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Irreversible R&D investment with
inter-�rm spillovers

Gianluca Femminisa;� Gianmaria Martini b
a Università Cattolica di Milano,
b Università di Bergamo

Abstract

In our duopoly, an irreversible investment incorporates a signi�cant amount
of R&D, so that the improvement it introduces in production processes gener-
ates a spillover that lowers the second comer�s investment cost. The presence
of the inter-�rm spillover substantially a¤ects the equilibrium of the dynamic
game: for low � and hence realistic � spillover values, the leader delays her
investment until the stochastic fundamental has reached a level such that the
follower�s optimal strategy is to invest as soon as he attains the spillover. This
bears several interesting implications. First, because the follower invests upon
bene�ting from the spillover, in our equilibrium the average time delay between
the two investments is short, which is realistic. Second, we show that in case
of a major innovation, an optimal public policy requires a substantial interven-
tion in favour of the investment activity, and that an increase in uncertainty �
delaying the equilibrium �calls for higher subsidization rates. Third, we �nd,
by means of numerical simulations, that the spillover reduces the di¤erence be-
tween the leader�s and the follower�s maximum value functions. Accordingly,
our model can help generate realistic market betas.
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1 Introduction

A substantial body of literature has investigated the importance of irreversibility

for investment decisions in stochastic environments. In particular, in the last few

years, the attention has focused on duopolistic market structures in which the op-

timal decision of a �rm depends not only on the value of the underlying stochastic

fundamental but also on the action undertaken by its competitor. Because large

investments rarely come without a signi�cant improvement in production methods,

in some recent contributions technical progress plays a signi�cant role.

We complement these streams of literature by analyzing a duopoly in which the

lump-sum investment, yielding a reduction in unit production cost, incorporates a

relevant amount of R&D. Accordingly, it generates a spillover, which lowers the

second comer�s investment cost. In our duopoly game, the occurrence of the infor-

mation leakage from the leader to the follower is stochastic, being governed by a

Poisson variable. Because the actual attainment of the informational spillover a¤ects

the follower�s investment decision, the random process of information leakage also

in�uences the leader�s e¢ ciency advantage period.

We �nd that the presence of the spillover substantially a¤ects the equilibrium of

the dynamic game. In fact, in our model, for low �and hence realistic � spillover

sizes, the leader delays her investment until the stochastic fundamental is so high

that the follower �nds it optimal to invest as soon as he bene�ts from the spillover.

This bears several interesting implications.

First, because the follower invests upon bene�ting from the spillover, in our equi-

librium the average time delay between the two investments is short, which, as we

shall argue, is realistic. In contrast, when one calibrates the existing models one

�nds long time spans separating the leader�s and the follower�s investments. For

example, in the framework proposed by Grenadier (1996) the median time between

investments varies from four to eight years when the percentage standard deviation

of demand ranges between 0.05 and 0.125. While these values are adequate for the

construction sector, to which the model was originally applied by Grenadier, they

seem excessive for the manufacturing sector.

Second, we show that in the case of a major innovation an optimal policy requires

a substantial public intervention in favour of the investment activity. In the previous

literature, a major innovation � inducing the fear of being preempted � triggers a

socially premature investment, which calls for some disincentive. The di¤erence in

results is to be ascribed to the signi�cant alteration of the equilibrium characteristics,
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involved by the presence of a modest spillover.1 In our framework, an increase in

uncertainty �delaying the equilibrium �calls for higher subsidization rates.

Third, the presence of a spillover weakens the dependence of the leader�s and

follower�s maximum value functions from the fundamental. Following Cooper (2006)

we can show that the di¤erences in the value functions a¤ect the heterogeneity in the

�rms�market betas. Accordingly, our model can help to generate market betas that,

while di¤erent among �rms, do not vary excessively. This is interesting because some

recent empirical evidence suggests that the market betas show a limited dependence

on the book to market ratios, and therefore on the value function (see Ang and Chen

(2007) for the U.S. stock markets).

In our framework, the behavior of the follower depends on the information he has

about the new technology.

If the spillover has taken place �that is, when the relevant information has already

leaked out �the follower�s optimal strategy is characterized by a trigger. In fact, when

pro�ts are low, the follower �nds it optimal to wait; when instead the stochastic

variable governing pro�ts is su¢ ciently high, it is convenient for him to invest as

soon as he has obtained the cost-reducing information.

When the spillover has not taken place yet, the follower �nds it optimal to invest

and pay the full cost, rather than waiting for the uncertain realization of the spillover,

only when pro�ts have reached high values. In contrast, when pro�ts are low, it

is sensible for the follower to wait in the hope of bene�ting from the cost-reducing

spillover. Hence, a second threshold exists, determining the value for the fundamental

that calls for the follower�s investment if the spillover has not materialized.

The innovation leader takes into account such a follower�s optimal behaviour;

as already highlighted, for realistic spillover values, the leader rationally decides to

delay her investment until the stochastic fundamental reaches the threshold that

dictates to the follower to invest as soon as he attains the spillover. This result is

best understood by considering separately an innovation granting a large unit cost

reduction, and one involving a small cost saving.

Consider �rst the equilibrium prevailing in the previous literature when a major

innovation is adopted. In contributions such as Smets (1991), Grenadier (1996), and

Nielsen (2002) (who build on Fudenberg and Tirole, 1985), two driving forces char-

acterize the equilibria: the length of the follower�s strategic delay, and the intensity

of the competitive pressure. These contributions identify a subgame perfect equilib-

rium, in which the second innovator delays for a long period his decision to invest.

1The analysis developed in Femminis and Martini (2007), who adopt a deterministic environment,
leads to similar implications.
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This choice is guided by the desire to grasp the increase in pro�t that is driven by

the drift in the stochastic fundamental. The follower�s optimal choice implies a long

competitive advantage period for the innovation leader, which favors the latter�s pay-

o¤ at the expense of the follower�s one. Hence, to avoid being preempted, the �rst

mover invests �very soon�, and the investment is socially premature. The preemption

possibility also implies rent equalization. The above contributions suggest that this

�early�investment equilibrium is subgame perfect when the size of the innovation is

large because the per-period �rst innovator pro�ts are considerable, which triggers

the preemptive behavior. In our model, an increase in the spillover reduces the payo¤

the leader obtains by investing early. In fact, the spillover makes more convenient for

the follower the policy of investing upon information disclosure, thus reducing the

corresponding threshold. Such a decline shortens the expected cost advantage period

of a leader�s early investment, reducing its value. This e¤ect proves to be strong

enough to induce the leader to postpone her investment until the fundamental has

gone past the trigger prescribing to the follower to invest upon the realization of

the spillover. In this equilibrium, the result concerning the social desirability of the

investment is overturned, since it, too, is now delayed, which calls for some public

incentive.

When the investment does not signi�cantly shrinks the unit production costs,

the existing literature �disregarding the possibility of inter-�rm spillovers �suggests

that both �rms invest simultaneously (see Pawlina and Kort, 2006) for a recent and

clear exposition). This happens when the per-period pro�t has become so high that a

leader cannot emerge, because the rival would immediately copy her decision. In this

case, any innovator �anticipating that there will be no leadership �waits until her

investment choice maximizes the joint discounted stream of net pro�ts. The collusive

�avour of this equilibrium is apparent, and accordingly it implies underinvestment

with respect to the social optimum. The simultaneous investment equilibrium is

subgame perfect when the size of the innovation is small because the increase in per-

period �rst innovator pro�ts is not signi�cant, which avoids preemptive behaviours,

ruling out the equilibrium in which a leader invests early. When the possibility

of spillovers is considered, the simultaneous equilibrium is delayed, since it implies

the forsaking of the bene�ts stemming from the spillover. This reduces the present

discounted value of the simultaneous equilibrium; it turns out that such an e¤ect is

strong enough that low sizes of the inter-�rm spillover are su¢ cient to rule out this

type of equilibrium.

Our contribution is related to several strands of literature.

4



Smets (1991) and Dixit and Pindyck (1994) use duopoly models to highlight the

tension between the option value of waiting � that delays the �rms� investment �

and the fear of being preempted �that prompts for a quick action. They identify

the preemptive equilibrium with rent equalization that we have already discussed.

The follower�s investment is delayed by the presence of uncertainty, while the leader

invests as soon as her payo¤ is equal to the follower�s discounted one. Grenadier

(1996) applies this analysis to real estate markets and identi�es the possibility of

simultaneous entry � which, however, depends on a high initial condition for the

fundamental. Bouis et al (2009) extend the model to the case of three �rms.

Weeds�(2002) considers irreversible investment in competing research projects,

in a framework in which pro�ts evolve following a geometric Brownian motion, and

the discovery takes place randomly according to a Poisson distribution with constant

hazard rate. She �nds that, depending on the parameter�s values, either the early

equilibrium or the simultaneous one is subgame perfect; in the absence of external-

ities, she suggests that in the early (simultaneous) equilibrium �rms over(under)-

invest; however, the simultaneous equilibrium is closer to the social optimum than

the early one.

Pawlina and Kort (2006) consider an asymmetry between the two �rms in the

�xed investment cost. Besides identifying the early and the simultaneous equilibria,

they �nd the possibility of a third type of subgame-perfect equilibrium that they

label �sequential�. When the asymmetry in the investment costs is relevant, the

�rm bearing the highest cost has no incentive in moving �rst; rather it is willing to

invest only when the stochastic pro�t has already become high enough. This gives

to its opponent, which becomes the leader, the opportunity to invest at the peak

of its expected discounted pro�ts. While bearing interesting positive (and norma-

tive) implications, this equilibrium still implies long expected delays between the

competitors�investment dates.

Nielsen (2002) extends the standard analysis to the case of positive externalities.

Under this circumstance, due, e.g., to network e¤ects, the demand for the second

comer, and hence its instantaneous pro�ts, are higher than those for the �rst mover.

Hence, the second mover�s investment threshold is lower than that of the leaders,

and therefore the follower�s threshold is reached earlier, and the two �rms invest

simultaneously there.2 Moretto (2000) highlights that for high spillovers, in a duopoly

characterized by network e¤ect and asymmetric information on the investment cost,

a bandwagon strategy is adopted, such that the (joint) adoption may be signi�cantly

2Recently, Moretto (2008) �nds that Nielsen�s result can be extended to free-entry oligopolistic
frameworks.
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delayed.

Our contribution di¤ers from those of Nielsen and Moretto in that for us the

spillover a¤ects the investment cost, and not the demand side. Hence, it does not

apply only to network externalities or to complementary goods sectors. Moreover,

our approach leads to sequential entries, which are empirically more relevant than

simultaneous ones, provided that the implied delay is not too long.

Armada et al (2010) study a duopoly in which the incumbent �rms may be taken

over by new entrants, which can seize the two slots in the market. They �nd that

the follower, fearing the competition of a potential new entrant, anticipates his entry,

while the leader may be induced to delay her investment trigger, because the reduced

length of the follower�s strategic delay lowers the intensity of the competitive pressure.

Despite the reduction in the follower�s expected entry lag, the average time between

investments is still high.

Among the duopoly games that do not take into account the uncertainty about the

fundamental, it is worth mentioning the ones by Stenbacka and Tombak (1994), and

Hoppe (2000). Stenbacka and Tombak analyze the role of experience, which implies

that the probability of successful implementation of an innovation for a �rm is an

increasing function of the time distance from its own investment date. However,

the probability of success of any �rm is not a¤ected by the adoption of the rival,

so that there are no spillover e¤ects. Stenbacka and Tombak �nd that � in the

(feedback) market equilibrium �the leader�s and the follower�s adoption dates are

quite dispersed. In Hoppe (2000), �rms are uncertain about the pro�tability of

the innovation, which induces an asymmetry between the leader and the follower.

The latter observes the leader�s outcome and hence becomes aware of the actual

pro�tability characterizing the new technology. When the innovation is likely to be

unpro�table, the informational spillover brings about a second-mover advantage, in

both the early and the late equilibrium. A late simultaneous adoption prevails when

the probability of poor performance for the new technology is particularly high,

because this curtails the �rst mover�s expected payo¤. When the late equilibrium is

subgame perfect, Hoppe �nds that an earlier simultaneous adoption would be welfare

increasing, while the results are less de�nite when the early equilibrium prevails. The

equilibrium we describe in this paper di¤ers from Hoppe�s in that ours, for a large

portion of the empirically relevant parameter range, is characterized by a �rst mover

advantage, that leads to rent equalization.

Murto and Keppo (2002) present a model in which several �rms compete for a

single investment opportunity, which becomes e¤ective only for the �rst �rm that

6



triggers the investment. When every �rm has no information about its rivals�eval-

uation of the investment opportunity, the investment trigger is located between the

monopoly benchmark and the simple Marshallian case. A similar result has been

obtained by Lambrecht and Perraudin (2003), in a model in which each �rm, observ-

ing that the others have not invested, updates its beliefs about the distribution of

its competitors� investment costs. Hence, each �rm�s inaction provides some infor-

mational spillover to its rivals. Both papers, in contrast to ours, analyze a strategic

interaction that ends as soon as one �rm invests.

Our modeling strategy is close to that of Weed (2002), since we model the ran-

domness in pro�ts via a geometric Brownian motion, while the second source of

uncertainty �namely, the one stemming from the informational spillover � is dealt

with by means of a Poisson distribution with constant hazard rate. From the techni-

cal standpoint, another in�uential contribution is Huisman and Kort (2004). Partly

building on Grenadier and Weiss (1997), they incorporate into the duopoly model the

possibility that a new technology becomes available at an uncertain future date, which

happens according to a constant hazard rate Poisson process. The future availability

of a better technique may turn the preemption game into a second mover advantage

game. The main result here is that an increase in pro�t uncertainty tends to delay

investment, so that there is an increase in the likelihood that a new technology is

introduced before the occurrence of an investment using the existing technique.

The paper proceeds in the standard way. In Section 2, we present our model,

and then, in Section 3, we discuss the value functions and the trigger points they

imply. In Section 4, we discuss the equilibrium concept adopted in the analysis,

and we compute the subgame perfect equilibrium. In Section 5, we spell out the

welfare implications of our analysis, computing the optimal subsidization policy that

applies in the most interesting case, namely the one of large innovations. Concluding

comments in Section 6 end the paper. Three Appendixes present the analytical

details, the proofs of the propositions, and the derivations of the pro�ts and social

welfare levels for the case of Cournot competition.

2 The Model

Two risk-neutral �rms compete in the product market, and have the opportunity

to invest in a cost-reducing process to enhance their pro�t �ows. The cost of this

irreversible investment is I for the �rst mover; as for the second �rm introducing the

innovation, the cost is I if no information has �owed out of the leader �rm; otherwise,
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the follower�s cost is (1 � �)I, with � 2 (0; 1) being the parameter capturing the

spillover:

Several empirical studies suggest that it takes time to imitate an innovation.3

Accordingly, in our model, we assume that, from the time of the �rst investment,

the informational spillover takes place randomly according to a Poisson distribution

with a constant hazard rate � > 0; implying that the expected delay between the

leader�s investment decision and the time of information leakage is 1=�: Notice that

our modeling assumption implies that 1=� is also the minimum expected time length

of the cost advantage period granted to the leader by the introduction of an improved

production process:4 Notice also that �; �; and I are identical for the two �rms.

It would have been preferable to consider a disclosure lag characterized by a prob-

ability of information di¤usion depending not only upon the time elapsed from the

introduction of the innovation, but also on the follower�s imitation e¤ort:5 nonethe-

less, the use of a constant hazard rate �which has been inspired by Weeds (2002),

and by Huisman and Kort (2004) � seems to be the optimal compromise between

analytical tractability and realism.6

The instantaneous pro�t of each �rm is stochastic, but it depends also on the

number of �rms that have already introduced the innovation. We assume that �

when no �rm has invested �the pro�t �ow for each �rm can be expressed as �0zt:

�0 is the deterministic part of the pro�t function: the subscript underscores the

dependence of this component from the number of �rms that have already invested;

zt captures the uncertainty about future pro�ts, and it will be assumed to evolve

following a geometric Brownian motion. When one �rm has sunk the cost, but the

other has not, the �rst �rm�s instantaneous pro�t is �h1zt; while the other obtains

�l1zt: The superscript highlights that �in this case �pro�t can be high (for the �rm

that has already innovated) or low (for the one that has not invested yet). When

both �rms have innovated, they get �2zt. We introduce the following standard

assumption:

A1: �h1 > �2 > �0 > �
l
1:

3Refer to Mans�eld (1985) or Cohen et al (2002).
4The �rst mover�s cost advantage period is longer than 1=� whenever the follower does not �nd

it optimal to invest as soon as he receives the informational spillover.
5Both � and � should be in�uenced by the imitation e¤ort. Jin and Troege (2006) suggest that

�rms can raise the spillover size, paying a convex imitation cost. We preferred not to pursue this
development of the model because our framework is already complex: any further extension requires
a much heavier use of numerical techniques to select the equilibrium.

6Modelling uncertainty by means of Brownian motions precludes what seems even simpler �i.e.,
the use of a �xed-length disclosure lag, as in Femminis and Martini (2007). In fact, this would add
an additional state variable to the model. Grenadier and Weiss (1997) model in a tractable way the
arrival rate of a new technology, which is governed by a Brownian motion. However, their pro�ts
are deterministic, which avoids the proliferation of the state variables.
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�2 > �0 implies that the new technology is more pro�table than the older one;

�0 > �
l
1 expresses the fact that the �rst investment �improving the leader�s compet-

itive position �induces a deterioration of the pro�t for the �rm that has not sunk the

cost yet; when the �rm that is lagging behind undertakes the project, this damages

the �rst mover, so that �h1 > �2.
7

The geometric Brownian motion zt is described by the following expression:

dzt = �ztdt+ �ztd!;

where � 2 (0; r) is the constant drift parameter measuring the expected growth rate
of zt; � > 0 is the instantaneous standard deviation, and d! is the increment of a

standard Wiener process, where d! � N(0; dt): The constant riskless interest rate

is r. The restriction � < r is necessary to ensure that there is a strictly positive

opportunity cost of holding the option to invest, so that it will not be kept forever;

this restriction guarantees �nite valuations for the discounted streams of expected

pro�ts.

3 Value functions and investment thresholds

As is standard, before presenting the equilibrium, we analyze the �rms� payo¤s.

When one �rm invests �rst, it becomes the leader, and so its rival is the follower.

Because we focus on the classic case of two ex-ante identical �rms, it is not decided

beforehand which �rm will be leader. Nevertheless, since the �rms are ex-ante iden-

tical, we can analyze their payo¤s as if their roles were pre-determined, as is done,

with no loss of generality, by Weeds (2002), Huisman and Kort (2004), and others.

Because the follower reacts optimally to the leader�s decisions, it is natural to analyze

his behavior �rst. Then, we determine the leader�s value of investing.

After discussing the follower�s and the leader�s value functions, we analyze the

case of simultaneous investment.

3.1 The follower�s investment problem

Once the leader has invested, the follower�s optimal choice depends on the infor-

mation he has about the new technology.8 Therefore, we need to characterize his

7The same assumptions are introduced, for example, in Pawlina and Kort (2006).
8For ease of exposition, we will continue to refer to the follower as if it were headed by a male

CEO, and to the leader as if it were run by a female CEO.
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conduct both when he has already bene�ted from the spillover, and when the rele-

vant information has not yet leaked out.

We start analyzing the follower�s optimal choice in the former case. We proceed

in this way because the follower�s knowledge of the additional information is an

absorbing state: once the information has been obtained by the follower, it is not

possible to revert to the previous situation. Hence, when the information has been

revealed, the follower�s optimal behavior cannot be in�uenced by his optimal choices

in the �ignorance�state, while the converse is not true.

If, at time t; the leader has invested, and the follower has obtained the relevant

information, he determines his optimal investment rule by solving the stochastic

optimal stopping problem:

F d(zt) = max
Td

Et

(Z Td

0

�l1z�e
�r�dt+

�Z 1

Td
�2z�e

�r�dt� (1� �)I
�
e�rT

d

)
; (1)

where Et denotes expectations conditional on the information available at t; and T d

is the stopping time at which the investment is sunk; the superscript d characterizing

the value function highlights that F d(zt) is obtained when the relevant information

has already been disclosed to the follower.

Essentially, this investment problem can be analyzed by employing the standard

real option model presented in Dixit and Pindyck (1994). As shown in Appendix 1,

this leads to the following value function:

F d(zt) =

8<:
�l1
r��zt +

(1��)I

�1

�
zt
z
¯

�

zt 2 (0; z¯ )

�2
r��zt � (1� �)I zt 2 [z¯ ;1)

, (2)

where 
 = 1
2 �

�
�2 +

q�
1
2 �

�
�2

�2
+ 2r

�2 > 1:

The interpretation for F d(zt) is standard: for low realizations of the state variable

zt the follower�s optimal strategy dictates to wait. In fact, when zt < z¯
, the follower

�nds it optimal to postpone the investment, sinking it at a future date, at which the

expected discounted pro�ts will be higher; the second addendum in the �rst line of

(2) captures the follower�s option value of waiting until the trigger point z
¯
is reached.

Notice that (zt=z¯
)

 can be interpreted as a stochastic discount factor, indicating

the expected value of investing at z
¯
when the fundamental is zt (refer to Dixit and

Pindyck, 1994, and to Bouis et al, 2009, for a recent application). When the state

variable zt is su¢ ciently high (zt � z
¯
), the follower �nds that the pro�t motive is
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strong enough to trigger an immediate investment.

In Appendix 1 we show that the threshold level for zt is given by:

z
¯
=





 � 1
r � �
�2 ��l1

(1� �)I; (3)

The comparative statics on z
¯
gives sensible results: an increase in �2 enlarges

the investment trigger, which is reduced by an increase in the investment reward

(�2��l1), and by an increase in the spillover parameter (which lowers the follower�s
investment cost). An increase in the e¤ective discount rate r � � induces a larger
investment trigger.

We now consider the follower�s choice when the information about the new tech-

nology is still undisclosed.

In Appendix 1, we solve this optimal stopping problem, showing that the value

of the follower is given by

F (zt) =

8>><>>:
�l1
r��zt +

(1��)I
(
�1)

�
zt
z
¯

�

+ E3z

�1
t zt 2 (0; z¯ )

� �
r+� (1� �)I +

(r��)�l1+��2
(r+���)(r��)zt + E2z

�1
t +G2z

�2
t zt 2 [z¯ ; �z)

�2
r��zt � I zt 2 [�z;1)

; (4)

The absence of a superscript highlights the fact that, at the time of the leader�s

investment, the follower has no relevant information. Accordingly, this is considered

the standard reference case. Notice that �1 =
1
2 �

�
�2 +

q�
1
2 �

�
�2

�2
+ 2(r+�)

�2 > 1;

�2 =
1
2 �

�
�2 �

q�
1
2 �

�
�2

�2
+ 2(r+�)

�2 < 0; while the parameters G2, E2, and E3 are:

G2 =

�

(r � �)

(
 � 1)(r + �� �) �
�1r

(�1 � 1)(r + �)

�
�1 � 1
�1 � �2

(1� �)I
z
¯
�2

;

E2 =
�2 ��l1

�1(r + �� �)
�z1��1 � �2

�1
G2�z

�2��1 ; (5)

E3 =E2 �
r(1� �)I

(�1 � 1)(r + �)z¯
�1
+
�2 � 1
�1 � 1

G2z¯
�2��1 :

The maximum value function (4), is characterized by two triggers, z
¯
; and �z.

When zt < z
¯
; the follower would not invest even if the information concerning

the new technology was disclosed. When z
¯
� zt < �z; the follower does not invest

while the technological information is undisclosed, but he stands ready to invest

upon attainment of the spillover, which grants to the follower a �discount� on his

investment costs. Finally, when zt � �z, pro�ts are so high that it is optimal for the

11



follower to invest, paying the full cost I, instead of waiting for an uncertain spillover.

The value function (4) requires that z
¯
� �z; and accordingly we �rst provide the

relevant details about the trigger �z; and then we comment upon F (zt). In Appendix

1, we show that �z is determined by the following nonlinear equation:

�
�z

z
¯

��2
(1� �)I

�

(r � �)

(
 � 1)(r + �� �) �
�1r

(�1 � 1)(r + �)

�
= (6)

=
�2 ��l1
r + �� � �z �

�1(r + ��)

(�1 � 1)(r + �)
I:

Before deriving the results concerning �z; we need to show

Lemma 1
h


(r��)
(
�1)(r+���) �

�1r
(�1�1)(r+�)

i
> 0 for �2 2 (0;1); � 2 (0;1):

Proof. Please refer to Appendix 2.

This allows to prove that

Proposition 2 For any � 2 (0;1)
i) The threshold �z is unique;

ii) if � = 0, then �z = z
¯
;

iii) lim�!1 �z =
�1(r+���)

(�1�1)(�2��l1)
I, while lim�!1 z¯

= 0;

iv) �z > z
¯
for � 2 (0; 1):

Proof. Please refer to Appendix 2.

Results i) and iv) are crucial for the logical consistency of the value function (4).

The result in ii) is not surprising: when there is no spillover, the follower�s decision

boils down to the traditional one, since he only has to decide whether he wants to

invest or to keep his option.

When � ! 1 the technology adoption bears no cost to the follower, and hence it is

always optimal for him to upgrade his technique as soon as the relevant �and indeed

precious �information leaks out of the leader �rm. This explains why z
¯
= 0: Notice

that, in this case, �z; which is the threshold triggering investment if no information is

revealed, is higher than the trigger that would characterize the follower behavior in

a model with no spillover.9

Proposition 2 has an interesting implication:

9 In this case, the threshold �z is higher that the follower�s trigger in a model with no

spillovers
�
that is 



�1
r��

�2��l1
I

�
: This is guaranteed, for � 2 (0;1); by Lemma 4, which implies

�1(r+���)
�1�1

>

(r��)

�1 .
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Corollary 3 E2; G2 > 0, and E3 < 0; for �2 2 (0;1); � 2 (0;1).

Proof. Please refer to Appendix 2.

This Corollary is useful to interpret the maximum value function (4). For zt 2
(0;z
¯
); the value of a �rm that has bene�ted from the spillover must be higher than

the value of a �rm that has not. The negative term E3z
�1
t re�ects the di¤erence

F d(t)� F (t) (compare the �rst line in Eq. (4) with the �rst line in Eq. (2)). When
zt 2 [z¯ ; �z); the maximum value for a follower that has not enjoyed the spillover is

characterized by two option value terms, E2z
�1
t and G2z

�2
t ; that are both positive. In

fact, inaction grants two types of advantages to the follower. First, with instantaneous

probability �; he may obtain the spillover; second, because Et(dzt) = �ztdt > 0; he

expects to move toward the investment threshold �z; which increases his value. The

former e¤ect is captured by G2z
�2
t ; while the latter boils down to E2z

�1
t : Notice that,

if � = 0; then �1 = 
 (refer to Appendix 1) and �in coherence with our interpretation

�G2 = 0:

3.2 The leader�s investment decision

We now obtain the value of a �rm that invests as the leader, given that the follower

will act optimally in the future.

Notice that once the leader has invested, she has no further decision to take,

and her value is the discounted stream of her future pro�ts. This payo¤ is negatively

a¤ected by the follower�s investment, and this e¤ect gets higher with the fundamental,

as its increase makes the follower�s decision closer. For this reason, the leader�s value

function need not be monotonic.10 At the time of investing, the leader is aware that

she is about to face an uninformed follower. We already know that the behavior of

a follower that has not bene�ted from the spillover, is di¤erent in the three intervals

zt 2 (0; z¯ ); zt 2 [z¯ ; �z); and zt 2 [�z;1). This di¤erence in the follower�s behavior
in�uences the leader�s payo¤because it a¤ects the length of her cost advantage period.

Therefore, the leader�s maximum value function has three di¤erent shapes in these

three intervals.

Collecting the results explained in Appendix 1, we �nd that the leader�s maximum

value function is
10Notice also that at �z there is no optimal choice for a leader that has already invested, and hence

the smooth pasting condition does not need to hold (as it happens, e.g., in Weeds, 2002, and in
Pawlina and Kort, 2006. In the three-�rm model by Bouis et al, 2009, the smooth-pasting condition
holds everywhere only for the third comer).
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L(zt) =

8>><>>:
�h1
r��zt +

�2��h1
r�� z

¯

�
zt
z
¯

�

+ E6z

�1
t � I; zt 2 (0; z¯ )

(r��)�h1+��2
(r+���)(r��)zt + E4z

�1
t +G4z

�2
t � I ; zt 2 [z¯ ; �z)

�2
r��zt � I ; zt 2 [�z;1);

(7)

where E6, E4, and G4 are given by:

G4 =
�h1 ��2
�2 ��l1

(1� �)I
z
¯
�2




�1 � �2

�
1� (�1 � 1)(r � �)

(
 � 1)(r + �� �)

�
;

E4 =��z(��1)
�
G4�z

�2 +
�h1 ��2
r + �� � �z

�
; (8)

E6 =E4 + z¯
(��1)

�
G4z¯

�2 +
�h1 ��2
r + �� � z¯

�
:

For a better understanding of the economic meaning of the above parameters, it

is useful to prove the following:

Lemma 4
h
1� (�1�1)(r��)

(
�1)(r+���)

i
> 0 for �2 2 (0;1); � 2 (0;1):

Proof. Refer to Appendix 2.

Lemma 4 allows us to conclude that G4; E6 > 0, while E4 < 0, which implies

that L(zt) needs not be monotonic either in the interval zt 2 (0;z¯ ), or in the interval
zt 2 [z¯ ; �z):
Di¤erent forces contribute to shaping the leader�s maximum value function.

Consider �rst the interval zt 2 (0;z¯ ): If the leader � investing there � enjoyed
forever the instantaneous pro�t �ow of �h1zt; her value would be �

h
1zt=(r � �): The

second addendum in the �rst line of Eq. (7) corrects this value, assuming a follower�s

investment at z
¯
. But the follower invests at a fundamental higher than z

¯
whenever

the spillover has not materialized at the date at which zt reaches the threshold z¯
.

This induces a positive e¤ect on the leader�s value, which is captured by the third

addendum, E6z
�1
t > 0; this e¤ect is the relevant the lower is �.11 As depicted in

Figure 1, the positive e¤ect tends to dominate when zt is low, and in fact the lower the

fundamental, the more the stochastic discount factor (zt=z¯
)

 dampens the negative

e¤ects of the second addendum in the �rst line of Eq. (7).

[Figure 1 about here]

11When � ! 0; we have that
h
1� (�1�1)(r��)

(
�1)(r+���)

i
= 0; since �1 = 
 (compare Eqs. (12) and

(15)). Because in this case G4 = 0; L(zt) =
�h1
r�� zt +

�2��h1
(r��) z¯

�
zt
z
¯

�

+ E6z

�1
t approaches �h1

r�� zt �
(�h1��2)
r�� �z1�
z
t ; which is the leader�s maximum value function in the traditional no-spillover model.
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When zt 2 [z¯ ; �z); the interpretation of the maximum value function is straight-

forward. The expected pro�t for a leader facing a constant probability of investment

on behalf of her competitor is (r��)�h1+��2
(r+���)(r��)zt; and it obviously grows with zt; E4z

�1
t

and G4z
�2
t are correction terms capturing the fact that an increase in zt makes closer,

on average, the attainment of the threshold �z that triggers the follower�s investment.

Accordingly, an increase in the fundamental shortens the leader�s cost advantage

period, which induces the negative e¤ect summarized by the �rst correction term.

However, an increase in zt makes less likely the attainment of the spillover, and hence

the second correction term is positive (and increasing in �).

To understand the role of the probability of information disclosure in shaping

the leader�s maximum value function, consider that, when zt is close to z¯
, it takes a

long time to reach �z: Accordingly, the average length of the cost advantage period is

close to 1=�, because the probability that �z is reached before the relevant information

is released is negligible. Hence, in the lower part of the interval [z
¯
; �z); the leader�s

maximum value function is �almost linear�in zt because the e¤ect of zt on pro�ts does

not change signi�cantly with zt itself. In contrast, when zt is close to �z, the extent

of the cost advantage period is a¤ected by the evolution of zt: Accordingly, in this

case an increase in zt enhances the instantaneous pro�ts for the leader, but reduces

the expected duration of her cost-advantage period, which explains the contraction

in (the growth of) the leader�s maximum value.

Figure 1 con�rms this intuition for a realistic value of �.

Comparing Figure 1 with the pictures portraying the equilibrium for the no-

spillover case (see, e.g., Dixit and Pindyck, 1994; Nielsen, 2002; Weeds, 2002) one

immediately realizes that the presence of a moderate spillover signi�cantly reduces

the di¤erence in the leader�s and in the follower�s maximum value functions, as well as

their dependence on the fundamental. Because the disparities in the value functions

a¤ects the heterogeneity in the �rms�market betas (as in Cooper, 2006), our model

bears the interesting implication of being able to generate betas that, while di¤erent

between oligopolistic �rms, do not vary excessively.

3.3 The simultaneous investment problem

If zt has reached high values (i.e., for zt 2 [�z;1)), the �xed cost is so low in compar-
ison with the expected pro�ts that it is optimal for the second �rm to immediately

enter upon his rival�s investment, without exploiting the inter-�rm spillover, as is

shown in the third line of (4).

In this case, the �rst �rm is aware that, as soon as she innovates, the second �rm

will �immediately� follow and invest. Hence, each �rm takes its decision anticipat-
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ing such a follower�s behavior. This leads to a candidate equilibrium where the two

�rms maximize their joint payo¤: knowing that it will be immediately followed, each

�rm delays its innovation until it can get its maximum discounted sum of pro�ts. In

this context, �rms remain symmetric, the informational spillover is never exploited,

and the maximization of each single �rm�s payo¤ coincides with their joint maxi-

mization.12 The two �rms determine their optimal investment rule by solving the

stochastic optimal stopping problem:

S(zt) = max
TS

Et

(Z TS

0

�0z�e
�r�dt+

�Z 1

TS

�2z�e
�r�dt� I

�
e�rTS

)
; (9)

under the constraint that the investment trigger must satisfy the constraint zS � �z.

In fact, if zS < �z, the simultaneous investment cannot be an equilibrium: if a �rm

invests at zS ; her competitor�s best strategy is not to follow immediately. Rather,

his best reply, given by F (zt); is to invest as soon as he bene�ts from the positive

spillover, and to sink the cost at �z > zS if no information �ows out of the rival.

In Appendix 1, we show that the solution is to invest at zS = maxfz0; �zg; where13

z0 =




 � 1
r � �
�2 ��0

I; (10)

so that the cooperative maximum value function is:

S(zt) =

8<:
�0
r��zt +

�
�2��0
r�� zS � I

��
zt
zS

�

for zt 2 (0; zS)

�2
r��zt � I for zt 2 [zS ;1)

: (11)

When z0 < �z, the value function is continuous, but not di¤erentiable, which is a

consequence of the constraint in the maximization process. Notice that the function

S(zt) represents the expected discounted value of investing at zS conditional upon

being in zt < zS :

12When �rms cooperate and side payments are allowed, they may jointly select two di¤erent
investment triggers (which of course imply di¤erent expected pro�ts streams), as in Weeds (2002).
If, instead, the two �rms can cooperate but they are constrained to invest at the same point, they
opt for the trigger we identify in the main text. Hence, our approch is equivalent to allowing for
cooperation, excluding the possibility of side payments.
13When � is low, it is possible to show that, �z > z0: The upward-sloping portion of the surface

portrayed in Figure 5, Panel (d), actually represents the cases in which �z > z0. It is also possible to
prove that z0 > z

¯
, always.
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4 The competitive equilibrium

4.1 The equilibrium concept and the selection procedure

Because in our setup only one investment project is available to the �rms, the choice

to innovate is an irreversible stopping decision. Our model therefore belongs to the

class of symmetric timing games, which can be divided into two sub-classes depending

upon which �rm (the �rst mover or the second mover) obtains the higher payo¤.

A timing game is of the �rst mover advantage type if the �rst mover�s highest

discounted payo¤ exceeds the follower�s best reply, as is the case in most of the liter-

ature. Because the roles of leader and follower are not pre-assigned, if the follower�s

payo¤ is lower than that of the leader, the former has an incentive to anticipate the

latter�s decision, becoming the leader. Accordingly, in these games, the possibility

of preemption induces rent equalization. As is common in the literature, we assume

away coordination failures �i.e., we assume that the two �rms cannot invest together

at a rent-dissipation point (like zL in Figure 1): More precisely, we assume that at

a rent-equalization point each �rm is randomly selected to become the leader, with

probability 1=2, while her opponent becomes the follower, and reacts optimally to

the leader�s choice.

When the spillover parameter is high, we have a second-mover advantage. An in-

crease in � directly bene�ts the follower�s payo¤ by reducing his �xed cost; moreover,

a larger spillover makes more convenient to the follower the policy of immediately

investing upon information disclosure, and in fact an increase in � reduces the thresh-

old z
¯
, as shown by Eq. (3). This shortens the leader�s expected cost-advantage period

for zt 2 (0; z¯ ), reducing her value. In a second mover advantage game, if the task
of moving �rst is exogenously assigned to one of the two �rms, this player, behaving

optimally, obtains the lower payo¤. In this case, as in Huisman and Kort (2004), we

assume that each �rm is assigned the task of moving �rst with probability 1/2, so

that this �rm, which becomes the leader, chooses her highest payo¤.14

14This assumption (and therefore the equilibrium it implies) may seem arbitrary. In fact, it rules
out the mixed-strategies equilibrium often referred to as a war of attrition. In a war of attrition,
�rms would start randomizing at �z; where the leader�s discounted payo¤ reaches a (local) maximum,
and they would randomize in zt 2 [�z; ~z): In this interval in fact, F (zt) > L(zt); while the discounted
value of L(zt) is decreasing. In such a mixed-strategy equilibrium, �rms would obtain, at every
point, an expected payo¤ lower than that of the leader, due to the possibility of getting a low value
in case of a simultaneous entry. Nevertheless, our assumption does not twist the selection process in
favour of a candidate equilibrium located in the interval zt 2 [z¯ ; z). In fact, our numerical analysisshows that the second mover advantage games emerge when the spillover parameter is high enough
that the simultaneous entry payo¤ (Eq. (11)) is lower than the value that could be obtained in a
war of attrition.
Fudenberg and Tirole (1985) argued that the Pareto-dominant equilibrium is most reasonable.

In our case, Pareto ranking implies that all �rms prefer the pure-strategy equilibrium involving an
advantage for the follower.
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We now focus on subgame-perfect equilibria, in which it is not decided beforehand

which �rm is leader or follower. Hence, we build on the tradition of Fudenberg and

Tirole (1985), a tradition that has been followed by, among others, Grenadier (1996),

Nielsen (2002), Weeds (2002), Huisman and Kort (2004), and Bouis et al (2009).

Subgame perfectness requires that the equilibrium must survive all the possible

o¤-equilibrium deviations. Because our model is highly non-linear, we need �rst to

identify the candidate equilibria and then to select among them using the subgame

perfection criterion. Each candidate equilibrium is a couple of strategies that would

form a subgame-perfect equilibrium if we restricted our attention to a subset of

zt 2 (0;1). Once we have identi�ed the candidate equilibria, we select among them
using the subgame-perfectness criterion. In doing so, we need to compare the leader�s

value at any candidate equilibrium, with her payo¤ at any point lower than the one

that is part of the proposed equilibrium. Whenever we can �nd a point in which

the leader�s payo¤ is higher than the discounted value of her payo¤ at the candidate

equilibrium, the leader prefers to invest at that point rather than to wait for the

proposed equilibrium, which therefore is not subgame perfect.

The simultaneous investment trigger analyzed in Subsection 3.3 is a candidate

equilibrium; in fact, provided that zt has reached high values (i.e., for zt 2 [�z;1)),
for each �rm it is optimal to invest at zS if the other does the same. Moreover, we

can prove that at least another candidate equilibrium always exists in zt 2 (0; �z):

Theorem 5 i) For � 2 (0; ��] there is a candidate (preemptive) equilibrium with the

leader investing in zt 2 (0; z¯ ) � (0; �z):
ii) For � 2 [���; 1) there is a candidate equilibrium with the leader investing in

zt 2 [z¯ , �z) � (0; �z):

Proof. Please refer to Appendix 2.

Unfortunately it is impossible to determine analytically �� and ���; and hence, a

fortiori, we cannot specify the parameter region in which the candidate equilibria are

three (as happens in Figure 1). In fact, in our highly non-linear model, the candidate

equilibria can be obtained only by means of numerical techniques. Figure 2 provides

an example of the behavior of �� and ��� as a function of �: For the parameter

combinations in Area A (i.e., for � < ���) only the preemptive candidate equilibrium

exists; in Area B (i.e., for ��� � � � ��) two candidate equilibria exists, while in area
C (when � > ��) only the candidate equilibrium in zt 2 [z¯ , �z) exists.
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[Figure 2 about here]

Notice that Part i) of Theorem 5 con�rms that our analysis is consistent with

the standard duopoly model proposed by Smets (1991), Dixit and Pindyck (1994),

and others. When the spillover is low, either the equilibrium is preemptive with

rent equalization (for zt 2 (0;z¯ )); or the equilibrium that prevails is the joint-pro�t-

maximization simultaneous one (zt = zS).

As an example of the equilibrium selection procedure, consider Figure 3, which

is drawn for a realistic value of the hazard rate �; for the case of a large innovation,

and for a very low value for the spillover parameter (� = 0:02):15

[Figure 3 about here]

From the Figure, it is clear that two candidate equilibria exist. One is the si-

multaneous equilibrium zS ; the dotted line represents S(zt), which is the discounted

value of investing at zS when the fundamental is zt: The other equilibrium prescribes

to the follower to wait until the fundamental reaches z
¯
: if, at that time, he has al-

ready bene�ted from the spillover, his optimal strategy is to invest; otherwise, his

best strategy is to invest upon disclosure; once the fundamental reaches the trigger

�z, he has to invest even if he has not enjoyed the spillover. (Refer to Eq. (4)). The

leader�s equilibrium response to the follower�s strategy described above is to invest

at zL: because the leader�s payo¤ is higher than the follower�s for zt 2 (zL; �z), the
possibility of preemption by the follower induces the leader to invest at the rent-

equalization point zL. This follows from the fact that the roles of leader and follower

are not pre-assigned: if the follower�s payo¤ is lower than the leader�s, the former

has an incentive to anticipate the latter�s decision, becoming the leader.

To select the subgame-perfect equilibrium for the case depicted in Figure 3, notice

that, for some zt 2 [zL; �z); L(zt) is higher than S(zt): Accordingly, the leader prefers
to sink the investment cost in zt, rather than to wait until zS is reached. This is

su¢ cient to make the simultaneous investment at zS not an equilibrium. In such a

case, because L(zt) > F (zt) for zt 2 (zL; �z); it is in the follower�s interest to preempt
the leader by investing at zt � dzt: Hence, by backward induction, we conclude that
the equilibrium strategy for the �rst innovator is to invest when the leader�s payo¤ is

equal to the follower�s (i.e., at zL). Accordingly, one �rm, which becomes the leader,

invests at zL; while the other follows the strategy prescribed by (4). Notice that we

have rent equalization in the equilibrium, due to the possibility of preemption in this

�rst-mover advantage game. Notice also that S(zL) > L(zL) = F (zL); but the leader

15The other relevant parameters values are � = 0:01; r = 0:04, and � = 0:03:
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cannot decide to wait, because, for some zt > zL; it is in the follower�s interest to

preempt the leader, which makes the outcome of investing simultaneously at zS not

subgame perfect.

In our set-up, the leader maximum value function may cross the follower�s more

than once. As already underscored, an increase in � bene�ts the follower, while

damaging the leader. These two e¤ects induce L(zt) < F (zt) for some zt 2 [zL; �z);
and the two value functions cross more than once, as is the case in Figure 1, which

is drawn for � = 0:07: As before, to select the subgame-perfect equilibrium, we need

to proceed backward, starting from zS ; which �with the parameter values used for

Figure 1 � coincides with �z: If S(zt) > L(zt) for zt 2 [zL; �z); the subgame-perfect
equilibrium in the interval [zL; �z) prescribes simultaneous investment at zS : If not, as

is the case, we need to check if the �rst rent-equalization point that we �nd moving

backward toward zL is the equilibrium. Call ~z the �rst rent-equalization point at

the left of �z: To verify whether this point actually represents a subgame-perfect

equilibrium, one must check whether the discounted expected value of investing at ~z

conditional upon being in zt 2 [zL; ~z), is higher than L(zt). Because with � = 0:07
this is the case, the leader prefers to wait until ~z is reached, rather than to sink

the investment cost in zt. Hence, ~z is the subgame-perfect equilibrium. If this had

not been the case, we would have needed to move to the left to the next candidate

equilibrium, zL: The fact that L(zt) < F (zt) for some zt 2 [zL; �z) does not imply
that the game we are considering is of the second-mover advantage type: in fact,

the highest discount payo¤ for the leader (at zt �= 1:31) is higher than that of the

follower.

However, when the spillover parameter is high, we do have a second-mover ad-

vantage, as is the case in Figure 4, which is drawn for � = 0:3: In this case, the best

strategy for the �rm that is drawn to move �rst is to invest at �z: This strategy grants

her the highest current value. From the Figure, it is clear that the leader�s payo¤ at

�z is lower than the follower�s, but it exceeds the leader�s expected discounted value

of investing at ~z (or later).

[Figure 4 about here]

4.2 Numerical selection

Because the equilibrium cannot be identi�ed analytically, we now present some nu-

merical results.16 We �rst depict the candidate equilibria as a function of the spillover

16Our routine has been written in Matlab, and it is based on a discretization of the space [� x �];
for � 2 [0:01; 0:40] and � 2 [0:20; 0:67]: We have used 72.000 gridpoints; however, our results do not
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and of the hazard rate, and then we highlight the portion of the parameter space

in which the subgame-perfect equilibrium investment trigger for the leader is higher

than z
¯
. This equilibrium is of particular interest because, when it prevails, the fol-

lower�s best strategy is to invest as soon as he gets the spillover, so that the average

time distance between the leader�s and the follower�s investment dates is close to 1=�;

implying realistic investment lags for the follower.

To limit the range of relevant values for �; consider that, in his classic study,

Mans�eld (1985) reports that in 41% of cases it takes less than twelve months for

the innovator�s rival to obtain the relevant information. More recently, Cohen et al

(2002) compute that the average adoption lag for unpatented process innovation is

2.03 and 3.37 years in Japan and the U.S., respectively. These contributions lead us

to think that realistic adoption lags are contained between 1.5 and 5 years, so that

�recasting the innovation lag in our terms �we simulate the model for � 2 [0:20;
0:67]:

In our analysis, we �x the discount rate r at 0.04, which is consistent with com-

puting calendar time in years. Then, we notice that the level of the irreversible in-

vestment does not play any substantial role: the e¤ect of an higher I is to postpone

all of the candidate equilibria without changing their relative convenience. Hence,

we choose I = 100 with no loss of generality. As for �; we �x it at 0.02 simply

because we have veri�ed that, moving it in the interval [0:01; 0:03]; does not appre-

ciably modify our results. The role of uncertainty is much more relevant. As we shall

detail later, an higher uncertainty increases the investment triggers, and the value

of waiting, and hence it plays a role in the equilibrium selection process. Hence, we

shall present the result for � 2 f0:03; 0:1g:While the second value may seem high, it

has been adopted in various studies to stylize the role of sector-speci�c uncertainty

(see, e.g., Grenadier, 1996; Pawlina and Kort, 2006). The �rst value has been chosen

to portray the polar case of a relatively stable sector.17

Another key element is given by the post-investment pro�t levels. In fact, a

signi�cant pro�t increase for the leader � in the absence of spillovers � favours the

preemptive equilibrium, as originally suggested by Fudenberg and Tirole (1985) and

veri�ed in the stochastic settings by many contributions (see in particular Nielsen,

2002; Weeds, 2002). In contrast, with no spillover, an investment yielding only a

modest pro�t increase to the front runner tends to induce the selection of a simulta-

appreciably change for any number of evaluation points larger than 4.500. This routine is available
upon request from the authors.
17The choice of the value for the low-variance sector has been in�uenced by Guiso and Parigi

(1999), who, using a panel of Italian �rms, �nd a coe¢ cient of variation of one-year ahead expected
demand as low as 0.023.
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neous equilibrium (see Pawlina and Kort, 2006; or, again, Weeds, 2002). Accordingly,

we analyze two di¤erent scenarios.

We �rst consider a major innovation, which is the introduction of a new produc-

tion technique yielding a signi�cant cost reduction. In this case, the leader �when

she is the unique innovator �grasps large pro�ts in comparison with those obtained

by the follower. In fact, the cost advantage she enjoys induces her to signi�cantly

increase her market share. To simulate this case, we normalize �0 to unity, and we

assume: �h1 = 4; �
l
1 = 0:25; and �2 = 2:25:

18 We �rst compute the three candidate

equilibria in the case of a major innovation, when � = 0:03; as a function of � and �:

[Figure 5 about here]

When the leader invests at zL 2 (0;z¯ ), the follower�s optimal strategy is to invest
at z
¯
if he has already bene�ted from the spillover, and to invest upon attainment of

the spillover if at z
¯
the relevant information is still undisclosed. Accordingly, the in-

vestment trigger for the second mover is not signi�cantly in�uenced by �: for sensible

parameter values, the leader�s investment at zL makes �almost sure�the attainment

of the spillover before zt: Hence, the follower �almost always� invests at z¯
, which,

being the investment trigger for a second mover who has already bene�ted from the

spillover, cannot be in�uenced by � (refer to Eq. (3)). The virtual independence of

the follower�s expected threshold on � is portrayed in Panel (a) of Figure 5. Panel

(b) depicts zL. Because the second mover�s trigger is almost independent from the

hazard rate; the leader�s cost-advantage period is also not signi�cantly in�uenced by

�: Hence, the leader�s investment threshold is also almost imperceptibly in�uenced

by �: It is apparent that an increase in � raises the leader�s investment threshold, but

lowers that of the follower: In fact, a higher � �bene�ting the follower�s payo¤ by

reducing his �xed cost, and shortening the leader�s expected cost-advantage period

�reduces the incentives to be �rst, while increasing the follower�s value. Notice that

Panels (a) and (b) show that the preemptive equilibrium does not exist for high �;

an e¤ect that can be easily interpreted by referring to Figure 4 and that is consistent

with Figure 2.

Panel (c) portrays the leader�s investment trigger in the candidate equilibrium in

the region [z
¯
, �z): When this equilibrium is of the �rst-mover advantage type (as ~z

in Figure 1), it is represented by a steeply-upward sloping surface, while the second

mover advantage equilibrium (as �z in Figure 4) generates a mildly upward-sloping

surface. Accordingly, the impact of � and � on the �rst mover investment trigger is

18Appendix 3 shows that these values are coherent with Cournot competition in the �nal product
market when the innovation size, denoted by x, is 0:50 of the market dimension.
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di¤erent in the two cases. This happens because the follower signi�cantly bene�ts

from an increase in � or in �. Such an increase in payo¤s implies a lower incentive to

preempt the leader when there is a �rst mover advantage. The increase in � and �

harms the leader, because her cost-advantage period shrinks. In a �rst mover advan-

tage equilibrium, the e¤ects on both the follower�s and the leader�s value functions

are operational, while in a second mover advantage equilibrium, the latter e¤ect only

is at work.19 Panel (c) shows that the equilibrium in which the leader invests after

z
¯
does not exist when � is low; which is consistent with Figures 2 and 3.

The simultaneous-investment trigger is portrayed in Panel (d). When � is large,

if one �rm invests, her competitor�s optimal policy is to wait and sink the �xed cost

upon realization of the spillover even when zt and hence the duopoly pro�ts are high.

Moreover, an increase in � raises �z; which is the threshold below which the above

policy is optimal: Accordingly, when � is high, the simultaneous investment trigger

is �z; and it is increasing in both of the relevant parameters. Conversely, when � is

low, the presence of the spillover becomes irrelevant, and zS = z0: In this case, the

simultaneous investment trigger is constant, as con�rmed by Eq. (10).

Having illustrated the candidate equilibria, we now compute the portion of the

parameter space in which the leader�s subgame-perfect equilibrium-investment trigger

is higher than z
¯
. We de�ne as �(�) the value for � such that �given � �the spillover

parameter is high enough that the leader�s subgame-perfect equilibrium investment

trigger exceeds z
¯
, and, in Figure 6, we portray the threshold �(�) for � 2 f0:03; 0:1g.

[Figure 6 about here]

For � < �(�); the preemptive equilibrium with the leader investing at zL prevails.

To understand the switch from one type of equilibrium to the other, notice that,

for a given �; an increase in � reduces the leader�s payo¤. In fact, an increase in

� makes more convenient to the follower the policy of immediately investing upon

information disclosure, reducing the threshold z
¯
. This shortens the leader�s expected

cost-advantage period for zt 2 [zL;z¯ ), reducing her value. This �rst limits, and then
eliminates, the range for zt 2 (0; z¯ ) such that L(zt) > F (zt); ruling out the possibility
of an equilibrium in which the leader invests at zL < z¯

(i.e., of a �rst mover advantage

�early�equilibrium): Hence, an increase in �, for a given �; favours the selection, as

the subgame perfect equilibrium, of a leader�s investment trigger higher than z
¯
:

The e¤ects of a larger � are subtler, but they need to be scrutinized to understand

why the threshold �(�) is decreasing in �. A larger probability of information spillover

19To save space, we do not present a panel depicting the follower�s expected threshold in this
candidate equilibrium. Its qualitative behavior closely mimics that of the leader.
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reduces the value of a leader investing in zt 2 [z¯ ; �z); while obviously bene�ting the
follower�s expected pro�ts. Accordingly, the two payo¤ functions meet at a later ~z,

which implies an higher current value for the equilibrium. (Refer again to Figure 1,

and consider that the process we are describing shifts upward F (zt); and downward

L(zt)). This higher value twists the equilibrium selection process toward leader�s

investment triggers, which are higher than z
¯
. Accordingly, a higher � requires a

lower � for the early equilibrium to be dominated.

In words, a large probability of releasing relevant information induces the leader

to delay her investment, in order to grasp large bene�ts from the increased market

dimension during her limited cost-advantage period. This e¤ect proves to be strong

enough to sustain �even for a relatively small spillover size �the equilibrium in which

the leader invests after z
¯
.

A larger � enhances quite signi�cantly the threshold �(�). The intuition for this

result is simple: an increase in uncertainty has the usual e¤ects on the follower�s

optimal choices: it delays the thresholds z
¯
and �z.20 The increase in the follower�s

value of waiting, delaying his investment triggers, not only increases the follower�s

payo¤, but it also bene�ts the leader�s value: in particular, she enjoys, in the early

stages of the game, a longer cost-advantage period, because the follower�s optimal

policy dictates that he invest �upon information disclosure �at z
¯
. This obviously

acts in favour of the subgame perfectness of the early equilibrium.

We now portray a minor innovation. In this case, the cost reduction is modest,

so that it is not convenient for the leader to sizably expand her production at the

follower�s expenses. Hence, the leader, even when she is the unique innovator, does

not enjoy pro�ts so much larger than those of the follower. Accordingly, to depict a

minor innovation, besides normalizing �0 = 1 as before, we assume that �h1 = 1:21;

�l1 = 0:9025; and �2 = 1:1025:
21

Figure 7 shows the threshold �(�) for a minor innovation, again for � 2 f0:03;
0:1g.

[Figure 7 about here]

When � is low, it is the simultaneous investment that prevails. In fact, consider

�rst that the simultaneous investment strategy is optimal once the market dimension

�and hence the potential increase in pro�ts due to the innovation �have reached

high values. In this case, an innovation leader cannot emerge because the rival would
20As for z

¯
, the e¤ect can be veri�ed analytically from Eqs. (3) and (12), following the usual steps

expounded in Dixit and Pindyck (1994).
21 In this case, the values in the main text are consistent with Cournot competition in the �nal

product market, when the innovation size amounts to 0:05 of the market dimension.
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immediately copy her decision. The existing literature suggests that the simulta-

neous investment equilibrium is subgame perfect when the size of the innovation is

small, because the per-period �rst-innovator pro�ts are not signi�cant, which avoids

preemptive behaviors, and hence an equilibrium in which a leader invests in zL < z¯
.

When the follower�s best reply is to invest immediately upon information disclo-

sure (i.e., for zt 2 [z¯ ; �z)), an higher � reduces, for a given �, the di¤erence between the
leader�s and the follower�s payo¤s. While the negative e¤ect on the leader is limited,

because the cost advantage period is essentially governed by � (unless zt is �very

close�to �z); the follower signi�cantly bene�ts from the lower investment cost. This

increases the follower�s value function, postponing the candidate equilibrium point

~z, which acts against the subgame perfectness of the simultaneous equilibrium.22

In words, in the interval zt 2 [z¯ ; �z); the presence of a spillover induces the leader
to delay her investment; in fact, she is aware that it is not in the follower�s interest

to preempt her, because he knows that by waiting he will obtain a reduction in the

sunk cost. This increases the �rms�expected values in this candidate equilibrium,

which therefore tends to dominate the simultaneous solution.

An increase in � bene�ts the follower while harming the leader�s payo¤. Hence, it

acts in favour of the subgame perfectness of the equilibrium in [z
¯
; �z), which therefore

dominates for lower values of the spillover parameter.

In this case also, a larger � enhances appreciably the threshold �(�). The in-

tuition for this result is simple: an increase in uncertainty delays the threshold

zS = maxfz0; �zg:23 The increase in zS bene�ts both �rms�values, which obviously
acts in favour of the subgame perfectness of the simultaneous investment equilibrium.

The evaluation of our result involves a thorny issue, namely the assessment of the

actual size of the spillover parameter.

Some early literature (see Mans�eld et al., 1981) suggests that the ratio of the im-

itator�s cost to that of the �rst innovator is 0.65; more recent contributions estimate

the role of technological externalities from production functions. Los and Verspagen

(2000) �nd the role of �external R&D� to be extremely important for U.S. manu-

facturing �rms. Actually, they �nd an elasticity of output to external R&D on the

order of 0.5-0.6. Ornaghi (2006) estimates that in Spain the elasticity of output with

respect to �technological spillovers�is on the order of 0.2 of the elasticity of output

to own R&D.24

22Even if Figure 1 has been drawn for an high cost reduction, it may be helpful to visualize the
e¤ects of an higher � on the value functions.
23As for z0, the e¤ect can be veri�ed analytically from Eqs (10), and (12), following Dixit and

Pindyck (1994).
24 In both papers, the technological spillover variable is a weighted sum of the R&D expenditures
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These data are suggestive of the fact that the role of inter-�rm spillovers is actu-

ally relevant; they also support the view that there is quite a signi�cant inter-sectoral

variation of the importance of spillovers. Accordingly, we believe that our results ap-

ply at least to the industrial sectors in which, due to the geographical or technological

proximity of the producers, the spillovers are likely to be relevant.

5 Optimal subsidization

To underscore the policy relevance of our results, we present an exercise in which

a benevolent planner chooses the optimal tax/subsidization rate of investment in a

duopoly characterized by the elements we have depicted so far.

In dealing with this issue, we have adopted a second-best perspective: for us,

neither the number of �rms acting in the market nor the way they compete in the

second-stage quantity game lies within the regulatory power of the benevolent plan-

ner. Hence, what this non-omnipotent planner chooses is the timing of innovation,

which is a¤ected via the subsidy (or the tax) on investment.25 The planner�s deci-

sions are based on welfare; in particular for our simulation we use the welfare levels

�computed à la Marshall �that can be obtained under the Cournot decentralized

solution, for the market described in Appendix 3. The instantaneous welfare levels

are discounted at the same rate, r; that is used by �rms.

The details concerning the computation of the welfare function are provided in

Appendix 1. Here, we analyze the consequence of the changes in the investment

triggers that are induced by a proportional subsidization of the �xed investment

cost. In our exercises, subsidy levels are decided upon at time 0, and they are left

unchanged thereafter. In particular, we focus on the case of a major innovation

introduced in a not-very-volatile sector (� = 0:03). Figure 8 shows the welfare-

maximizing subsidization rates for � > �(�); the parameters con�guration being the

one used to generate Figure 6.

[Figure 8 about here]

The equilibrium in [z
¯
; �z) implies that the optimal policy requires a substantial

public intervention in favour of the investment activity.26 When this equilibrium

of the �rms belonging to a speci�c sector.
25This approach is standard in the literature: see, e.g., Hoppe (2000) and Weeds (2002). The �rst

best equilibrium for an omnipotent planner implies the presence of only one �rm: whenever there
are non-decreasing returns in the innovation size or probability, it is optimal to have only one �rm
to innovate and cover the entire market at the marginal (post-innovation) cost.
26When the equilibrium is of the second-mover advantage type, an increase in � or in � calls for

a modest increase in the subsidy rate because the e¤ect of these parameters on the equilibrium
investment trigger is weak (refer to Figure 5, Panel (c)).
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is subgame perfect, an increase in uncertainty �delaying the equilibrium �calls for

higher subsidization rates, a result that applies independently of agents�risk aversion.

Figure 9 is drawn for comparison, and it shows the optimal subsidization rate

called for by a �preemptive equilibrium�when it exists. In other words, Figure 9

shows the optimal subsidization rate that applies for � below the threshold �(�): It

also shows the optimal subsidization that would have applied had the strategy of

investing at zL been subgame perfect for the leader, even for � > �(�):

[Figure 9 about here]

The fact that the optimal policy portrayed in Figure 9 implies the taxation of the

investment is not surprising. In such an equilibrium con�guration, the �rst mover

invests �very soon� to avoid being preempted, and the R&D investment is socially

excessive, so that it must be delayed via taxation (see again Fudenberg and Tirole,

1985, but also Riordan, 1992, and others). Notice that our result implies that the

optimal tax rate is virtually independent from �: This happens because �in the early

equilibrium �when the leader invests, she is �virtually sure�that the follower obtains

the spillover before z
¯
, and hence the trigger point zL is �almost independent� from

�.

When we consider the case of a minor innovation, the results are less striking

because in this case it is the simultaneous equilibrium than tends to prevail with low

spillover. The collusive �avour of this equilibrium implies underinvestment, which

calls for positive subsidization. In this case, our result implies that the policies

aimed at stimulating R&D have to be less sizeable than suggested before because

the underinvesting equilibrium in [z
¯
; �z) is closer to the social optimum than the

simultaneous equilibrium.

6 Concluding remarks

What drives the result in our model is not the fact that an increasing spillover pro-

gressively postpones the leader adoption date in the �early� equilibrium. While

this happens, the crucial aspect is that a di¤erent equilibrium of the dynamic game

emerges. In fact, for low �and hence realistic �spillover, we �nd a subgame-perfect

equilibrium in which the leader invests much later. Actually, she delays her invest-

ment until the stochastic fundamental is high enough that the follower invests as

soon as he obtains the spillover.

The model could be extended in various ways. First, the spillover size parameter,

and the probability of bene�ting from the spillover could be endogenized, while al-

27



ternative stochastic processes for pro�ts could be assumed, such as those exhibiting

mean reversion. These assumptions would generate similar qualitative results.

The paper has focused on the symmetric duopoly case. If �rms�costs are instead

allowed to di¤er, the identities of the leader and of the follower could be de�ned,

with the more e¢ cient �rm receiving a greater payo¤. In this case, it would be

interesting to analyze how the Pawlina and Kort (2006) sequential equilibrium a¤ects

the selection of the subgame-perfect equilibrium. We leave this point for future

research.

An increase in the number of �rms is problematic. As explained by Fudenberg

and Tirole (1985), with three identical �rms the equilibrium selection is complicated

by the fact that the �rst mover�s payo¤ can be discontinuous. Moreover, even in the

simplest case, i.e. when the two followers obtain the spillover at the same time, the

number of candidate equilibria that may emerge increases substantially. For example,

there is a candidate equilibrium in which the leader delays her investment until the

demand is high enough that the �rst of the two followers invests upon bene�ting

from the spillover, and the third innovator enters sequentially. Alternatively, the

two followers may invest at the same time. In addition to the previous candidate

equilibria, it is possible that two simultaneous entries occur, while the third �rm waits

for the realization of the spillover. The speci�c assumptions about the relative size

of the pro�ts obtained by the three �rms determine which equilibrium is subgame

perfect. Notice however, that, whenever one of the above equilibria is subgame

perfect, two important results of our analysis are preserved: the presence of the

spillover implies realistic entry lags, and it reduces the di¤erence in the �rms�value

function, and therefore in the �rms�market betas.
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8 Appendix 1: Details on the value functions

8.1 The follower has obtained the spillover
Following the usual approach, we reformulate the Bellman equation (2) as follows:

F d(zt) = max

�
�l1ztdt+ Et

�
F d(zt+dt)e

�rdt� ; �2
r � �zt � (1� �)I

�
:

We guess that for zt 2 (0;z¯ ) the follower�s maximum value function is

F d(zt) = C1zt +D1z


t ;

where C1; D1; and 
 are undetermined coe¢ cients, while the threshold z¯
is determined

endogenously.
Ito�s Lemma guarantees that, for zt < z¯

,

Et
�
F d(zt+dt)e

�rdt� = F d(zt) + @F d(zt)
@zt

�ztdt+
@2F d(zt)

@z2t

�2

2
z2t dt� rF d(zt)dt:

Following the strategy commonly used in the literature, we now exploit the ex-
pression above in Eq. (1), and we use our guess to obtain that, for zt 2 (0;z¯ );

0 = �l1zt +
�
C1 + 
D1z


�1
t

�
�zt + 
(
 � 1)D1z
t

�2

2
� r(C1zt +D1z
t ):

The above equation implies that C1 =
�l1
r�� ; and that 
 is the positive root of:
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�+ 
(
 � 1)�
2

2
� r = 0: (12)

The usual value-matching and smooth-pasting conditions determine D1 and z¯
:(

�l1
r��z¯

+D1z¯

 = �2

r��z¯
� (1� �)I

�l1
r�� + 
D1z¯


�1 = �2
r��

:

It is immediate to verify that the system above yields z
¯
as in (3), and that D1 =

(1��)I

�1 z¯

�
 :

8.2 The follower has not obtained the spillover
We consider �rst the follower�s optimal behavior for zt 2 [z¯ , 1): In this case, theBellman equation is

F (zt) =max

�
�l1ztdt+ �

�
�2
r � �zt � (1� �)I

�
dt+ (1� �dt)Et

�
F (zt+dt)e

�rdt� ;
�2
r � �zt � I

�
: (13)

The second addendum on the right-hand side of the equation above comes from
the fact that, with probability �dt; the follower bene�ts from the informational
spillover, which triggers an immediate investment.

27The negative root of the quadratic equation must be discarded because its use would imply that
limzt!0 F d(zt) 6= 0:
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We guess that for zt 2 [z¯ , �z) � i.e., when the optimal strategy is to wait �the
follower�s maximum value function is

F (zt) = A2 + C2zt + E2z
�1
t +G2z

�2
t ; (14)

where A2; C2; E2; G2; �1; and �2 are undetermined coe¢ cients and the threshold �z
must be determined endogenously.
We apply Ito�s Lemma to Et

�
F (zt+dt)e

�(r+�)dt�, we use the resulting expression
into Eq. (13), and we use (14) to obtain that, for zt 2 [z¯ , �z);

0 =�l1zt + �

�
�2
r � �zt � (1� �)I

�
+
�
C2 + �1E2z

�1�1
t + �2G2z

�2�1
t

�
�zt +

+
h
�1(�1 � 1)E2z

�1�2
t + �2(�2 � 1)G2z

�2�2
t

i
z2t
�2

2
+

�(r + �)(A2 + C2zt + E2z�1t +G2z
�2
t ):

The above equation implies: A2 = � �
r+� (1 � �)I; and C2 =

(r��)�l1+��2
(r+���)(r��) ; �1;

and �2 are the roots of
28

��+ �(� � 1)�
2

2
� (r + �) = 0: (15)

To pin down the undetermined E2; G2, and the threshold �z, we can exploit the
value-matching and smooth-pasting conditions at �z: This gives:8<:� �

r+� (1� �)I +
(r��)�l1+��2
(r+���)(r��) �z + E2�z

�1 +G2�z
�2 = �2

r�� �z � I
(r��)�l1+��2
(r+���)(r��) + �1E2�z

�1�1 + �2G2�z
�2�1 = �2

r��

: (16)

Of course, we need to postpone the determination of E2; G2, and �z; until when
we are able to identify a third equation, completing system (16).
When zt 2 (0; z¯ ); the maximum value function for the follower solves

F (zt) = �
l
1ztdt+ �

�
�l1
r � �zt +

(1� �)I

 � 1

�
zt
z
¯

�
�
dt+ (1� �dt)Et

�
F (zt+dt)e

�rdt� :
(17)

Our tentative solution for the follower�s maximum value function in the interval
zt 2 (0; z¯ ) is

F (zt) = C3zt +D3z


t + E3z

�1
t ; (18)

where C3; D3; and E3 are undetermined coe¢ cients, while 
 and �1 are pinned down
by the quadratic equations (12) and (15), respectively.29

Our guess (18) readily gives:

28 In this case, the negative root of the quadratic equation cannot be discarded because we are
considering an interval, zt 2 [z¯ , �z]; that does not contain 0.29The negative roots of equation (15) must obviously be discarded, since the limit, for zt ! 0; of
the maximum value function de�ned by the Bellman equation (17) must be 0. It is easy to verify
that 
 must actually ful�ll equation (12).
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0 =�l1zt + �

�
�l1
r � �zt +

(1� �)I

 � 1

�
zt
z
¯

�
�
+
�
C3 + 
D3z


�1
t + �1E3z

�1�1
t

�
�zt +

+
h

(
 � 1)D3z
�2t + �1(�1 � 1)E3z

�1�2
t

i
z2t
�2

2
� (r + �)

�
C3zt +D3z



t + E3z

�1
t

�
:

The above equation implies that C3 =
�l1
r�� ; and that D3 =

(1��)I

�1 z¯

�
 .
At z
¯
, due to the follower optimizing behavior, the value-matching and smooth-

pasting conditions between the maximum value functions (14) and (18) must apply.
This yields

8<:
�l1
r��z¯

+ (1��)I

�1 + E3z¯

�1 = � �
r+� (1� �)I +

(r��)�l1+��2
(r+���)(r��)z¯

+ E2z¯
�1 +G2z¯

�2

�l1
r�� + 


(1��)I

�1 z¯

(�1) + �1E3z¯
�1�1 =

(r��)�l1+��2
(r+���)(r��) + �1E2z¯

�1�1 + �2G2z¯
�2�1

:

(19)
The four equations in (16) and (19) determine E2; E3; G2, and the threshold �z.

8.3 Value of a leader who has invested
As a preliminary to the determination of the leader�s value of investing, it is conve-
nient to analyze her value of having already invested, when the follower has already
obtained the spillover.
In the interval zt 2 (0; z¯ ) the maximum value function can be obtained starting

from its recursive form:

�Ld(zt) = �
h
1ztdt+ Et

�
�Ld(zt+dt)e

�rdt� ; (20)

where a bar above the maximum value function denotes that the leader has already
sunk the investment cost, and the superscript d underscores that the leader is assumed
to be facing a follower that has already obtained the informational spillover. We guess
that

�Ld(zt) = C5zt +D5z


t ; (21)

where C5; and D5 are undetermined coe¢ cients, while 
 is the positive root of Eq.
(12).
Using the standard procedure, we apply Ito�s Lemma to Et

�
�Ld(zt+dt)e

�rdt�, we
use the resulting expression in Eq. (20), and we exploit the tentative solution (21)
to obtain

0 = �h1zt +
�
C5 + 
D5z


�1
t

�
�zt +

h

(
 � 1)D5z
�2t

i
z2t
�2

2
� r(C5zt +D5z
t );

which gives: C5 =
�h1
r�� : The still-undetermined coe¢ cient D5 is obtained by means

of a value-matching condition. At z
¯
, the value of being the leader given that the

informational spillover has occurred, is identical to the expected stream of pro�ts
obtained when both the �rms have sunk the �xed cost. In fact, there the follower is
investing. Accordingly, at z

¯
, we have �Ld(z

¯
) = F (z

¯
) + (1� �)I; and hence:

�h1
r � � z¯ +D5z¯


 =
�2
r � � z¯ ,
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so that: D5 =
�2��h1
r�� z

¯
1�
 :

Hence, the value for a leader that has sunk the cost is:

�Ld(zt) =

(
�h1
r��zt +

�2��h1
r�� z

¯

�
zt
z
¯

�

; zt 2 (0; z¯ )

�2
r��zt; zt 2 [z¯ ;1)

: (22)

The interpretation for the value function above is straightforward. When zt � z¯ ;the follower invests upon information revelation, and the leader�s payo¤ is given by
the �ows of future duopoly pro�ts, discounted at the growth-adjusted rate r � �: If,
instead, zt < z¯

, the follower delays his investment, and the leader enjoys �for a period
of time of stochastic length �a cost advantage guaranteeing her the instantaneous
pro�t �h1zt. The second addendum in the �rst line of Eq. (22) corrects the discounted
pro�ts value �h1zt=(r � �); taking account of the future reduction of instantaneous
pro�ts to �2zt that takes place at z¯

.

8.4 Value of the investment for the leader
We �rst determine the leader�s maximum value of investing in state zt 2 (0; z

¯
).

In this interval, the leader knows that the follower � even when the informational
spillover has occurred �does not invest until zt has reached z¯

. Hence, the leader enjoys
the instantaneous pro�t �h1zt, which explains the �rst addendum on the right-hand
side of the equation below. The second addendum comes from the fact that, with
probability �dt; the follower bene�ts from the informational spillover but does not
invest, so that the leader�s maximum value function jumps to what is prescribed by
the �rst line in Eq. (22): The third addendum is explained by the fact that, with
probability (1��dt) there is no information revelation, and hence the leader obtains
�L(zt+dt).
Accordingly, the leader�s maximum value is the solution of

L(zt) = �
h
1ztdt+ �

�
�Ld(zt)

�
dt+ (1� �dt)Et

�
�L(zt+dt)

�
e�rdt � I:

Having determined �Ld(zt) as in the �rst line of Eq. (22); we exploit the fact that
the value of having invested is

�L(zt) = L(zt) + I; (23)

and we reformulate the leader�s maximum value function as the solution of

L(zt) = �
h
1ztdt+�

�
�h1
r � �zt +

�2 ��h1
r � � z

¯

�
zt
z
¯

�
�
dt+(1��dt)Et [L(zt+dt)� I] e�rdt�I:

(24)
Our tentative solution for the leader�s value of investing is

L(zt) = C6zt +D6z


t + E6z

�1
t � I: (25)

As usual, C6; D6; and E6 are undetermined coe¢ cients, while we shall verify that

 and �1 are the positive roots of the quadratic equations (12) and (15), respec-
tively.30

Applying Ito�s Lemma to Et
�
�L(zt+dt)e

�rdt�, using the resulting expression into
30As before, we discard the negative roots of equation (15).
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Eq. (24), and exploiting equations (22), (25), and (23), we obtain

0 =�l1zt + �

�
�h1
r � �zt +

�2 ��h1
r � � z

¯

�
zt
z
¯

�
�
+
�
C6 + 
D6z


�1
t + �1E6z

�1�1
t

�
�zt +

+
h

(
 � 1)D6z
�2t + �1(�1 � 1)E6z

�1�2
t

i
z2t
�2

2
+

�(r + �)(C6zt +D6z
t + E6z
�1
t );

which implies that C6 =
�h1
r�� ; and that D6 =

�2��h1
r�� z

¯
1�
 ; it is easy to verify that 
;

and �1 ful�ll equations (12) and (15). Notice that E6 is still to be determined.
At z
¯
, due to the leader�s optimizing behavior, a value-matching, and a smooth-

pasting conditions must apply between the maximum value functions (25), and the
one that shall be valid in [z

¯
; �z):

We consider then the interval zt 2 [z¯ ; �z): In this case, the leader knows that themarket dimension is high enough to justify the immediate follower�s investment upon
information leakage.
Hence, we formulate the leader�s maximum value of investing in state zt as

L(zt) = �
h
1ztdt+ �

�
�2
r � �zt

�
dt+ (1� �dt)Et

�
�L(zt+dt)

�
e�rdt � I: (26)

In the equation above, the second addendum on the right-hand side comes from
the fact that, with probability �dt; the follower bene�ts from the spillover and invests,
so that the leader�s instantaneous pro�t falls to the duopoly level (and stays there
forever). The third addendum expresses the fact that, with probability (1 � �dt)
there is no information revelation, and hence the leader investing at zt still enjoys
her cost advantage.
Our tentative solution for the leader�s value of investing is

L(zt) = C4zt + E4z
�1
t +G4z

�2
t � I; (27)

and hence, by Eq. (23), we have that �L(zt) = C4zt + E4z
�1
t + G4z

�2
t . C4; E4; and

G4 are coe¢ cients to be determined, while �1 and �2 are the roots of Eq. (15).
31

We apply Ito�s Lemma to Et
�
�L(zt+dt)e

�rdt�, we use the resulting expression in
Eq. (26), and we use the tentative solutions (27)-(23) to obtain

0 =�l1zt + �

�
�2
r � �zt

�
+
�
C4 + �1E4z

�1�1
t + �2G4z

�2�1
t

�
�zt +

+
h
�1(�1 � 1)E4z

�1�2
t + �2(�2 � 1)G4z

�2�2
t

i
z2t
�2

2
+

�(r + �)(C4zt + E4z�1t +G4z
�2
t ):

The above equation implies that C4 =
(r��)�h1+��2
(r+���)(r��) and that �1 and �2 actually

are the roots of Eq. (15).
Notice that, if the leader invests at �z, the follower immediately reacts by following

suit. Hence, the two �rms�values are the same, which provides the value-matching

31Again, the negative root of the quadratic equation must not be discarded because we are con-
cerned with the interval, zt 2 [z¯ , �z).
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condition L(�z) = F (�z) that is part of the system pinning down the undetermined
coe¢ cients E4; and G4.32 The value-matching condition at �z is

(r � �)�h1 + ��2
(r + �� �)(r � �) �z + E4�z

�1 +G4�z
�2 � I = �2

r � � �z � I (28)

As already remarked, at z
¯
a value-matching and a smooth-pasting conditions

between the maximum value functions (25), and (27) must apply. This yields

8<:
�h1
r��z¯

+
�2��h1
r�� z

¯
+ E6z¯

�1 � I = (r��)�h1+��2
(r+���)(r��)z¯

+ E4z¯
�1 +G4z¯

�2 � I
�h1
r�� + 


�2��h1
r�� + �1E6z¯

�1�1 =
(r��)�h1+��2
(r+���)(r��) + �1E4z¯

�1�1 + �2G4z¯
�2�1

: (29)

The three equations in (28) and (29) determine E4; E6; and G4, as in (8).

8.5 Maximum value function for the simultaneous investment
problem

Following the usual approach, we reformulate the Bellman equation (9) as follows:

S(zt) = max

�
�0ztdt+ Et

�
S(zt+dt)e

�rdt� ; �2
r � �zt � I

�
:

We guess that, for zt 2 (0; zS); it is optimal for the �rms to delay their investment.
In this case, the tentative solution for their maximum value function is

S(zt) = C7zt +D7z


t ;

where C7; D7; and 
 are undetermined coe¢ cients, while the threshold zS must be
determined endogenously, taking into account the constraint zS � �z:
Following our usual strategy, we exploit the Ito di¤erential for Et

�
S(zt+dt)e

�rdt�,
and our guess above to reformulate Eq. (9) �for zt 2 (0; zS) �as

0 = �0zt +
�
C7 + 
D7z


�1
t

�
�zt + 
(
 � 1)D7z
t

�2

2
� r(C7zt +D7z
t ):

The above equation implies that C7 = �0
r�� ; and that 
 is the positive root of Eq.

(12) (as usual, the negative root of that quadratic equation must be discarded).
Assuming for the moment that z0 � �z; we determine D7, and zS = z0 by means

of the usual value-matching and smooth-pasting conditions. These give� �0
r��z

0 +D7z
0
 = �2

r��z
0 � I

�0
r�� + 
D7z

0
�1 = �2
r��

:

It is immediate to verify that the system above determines zS = z0 as in Eq.

(10), and D7 =
�
�2��0
r�� z0 � I

�
z0(�
) = I


�1z
0(�
): Notice that the maximum value

function

S(zt) =
�0
r � �zt +

I


 � 1

�zt
z0

�

32Because at �z there is no optimal choice on the part of the leader, there is no corresponding

smooth-pasting condition in this case (see Weeds, 2002).
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gives the expected present discounted value of investing at z0; conditional on being
at zt: (Refer to Dixit and Pindyck, 1994.)
When z0 � �z; this quali�es the solution. When z0 < �z; the constraint zS � �z is

binding, and the two competitors are not free to choose when to invest. Accordingly,
the smooth-pasting condition does not apply, and the solution is determined by the
value matching condition

�0
r � � �z +D7�z


 =
�2
r � � �z � I;

which gives: D7 =
�
�2��0
r�� �z � I

�
�z(�
): The value for D7 that applies when z0 � �z is�

�2��0
r�� �z � I

�
�z(�
); accordingly, the maximum value function for the simultaneous

investment problem can be written compactly as in (11).

8.6 The Social Welfare function
The welfare levels depend on the number of �rms that have already sunk the cost.
Let Mizt be the instantaneous welfare level that is obtained when i = 0; 1; 2 �rms
have already invested, and when the market dimension variable takes the value zt:

Social value of the leader�s investment at ~z 2 [z
¯
; �z): Consider the case in

which the leader has invested, while the follower has not. For zt 2 [~z; �z); the follower
shall invest immediately after he enjoys the spillover (or he shall invest at �z if the
fundamental gets there before the information disclosure takes place). Hence, when
one �rm has already invested but the information leakage has not occurred, the
welfare W1(zt); for zt 2 [~z; �z); is given by

W1(zt) =M1ztdt+ �dt

�
M2

r � �zt � (1� �)I
�
+ (1� �dt)Et

�
W1(zt+dt)e

�rdt� ; (30)
where the second addendum on the right-hand side comes from the fact that with
probability �dt the follower bene�ts from the informational spillover and invests be-
cause zt � z¯ , so that the instantaneous welfare jumps toM2=(r��):With probability
(1� �dt); there is no information revelation, and hence no investment.
Our guess for W1(zt) is

W1(zt) = F +Gzt +Hz
�1
t ;

where F; G, and H are undetermined coe¢ cients, while �1 is the positive root of Eq.
(15).
Using our standard procedure, we apply Ito�s Lemma to Et

�
W (zt+dt)e

�rdt�, we
use the resulting expression into Eq. (30), and we exploit the tentative solution above
to obtain

0 =
(r � �)M1 + �M2

r � � zt � �(1� �)I + �Gzt + ��1Hz
�1
t +

+�1(�1 � 1)Hz
�1
t

�2

2
� (r + �)(F +Gzt +Hz�1t );

which gives F = � �
r+� (1 � �)I; and G = (r��)M1+�M2

(r��)(r+���) : The still-undetermined
coe¢ cient H is obtained by means of a value-matching condition. In fact, at �z, the
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social value of the leader�s having invested is identical to the social value when the
follower also invests, net of its cost. Accordingly, we have:

W1(�z) = �
�

r + �
(1� �)I + (r � �)M1 + �M2

(r � �)(r + �� �) �z +H�z
�1 =

M2

r � � �z � I;

which yields H = �z(��1)
h
M2�M1

r��+� �z �
r+��
r+� I

i
:

Consider now the social value of the leader�s investment, when it is still to be
performed. In this case, zt 2 (0; ~z) � i.e., when no �rm has invested, the welfare
function is

W0(zt) =M0ztdt+ Et
�
W0(zt+dt)e

�rdt� ; (31)

and the solution we propose is

W0(zt) = Nzt + Pz


t :

From the above tentative solution, where N and P are undetermined coe¢ cients
and 
 is given by Eq. (12), we readily obtain

0 =M0zt + �Nzt + �
Pz


t + 
(
 � 1)Pz



t

�2

2
� r(Nzt + Pz
t );

which gives: N =M0=(r � �):
To pin down the coe¢ cient P; notice that, at ~z; the social value of the future

investments must be equal to the value of the �rst investment, net of its cost, which
implies

N ~z + P ~z
 = F +G~z +H~z�1 � I;

and therefore,

P = ~z(�
)
�
� (M2 �M0) + (r � �)(M1 �M0)

r + �� � ~z � r + �(2� �)
r + �

I +

+

�
� (M2 �M1)

r + �� � �z � r + ��
r + �

I

��
~z

�z

���1
:

Collecting the above result, one obtains the following welfare function

W (zt) =

(
M0

r��zt + Pz


t zt 2 (0; ~z)

� �
r+� (1� �)I +

(r��)M1+�M2

(r+���)(r��) zt +
h
�(M2�M1)
r+��� � r+��

r+� I
i �

zt
�z

��1 zt 2 [~z; �z) ;
which has been used to generate Figure 8.

Social value of the leader�s investment at zL 2 (0; z¯ ): Following the logic of
the previous Sub-section, it is easy to obtain that, for zt 2 [z¯ ; �z); the social value ofthe leader�s investment is

W1(zt) = �
�

r + �
(1��)I+ (r � �)M1 + �M2

(r + �� �)(r � �)zt+
�
� (M2 �M1)

r + �� � � r + ��
r + �

I

��zt
�z

��1
;
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which applies only if the follower has not bene�ted from the spillover while zt 2 [zL;z¯ ):When zt 2 [zL;z¯ ); the social value of the investment sunk by the leading �rm is

W1(zt) =M1ztdt+ �W
d
1 (zt)dt+ (1� �dt)Et

�
W1(zt+dt)e

�rdt� ; (32)

where ~W1(zt) is the social value of the investment performed by the leader when the
information has been d isclosed, but the follower has not invested yet. Hence, the
second addendum on the right-hand side comes from the fact that, with probability
�dt; the follower bene�ts from the informational spillover but does not invest.
It is now be easy to show that

W d
1 (zt) =

M1

r � �zt +
�
M2 �M1

r � � z
¯
� (1� �)I

��
zt
z
¯

�

:

Our tentative solution for Eq. (32) is

W1(zt) = Qzt +Rz
�1
t + Sz
t ;

where obviously Q, R, and S are undetermined coe¢ cients, and 
 and �1 are given,
respectively, by Eqs. (12) and (15). From the above tentative solution, we readily

obtain Q = M1

r�� ; and S =
h
M2�M1

r�� z
¯
� (1� �)I

i
z
¯
�
 : As for R; we notice that, at z

¯
,

the value-matching condition

Qz
¯
+Rz

¯
�1 + Sz

¯

 = F +Gz

¯
+Hz

¯
�1

must hold. This readily gives

R = z
¯
(��1)

��
M2 �M1

r + �� � �z �
r + ��

r + �
I

� �� z
¯
�z

��1
� z
¯
�z

�
� �I

�
:

Finally, we shall determine the social welfare when no �rm has invested �i.e., for
zt 2 (0; zL]: In this case, the welfare function is given again by (31), and the solution
we propose is

W0(zt) = Tzt + Uz


t :

It is easy to see that T = M0=(r � �); as for U; we need to exploit the value-
matching condition

TzL + Uz


L = QzL +Rz

�1
L + Sz
L � I;

which requires that, at the leader�s investment trigger zL, the social value of the
future investments must be equal to the net value of the �rst investment.
Some calculation gives:

U = z�
L

(
M1 �M0

r � �+ �zL +
��
M2 �M1

r � �+ � �z �
r + ��

r + �
I

� �� z
¯
�z

��1
� z
¯
�z

�
� �I

��
zL
z
¯

��1
+

+

�
M2 �M1

r � � z
¯
� (1� �)I

��
zL
z
¯

��

� I
)
:

In sum, when the leader�s optimal decision is to invest at zL < z¯
, the social welfare

function is
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W (zt) =

8>>>>><>>>>>:

M0

r��zt + Uz


t zt 2 (0; zL)

M1

r�� +
nh

M2�M1

r��+� �z �
r+��
r+� I

i h� z
�̄z

��1 � z
�̄z

i
� �I

o�
zt
z
¯

��1
+

+
h
M2�M1

r�� z
¯
� (1� �)I

i �
zt
z
¯

�
 zt 2 [zL; z¯ )

(r��)M1+�M2

(r+���)(r��) zt +
h
�(M2�M1)
r+��� � r+��

r+� I
i �

zt
�z

��1 � �
r+� (1� �)I zt 2 [z¯ ; �z)

;

which has been used to generate Figure 9.

9 Appendix 2: Proofs

Proof of Lemma 1.h

(r��)

(
�1)(r+���) �
�1r

(�1�1)(r+�)

i
> 0 implies

h

(r��)
(
�1)r �

�1(r+���)
(�1�1)(r+�)

i
> 0: De�ne

F (�; �2) =
h

(r��)
(
�1)r �

�1(r+���)
(�1�1)(r+�)

i
; and notice that F (0; �2) = 0; since, in this case

�1 = 
: Now compute

@F (�; �2)

@�
=

1

(�1 � 1)2(r + �)2

�
(r + �� �)(r + �)@�1

@�
� ��1(�1 � 1)

�
:

If @F (�;�
2)

@� > 0; then F (�; �2) > 0; hence, we now show that @F (�;�2)
@� > 0: From

Eq. (15), it is immediate to obtain

@�1
@�

=
2

2�+ (2�1 � 1)�2
:

Accordingly,

@F (�; �2)

@�
=
2(r + �� �)(r + �)� ��1(�1 � 1)

�
2�+ (2�1 � 1)�2

�
(�1 � 1)2(r + �)2 [2�+ (2�1 � 1)�2]

:

Because the denominator of the above expression is positive, @F (�;�2)
@� > 0 if

G(�; �2) = 2(r + �� �)(r + �)� ��1(�1 � 1)
�
2�+ (2�1 � 1)�2

�
> 0:

Hence, we now study G(�; �2): Using the fact that �2 = 2(r+����1)
�1(�1�1)

(exploit Eq.
(15)); we obtain

G(�; �2) = 2(r + �� �)(r + �)� 2� [��1(�1 � 1) + (r + �� ��1)(2�1 � 1)] ;

that is

G(�; �2) = 2(r + �� �)(r + �)� 2�
�
(2�1 � 1)(r + �)� ��21

�
:

Notice, �rst, that lim�2!0G(�; �
2) = 0 because lim�2!0 �1 =

r+�
� ; hence, if

@G(�;�2)
@�2 > 0; then G(�; �2) > 0; and for �2 2 (0;1); � 2 (0;1):
Because @G(�;�2)

@�2 = �4� (r + �� ��1)
@�1
@�2 ; since we have that r + � � ��1 > 0

(refer again to Eq. (15)), and @�1
@�2 < 0; the proof is completed. �

Proof of Proposition 2.

i) Because, by Lemma 1,
h


(r��)
(
�1)(r+���) �

�1r
(�1�1)(r+�)

i
> 0; we have that lim�z!0
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l:h:s:(6) =1; and that lim�z!1 l:h:s:(6) = 0: Notice, moreover, that
@(l:h:s:(6))

@�z < 0;

and that @2(l:h:s:(6))
(@�z)2 > 0; because �2 < 0: The right-hand side of Eq. (6) is linear

and increasing in �z. Hence, �z is unique.
ii) Substitute z

¯
as given by Eq. (3) in Eq. (6), and let � ! 0 to obtain �z =


(r��)
(
�1)(�2��l1)

I(= z
¯
):

iii) Observe that lim�!1 l:h:s:(6) = lim�!1 r:h:s:(6), and that lim�!1 l:h:s:(6) =
0:Accordingly, we need lim�!1 r:h:s:(6) = 0; which implies lim�!1 �z =

�1(r+���)
(�1�1)(�2��l1)

I.

From Eq. (3), it is immediate to obtain lim�!1 z¯
= 0:

iv) Notice that

r:h:s:(6)j�z=z
¯
=

�

(r � �)

(
 � 1)(r + �� �) (1� �)�
�1(r + ��)

(�1 � 1)(r + �)

�
I;

while

l:h:s:(6)j�z=z
¯
=

�

(r � �)

(
 � 1)(r + �� �) �
�1r

(�1 � 1)(r + �)

�
(1� �)I:

Hence, for � > 0 and � > 0,

r:h:s:(6)j�z=z
¯
< l:h:s:(6)j�z=z

¯
;

which �together with the facts mentioned in the proof for Part i) �proves the result.
�

Proof of Corollary 3.
Recall that �2 < 0; hence, the fact that E2; G2 > 0 is obvious from Lemma 1.
As for E3; consider that

E3 =
�2 ��l1

�1(r + �� �)
�z1��1 � r(1� �)I

(�1 � 1)(r + �)z¯
�1
� �2
�1
G2�z

�2��1 +
�2 � 1
�1 � 1

G2z¯
�2��1 :

Exploiting Eq. (3), the above expression may be written as:

E3 =
�2 ��l1

�1(r + �� �)
�
�z1��1 � z

¯
1��1

�
+

+

�

(r � �)

(
 � 1)(r + �� �) �
�1r

(�1 � 1)(r + �)

�
(1� �)I
�1z¯

�1
+

��2
�1
G2
�
�z�2��1 � z

¯
�2��1

�
� �2
�1
G2z¯

�2��1 +
�2 � 1
�1 � 1

G2z¯
�2��1 ;

which, using the de�nition for G2 in (5), simpli�es to:

E3 =
�2 ��l1

�1(r + �� �)
�
�z1��1 � z

¯
1��1

�
� �2
�1
G2
�
�z�2��1 � z

¯
�2��1

�
:

If �z were equal to z
¯
; we would have E3 = 0: Notice, moreover, that

@E3
@�z

= (1� �1)
�2 ��l1

�1(r + �� �)
�z��1 � (�2 � �1)�2

�1
G2�z

�2��1�1 < 0:

�
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Proof of Lemma 4.h
1� (�1�1)(r��)

(
�1)(r+���)

i
> 0 requires (
 � 1)(r + � � �) > (�1 � 1)(r � �): 
 is the

positive root of Eq. (12), so that 
 � 1 = � �
�2 �

1
2 +

q�
�
�2 �

1
2

�2
+ 2r

�2 ; while, Eq.

(15) implies �1 � 1 = � �
�2 �

1
2 +

q�
�
�2 �

1
2

�2
+ 2(r+�)

�2 : Hence, the above inequality
can be written as

24� �
�2
� 1
2
+

s�
�

�2
� 1
2

�2
+
2r

�2

35 (r + �� �) >
>

24� �
�2
� 1
2
+

s�
�

�2
� 1
2

�2
+
2(r + �)

�2

35 (r � �):
When � = 0; the left- and the right-hand sides of the expression above are iden-

tical.
Notice, however, that the �rst derivative with respect to � of the left-hand side

is positive, while the second derivative is nought. As for the right-hand side of the
expression above, the �rst derivative is positive, while the second one is negative.
Hence, to prove the lemma, it su¢ ces to show that the derivative of the left-hand
side �evaluated at � = 0 �is higher than the derivative of the right-hand side �i.e.,
that 24� �

�2
� 1
2
+

s�
�

�2
� 1
2

�2
+
2r

�2

35 >
24s� �

�2
� 1
2

�2
+
2r

�2

35�1 (r � �)
�2

:

Multiplying both sides by
�q�

�
�2 �

1
2

�2
+ 2r

�2

�
; and rearranging, we obtain:

�
�

�2
� 1
2

�2
+
2r

�2
>
(r � �)
�2

+

�
�

�2
+
1

2

�s�
�

�2
� 1
2

�2
+
2r

�2
;

which readily becomes:

�
�

�2
� 1
2

�2
+
r + �

�2
>

�
�

�2
+
1

2

�s�
�

�2
� 1
2

�2
+
2r

�2
:

Squaring both sides of the above expression gives

�
�

�2
� 1
2

�4
+

�
r + �

�2

�2
+ 2

�
r + �

�2

��
�

�2
� 1
2

�2
>

>

"�
�

�2
� 1
2

�2
+
2�

�2

#"�
�

�2
� 1
2

�2
+
2r

�2

#
:

Some simpli�cations give: �
r + �

�2

�2
>
4�r

�4
;

42



which is always veri�ed, since r > �: �

Proof of Theorem 5.
i) De�ne �(zt) � L(zt) � F (zt): When � ! 0; Proposition 2 assures that z

¯
= �z: Moreover, from (8), and (5), we compute that E6 = E3 = 0; hence, �(zt); for
zt 2 (0; �z); is

�(zt) =
�h1 ��l1
r � � zt +

�
�2 ��h1
r � � z

¯
� I


 � 1

��
zt
z
¯

�

� I:

In this case, limzt!0�(zt) = �I; �(z¯ ) = 0 (taking advantage of (3)), and

argmax�(zt) =

 
(
 � 1)

�
�h1 ��l1

� �
�2 ��l1

�

I (r � �)

�
�2 ��l1 + 
(�h1 ��2)

�! 1

�1

z
¯




�1 :

It is easy to show that whenever Assumption A1 is ful�lled argmax�(zt) < z
¯
.

Moreover, we have that max�(zt) > 0: In fact, �(z
¯
) = 0; and @�(zt)

@zt

���
zt= z

¯

< 0:

This proves that, when � ! 0; the equilibrium for zt 2 (0; z¯ = �z) is preemptive. Weargue, by continuity, that a preemptive candidate equilibrium exists with the leader
investing in zt 2 (0; z¯ ) for values for � in a (right) interval of 0:
ii) Proposition 2, part iii), shows that lim�!1 �z = 0: Accordingly, when � ! 1;

the function �(zt) in zt 2 [0; �z] is

�(zt) =
�h1 ��l1
r + �� �zt + (E4 � E2)z

�1
t + (G4 �G2)z�2t � r + �

r + �
I;

which is obtained by making use of the results in (7) and (4). Exploiting (8) and (5),
we can write

E4 � E2 = �z�2��1
�
�2
�1
G2 �G4

�
� �z1��1

r + �� �

�
�h1 ��2 +

�2 ��l1
�1

�
:

Taking advantage of the expression above, we obtain:

@�(zt)

@zt
=
�h1 ��l1
r + �� � + �2(G4 �G2)z

�2�1
t +

+

�
�z�2��1 (�2G2 � �1G4)�

�1�z
1��1

r + �� �

�
�h1 ��2 +

�2 ��l1
�1

��
z
�1�1
t :

Hence, we have that

@�(zt)

@zt

����
zt=�z

=
�h1 ��l1
r + �� � + �2(G4 �G2)�z

�2�1+

+ �z�2�1 (�2G2 � �1G4)�
�1

r + �� �

�
�h1 ��2 +

�2 ��l1
�1

�
;

which boils down to

@�(zt)

@zt

����
zt=�z

=

�
�h1 ��l1 � �1(�h1 ��2)�

�
�2 ��l1

��
r + �� � + (�2 � �1)G4�z�2�1:
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We now substitute out G4 using (8), and we obtain

@�(zt)

@zt

����
zt=�z

= (�h1��2)
(

1� �1
r + �� � �

1� 

r � �

�
1� (�1 � 1)(r � �)

(
 � 1)(r + �� �)

��
�z

z
¯

��2�1)
;

where we have exploited Eq. (3). The above expression can be written as:

@�(zt)

@zt

����
zt=�z

=
(�h1 ��2)(1� �1)

r + �� �

(
1 +

�
1� (
 � 1)(r + �� �)

(�1 � 1)(r � �)

��
�z

z
¯

��2�1)
:

Lemma 4 guarantees that both addenda inside the big curly brackets are positive,
so that the derivative is negative. Because �(zt) is continuous, �(0) = �I; and
�(�z) = 0; the fact @�(zt)=@ztjzt=�z > 0 guarantees that there exists at least one root
for �(zt) = 0 in zt 2 (0; �z): We argue, by continuity, that a root for �(zt) = 0 exists
in zt 2 [z¯ , �z) for values for � in a (left) interval of 1: This guarantees the existence ofan equilibrium with the leader investing in [z

¯
, �z): �

10 Appendix 3: A Cournot interpretation for payo¤s and wel-
fare levels

Consider an industry composed of two �rms, i and j; which, in each (in�nitesimally
short) period, are involved in a two-stage interaction: �rst they decide whether to
innovate or not, and then they compete à la Cournot. The �rms�horizon is in�nite,
and market demand is linear and equal to P = a

p
zt � bQ, where P is the market

clearing price and Q = qi + qj is the total quantity supplied.
Each �rm has a unit cost of production c

p
zt. The assumption that both the

market dimension parameter a; and the unit cost c are in�uenced by the same dis-
turbance is widely used in the literature (Huisman and Kort, 2004; Pawlina and
Kort, 2006; Cooper, 2006; Moretto, 2008). In fact, it greatly simpli�es the analysis.
To avoid excessive analytical intricacies, several other contributions admit only a few
possible demand levels, or ignore variable cost (see, e.g., Grenadier, 1996; Nielsen,
2002). We think that the approach we follow is the optimal compromise between
analytical tractability and �realism�.
In each period t; �rm i (and j) decides whether to invest in R&D or not. This

investment immediately yields a cost-reducing process innovation, which shrinks the
unit production cost by an amount x

p
zt, with x < c. Hence, �rm i�s post�innovation

production cost is C(qi) = (c� x)qi
p
zt.

Each �rm�s payo¤ depends not only on its adoption date but also on that of its
rival. If both �rms have not invested up to period t, their individual pro�ts in the
Cournot subgame at t are those of the pre�innovation stage; i.e.,

�0zt =
A2

9b
zt; (33)

where A = a� c: The subscript indicates the number of �rms that have innovated at
time t: The instantaneous welfare (computed à la Marshall as the sum of consumers�
and producers�surpluses) is then equal to

M0zt =
4

9

A2

b
zt: (34)

If instead only one �rm, say �rm i; invests in R&D at t, it bene�ts from an
e¢ ciency advantage, and obtains a higher market share. The market price at t

44



decreases in comparison with the pre-innovation level, while the individual pro�ts
become:

�h1zt =
(A+ 2x)2

9b
zt; �

l
1zt =

(A� x)2
9b

zt; (35)

where the superscript h denotes variables pertaining to the �rms that have already
invested, while l refers to the �rms that have not innovated yet. Notice that �h1 > �

l
1;

�h1 > �0; and �
l
1 < �0; as required by Assumption 1: Because q

l
j =

A�x
3b ; to preserve

the duopolistic structure characterizing our market we need to assume that A > x.
This hypothesis implies that, in a Cournot environment, the cost-reducing innovation
is non-drastic. In case of asymmetric behavior at t, welfare is

M1zt =
8A(A+ x) + 11x2

18b
zt; (36)

with M1 > M0:
Finally, we need to compute the outcomes when both �rms have innovated at t.

In this case, being more e¢ cient, they both produce more than in the status quo;
therefore, the market price is lower. Individual pro�ts at t are

�2zt =
(A+ x)2

9b
zt: (37)

Obviously, �h1 > �2; as required by Assumption 1: Notice, moreover, that the
di¤erence between �h1 and �2 is increasing in x: when only one �rm enjoys a cost
advantage, she obtains a larger market share while bene�ting from an higher price-
to-cost margin.
When both �rms have innovated, the social welfare is

M2zt =
4(A+ x)2

9b
zt; (38)

with M2 > M1:
When �rms simultaneously invest in R&D, individual pro�ts rise from (33) to (37),

and welfare jumps from (34) to (38). Alternatively, �rms may behave asymmetrically,
so that there are both an innovation leader and a follower. Under these circumstances
individual pro�ts �rst change from (33) to (35) (and welfare from (34) to (36)) and
then from (35) to (37) (and welfare from (36) to (38)).
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Leader's (continuous line) and follower's (dashed line) value functions for  r = 0.04, α = 0.01, σ = 0.03, θ = 

0.12, λ = 0.40, I = 100, Π0 = 1, Π1
h 

= 4, Π1
l 
= 0.25, and Π2 = 2.25. The dotted line represents both S(zt), and 

the discounted value of )()( zFzL = . The continuous line ending at z~ represents the discounted value of 

).~()~( zFzL =  

 

Existence regions for the candidate equilibria in ),0( zz
t
∈  for r= 0.04, α = 0.01, σ = 0.03, θ = 0.12, λ = 

0.40, I = 100, Π0 = 1, Π1
h 

= 4, Π1
l 
= 0.25, and Π2 = 2.25.  



 
Leader's (continuous line) and follower's (dashed line) value functions for  r = 0.04, α = 0.01, σ = 0.03, θ = 

0.02, λ = 0.40, I = 100, Π0 = 1, Π1
h 

= 4, Π1
l 
= 0.25, and Π2 = 2.25. The dotted line represents S(zt), and the 

dotted-dashed line represents the value of a non-optimal simultaneous investment. 

 

  
Leader's (continuous line) and follower's (dashed line) value functions for  r = 0.04, α = 0.01, σ = 0.03, θ = 

0.30, λ = 0.40, I = 100, Π0 = 1, Π1
h 

= 4, Π1
l 
= 0.25, and Π2 = 2.25. The dotted line represents the discounted 

value of ).~()~( zFzL =  



 

 

Figure 5 
 

 

 
 

 
Candidate equilibria as a function of θ  and λ  for r = 0.04, α = 0.01, σ = 0.03, I = 100, Π0 = 1, Π1

h 
= 4, Π1

l 
= 

0.25, and Π2 = 2.25.  

 

 



 

 
In the areas above the θ(λ) frontiers, the leader delays her investment at least up to z. 

 

 

 
In the areas above the θ(λ) frontiers, the leader delays her investment at least up to z. 

 



 

 
 

 

 

 

 

 




