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1 Introduction

Contest success functions (CSFs) are an essential part of the economic analysis of contests,

as they describe the relationship between the efforts participants invest in a contest and their

consequent chances of winning. In the literature two major types of CSF have emerged. The first

(and most popular) type relates the probability of success to the relative efforts participants exert

in a contest. This type is commonly referred to as the Tullock CSF, after Tullock (1980). In the

second class of CSFs the absolute difference of participant efforts determines their probability

of success. This class is commonly referred to as difference—form or Hirshleifer CSFs, because

Hirshleifer (1989) introduced them. Several theoretical contributions discuss the use of both

types of CSFs and their application in more detail (see e.g. Skaperdas (1996), Hirshleifer (1989)

and Alcalde & Dahm (2007)). However, the empirical question whether real-life contests behave

according to either one of these CSFs remains unanswered.

To the best of my knowledge this note presents the first empirical assessment of Tullock

and Hirshleifer CSFs, using real-life contests. Sports leagues offer an excellent testing ground

for contest theory, as they provide a large number of contests between different parties with a

fixed set of rules. In this sense the "technology" of the contest and with it the CSF remains

unchanged. I rely on a dataset containing over 65.000 fixtures from the American major sports

leagues (NFL, MLB, NBA and NHL) to estimate both classes of CSF and compare their fit. I

find that Tullock CSFs fit the data better than Hirshleifer CSFs in all sports and for all tested

models. The fit of the Tullock models is significantly better for the NBA, NFL and in one

case for the MLB, while the difference in the NHL falls short of being significant. A second

observation from the estimates is that home-advantage results in asymmetric CSFs in all sports.

This means home teams have to put in less effort (measured as player wage expenditures) to

obtain a similar probability of success than their visiting counterparts. These results in general

confirm the CSFs used in most economic models of sports (see Szymanski (2003)).

A first section of this note contains some background on the Tullock and Hirshleifer CSFs I

estimate. Then section 3 describes the dataset. Section 4 finally presents the empirical results.
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2 Theory

2.1 Tullock’s ratio-form CSF

The ratio-form CSF I estimate goes back to the seminal paper by Tullock (1980). Skaperdas

(1996), Clark & Riis (1998) and Kooreman & Schoonbeek (1997) have provided a sound theo-

retical foundation for this functional form, using different axioms to derive it. It has also been

the most popular CSF in the economic analysis of sports (see Szymanski (2003) for more on

this). For my application I specify the probability of the home team winning as

Pr(win = 1 |Ih, Ia) =
αI

βh
h

αI
βh
h + I

βa
a

(1)

Ih and Ia represent the efforts (investments) of the home and away team respectively. Both

β parameters indicate the return on investment in terms of winning probability, with high β’s

indicating higher returns. The α is a measure for the asymmetry of the contest. A larger α

means home-advantage plays a more important role. I estimate four different forms of (1). In

model (a) I restrict the contest to be symmetric, meaning that α = 1 and βh = βa. Under (b) I

allow for asymmetry by giving up the equality of both β’s, keeping α = 1. In this case I expect

to find βa < βh, if home advantage is present. Under model (c) I allow for α 6= 1, but keep

βh = βa. In this case home advantage would mean to find α > 1. Finally, model (d) presents

the unrestricted estimation of (1).

2.2 Hirshleifer’s difference-form CSF

In order to parameterize a difference-form CSF it is necessary to scale an absolute difference

in efforts (which may have any size) into a probability with boundaries 0 and 1. I follow

the seminal paper from Hirshleifer (1989) by choosing the logit transformation. Furthermore,

Skaperdas (1996) shows that the logit transformation difference-form CSF is the only one which

may be theoretically founded in a similar way as the Tullock CSF. For my model the Hirshleifer

CSF is given by

Pr(win = 1 |Ih, Ia) =
1

1 + exp(−α− βhIh + βaIa)
(2)

2



where Ih and Ia are again the investments of the home and away team. The parameters α, βh

and βa may be interpreted in a similar fashion as before. As in the Tullock case I estimate four

distinct forms, in (a) α = 0 and βh = βa, in (b) α = 0, but βh 6= βa, under (c) α 6= 0 and

βh = βa and finally (d) is the unrestricted model. Here the existence of home-advantage means

α should be larger than 0, or βh > βa.

3 Data

In order to estimate the parameters of the models (a)-(d) for both CSFs I construct a dataset

on the 4 American major leagues (NFL, MLB, NBA and NHL). I consider the investments

teams made in playing talent, measured by their total payroll, as the effort invested in winning

matches. Data on payrolls for all major leagues come from the online database of the newspaper

USAToday1. I convert payroll data to 2009 US dollars using monthly CPI statistics from the US

department of Labor. Data on sports results were taken from the online archive shrpsports.com2.

Getting home advantage in the playoff games depends on previous results, which makes it

endogenous. Therefore I restrict attention to regular season fixtures. I also abstract from

fixtures ending in a tie, because these do not produce clear-cut outcomes. This means I only

include NHL results after 2005, because up until that point matches were allowed to (and often

did) end in a tie. For the other sports I drop tied matches, but these constitute a minor amount

of data.3 Table 1 presents summary statistics of the dataset. The variable home_res refers to

the home team’s result measured as 0 for a loss and 1 for a win, while home_pay and away_pay

are the payroll data. Notice that the average home result is above 0.5, which is already suggestive

of the fact that home advantage is present in all leagues.

1 see for example http://content.usatoday.com/sports/basketball/nba/salaries/default.aspx for the NBA data.
2online retrievable e.g. for the NBA via http://www.shrpsports.com/nba/teamseas.htm
32 NFL, 0 NBA and 0 MLB observations were dropped.
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league variable mean std dev min max obs season

NFL home_res 0.5700 0.4952 0 1 2542 2000-2009

home_pay 9.38e+07 1.86e+07 5.20e+07 1.54e+08 2542

away_pay 9.38e+07 1.86e+07 5.20e+07 1.54e+08 2542

MLB home_res 0.5393 0.4985 0 1 50074 1988-2009

home_pay 6.14e+07 3.34e+07 1.07e+07 2.28e+08 50074

away_pay 6.14e+07 3.34e+07 1.07e+07 2.28e+08 50074

NBA home_res 0.6051 0.4888 0 1 9717 1999-2009

home_pay 6.44e+07 1.38e+07 2.56e+07 1.22e+08 9717

away_pay 6.44e+07 1.38e+07 2.56e+07 1.22e+08 9717

NHL home_res 0.5563 0.4969 0 1 6150 2005-2010

home_pay 4.60e+07 9094032 2.06e+07 6.74e+07 6150

away_pay 4.60e+07 9094032 2.06e+07 6.74e+07 6150

Table 1: summary statistics

4 Empirical Results

A straightforward way to estimate the parameters of (1) and (2) is to use maximum likeli-

hood estimation. A first step is then to obtain the likelihood functions implied by both CSFs.

Assuming match results are independent draws, the likelihood for the Tullock case is:

Ltul =
n
Π
i=1

(
αI

βh
hi

αI
βh
hi + I

βa
ai

)yi (
I
βa
ai

αI
βh
hi + I

βa
ai

)1−yi
(3)

where yi is the dependent variable home_res. Likewise the Hirshleifer CSF leads to the standard

logit likelihood:

Lhir =
n
Π
i=1

(
1

1 + exp(−α− βhIhi + βaIai)

)yi ( exp(−α− βhIhi + βaIai)

1 + exp(−α− βhIhi + βaIai)

)1−yi
(4)

After taking logarithms of (3) and (4), maximization is carried out using standard econometric

software.

Table 2 gives an overview of the estimation results for the Tullock and Hirshleifer models
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(a)-(d) with computed standard errors in parentheses. Clearly, all coeffi cients are estimated with

their expected sign and size, i.e. a positive βh, βa and α in the Tullock model and a positive βh

and α and negative βa for Hirshleifer. The fact that all α’s in model (c) are significantly larger

than 1 (or 0 for Hirshleifer) is a strong indicator of the asymmetric nature of sports, favoring

home teams. However, the estimates of model (b) are not significantly different in all cases.

Another interesting point to see is that success in the MLB is less sensitive to investment than

success in the other leagues, as its lower estimated β’s suggest. The NFL and NHL offer the

largest surplus winning per invested dollar. To get a full picture however one would need to

compute marginal effects at each point. Home-advantage appears to be most important in the

NBA and least in the MLB. Finally, the reported likelihood values suggest that moving from

models (b) and (c) to (d) in most cases adds little explanatory power.
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League Tullock Hirshleifer (logit)

a b c d a b c d

NFL βh(=a) 1.0526 1.0806 1.0729 1.0631 1.05e-08 1.20e-08 1.07e-08 1.07e-08

obs: (0.207) (0.209) (0.209) (0.242) (2.19e-09) (2.20e-09) (2.21e-09) (2.57e-09)

2542 βa 1.0650 1.0827 -9.08e-09 -1.10e-08

(0.209) (0.243) (2.20e-09) (2.56e-09)

α 1.3318 1.9091 0.2836 0.3141

(0.054) (8.649) (0.040) (0.2365)

likelihood -1749.78 -1723.24 -1723.23 -1723.22 -1750.36 -1725.73 -1724.84 -1724.83

MLB βh(=a) 0.2809 0.2868 0.2824 0.2845 4.28e-09 5.35e-09 4.36e-09 4.42e-09

obs: (0.016) (0.016) (0.016) (0.019) (2.44e-10) (2.53e-10) (2.50e-10) (2.99e-10)

50074 βa 0.2779 0.2802 -3.21e-09 -4.31e-09

(0.016) (0.019) (2.53e-10) (2.96e-10)

α 1.1717 1.0856 0.1585 0.1520

(0.011) (0.356) (0.009) (0.022)

likelihood -34553.2 -34397.5 -34397.5 -34397.5 -34553.8 -34422.5 -34397.9 -34397.9

NBA βh(=a) 0.7515 0.7986 0.7867 0.7131 1.03e-08 1.34e-08 1.07e-08 9.87e-09

obs: (0.070) (0.072) (0.072) (0.092) (1.06e-09) (1.07e-09) (1.08e-09) (1.54e-09)

9717 βa 0.7745 0.8614 -7.10e-09 -1.18e-08

(0.072) (0.092) (1.07e-09) (1.51e-09)

α 1.5410 22.153 0.4269 0.5584

(0.032) (45.47) (0.021) (0.137)

likelihood -6677.04 -6458.16 -6457.95 -6457.35 -6687.84 -6477.45 -6469.28 -6468.81

NHL βh(=a) 0.9938 1.0129 1.0066 0.9849 2.24e-08 2.48e-08 2.27e-08 2.28e-08

obs: (0.109) (0.110) (0.110) (0.130) (2.48e-09) (2.49e-09) (2.49e-09) (3.07e-09)

6150 βa 0.9999 1.0291 -2.00e-08 -2.33e-08

(0.110) (0.132) (2.49e-09) (3.08e-09)

α 1.2576 2.7372 0.2260 0.2537

(0.033) (6.847) (0.026) (0.161)

likelihood -4218.96 -4179.43 -4179.37 -4179.21 -4220.70 -4182.66 -4181.14 -4181.07

Table 2: estimation results for model Tullock (a-d) and Hirshleifer (a-d)
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The common likelihood ratio test is inappropriate to assess the fit of most of the models I

estimate, because they are non-nested with the naive model containing only a constant term.

Therefore I apply the alternative test from Vuong (1989) for non-nested models. In the first

columns of table 3 I compare the Tullock models to a naive model, where the average home

result is used as a predictor. A positive value of the Vuong statistic implies here that the Tullock

model performs better, the p-values indicate significance. Models (b) through (d) significantly

outperform the naive model in all cases, whereas model (a) in most cases performs worse. The

last columns of table 3 contain the Vuong results when comparing the Tullock to the Hirshleifer

models. These results clearly favour the Tullock models over all. They are most significant

for the NBA, followed by the NFL and MLB. For the NHL no result reaches the 0.1 level of

significance.

Tullock vs. constant Tullock vs. Hirshleifer

League Model Vuong p-value Vuong p-value

NFL a -1.3781 0.1544 1.7180 0.0911

b 2.6025 0.0135 1.6916 0.0954

c 2.6050 0.0134 1.7492 0.0864

d 2.6061 0.0134 1.7653 0.0840

MLB a 0.0177 0.3989 0.0741 0.3978

b 8.8594 0.0000 2.4743 0.0186

c 8.8624 0.0000 0.0614 0.3982

d 8.8634 0.0000 0.0580 0.3983

NBA a -6.7378 0.0000 4.7570 0.000

b 5.5091 0.0000 5.0000 0.000

c 5.5313 0.0000 4.8918 0.000

d 5.5727 0.0000 5.0801 0.000

NHL a 0.3781 0.3714 1.0728 0.2244

b 4.7493 0.0000 1.5453 0.1209

c 4.7554 0.0000 1.0834 0.2218

d 4.7649 0.0000 1.1420 0.2078

Table 3: Vuong test results Tullock vs. constant and Hirshleifer models
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Figure 1 graphically depicts the estimation results of models (a) and (c) for the NBA4, where

the investment of the away team is fixed to be the sample average. Both Tullock curves predict

zero win probability for zero investments, whereas the Hirshleifer curves result in a predicted

probability around 0.4 at this point. Consequently, the Tullock curves rise more sharply in the

lower segment. Around the point of equal strength both curves approach each other, but in the

higher segment the Tullock curves increase win probability at a lower pace. Comparing between

the curves of model (a) and (c) it is clear that allowing for asymmetric CSFs pushes up both

curves along the entire interval. Again, this is indicative of the presence of home-advantage.

Figure 1: Tullock and Hirshleifer CSFs (a) and (c) for NBA data
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