms with no group penalty.

Method
Threshold Accepting Genetic Algorithms
AIC BIC HQIC AIC BIC HQIC
1 000 000 iterations 2000 generations

8 ’true’ variables
TPR 25% 84% 48% 39% 89% 54%
FPR 19% 1% 6% 14% 1% 5%

16 ’true’ variables
TPR 40% 85% 61% 44% 93% 66%
FPR 18% 1% 6% 13% 1% 3%

37 ’true’ variables
TPR 61% 87% 75% 66% 96% 83%
FPR 20% 2% 7% 19% 1% 6%

Considering again the original structure with eight periods, we also ana-
lyze the performance of the IC when no penalties on the number of groups
included are introduced (see Table 3). Thus, in the Monte-Carlo experiment
with eight ’true’ variables, one from each group, BIC selects four variables on
average with three to four of them correct and HQIC selects eight variables
on average with four to five correct, accepting more false regressors. Increas-
ing the number of a priori ’true’ variables the algorithms marginally increase
the number of selected variables, improving their performance in terms of
both: the TPR and FPR. For example, for 37 ’true’ variables (five variables
in each group except of scale of production) HQIC selects 14 variables with 12
correct. However, it is obvious that for all IC this effect is accompanied with
an increase of the number of true variables not included in the final model.
This is also due to the finite sample size, where the asymptotic properties of
the IC can be observed to a limited extent. In Table 3 it is also clear that
GA have a tendency to select less variables for all the IC used, including less
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true variables and rejecting more false variables. These facts should be taken
into account when interpreting the results in Section 5.

5 Empirical Results on the Example of Russia
Based on the Monte-Carlo simulation results, we apply the superior GA
algorithm on the database of Russian regions in order to specify the log-
linear model of the form given in equation (1). We use the objective function
(7)-(8) with AIC, BIC and HQIC with and without the penalty term on
groups of variables included. The empirical results are obtained by running
the GA 10 times with 2 000 generations for each IC. We only present the
model specifications related to the smallest objective function values. Results
for the static model are provided in Table 4 and for the dynamic model in
Table 5.

The models obtained are similar in terms of variables included for all
running sessions, but differ significantly between static and dynamic model
specifications. Comparing the results in Tables 4 and 5 it is clear that the
regression coefficients are different for most variables included in both spec-
ifications. A good example to consider here is the GRP per capita. In the
static model this variable has a strongly significant coefficient: 1% increase in
the regressor is associated, ceteris paribus, with approximately 2% increase
in the innovative output. But GRP can hardly be considered as exogenous
with respect to the regional innovative performance. Considering this indica-
tor as endogenous changes the result: in the GMM estimation the variable is
estimated with an inverted sign and there is less evidence that it has a signif-
icant effect on the dependent variable. In fact, in regions with ex ante high
GRP per capita, e.g., regions in the North of Ural extracting oil, companies
may have less incentives to innovate due to a different regional specialization.
Therefore, in the following we concentrate on the system GMM estimation
results, keeping the within estimation for a comparison.

An argument supporting the relevance of the obtained results is the fact
that the set of regressors included is relatively stable for both assumptions
on predetermined and endogenous variables. Another evidence for this is the
fact that statistically significant9 variables are included with and without the
penalty on the number of groups included, while insignificant variables are
dropped in specifications without this penalty.

According to the results in Table 5 the number of granted patents and
9The significance test is based on asymptotic standard errors for the one-step estima-

tor, which are seen to be more reliable if the residuals obtained from the estimator are
heteroscedastic (see Arellano and Bond (1991) and Blundell and Bond (1998)).
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Table 4: Within estimation results.

With group penalty No group penalty
Regressors AIC BIC HQIC AIC BIC HQIC
shInterCostLab 0.01∗∗∗ - - 0.02∗∗ - -
shInterCostMat −0.01∗ - - −0.01∗ - -
lnApplPatent −0.13 −0.13 - - - -
lnAdvProdTech −0.18∗∗ - −0.17∗ −0.22∗∗ - −0.16∗∗

shSMEoutput - 0.01∗∗ - - - -
shSME 0.03∗∗ - 0.01 0.03∗∗ - -
shPubInvFixCap 0.01∗∗ 0.01∗ 0.01∗∗ 0.01∗∗ - 0.01∗∗

shPriInvFixCap 0.02∗∗∗ 0.02 0.01∗∗ 0.02∗∗ - 0.02∗∗

avNetProfit 0.08 - 0.08 - - -
lnAggrCredDinFX - −0.03 - - - -
lnNumPhonepc 3.66∗∗∗ - 3.03∗∗∗ 3.37∗∗∗ - 3.08∗∗∗

lnTurnMotorRoad 0.38∗∗ - 0.41∗∗ 0.40∗∗ - 0.43∗∗

shFCInvIndProd 0.01∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.01∗∗ 0.02∗∗∗ 0.02∗∗∗

shFCInvComm −0.04∗∗ - - −0.04∗∗ - -
shFCInvTrade −0.06∗∗∗ - −0.05∗∗ −0.06∗∗ - −0.04∗

shFCInvPHealth 0.06∗∗∗ - 0.04∗∗ 0.05∗∗∗ - 0.05∗∗

shPrivHighSGrad 3.25∗ - - 3.19∗∗ - -
lnDocStudent 0.45∗∗∗ 0.35∗∗ 0.36∗∗∗ 0.47∗∗∗ 0.34∗∗∗ 0.39∗∗∗

lnImpNumofTech −0.46∗∗∗ - −0.28∗∗ −0.47∗∗∗ - −0.27∗∗

lnRDCostSpill −0.64∗ - −0.84∗∗ −0.78∗∗ - −0.77∗∗

shOrgRDactSpill 0.22∗∗∗ 0.18∗∗∗ 0.21∗∗∗ 0.21∗∗∗ 0.20∗∗∗ 0.24∗∗∗

lnGPatentSpill −0.44∗∗ - −0.42∗∗ −0.42∗∗ - −0.40∗∗

shPHighSGSpill −2.07∗ - - −2.37∗∗ - -
lnGRPpc 1.89∗∗∗ 1.79∗∗∗ 2.31∗∗∗ 1.93∗∗∗ 1.81∗∗∗ 2.10∗∗∗

shUrbanPop 0.11∗ - 0.14∗∗ 0.10∗ - 0.14∗∗

lnNumofApplLF −0.38∗∗∗ −0.36∗∗∗ −0.35∗∗∗ −0.37∗∗∗ −0.34∗∗∗ −0.30∗∗

R2 0.40 0.32 0.37 0.40 0.31 0.36
R2-adjusted 0.37 0.31 0.35 0.37 0.31 0.35
F-test’ P-value 0.00 0.00 0.00 0.00 0.00 0.00

∗∗∗,∗∗,∗ Statistically significant, respectively, at the 1, 5 and 10% level
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the number of advanced production technologies used have, ceteris paribus, a
positive effect on the regional innovative output. This result does not allow
us to make any statement about the state of competition and its impact
on the innovative activity. This finding rather provides us with an indirect
estimate of knowledge spillovers within the limits of one region: new patents
and technologies are widely seen as an instrument of knowledge transfer.

In conjunction to this result it is useful to consider the results on the hy-
pothesis of knowledge spillovers from neighbor regions. The positive spillover
effect of the innovative output in neighboring regions is contrasted with the
negative effect of the number of granted patents. The positive influence of
the value of innovative products in neighboring regions can be considered as
plausible: a good or a service is a data carrier itself, and being exported can
transfer knowledge to companies in neighboring regions.

On the contrary, the negative regression coefficient of the granted patents
is a surprising result, as empirical evidence from the US and Western Eu-
rope confirms patents as an instrument of knowledge diffusion (Bacchiocchi
and Montobbio 2009). One might interpret this as a result of the property
rights policy: technologies or goods patented in one region are protected
from copying in neighbor regions. In this case, technologies implemented to
produce innovative products in neighbor regions need to be either very close
or even the same, which is a very strong assumption. Another explanation
for this may be a concentration of Russian innovative companies in a few
’special economic zones’ (RusSEZ) with certain tax reliefs and further bene-
fits for innovative companies. By this, these regions absorb production from
neighbor regions instead of transferring knowledge.

Based on this result one might conclude that knowledge is regionally
bound in Russia and particular measures to develop inter-regional knowl-
edge diffusion are worth to undertake. These two effects are found to be
strongly significant and are included with all IC in the final model speci-
fication. Remember that these results are obtained with the neighborhood
concept we have chosen. It is also relevant for further examination to test this
hypothesis with a different concept, allowing, e.g., for knowledge spillovers
between Moscow and St. Petersburg. These two most innovative regions in
Russia are also expected to exhibit spillover effects with each other.

For the ownership hypothesis a positive partial effect of foreign direct
investment (FDI) is identified. This is one of the few robust findings of this
effect for the Russian economy (Tytell and Yudaeva 2006). Notice that for the
static model specification FDI was not selected, and in the dynamic model
it is included by all IC with the exception of BIC. According to the Monte-
Carlo simulations BIC rejects more true variables than the other IC. However,
the effect of FDI is fairly low. This may be due to a broader definition
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of innovation used by Rosstat, including new products and services, which
are not offered or produced in the country, and processes, which increase
efficiency of the production. Another reason may be the low FDI inflow
itself in relation to GDP in Russia (Tytell and Yudaeva 2006).

For the hypothesis on financial performance the only significant indicator
selected with all criteria is the share of aggregated net profits in GRP. How-
ever, its regression coefficient is of a fairly small value. To draw any concrete
conclusions, the hypothesis must be tested on microdata.

Similarly, for the hypothesis on adoption of new knowledge, only the share
of graduates from other public educational institutions (technical schools,
colleges, academies) is selected and is found to be significant. In this case, the
regression coefficient is negative, demonstrating that the share of graduates
has, ceteris paribus, a negative impact on the innovative success. Taken in
relation to the total regional population this indicator varies from its value
around 1%, having a marginal impact on the innovative output. Nevertheless,
the evidence is not obvious as the graduates of these schools are expected to
enhance technical innovations. The negative impact might be explained by a
selection bias: other public educational institutions being less attractive for
potential students in comparison to universities are less efficient in preparing
good specialists.

Among indicators on infrastructure the density of rail roads and the
turnover of motor roads have partial negative effects on the dependent vari-
able. Though, their inclusion in the final model is dependent on the assump-
tion on the initial conditions process (endogenous or predetermined regres-
sors). Similar evidence is found for the investments in fixed capital. The
only exception for this are the investments in public health services. This re-
gressor has a significant partial positive impact for both assumptions on the
initial condition process. So far, we do not have an exhaustive explanation
for this. Thus, we find some evidence that different infrastructure indicators
have a positive impact on the innovative performance of regions, but until
now, it is impossible to draw more specific conclusions.

Finally, there is no significant indicator on scale of production. Besides,
the hypotheses on impact of public, municipal and private forms of ownership
are not confirmed (the latter is not significant). None of the control variables
are found to be significant.
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6 Conclusions and Outlook
In this paper the innovative performance of Russian regions is analyzed. The
innovative process is described in numerous studies with sometimes contra-
dictive results. As there is no generally accepted model available encompass-
ing all the factors of interest, a generalized log-linear model based on the
regional data of Rosstat is suggested.

We optimize the model structure by selecting only those variables, which
are relevant according to the information criteria. It is demonstrated that
the corresponding optimization problem is complex due to the large discrete
search space. Therefore, no classical optimization methods can be applied.

To deal with this problem two heuristic optimization approaches are sug-
gested: Threshold Accepting and Genetic Algorithms. They are shown to be
able to find an optimum or at least a very good result in terms of the IC value
with, respectively, 1 000 000 iterations and 2 000 generations on average.

Comparing the heuristics we argue that for this particular problem for a
given CPU time, GA provides marginally better results than TA in terms of
the mean, minimum values and variance.

One problem that becomes obvious for our application is the asymptotic
behavior of the IC. A sample size of 600 observations is too small for the
information criteria to identify the ’true’ model. Instead, only up to 50% of
the true variables are detected in a MC simulation. Relaxing the constraint
that at least one variable from each group of potential regressors has to
be included reduces the number of false variables included in the final model
substantially (especially for BIC). However, the problem of relevant variables
possibly not selected by the IC remains open.

Taking the unobserved heterogeneity and possible endogeneity of regres-
sors into account, we compare both static and dynamic model specifications
using GA. In particular, for the dynamic model specification, the system
GMM estimation is undertaken. Based on this comparison a series of hy-
potheses on stimulating innovations is tested.

In conclusion, we argue that the heuristic methods based on the IC are
effective methods of model selection. In the future we will enhance our
model selection procedure enabling to distinguish between strict exogenous,
predetermined and endogenous variables simultaneously. For further study
remains also the incorporation of the optimal choice of moments that could
efficiently explore linear GMM moment restrictions and reduce the variance
of the estimator. Application of the algorithms on a different dataset, in
particular with a larger number of cross and time-series observations and
with more accurate proxies on the market competition, investment climate
and other hypotheses, is also of interest.
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7 Appendix

7.1 Variables Used in the Analysis

Table 6: List of tested explanatory variables.

Product market competition
shInnovOrg Share of organizations which produce innovative output
lnRDCost Log of internal R&D costs
shInterCostLab Share of expenditure on labor remuneration in internal R&D costs
shInterCostSTax Share of expenditure on social taxes in internal R&D costs
shInterCostEqp Share of expenditure on machines and equipment

in internal R&D costs
shInterCostMat Share of expenditure on materials
shOrgRDactiv Share of organizations which conduct R&D activities
lnApplPatent Log of number of applications for patents
lnGrantPatent Log of number of granted patents
lnAdvProdTech Log of number of advanced production technologies used

Infrastructure
lnRevCommServ Log of revenues from communication services per capita
lnNumPhonepc Log of number of telephones per thousand inhabitants
shMobPhoneSubs Share of mobile telephone subscribers in regional population
lnRailRoadDen Log of kilometers of railroads of general use per 10000 km2

lnMotorRoadDen Log of kilometers of motor roads of general use per 1000 km2

shCreditOrg Share of credit organizations in the total number of organizations
shCreditOrgAff Share of credit organizations’ affiliates

in the total number of organizations
lnTurnRailRoad Log of turnover of goods by means of railroads
lnTurnMotorRoad Log of turnover of goods by means of motor roads
lnInvFixCap Log of fixed capital investments (FCInv’s)
shFCInvIndProd Share of FCInv’s in industrial production ⎫⎬⎭

shFCInvAgricul Share of FCInv’s in agriculture
shFCInvConstr Share of FCInv’s in construction
shFCInvTrans Share of FCInv’s in transport distribution according
shFCInvComm Share of FCInv’s in communication to economic activity
shFCInvTrade Share of FCInv’s in trade
shFCInvPHealth Share of FCInv’s in public health
shFCInvEduc Share of FCInv’s in education

Scale of production
shSME Share of small companies
shSMEoutput Share of SME’s output in gross regional product (GRP)

Form of ownership
lnFDI Log of foreign direct investments
lnFPI Log of foreign portfolio investments
lnFIE Log of foreign investments not elsewhere specified
shPubInvFixCap Share of public investments in FCInv’s }
shMunInvFixCap Share of municipal investments in FCInv’s distribution according
shPriInvFixCap Share of private investments in FCInv’s to ownership structure
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shPrivPubMunOrg Share of privatized public and municipal organizations
shEqtInvFixCap Share of equity in FCInv’s

}
distribution according

shBCrInvFixCap Share of bank credits in FCInv’s to source of finance
Economic performance

shAggrNetPinGRP Share of aggregated net profit of companies in GRP
avNetProfit Average net profit of companies in roubles (m)
lnAggrCredDinRu Log of aggregated credit debts of companies in roubles
lnAggrCredDinFX Log of aggregated credit debts of companies in foreign currency
avCredDinRu Average credit debts of companies in roubles (m)
avCredDinFX Average credit debts of companies in foreign currency (in roubles, m)

Knowledge spillovers I
shPubHighSGrad Share of public high-school graduates in total population (TP)
shPrivHighSGrad Share of private high-school graduates in TP
shPubGradOEI Share of graduates from other public educational institutions in TP
shPrivGradOEI Share of graduates from other private educational institutions in TP
shPubHStoAllHS Share of public graduates in all high-school graduates
shPubtoAllGrad Share of public graduates in all graduates

from other educational institutions
lnRDstaff Log of the number of employees in R&D departments
lnDocStudent Log of number of doctoral students
lnPostdocStud Log of number of postdoctoral students
shExpRWorld Share of export to the rest of the world relative to GRP
shImpRWorld Share of import to the rest of the world relative to GRP
shExpCIS Share of export to the CIS countries relative to GRP
shImpCIS Share of import to the CIS countries relative to GRP
lnExpNumofTech Log of number of contracts for export of technologies
lnExpValofTech Log of value of contracts for export of technologies
lnExpEarnofTech Log of annual earnings of contracts for export of technologies
lnImpNumofTech Log of number of contracts for import of technologies
lnImpValofTech Log of value of contracts for import of technologies
lnImpEarnofTech Log of annual earnings of contracts for import of technologies

Knowledge spillovers II
lnInnOutSpill Log of value of innovative products in neighboring regions (NR)
lnRDCostSpill Log of internal costs on R&D in neighboring regions in NR
shOrgRDactSpill Share of organizations which conduct R&D activities in NR
lnGPatentSpill Log of number of granted patents in NR
lnAdvPrTSpill Log of number of advanced production technologies used in NR
shPHighSGSpill Share of public high-school graduates in the total population in NR
lnRDstaffSpill Log of the number of employees in R&D departments in NR

Control variables
lnGRP Log of GRP in current prices
lnGRPpc Log of gross regional product per capita in current prices
lnRevConsBudg Log of revenues of regional consolidated budgets
lnValLTAssets Log of value of regional long term assets
shEmplPop Share of employable population in total population
shUrbanPop Share of urban population in total population
shUnEmplPop Share of unemployed population (relative to employable population)
lnNumofApplLF Log of number of applications for labor force
lnNumofRegCrime Log of number of registered crimes per 100 000 inhabitants

30



7.2 System GMM Estimation Technique

Here we will state the assumptions of the system GMM estimators applied.
First, �i and �it are independently identically distributed so that

E(�i) = 0; E(�it) = 0; E(�it�i) = 0; i = 1, ..., N ; t = 2, . . . , T (11)

and there is lack of serial correlation, but not necessarily independence
over time:

E(�it�is) = 0; i = 1, ..., N ; t = 2, . . . , T ; ∀t ∕= s. (12)

Following Blundell and Bond (1998) we also make the standard assump-
tion concerning the initial conditions yi1:

E(yi1�it) = 0; i = 1, ..., N ; t = 2, . . . , T. (13)

Conditions (11), (12), (13) are sufficient for the following (T−1)(T−2)/2
linear moment conditions to be valid:

E[yi,t−2Δ(�i + �it)] = 0; t = 3, . . . , T, (14)

where Δ(�i+�it) = Δuit = uit−ui,t−1 = Δyi,t− �̂Δyi,t−1−ΔXi,t�̂. Intro-
ducing lagged values of yit as instruments, we estimate � in first-differences
for datasets with a time-series dimension T ≥ 3. But as these estimations are
biased (Alonso-Borrego and Arellano 1999), we need to make an additional
mild stationarity assumption about the initial conditions yi1 allowing the use
of an extended ’system GMM’ estimator that uses lagged differences of yit
as instruments for equations in levels. This stationarity condition on yi1 re-
quires E[(yi1 − �i

1−� )�i] = 0 for i = 1, . . . , N , so that yit converges towards
its mean �i

1−� for each region from period t = 2 onwards. This yields the
condition:

E[Δyi,t−1�i] = 0; i = 1, . . . , N. (15)

If (11), (12), (13) and (15) hold, the additional (T − 1)(T − 2)/2 moment
conditions are valid:

E[Δyi,t−1(�i + �it)] = 0; t = 3, . . . , T. (16)

Together the moment conditions on equations in first-differences (14) and
on equations in levels (16) yield the system GMM estimator (Blundell and
Bond 1998).
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We do not assume that the explanatory variables X are all strictly exoge-
nous, but either endogenous or predetermined. X might be endogenous in the
sense that Xit are correlated with �it and earlier shocks, but not correlated
with subsequent shocks:

E(Xit�is) ∕= 0; i = 1, . . . , N ; ∀s ≤ t. (17)

X are predetermined if in addition it is assumed that there is no correla-
tion between Xit and �it. Then, conditions (13), (14), (15) and (16) are also
true for Xit, allowing to include Xi,t−2 and ΔXi,t−1 as valid instruments in
the system GMM estimator.

Then we can obtain �̂ and �̂ in a two-step procedure. In the first step,
we transform (5) in the first-difference equation:

yit − yi,t−1 = �(yi,t−1 − yi,t−2) + (Xit −Xi,t−1)� + (�it − �i,t−1), (18)

and perform the Generalized Least Squares (GLS) preliminary one-step
consistent estimation:

(
�̂1

�̂1

)
=

[(
Δyt−1ΔXt

yt−1 Xt

)′
W (ΣN

i=1W
′

iGWi)
−1W

′
(

Δyt−1ΔXt

yt−1 Xt

)]−1

⋅

⋅

[(
Δyt−1ΔXt

yt−1 Xt

)′
W (ΣN

i=1W
′

iGWi)
−1W

′
(

Δyt
yt

)]
, (19)

where W =
[
W
′
1, ...,W

′
i

]′
is a matrix of instruments for all regions Wi:

Wi =

(
W d
i 0

0 W l
i

)
, (20)

where W d
i contains instruments in first-differences, and W l

i contains non-
redundant instruments in levels. For endogenous X, Wi has the form:10

W d
i =

⎛⎜⎜⎜⎝
[yi1, x

′

i1] 0 ⋅ ⋅ ⋅ 0

0 [yi1, yi2, x
′

i1, x
′

i2] ⋅ ⋅ ⋅
...

...
. . . . . .

...
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ [yi1, ..., yi,T−2, x

′

i1, ..., x
′

i,T−2]

⎞⎟⎟⎟⎠ ,

10For predetermined X one more lag in W d
i and first-differences from Δx

′

i3 up to Δx
′

i,T

are included.
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W l
i =

⎛⎜⎜⎜⎝
[Δyi2,Δx

′

i2] 0 ⋅ ⋅ ⋅ 0

0 [Δyi3,Δx
′

i3] ⋅ ⋅ ⋅
...

...
. . . . . .

...
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ [Δyi,T−1,Δx

′

i,T−1]

⎞⎟⎟⎟⎠ .

For a more detailed analysis of the redundant moment conditions in dy-
namic panel data models see, e.g., Okui (2009). Wi is a 2(T − 2) × (k +
1)(T −2)(T +1)/2 matrix with k independent variables of X. G is a 2(T −2)
square matrix consisting of two (T − 2) square matrices and zero otherwise:

G =

(
Gd 0
0 Gl

)
. (21)

Gd is a square matrix of dimension T − 2 that has twos in the main
diagonal, minus ones in the first subdiagonals and zeros otherwise. Gl is the
identity matrix of dimension T − 2.

In (19) a stacked system
(

Δyt−1

yt

)
is used, comprising (T − 2) equations in

first differences and the (T − 2) equations in levels corresponding to periods
3, .., T , for which instruments are observed (Blundell and Bond 1998).

After that we obtain Δ�̂i,t =
(

Δyi,t
yi,t

)
− �̂
(

Δyi,t−1

yi,t−1

)
−
(

ΔXi,t

Xi,t

)
�̂ as a 2(T −2)×1

vector and construct the optimal weighting matrix of W ′
iΔ�̂i,t:

V̂N =
[
ΣN
i=1W

′

i (Δ�̂i)(Δ�̂i)
′
Wi

]−1

, (22)

where the generalized Moore-Penrose inverse (MPI) is used (Penrose
1956). The MPI is applied because the matrix in (22) might be close to
singular, triggering inaccurate results of the classical matrix inversion.

Inserting (22) in (19), we estimate the final coefficients. When �i,t are
i.i.d., the one-step and two-step estimators are asymptotically equivalent.

The system GMM estimator that uses instruments both in lags and in
levels would loose its consistency if in fact the assumptions made in (14)
and (16) were not fulfilled. To test the validity of the instrumental variables
we perform the Sargan test (ST):

St = Δ�̂
′
W
[
ΣN
i=1W

′

i (Δ�̂i)(Δ�̂i)
′
Wi

]−1

W
′
Δ�̂ ∼ �2

p−k, (23)

where �̂ ′ denote residuals from the two-step estimator, p is the number
of columns in Wi (number of moment conditions) and k is the number of
explanatory variables. The null-hypothesis of the ST asserts that the overi-
dentifying restrictions are valid, i.e., the orthogonality conditions mentioned
in (14) and (16) hold.
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