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Abstract

Nonlinear nonstationary models for time series are considered, where
the series is generated from an autoregressive equation whose coefficients
change both according to time and the delayed values of the series itself,
switching between several regimes. The transition from one regime to the
next one may be discontinuous (self-exciting threshold model), smooth
(smooth transition model) or continuous linear (piecewise linear threshold
model). A genetic algorithm for identifying and estimating such models
is proposed, and its behavior is evaluated through a simulation study and
application to temperature data and a financial index.

1 Introduction

Often time series exhibit a nonlinear or nonstationary behavior and cannot be
adequately fitted by the popular autoregressive moving average models. Several
more complicated models have been suggested, and among them a particularly
interesting and simple class is that of the multi-regime threshold models. The
series is generated by several alternative linear autoregressive equations (the
regimes) and the generating process switches from one to another according
to the value of an indicator, that may be related to time or to another time
series (the driving variable, also a possibly delayed value of the series itself). In
the first case we have a nonstationary but linear model (also called structural
change, general references are Bai and Perron, 1998; Lin and Teräsvirta, 1994),
while in the second case the model is nonlinear but stationary, under suitable
choices of the parameter values. These are usually called threshold models;
a general reference is Tong (1990). However for time series with complicated
dynamic structure, such models should be considered only as approximations or
partial tools for describing only a part of the features of the series. We assume,
as in Rissanen (2007) that there is no absolutely correct model, but only models
with a better or worse fit. Moreover, especially when the fitting measurement
is related to the second moments, often a confusion may arise between the two
kinds of models, nonlinear stationary and linear nonstationary (see Koop and
Potter, 2001; Carrasco , 2002; Dupleich Ulloa, 2005).
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A possible option is considering models which are simultaneously regime
changing both according to time and to a driving variable. Obviously, iden-
tification is much more complicated and this is perhaps the reason why such
nonlinear, nonstationary models have been rarely addressed.

Lundberg et al. (2003) proposed a model based on a first order autoregres-
sive structure with the parameter changing both according to time and to a
driving variable alternating between two regimes only, with smooth change (in
the same way as smooth transition autoregressive models of Teräsvirta, 1994).
Battaglia and Protopapas (2009) extended this framework to allow also change
of the autoregressive parameters in a piecewise linear fashion (piecewise linear
threshold multi-regime model, Baragona et al., 2004) and proposed a genetic
algorithm for building such a model, but also limited to two regimes.

The main contribution of the present paper consists in removing the lim-
itation of two regimes. This involves non trivial complications in the genetic
algorithm and requires a completely new coding. The proposed procedure en-
ables to build models that alternate according to time, among several regimes,
and inside each of them, the series follows different threshold models which may
exhibit several regimes according to the level of the driving variable. The re-
sulting models are therefore suitable also for very long time series with strongly
nonlinear behavior.

In Section 2 we describe the model and the identification and estimation
issues. Section 3 introduces the genetic algorithm and presents the proposed
procedure in details. The results of a simulation study are summarized in Sec-
tion 4, and applications to some real time series are discussed in Section 5;
Section 6 concludes the paper.

2 The Model and Estimates

The original autoregressive threshold model proposed by Tong (1990), has at
each t an autoregressive structure, where parameters change according to the
value of another series (the driving variable). If the driving variable is given by
the delayed series itself, we have a self exciting threshold model (SETAR):

Xt = φ
(k)
0 + φ

(k)
1 Xt−1 + . . . + φ(k)

p Xt−p + εt , Xt−d ∈ Rk (1)

where {Rk} is a partition of the real line, and d is called the delay. A generaliza-
tion proposed by Teräsvirta (1998), avoiding discontinuities in the autoregressive
parameters, is called smooth transition autoregressive model (STAR), since the
transition from one regime to the next is driven by a continuous function (gen-
erally a logistic). If rL denotes the number of regimes and Rk = (lk−1, lk], k =
1. . . . , rL, the STAR equation may be written:

Xt =
rL∑

k=1

p∑

j=1

φ
(k)
j Gk−1(Xt−d)Xt−j + εt (2)
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where G0(x) = 1 and Gk(x) = [1 + exp(−γL(x − lk))]−1. The behavior of the
autoregressive coefficients is essentially constant in each regime, with a continu-
ous smooth change between regimes, whose speed is controlled by the constant
γL(> 0). The SETAR model may be interpreted as a special case of the STAR
model, when γ tends to infinity.

A different proposal, where the autoregressive coefficients change linearly
and continuously with the driving variable Xt−d, but with different slope in
each regime, is the piecewise linear threshold model (Baragona et al., 2004),
described by

Xt =
p∑

j=1

[φ(0)
j + φ

(1)
j Xt−d +

rL∑

k=2

φ
(k)
j max(0, Xt−d − lk−1)]Xt−j + εt (3)

Here the autoregressive coefficient behave like a linear spline across regimes.
The PLTAR may be written in a similar fashion to the STAR letting Sk(x) =
max(0, x− lk−1), S1(x) = x, S0(x) = 1 and

Xt =
rL+1∑

k=1

p∑

j=1

φ
(k)
j Sk−1(Xt−d)Xt−j + εt (4)

Note however that here there is an additional parameter (the linear term in
Xt−d) for each lag. Therefore the sum over k ranges from 1 to the number of
regimes plus 1.

To allow for non zero and varying means, intercept terms φ
(k)
0 may be added.

For a STAR model these terms may depend on the driving variable in the same
fashion as before, while for a PLTAR the linear term φ

(1)
0 as in (3) disappears

because it would be undistinguishable from φ
(0)
d in the case d ≤ p:

φ0 =
rL∑

k=1

φ
(k)
0 Gk−1(Xt−d)

or

φ0 = φ
(0)
0 +

rL∑

k=2

φ
(k)
0 Sk(Xt−d)

for the STAR and the PLTAR case respectively.
In order to take into account additional nonstationarity, we allow each of

the coefficients φ
(k)
j to depend on time also, according to a STAR or PLTAR

structure. Let rT denote the number of regimes in time, and tj denote the
thresholds so that the regimes are defined by the partition R′k = (tk−1, tk],
where 1 = t0 < t1 < . . . < trT

= N (where N is the series length).
We may allow STAR dependence on time using

φ
(k)
j =

rT∑

i=1

βj(i, k)G′i−1(t) , j = 1, . . . , p (5)
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with G′0(t) = 1, G′i(t) = [1 + exp(−γT (t− ti)]−1, i = 1, . . . , rT .
Alternatively, a time nonstationarity following a PLTAR structure may be

defined as

φ
(k)
j =

rT +1∑

i=1

βj(i, k)S′i−1(t) , j = 1, . . . , p (6)

where S′i(t) = max(0, t− ti−1)/N , S′1(t) = t/N , S′0(t) = 1.
On combining the different types of dependence on levels of the driving

variable, and time, nine different kinds of models result: Stationary, STAR or
PLTAR in time, combined with linear, STAR or PLTAR in levels. Denoting
r∗L = rL for STAR models in levels, r∗L = rL+1 for PLTAR, and r∗L = 1 for
linear models, and analogously r∗T = rT for STAR models in time, r∗T = rT+1

for PLTAR in time, and r∗T = 1 for stationary models, the total number of
parameters is r∗Lr∗T p (or r∗Lr∗T (p + 1)− rT if the intercept term is present). The
model may be written in a more compact form as a state dependent model
(Priestley, 1988)

Xt =
p∑

j=0

φj(t,Xt−d)Xt−j + εt (7)

where the autoregressive functional coefficients φj(t,Xt−d) are expressed as lin-
ear functions of the elementary parameters βj(i, k):

φj(t,Xt−d) =
r∗T∑

i=1

r∗L∑

k=1

βj(i, k)cik(t,Xt−d) (8)

and the coefficients cik are different for different model types, and describe the
dependence on the transition functions. A simple matrix expression for the
coefficients cik is derived in the Appendix. Since the final model equation is
linear in the elementary parameters βj(i, k), they may be simply estimated by
means of least squares.

Finally, to achieve slightly more parsimony, we shall allow a different order
for the dependence on time or on levels, in the sense that the dependence of
the parameters φj(t,Xt−d) on t may be limited to a maximum lag less than p,
which we call order in time; the same may be true for the dependence on levels
Xt−d, limited to a maximum lag that we call order in levels, while p will be
denoted as overall order.

Summarizing, a multi-regime model is defined by: its type in levels (linear,
STAR or PLTAR); its type in time (stationary, STAR or PLTAR); the delay d
of the driving variable; the orders in time and levels; the thresholds in levels lk
and in time tk; and if needed, logistic speed coefficients γL and γT . Conditional
on the values of all these structural parameters, the remaining elementary pa-
rameters βj(i, k) which drive the evolution of the autoregressive weights, may
be estimated by least squares.

The identification of a multi-regime model requires the selection of the so-
lution that possesses the best properties, out of a large and discrete space of
elements. Such kind of problems, common in statistical applications, have been
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recently addresses by means of meta-heuristic methods, and in particular ge-
netic algorithms. In addition to several statistical identification problems, e.g.
autoregressive moving average model fitting (Gaetan, 2000), outlier detection
(Crawford and Wainwright, 1995), variable selection in regression (Chatterjee
et al., 1996), the genetic algorithm was suggested specifically for threshold mod-
els by Wu and Chang (2002); Davis et al. (2006); Battaglia and Protopapas
(2009).

A genetic algorithm for building multi-regime models is presented in the next
Section. Given a time series and an identification criterion, it selects the best
type of model (in time and in levels), number of regimes, orders and thresholds
in time and level, and provides least squares estimates of the model coefficients.

3 Genetic Algorithms

A genetic algorithm is an optimization heuristic algorithm inspired by the pro-
cess of the evolution of life (Holland, 1975). Candidate solutions are encoded
as chromosomes (usually binary strings), and the algorithm evolves a set (pop-
ulation) of these chromosomes, using transformation operators (crossover and
mutation), in steps called generations, to achieve a near optimal solution. The
performance of the candidate solutions is measured by a “fitness function”. In
the case of a canonical genetic algorithm that includes an elitist strategy, like
the one employed here, Rudolph (1997) has shown that the difference between
the optimal fitness value and the best fitness reached in the n-th generation is
a non-negative supermartingale converging to zero almost surely as n → ∞.
Readers’ knowledge of genetic algorithms is assumed throughout this paper.
Holland (1975) and Goldberg (1989) describe genetic algorithms in depth.

3.1 Chromosome Encoding

In the multi-regime threshold models analyzed here, the following decision vari-
ables are relevant: the type of model in time and in levels, the order in time and
the order in levels, and in the case of STAR and PLTAR models, the number of
regimes (to a maximum of 4) in time and in levels, and the delay of the driving
variable and the thresholds in time and in levels. Finally, there are also the γ
coefficients in time and/or in levels, in the case of a STAR model.

All the relevant decision variables are encoded in the chromosome in distinct
bit-strings (genes). For determining the number of thresholds, the type of the
model and most other variables, a mapping of the binary values of the corre-
sponding gene to integer values is required; this is done by the transformation

x =
L∑

n=1

en2n−1 + d (9)

where x is the value of the decision variable, L is the length of the corresponding
bit-field in the chromosome, en, the nth bit of the bit-field, and d the minimum
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value of the decision variable (so, as described below, for the model type d = 0,
while in the case of the number of regimes d = 1). For determining the threshold
values, the binary values of the corresponding genes should be transformed to
real values between 0 and 1 . Thus a slightly different transformation is used:

x =
∑L

n=1 en2n−1

2L − 1
(10)

The first two genes determine the model type. Since there are 3 possible
types of models (STAR, PLTAR and stationary or linear) two bits are required
for each of these genes. A value of one in the first gene corresponds to a STAR
model in time, a value of two to a PLTAR model, and a zero or three to a
stationary model. The same values apply to levels, encoded in the second gene.

The next genes encode the values of the order in time and levels. The order
of the model in time ranges from 0 to 7, so 3 bits are required. Consequently,
bits 5-7 of the chromosome account for the gene that encodes the order in time.
The same holds true for the next bit-string, which denotes the order of the
model in levels, and resides on bits 8-10. The overall order of the model is equal
to the maximum of the orders in time and in levels.

The next two genes in the chromosome determine the number of regimes in
time and in levels, respectively. We analyze a maximum of four regimes in this
study, so two bits are required for each of these genes.

Then, there are 3 genes encoding the thresholds in time and 3 for the thresh-
olds in delay. This is the most delicate part of the coding procedure, since most
intuitive ways of coding, such as binary indicators, lead to large redundancy or
illegal chromosome values. We use fixed-length chromosomes, but the number
of thresholds taken into consideration when a chromosome is evaluated, depends
on the number of regimes of the chromosome. If there are rT number of regimes
in time (rL in levels), only the first rT − 1 thresholds in time (rL − 1 in levels)
are used (“active”). Each of the threshold genes consists of 12 bits. The binary
values in the “active” threshold genes are first transformed to real values ui,
0 ≤ ui ≤ 1 by (10). These numbers determine the percentage of the remain-
ing time series observations that are attributed to the corresponding regime.
Since a minimum of m observations are assumed to be present in each regime,
a second transformation is required; the equations that map the real values ui

that are extracted from the threshold genes to the values that determine the
actual thresholds, depend on the number of regimes of the chromosome. So,
for 2 regimes in time , the first m observations should fall on the first regime,
and the last m into the second; thus a value of zero in u1,t corresponds to a
threshold given by the mth observation of the time series and a value of one
corresponds to observation N −m (N is the total number of observations). If
there are three regimes, the last m values should fall in the third regime, and
at least m preceding observations should fall into the second. A value of one
in the u1t corresponds to the fact that the first regime is as large as possible:
in that case the first threshold corresponds to observation N − 2m, the second
regime consists of the observations N − 2m+1, . . . , N −m, and the third of the

6



Figure 1: Threshold coding

observations N −m + 1, . . . , N . The whole process is described in the following
equations, and illustrated in figure 1.

• Two regimes. If the gene is denoted by u1, the threshold is t1 = m+(N −
2m)u1

• Three regimes. Genes u1 and u2. Thresholds: t1 = m + (N − 3m)u1, and
t2 = t1 + m + (N − 2m− t1)u2.

• Four regimes. The genes are denoted by u1, u2, u3. The thresholds are
obtained from: t1 = m + (N − 4m)u1 ; t2 = t1 + m + (N − 3m − t1)u2,
and t3 = t2 + m + (N − 2m− t2)u3.

The values ti are enough to determine the values of the thresholds in time,
since the actual thresholds will be points in time (a number between 1 and N).
In the case of the threshold in levels, the thresholds are the actual observations
themselves. Threshold τ for example, can be chosen as a real number in-between
two consecutive (in terms of magnitude) observations, Yk ≤ τ < Yk+1, or —
something that has the same effect— as the observed value Yk, where {Yt}
denotes the observations arranged in increasing order. We have chosen the lat-
ter, constraining the threshold values to belong to the set of the observed values
of the time series. So, to finally determine the thresholds in levels, we map the
values determined by the process described in the figures, to the corresponding
time series observations using the sorted set of observations. So, for u1 = 0, the
mth lowest observation of the time series is used as the first threshold, while
e. g. for 3 regimes in levels and u1 = 1, the first threshold in levels is the
(N − 2m)th lowest observation of the time series. In our implementation we set
m = N/10.

The next gene encodes the delay of the driving variable in the cases of STAR
or PLTAR models. If the chromosome represents a stationary model its value
is neglected. It occupies 3 bits, since we assume a maximum delay of 8.
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The final two genes encode the γ values for a STAR model in time and/or in
delay, and consist of Lγ = 7 bits each. First a mapping of these binary numbers
to real numbers between (γ1, γ2), is applied:

γ = γ1 + x(γ2 − γ1)/(2L − 1) (11)

Since the γ parameter controls the speed of change from 0 to 1 in the logis-
tic function, we can select a maximum value, that makes the STAR model
essentially indistinguishable from a SETAR, i.e. such that, for a sufficiently
small value ε the logistic function has value ε immediately before the thresh-
old, and value (1 − ε) immediately after. In the time-varying case, if we as-
sume that t0 is the threshold in time, G′(t0 − 1) = {1 + eγ}−1 = ε and
G′(t0 + 1) = {1 + e−γ}−1 = 1 − ε, which amounts to γ = log{(1 − ε)/ε}.
A similar argument can be used for the γ parameter in levels, applied to the
ordered sequence of the observed values this time. If YT denotes the thresh-
old in levels, then G(YT−1) =

[
1 + e−γ(YT−1−YT )

]−1
= ε and G(YT+1) =[

1 + e−γ(YT+1−YT )
]−1

= 1 − ε. For evaluating approximately the constraints
we put YT+1 − YT ' YT − YT−1 ' (YN − Y1)/N = s so that they are solved
by γ = log{(1 − ε)/ε}/s. In order to select the minimum gamma values, we
shall assume that the change from ε to 1− ε in the logistic function requires an
interval not longer than 1/q of the full observation interval. Consequently in a

time-varying STAR G′
(
t0 − N

2q

)
=

[
1 + exp

(
γN
2q

)]−1

= ε and G′
(
t0 + N

2q

)
=

[
1 + exp

(
−γN
2q

)]−1

= 1 − ε which leads to γ = log{(1 − ε)/ε}2q/N ; the re-
sult in the case of γ in levels are similar. Consequently, the search interval for
gamma in time will be [(2q/N) log(1 − ε)/ε, log(1 − ε)/ε], and for gamma in
levels [2q/(YN − Y1) log(1− ε)/ε,N/(YN − Y1) log(1− ε)/ε]. In our applications
we selected ε = 0.01 and q = 10.

3.2 Fitness, crossover and mutation

In order to compute the fitness, for each given chromosome the model is es-
timated by least squares and the residual variance estimate σ̂2 is computed.
The most popular choice in time series literature is evaluating fitness through
an identification criterion. This amounts to computing a penalized gaussian
likelihood: if model M has p parameters, the quantities

IC(M) = N log σ̂2
M + c(p)

are evaluated and the model with minimum value is selected. Choosing a linear
penalization function c(p) = cp corresponds to the generalized AIC criterion
(Bhansali and Downham, 1977): the original Akaike’s criterion is obtained for
c = 2, while e. g. the Schwartz criterion corresponds to c = log N . The value
c = 3 was selected in Battaglia and Protopapas (2009), because in this case
its behavior is equivalent to a test of linearity-stationarity against two-regimes
alternatives proposed by Lundberg et al. (2003). A different choice (also adopted
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for multi-regime in time models by Davis et al., 2006) is the minimum description
length of Rissanen (2007), which is based on minimizing the code length that
completely describes the data. The function c(p) is taken equal to the code
length of the fitted model, which may be difficult to estimate in some cases.

In some statistical problems addressed by means of genetic algorithms (e.g. ,
outlier detection in time series, see Baragona et al., 2001) the tuning constant c
may be chosen so that the identification criterion IC(M) becomes proportional
to the posterior probability of the model in a Bayesian framework, and the value
of the constant c is determined by the prior distribution.

In any case, the fitness function must be related to the identification crite-
rion through a monotone decreasing transformation, and positiveness has to be
ensured. We use a simple negative exponential transformation:

fitness(M) = exp{−IC(M)/N} = σ̂−2
M exp{−c(p)/N}.

The penalization term adopted here for simulations and applications is c(p) =
3p, essentially for comparison with results of Battaglia and Protopapas (2009).

Parent selection is “roulette wheel selection”, i.e. the probability of a chro-
mosome to be selected as a parent is proportional to its fitness.

Ultimately, the chromosome consists of n = 89 binary digits. Alander (1992)
suggests a population size between n and 2n, while Reeves (1993) suggests that
the population size should be adequate so that the probability of any allele
(bit value) to be present at each locus (bit position) is high enough, as given
by the formula n ≥ 1 + log (−l/log p) /log 2 where l is the number of genes,
p the probability and n the population size. With our chromosome length, a
population size as large as 20 ensures a probability larger than 0.999. Thus, we
use a population of 50 chromosomes.

A larger chromosome length than that used in Battaglia and Protopapas
(2009) implies that a higher number of generations is required for the algorithm
to perform effectively, therefore we used 700 generations. The crossover operator
used is random point crossover (Goldberg, 1989) and was applied with proba-
bility one; the set of possible cutting points consists of the boundary points
between genes so that genes are inherited as a whole after the crossover oper-
ation is applied. A bit-wise independent mutation operator is then applied to
the children chromosomes; the probability of mutating a bit is fixed throughout
the course of the algorithm, we chose 0.025.

Finally, a form of elitism is employed: the best chromosome of any generation
is inherited, as it is, in the population of the next generation, replacing a random
chromosome of the population.

4 A Simulation Study

An extensive simulation study was performed in order to evaluate the behavior
of the proposed algorithm. In general, for each time and level regime, simu-
lated data followed a first order autoregressive model obtained from gaussian
standardized white noise, and only the autoregressive coefficient values changed
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according to regimes. Though restricted to the simplest autoregressive scheme,
this experiment helped to verify that the proposed procedure is able to detect
nonlinearity and nonstationarity.

We considered both the simulated set analyzed in Battaglia and Protopapas
(2009), consisting of series of 500 observations, replicated 100 times, generated
according to various models with no more than two regimes (see Battaglia and
Protopapas, 2009), and a new set of series simulated according to several models
with three regimes, each with 100 replications and 600 observations.

First of all, we compare the results with these obtained in Battaglia and
Protopapas (2009), where a similar genetic algorithm procedure is employed,
but allowing for more than 2 regimes. The results are very similar, and the
models with 3 (or more) regimes (which would be wrong since the analyzed
series there had two regimes) are very rarely selected, while the detection ability
of nonlinearity and nonstationarity is equivalent for the two algorithms.

Since a complete account of the results cannot be given here because of lack
of space, we consider only selected cases. On varying the values of autoregressive
coefficients however, the results remain essentially stable.

1. White noise. The stationary in time and linear in levels type is selected
95 times out of 100, thus confirming the appropriateness of the tuning
constant.

2. Stationary linear. On a set of 100 replications of a first order autoregressive
series with parameter 0.7 the genetic algorithm selected a stationary in
time - linear in levels type 97% times.

3. Nonstationary with 2 regimes, linear. The analyzed series were generated
according to an AR(1) with parameter 0.5 for the first 250 data, and
parameter -0.7 for the last 250. The genetic algorithm selects always
linear models, nonstationary 95% times (STAR 90, PLTAR 5), and two
regimes in time are selected 93% times.

4. Nonstationary with 3 regimes, linear. The series have 600 observations
and thresholds at 150 and 400. The structure is AR(1) and the values of
the autoregressive coefficients in the three regimes are 0.5, -0.7, and 0.7
respectively. The genetic algorithm procedure, repeated on 100 replica-
tions, selected a linear nonstationary model 94 times (81 STAR and 13
PLTAR), and nonlinear nonstationary model in the remaining 6 cases.
The estimated number of time regimes was 3 in 65 replications, and 4 in
the other 35 cases.

5. Nonlinear, stationary. These series were generated according to a self ex-
citing threshold mechanism with two regimes: if Xt−1 ≤ 0, an AR(1)
equation is used with coefficient 0.5, and if Xt−1 > 0, the coefficient is
-0.3. Here, on 100 replications the proposed procedure selected a nonlin-
ear stationary model 98 times (74 times STAR and 24 PLTAR) and in
the remaining two cases a nonlinear nonstationary model. The estimated
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number of regimes in levels was 2 with frequency 91, and 3 with frequency
9.

6. Nonstationary and nonlinear. We considered series simulated according
to first order autoregressive processes where the coefficient is varied both
according to time, with three regimes 1 ≤ t ≤ 150, 150 < t ≤ 400,
400 < t ≤ 600, and simultaneously according to the levels, in two regimes
Xt−1 ≤ 0 and Xt−1 > 0. Nine different datasets were considered, each
consisting of 100 replications and series length 600. For the first one, at the
low level regime (Xt−1 ≤ 0) the AR parameter for the three time regimes
was respectively 0.45, -0.45, and -0.15, while for the high level regime
(Xt−1 > 0) the corresponding figures were -0.75, 0.25, and -0.85. The
other datasets were simulated by subtracting repeatedly 0.05 from each
autoregressive coefficients, and maintaining the difference among regimes
constant. The results are summarized in table 1. Different choices of the
autoregressive coefficients do not influence largely the results. The non-
linear and nonstationary nature of the series is correctly detected nearly
always. The STAR-STAR type is suggested in 60-65 replications out of
100, while in the other cases STAR-PLTAR or PLTAR-PLTAR type is
selected. Also, the estimates of the number of regimes are satisfying. For
time, the correct number (3) is selected with frequencies of about 70%,
while in about 20 cases the estimate is 4, and seldom 2. For the levels,
the correct number (2) is selected more than 90 times out of 100, and
sometimes the estimate is 3.

Summarizing, the simulation confirms that the genetic algorithm procedure is
able to detect nonlinear and nonstationary features in the analyzed series, and
also the estimation of the number of regimes is relatively precise. It was also
seen that the discrimination between smooth transition and piecewise linear
threshold is not easy, and clear cut, also because often the fitting obtained with
the two model types tends to be equivalent.

5 Applications

To gain some insight into the potentialities of the proposed method, we con-
sider some example data in two subject areas: climatology and finance. In the
first case, yearly temperature data are analyzed to discover structural changes,
while in the second case we build a flexible nonlinear nonstationary model for a
financial index and compare its forecast ability in contrast to the random walk
hypothesis.
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Table 1: Results for the 9 nonlinear and nonstationary datasets with two regimes
in levels and three regimes in time and different selections of autoregressive
parameters with 100 replications each

dataset: 1 2 3 4 5 6 7 8 9
STAR in time - STAR in levels 53 63 59 58 58 59 63 65 63
other nonlinear, nonstationary 45 34 37 42 42 41 37 34 36
stationary or linear 2 3 4 0 0 0 0 1 1
time regimes 1 2 2 4 0 0 0 0 1 1

2 11 5 4 5 7 8 3 8 5
3 64 70 72 68 68 70 77 70 73
4 23 23 20 27 25 22 20 21 21

level regimes 1 1 2 2 0 0 0 0 1 1
2 91 94 97 98 96 94 98 95 96
3 8 4 1 2 4 6 2 4 3

5.1 Yearly Temperature data

We take into account the series of the average yearly temperature recorded at
the Brera Observatory in Milan from 1763 to 2007 1. The data are plotted in
figure 2 (continuous line, Celsius Degrees ×10). It is apparent that there is a
positive trend in the last part of the series.

When trying to fit an ARIMA model, the minimum values of several identi-
fication criteria (AIC, Schwartz, Hannan and Quinn) are attained selecting an
IMA (1,1) model, and the same suggestion is given by the SCA expert system
(Liu and Hudak, 1992).

The estimated model is

Xt −Xt−1 = 0.083 + εt − 0.836εt−1 (12)

The application of our genetic algorithm suggests as an optimal model a
linear structure with nonstationary features, and precisely a PLTAR model in
time with two regimes, the threshold being around 1893, and a particularly
simple first order form: Xt = φ0(t) + φ1(t)Xt−1 + εt.

The estimated parameters are as follows:

φ0(t) = 144.38− 44.68
t

N
− 91.68

max{0, t− 123}
N

(13)

φ1(t) = −0.12 + 0.29
t

N
+ 0.91

max{0, t− 123}
N

(14)

where N = 245 is the series length.
In the first regime the model is moderately nonstationary with a slowly

decreasing local level and a small autoregressive parameter, while in the second
regime the autoregressive parameter increases considerably, and also the local

1source: data sets of project HISTALP - Historical Instrumental Climatological Surface
Time Series of the greater Alpine region, available at http://www.zamg.ac.at/histalp
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Figure 2: Average yearly temperature recorded at the Brera Observatory in
Milan,1771–2007

level increases ( as measured by φ0(t)
1−φ1(t)

). The fitted data is presented in figure
2 (dotted line).

The residual variance is slightly less than 30 over the entire period, and also
separately in each of the two regimes the fitting is better than the IMA (1,1)
model.

The proposed model implies an increasing temperature and also the speed
of the increase is represented as growing.

Closer details may be found in figure 3 where the last fifty years are shown,
together with the fitted data according to the PLTAR model (continuous line)
and the IMA(1,1) model (dotted line). The closer fitting ability of the nonsta-
tionary model is apparent. The figure also includes, for some future years, the
eventual forecast function of the two models, indicating that the temperature
increase rate predicted by the PLTAR model is larger than that implied by the
integrated moving average.

5.2 Dow Jones Industrial Average Index

The daily closure values of the Dow Jones Industrial Average Index (∧DJL)
in years 2005-2009 are analyzed here (source: Yahoo finance data sets). The
data is plotted in figure 4. We used the data from January 2005 to the end
of September 2009 for building the model, and the last time span (October,
November and December 2009) was employed for out-of-range forecasts.

The series shows an instability in mean. The overall average is 11099 and
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Figure 3: Yearly temperature data, last fifty years and eventual forecasts
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Figure 4: Daily closure values Dow Jones Industrial Average Index (∧DJL),
years 2005-2009
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Table 2: Number of observations in each regime
level regime: ≤ 10127 10127− 11043 > 11043 total

Time regime: 1-478 4 298 175 477
479-929 0 7 445 452

930-1186 248 8 1 257
total 252 313 621 1186

the variance 2816919. The first difference series has an average -0.82 and vari-
ance 19417. A linear ARIMA analysis does not strongly contradict the random
walk hypothesis that the first differences are white noise. The minimum AIC
estimated model is an ARIMA (3,1,0) model:

∇xt = −0.13∇xt−1 − 0.1∇xt−2 + 0.07∇xt−3 + εt (15)

but its residual variance is only very slightly smaller than that of the first dif-
ference series (R2 = 0.03).

We used the genetic algorithm for building a multi-regime model with Dow
Jones data; we analyzed both original data, first differences and the series of re-
turns (log{xt/xt−1}), but the best fitting results (in terms of R2) were obtained
for the original data 2, and these only will be reported here.

The best obtained model is nonlinear and nonstationary with a smooth tran-
sition STAR structure in both domains. As far as time is concerned, three
regimes have been obtained, threshold being at about the end of November,
2006, and at about the middle of September 2008 (drawn as vertical dotted
lines in figure 4). The estimated gamma coefficient in time is small, with re-
spect to the range allowed in the estimation procedure, denoting a relatively
slow transition speed between regimes in time.

For the nonlinear behavior, we also obtained three suggested regimes, with
thresholds equal to 10127 and 11043. The estimated delay in the driving variable
is 5, indicating essentially a weekly influence. The overall residual variance of
the STAR-STAR model was 15109, and the selected orders were one in time
and two in levels. It has to be noted, however, that the regimes in time and
levels interact: the number of observations falling in each combination (time,
levels regime) are reported in Table 2.

It may be concluded that in the first time regime the suggested model is
a STAR with two level regimes, while in the second and third time span the
data is essentially modelled by two different linear models. After a slight sim-
plification obtained by eliminating some small (non significant) parameters, the
suggested model is as follows:

• first time regime
Xt = [0.96Xt−1 + 50 + 0.06Xt−2 + 0.12Xt−3][1−G(Xt−5)]

2Note that the qualitative difference between models on original or differenced data resides
essentially in the choice of the driving variable for the regimes in levels
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Table 3: Variance of the model residuals and the differenced data for each time
regime

Time regime: 1–478 479–929 930–1186 total
model residuals 67.9 132.8 172.0 122.9
differenced data 69.4 135.3 218.5 139.4
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Figure 5: Model Residuals for Dow Jones Data.

+ [Xt−1 − 171− 0.1Xt−2 + 0.13Xt−3 − 0.06Xt−4]G(Xt−5) + εt

• second time regime Xt = 199 + 0.86Xt−1 + 0.11Xt−2 + εt

• third time regime Xt = 256+0.86Xt−1+0.07Xt−2+0.2Xt−3−0.16Xt−4+εt

with G(x) = [1 + exp{−0.36(x− 10127)}]−1.
This model is uniformly superior to the first differences series (corresponding

to the random walk hypothesis) as may be seen on breaking down the residual
variance by regimes, figures are reported in Table 3:

The model residuals are reported in figure 5. It may be seen that the resid-
uals exhibit heteroskedasticity and the variance in the last regime looks consid-
erably larger than in the previous ones; a LM-ARCH test on the entire square
residual series is highly significant. However, if we consider separately the three
sub-series related to different time regimes, for the first (t = 1, 478) and sec-
ond span (t = 479, 929) the LM-ARCH test is not significant (p-value > 0.2),
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whereas for the third sub-series it is significant (p-value 0.002). Therefore we
can conclude that for the first and second regime no heteroskedasticity correc-
tion appears necessary, while the most recent data seem more heteroskedastic.
We have fitted to the last regime a GARCH(1,1) model:

ht = 80.1 + 0.926ht−1 + 0.07ε2t−1 + ε2t (16)

The standardized residuals of this model look satisfactorily stable, their asym-
metry index is -0.25, and kurtosis is 3.23. The Jarque-Bera test does not reject
the normality hypothesis (p-value 0.16) and also a LM-ARCH test for remaining
heteroskedasticity is not significant (with p-value around 0.5).

To complete the analysis, we used the proposed genetic algorithm for build-
ing a multi-regime model on the squared residual series, but with driving vari-
able equal to the original series. The resulting model was a STAR in time and
STAR in levels, with a R2 of about 0.30. Three regimes in time were detected,
with thresholds 474 and 714: the first threshold is equal to that of the previous
model, while the second one is much before, since the second regime of the raw
data series starts at t = 929. However, the local fitness on varying the second
threshold between 714 and 929 is relatively flat: the range is from 113.2 to 113.3
(for comparison, models with only two regimes in time have fitness less than
108). This suggests a rather slow, or non monotone transition from the second
time regime to the third one.

As far as levels are concerned, the model has two regimes with threshold
9665. In this case also there is an interaction between time and level regimes; in
the first and second regime there are observations only in the upper level regime,
while for the third time period the data is nearly equally divided between the
upper and lower level regime. As a result, the behavior implied by the model
(here also neglecting some very small parameters) is the following:

• First time regime (t = 1, 474):
ε2t = 0.36 + 0.12ε2t−1 + ut

• Second time regime (t = 415, 714):
ε2t = 74.5 + 0.16ε2t−4 + 0.12εt−5 + ut

• Third time regime (t = 715, 1156):
ε2t = [106.7− 0.19ε2t−1 + 0.12εt−4 + 0.17εt−5 + 0.18εt−6][1−Gε(Xt−5)]
+ [245.6− 0.1ε2t−1]Gε(Xt−5) + ut

where Gε(x) = [1 + exp{−0.88(x− 9665)}]−1.
This model accounts for a slight heteroskedasticity in the first and second

time regime, and for stronger volatility changes in the third period, which are
in this case modelled as a two-regime smooth transition mechanism.

As an overall result, we may see that a multi-regime nonlinear and nonsta-
tionary model may explain dependence in the data, that cannot be accounted
for by linear models, and in the case of Dow Jones there is also an indication of
an evolutionary behavior involving both the levels and the volatility dynamics.
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Table 4: Average observed square forecast errors, lead 1 to 5, observations from
Oct 1 2009 to Dec 24 2009

lead: 1 2 3 4 5
multi-regime model 9102 15047 20320 24583 26823

random walk 9129 15834 23557 29984 34456

Finally, to check possible advantages in terms of forecast ability, we have
considered the last three months of 2009 for computing out-of-sample forecasts.
We computed the lead-1 to lead-5 forecasts for each day from October 1, 2009
to December 24, 2009 using the identified model, which for the third regime is
a simple linear autoregressive:

Xt = 256 + 0.865Xt−1 + 0.069Xt−2 + 0.205Xt−3 − 0.163Xt−4 + εt (17)

Table 4 reports the average square forecast errors, and those obtained by a
random walk, for comparison. It may be seen that the error is similar for lead-
1 forecasts, but the multi-regime model shows an increasing advantage as the
horizon increases, up to a percentage reduction about 22% for lead-5 forecasts.

6 Conclusions

The findings on simulated and real time series indicate that the proposed algo-
rithm is able to suggest multi-regime models that may reproduce nonlinear and
nonstationary features, which could not be discovered with the most popular
ARMA methodology. The simultaneous dependence on time and levels per-
mits more efficient and parsimonious models. In addition, splitting the entire
time span into several regimes allows to fit the most recent data more closely,
providing better out-of-sample forecasts.

For heteroskedastic series, the multi-regime fitting procedure may be applied
both to conditional mean and to conditional variance, helping to discover if and
how a change in the level dynamics influences the volatility, and vice versa.

The space of solutions to be explored by the genetic algorithm is in our case
high-dimensional; therefore a large number of generations (with respect to other
implementations in similar statistical problems) is recommended. A possible
alternative option would be a larger population size, but this still requires more
practical experience.

Finally, an important issue is the choice of the fitness function. Choosing a
fitness form inversely linked to penalized gaussian likelihood provides a flexible
way of incorporating, through the choice of the tuning constant, both particular
constraints on the number of regimes or the autoregressive order, and possibly
prior knowledge.
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Appendix

On writing the models in state dependent form:

Xt =
p∑

j=0

φj(t,Xt−d)Xt−j + εt (18)

the autoregressive coefficients may be written in a weighted form:

φj(t, x) =
r∗T∑

i=1

r∗L∑

k=1

βj(i, k)cik(t, x) (19)

where the β’s are unknown parameters and the coefficients cik are essentially
given by the product of a level transition function Gk−1(x) or Sk−1(x), and
a time transition function G′i−1(t) or S′i−1(t). We define first two indicator
vectors, one for levels zL and one for time zT :

zL = (z0L, zsL, zpL)′ zT = (z0T , zsT , zpT )′

depending on the model type as follows: z0L = 1 if the model is linear, and
zero otherwise, zsL = 1 if the model is STAR in levels and zero otherwise, and
zpL = 1 if the model is PLTAR in levels and zero otherwise. We define zT ’s in a
similar way, relating to the model type in time . The transition functions may
be put in matrix form as follows

vi(t) = [0, G′i−1(t), S
′
i−1(t)]

′ wk(x) = [0, Gk−1(x), Sk−1(x)]′

with v1(t) = [111]′, vrT+1(t) = [0, 0, S′rT
(t)]′, w1(x) = [111]′, and wrL+1(x) =

[0, 0, SrL
(x)]′. In this way, the correct factor for each coefficient cik and each

model type is obtained from the scalar products wk(x)′zL, in levels and vi(t)′zT

in time. Rearranging in a matrix form:

V (t) = [v1(t), v2(t), . . . , vrT+1(t)] W (x) = [w1(x), w2(x), . . . , wrT+1(x)]

the matrix C(t, x) of the coefficients may be written:

C(t, x) = V (t)′zT z′LW (x) (20)

On defining also the matrices of parameters Bj = {βj(i, k)} we finally obtain

φ(t, x) = tr{BjC(t, x)′} = tr{BjW (x)′zLz′T V (t)}.
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