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Abstract:   In industry sectors where market prices are unavailable it is common to represent multiple-input 

multiple-output production technologies using distance functions.   Econometric estimation of such func-

tions is complicated by the fact that more than one variable in the function may be endogenous.  In such 

cases, maximum likelihood estimation can lead to biased and inconsistent estimates of the model parame-

ters and associated measures of firm performance.  We solve the problem by using linear programming to 

construct a quantity index.  The distance function is then written in the form of a conventional stochastic 

frontier model where the explanatory variables are unambiguously exogenous.  We use this approach to es-

timate productivity indexes and support (or shadow) prices for a sample of Australian public hospitals.  We 

decompose the productivity index into several measures of environmental change and efficiency change.  

We find that the productivity effects of improvements in input-oriented technical efficiency have been 

largely offset by the effects of deteriorations in the production environment over time. 

 

KEYWORDS:  endogeneity, distance functions, shadow prices, efficient prices, technical efficiency, scale 

and mix efficiency. 

 

 

                                                           
1
  An earlier version of this paper entitled “An Econometric Approach to Estimating the Components of Productivity Change in Public Hospitals” 

was presented at the International Workshop on Efficiency and Productivity in Honour of Professor Knox Lovell, Elche, Spain, 4-5 October 

2010.   
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1.   INTRODUCTION 

 

Australian public hospitals are established under state and territory legislation to provide medical and healthcare 

services to all ‘public patients’ (i.e., persons who meet national Medicare eligibility criteria).  The funding of public 

hospitals is shared mainly2 between Commonwealth, State and Territory governments.  In 2010 the Commonwealth 

Government announced that it will “become the majority funder of the Australian public hospital system.  The Gov-

ernment will fund: 60 percent of the efficient price of every public hospital service provided to public patients; …. and 

over time, up to 100 per cent of the efficient price of ‘primary health care equivalent’ outpatient services provided to 

public hospital patients.  In return … the Commonwealth will require the states to commit to system wide reform to 

improve public hospital governance, performance and accountability”  (Commonwealth of Australia, 2010, p. 27)3.  To 

implement its reform agenda, the Government announced it will appoint an independent ‘umpire’ to set nationally 

efficient prices that will “strike a balance between reasonable access, clinical safety, efficiency and fiscal considera-

tions” (Commonwealth of Australia, 2010, p. 70).   

This paper uses econometric methodology to estimate efficient prices and measures of performance for a sample 

of Australian public hospitals.  The paper seeks to inform the Government’s hospital reform agenda in three ways.  

First, it shows how data on output and input quantities alone (i.e., no prices) can be used to estimate the productive 

performance of individual hospitals operating in different production environments (e.g., urban, rural).  Second, it 

shows how differences in hospital productivity that are not accounted for by differences in the production environment 

can be attributed to differences in various measures of efficiency (e.g., scale efficiency).  Finally, it shows how quantity 

data can be combined with total cost data to estimate upper bounds on the efficient prices of hospital outputs produced 

in different production environments.  Thus, the paper provides a framework within which the Government’s indepen-

dent umpire can determine efficient prices that “reflect the actual cost of providing hospital services, and developments 

in best practice”  (Commonwealth of Australia, 2010, p. 71).  

Our methodology involves the estimation of Shephard (1953) distance functions.  A feature of the methodology is 

that it does not require any assumptions concerning the optimizing behavior of hospital managers (e.g., cost minimiza-

tion) or the degree of competition in input or output markets.  Nor does it require any data on input prices or input cost 

shares.  Indeed, lack of reliable input price data is the main reason we chose a distance function approach4.   

The econometric approach to estimating output and input distance functions typically involves factoring out one 

of the outputs or inputs and estimating the resulting equation using conventional stochastic frontier estimation methods 

(e.g.,  Productivity Commission, 2010; Barbetta, Turati and Zago, 2001; Ferrari, 2006;  Morrison Paul, 2002; and 

Dervaux et al., 2004).  An unsatisfactory feature of this approach is that some of the outputs and inputs that are not 

factored out may be correlated with the composite error term, leading to biased and inconsistent estimates.  The 

problem is sometimes referred to as the ‘endogeneity problem’ (e.g., Roibas and Arias, 2004)  Our approach to the 

problem involves the construction of a quantity index.  When we factor this quantity index out of the distance function 

we are left with a conventional stochastic production frontier model where the explanatory variables are uncorrelated 

                                                           
2
   A small portion (< 7% in 2007-2008) of public hospital funding comes from insurance funds and other non-government sources.  

3
     In February 2011 the Commonwealth Government announced that it will fund a lower percentage of efficient prices.   

4
   If input prices are available then an estimated cost function will give the minimum cost (i.e., efficient price) of providing a vector of outputs.  The 

first derivatives of the cost function with respect to individual outputs will give the efficient prices of those outputs under marginal cost pricing – 

see  O'Donnell and Nguyen (2011). 
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with the error term.  Our approach overcomes some practical disadvantages associated with alternative sampling theory 

and Bayesian approaches. 

 The outline of the paper is as follows.  In Section 2 we assume the production technology can be represented by 

input and/or output distance functions that allow for variable returns to scale.  In Section 3 we show how the input 

distance function can be used within the aggregate quantity framework of O'Donnell (2008) to define a measure of 

productivity change and several input-oriented measures of efficiency (change).  Section 4 discusses alternative 

econometric approaches to estimating the parameters of distance functions and associated measures of firm perfor-

mance.  Section 5 shows how linear programming methods can be used construct a quantity index that makes our 

preferred econometric approach operational.  Section 6 describes the data and variables used in the empirical analysis.  

Section 7 reports estimates of efficient output prices and measures of productivity and efficiency (change) for a sample 

of Australian public hospitals.  We conclude the paper in Section 8 with a summary of our main findings.    

 

2.  THE PRODUCTION TECHNOLOGY 

 

We represent the production technology using the separable transformation function 

 

(1)   ( , , ) ( ) exp ln ( ) 0T x q z g q z h x      

 

where 0   and M   are unknown parameters, Kx  is a vector of input quantities, Jq  is a vector of output 

quantities, and Mz  is a vector of exogenous variables measuring characteristics of the production environment.  

We assume the functions g(.) and h(.) are both non-negative, non-decreasing and linearly homogeneous.  Among other 

things, these properties mean   can be interpreted as the elasticity of scale.  Technically-feasible but technically-

inefficient input-output combinations are defined by ( , , ) 0.T x q z   Technically-efficient production plans are defined 

by ( , , ) 0.T x q z   

Production technologies can also be represented using Shephard (1953) output and input distance functions.  The 

output distance function gives the reciprocal of the largest factor by which the output vector can be scaled up while 

holding the input vector fixed.  The input distance function gives the largest factor by which the input vector can be 

scaled down while holding the output vector fixed.  In the case of the technology defined by (1), the logarithms of the 

output and input distance functions are5 

 

(2)  ln ( , , ) ln ( ) ln ( ) 0OD x q z g q z h x       and 

(3)   1ln ( , , ) ln ( ) ln ( ) 0ID x q z h x z g q       

 

where 1 .     The assumed properties of g(.) and h(.) imply the output distance function is 

 

O.1  nonincreasing in inputs: 
0 1( , , ) ( , , )O OD x q z D x q z  for 1 0

,x x  

O.2  nondecreasing in outputs: 1 0
( , , ) ( , , )O OD x q z D x q z  for 1 0

,q q  

                                                           
5  If ( , )OD x q   then  ( , ) ( ) exp ln ( ) 0T x q g q z h x        which can be solved for  ln ln ( ) ln ( ).g q z h x        If ( , )ID x q   

then  ( , ) ( ) exp ln ( ) 0T x q g q z h x        which can be solved for 1 1ln ln ( ) ln ( ).h x z g q        
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O.3  linearly homogenous in outputs:  ( , , ) ( , , )O OD x q z D x q z   for 0,   

 

while the input distance function is 

 

I.1  nondecreasing in inputs:  1 0
( , , ) ( , , )I ID x q z D x q z

 
for 1 0

,x x  

I.2  nonincreasing in outputs:  1 0
( , , ) ( , , )I ID x q z D x q z  for 1 0

,q q  and 

I.3  linearly homogenous in inputs:  ( , , ) ( , , )I ID x q z D x q z   for 0.  

 

If the technology exhibits constant returns to scale (i.e., 1)   then 1( , , ) ( , , ) .O ID x q z D x q z    

 Production technologies can also be represented using other functions, including cost, revenue and profit 

functions.   For example, the cost function is defined as  

 

(4)   ( , , ) min : ( , , ) 0
x

c w q z w x T x q z     

 

where Kw    is a vector of input prices.  The cost function gives the minimum cost of producing q  when input prices 

are w and the production environment is characterised by z.  Distance functions and cost functions can both be used to 

define important measures of efficiency (change). 

   

3.  MEASURES OF PRODUCTIVITY AND EFFICIENCY (CHANGE) 

 

In this section we introduce a firm subscript i and a time subscript t into the notation and let 1( ,..., ) ,it it Kitx x x   

1( ,..., ) ,it it Jitq q q   1( ,..., )it it Mitz z z   and 1( ,..., )it it Kitw w w   denote vectors of input quantities, output quantities, 

environmental variables and input prices for firm i in period t ( 1,..., ; 1,..., ).i N t T    We follow O'Donnell (2008, 

2010a)  and measure the total factor productivity (TFP) of the firm as: 

 

(5)   
it

it
it

Q
TFP

X
        (TFP) 

 

where ( )it itQ Q q  is an aggregate output, ( )it itX X x  is an aggregate input, and Q(.) and X(.) are non-negative, non-

decreasing and linearly homogeneous aggregator functions.  O'Donnell (2008, 2010a)  shows how aggregate outputs 

and inputs can also be used to define several output- and input-oriented measures of efficiency.  For example, in a 

production environment characterized by :itz  

 

(6)   
1( , , )it

it I it it it
it

X
ITE D x q z

X
     (input-oriented technical efficiency)     

 

(7)   
/

/

it it
it

it it

Q X
ISE

Q X
        (input-oriented scale efficiency)  

   

(8)   
ˆ

it
it

it

X
IME

X
       (input-oriented mix efficiency)   
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(9)   
* *

/

/

it it
it

it it

Q X
ISME

Q X
      (input-oriented scale-mix efficiency)  and    

 

(10)   
( , , )it it it

it
it it

c w q z
CAE

W X
      (cost-allocative efficiency)   

 

where 1( , , )it it I it it itX X D x q z   is the minimum aggregate input possible when using a scalar multiple of itx  to produce 

;itq  ˆ
itX  is the minimum aggregate input possible using any input vector to produce ;itq  itQ  and itX  are the aggregate 

output and input obtained when TFP is maximized subject to the constraint that the output and input vectors are scalar 

multiples of itq  and itx  respectively; *

itQ  and *

itX  are the aggregate output and input associated with the output-input 

combination that maximizes TFP; and /it it it itW w x X is an implicit aggregate input price.  Input-oriented technical 

efficiency (ITE) is a measure of the increase in TFP (or the reduction in cost) that is possible by holding the output 

vector fixed and scaling down the input vector; input-oriented scale efficiency, mix efficiency and scale-mix efficiency 

(ISE, IME and ISME) are all measures of the increases in TFP that are possible by moving around the frontier surface 

to capture economies of scale and/or scope; and cost-allocative efficiency is a measure of the reduction in cost that is 

possible by moving around the frontier surface in order to reach the least-cost input vector capable of producing the 

output vector. These and other (residual) input-oriented measures of efficiency (and a set of analogous output-oriented 

measures) are discussed in more detail in O'Donnell (2008, 2010a). 

 If TFP is defined by (5) then the index that compares the TFP of firm i in period t with the TFP of firm 1 in period 

1 is 

 

(11)   
11,

11,

11 11 11 11,

/

/

itit it it
it

it

QTFP Q X
TFP

TFP Q X X
          

 

where 
11, 11/it itQ Q Q   and 

11, 11/it itX X X  are output and input quantity indexes respectively.  O'Donnell (2008, 

2010a) uses the term ‘multiplicatively-complete’ to describe TFP indexes that can be written in terms of aggregate 

outputs and  inputs as in equation (11).  He also shows how any multiplicatively-complete TFP index can be decom-

posed into recognisable measures of environment change and efficiency change.  For example, equations (6) to (9) 

imply: 

 

(12)   

*

11, *

11 1111

it it it
it

TFP ITE ISME
TFP

ITE ISMETFP

   
    

   
       

 

where * * */it it itTFP Q X  is the maximum TFP that is possible in a production environment characterized by .itz   The first 

term on the right-hand side of (12) is a measure of changes in the production environment.  In the special case where 

( )itz z t  (i.e., the production environment only changes with the passage of time) this first term corresponds to 

common notions of technical change.  The remaining terms in equation (12) are measures of technical efficiency change 

and scale-mix efficiency change.   The technical efficiency change component captures changes in productivity as firms 

move towards or away from the production frontier.   The scale-mix efficiency change component measures changes in 

productivity as firms move around the frontier surface.   
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In the special case where the technology is given by (1) and the (non-negative, non-decreasing and linearly homo-

geneous) functions g(.) and h(.) are used as output and input aggregator functions, all output-input combinations are 

fully mix-efficient and the TFP index defined above decomposes into measures of environment change, technical 

efficiency change, and pure scale efficiency change.  Mathematically, if Q(.) = g(.) and X(.) = h(.) then 

 

(13)   

1
1 1

11, 1 1

11 11 11 11 11 11 11 11

exp( ) ( , , ) ( ) ( , , )

exp( ) ( , , ) ( ) ( , , )

it I it it it it I it it it
it

I I

z D x q z h x D x q z
TFP

z D x q z h x D x q z

 

 

    
       

          

      

where the interpretations of the components are obvious.   If the technology also exhibits constant returns to scale (i.e. 

1)   then the last component in (13) disappears and TFP change is plausibly attributed to environment change and 

technical efficiency change only.  The index defined by (13) satisfies important axioms and tests from index number 

theory, including an identity axiom and a transitivity test.  The identity axiom says that if two firms use the same inputs 

to produce the same outputs then the TFP index equals one.  The transitivity test means that a direct comparison of the 

TFP of two firms/periods will yield the same estimate of TFP change as an indirect comparison through a third 

firm/period (i.e.,  
11, 11, , ).it hs hs itTFP TFP TFP  

Equations (12) and (13) are input-oriented decompositions of TFP change.  Analogous output-oriented decompo-

sitions are also available.  Irrespective of the orientation or the aggregator functions used to construct the TFP index, 

decomposing the index into measures of environment change and efficiency change involves estimating the production 

technology represented by (1) to (3). 

 

4.   ECONOMETRIC MODELS 

 

Econometric estimation of the production technology involves approximating the unknown functions g(.) and h(.).   

Common parametric approximations to h(.) include:   

 

(14)   
1

ln ( ) ln
K

it k kit it
k

h x x 


       (Cobb-Douglas)   

(15)   1

1

ln ( ) ln
K

it k kit it
k

h x x   



   
 
     (CES)   

(16)   
1/ 2

1 1

( ) ( )
K K

it kh kit hit it
k h

h x x x 
 

      (Generalised Leontief)   and 

(17)   
1

( )
K

it k kit it
k

h x x 


        (linear)   

 

where 

 

(18)   0k   for 1,...,k K  and 
1

1;
K

k
k




  

(19)    0k   for 1,...,k K  and 1;     

(20)    0kh hk    for , 1,..., ,h k K   

(21)    0k   for 1,..., ,k K   
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and it  is an error of approximation.  The constraints (18) to (21) guarantee that h(.) is non-negative, non-decreasing 

and linearly homogeneous as assumed in Section 2.  Similar approximations are available for g(.).  The Cobb-Douglas 

and translog approximations have been widely used in the hospital efficiency literature: Vitaliano and Toren (1996),  

Yong and Harris (1999), Chirikos and Sear (2000), Frech and Mobley (2000), Folland and Hofler (2001),  Linna, 

Hakkinen and Magnussen (2006),  Herr (2008) and Diaz and Sanchez (2008) have all used the Cobb-Douglas form;  

Smet (2007), Rosko and Proenca (2005), Carey (2003), McKay, Deily and Dorner (2002) and Deily, McKay and Dorner 

(2000) have all used the translog form.  A smaller number of studies have used the linear form (e.g., Jacobs, 2001; Street 

2003; and  Street and Jacobs, 2002) and the Generalized Leontief form (e.g., Li and Rosenman, 2001). 

 The first step towards estimating the production technology usually involves selecting parametric approximations 

to both g(.) and h(.).   The second step then involves rewriting either the output or input distance function in the form of 

a conventional stochastic frontier model.  The choice of whether to work with the output or input distance function 

usually depends on whether outputs or inputs are regarded as endogenous.  If inputs (outputs) are regarded as endogen-

ous then one of the inputs (outputs) is typically chosen as the dependent variable and the remaining inputs (outputs) are 

used as explanatory variables.  For example, if inputs are regarded as endogenous and if g(.) and h(.) are both approx-

imated by linearly homogenous Cobb-Douglas functions then the input distance function (3) can be written in the form: 

 

(22)    
1

1 1

ln ln( / ) ln
K J

Kit it k kit Kit j jit it it
k j

x z x x q v u  


 

        

 

where  

 

(23)    0j   for 1,...,j J  and 1

1

.
J

j
j

  



   
 

 

The error term itv  in (22) arises from the use of Cobb-Douglas functions to approximate g(.) and h(.).  The error term 

ln ( , , ) ln 0it I it it it itu D x q z ITE     is a technical inefficiency effect.  Equation (22) is in the form of the conventional 

stochastic frontier model of  Aigner, Lovell and Schmidt (1977).   

 Deriving econometric models such as (22) involves an asymmetric treatment of the log-inputs – one log-input is 

arbitrarily selected as the endogenous dependent variable while all other log-inputs are treated as exogenous explanatory 

variables.  Maximum likelihood estimation of such models is possible in the restrictive special case where a linear 

function of all K endogenous log-inputs is exogenous6.  In most other cases at least two log-inputs will be correlated 

with the error terms and maximum likelihood estimation may yield biased and inconsistent estimates. The problem is 

known as the ‘endogeneity problem’.  

One solution to the problem is to estimate the frontier model using the generalized method of moments (GMM).  

An advantage of the GMM approach is that it does not require any assumptions concerning the shapes of the distribu-

tions of the error terms (e.g., normal, half-normal).  A disadvantage of the approach is that, in practice, plausible 

moment conditions can be difficult to find.  Results may also be sensitive to the choice of weight matrix used to form 

the GMM criterion function. GMM methodology has been used to estimate hospital production technologies by Brad-

ford et al. (2001) and Biorn et al. (2002).  

                                                           
6
  Coelli (2000, p. 10-16) shows that it is also justified in the case where firms minimise costs and there are no approximation errors or other 

sources of statistical noise (i.e., when the frontier is deterministic). 
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An alternative Bayesian solution to the endogeneity problem has been developed by Fernandez, Koop and Steel 

(2000).  An advantage of the Bayesian approach is that it can be used to draw exact finite sample inferences concerning 

(nonlinear functions of) the unknown parameters.  A disadvantage of the approach is that, in practice, it can be computa-

tionally intensive.  Empirical examples include Fernandez et al. (2000) and O'Donnell (2011). 

This paper solves the endogeneity problem at the very first step:  instead of selecting parametric approximations to 

both g(.) and h(.), we use linear programming (LP) methods to estimate one of g(.) or h(.) and then select a parametric 

approximation to the other.  The second step still involves rewriting either the output or input distance function in the 

form of a conventional stochastic frontier model. However, unlike the approach that led to equation (22), our approach 

yields a frontier model where all the explanatory variables are unambiguously exogenous.  For example, if inputs are 

endogenous, outputs are exogenous, and g(.) is approximated by the same Cobb-Douglas function as the one used to 

derive equation (22), the input distance function (3) takes the form 

 

(24)   
1

ˆln ln
J

it it j jit it it
j

h z q v u 


      

 

where ˆ
ith  is an LP estimate of ( ).it ith h x   The error term itv  is now associated with the use of ˆ

ith  to approximate ith  

and a Cobb-Douglas function to approximate g(.).  By way of further example, if outputs are endogenous, inputs are 

exogenous, and h(.) is approximated by the Generalised Leontief function (16), the output distance function (2) takes the 

form: 

 

(25)   1/ 2

1 1

ˆln ( )
K K

it it kh kit hit it it
k h

g z x x v u 
 

     

 

where kh kh   and ln ( , , ) 0it O it it itu D x q z    is now an output-oriented technical inefficiency effect.  The error 

term itv  now accounts for the facts that ˆ itg  is an LP estimate of ( )it itg g q  and equation (16) has been used to 

approximate h(.).  In contrast to equation (22), equations (24) and (25) are stochastic frontier models in which all the 

explanatory variables are exogenous.    

 

5.   QUANTITY INDEXES 

 

Models such as (24) and (25) are commonplace in the empirical economics literature.  For example, every stochastic 

production frontier model that uses (the logarithm of) a Laspeyres, Paasche or Lowe7 output quantity index to form the 

dependent variable is a model of this type.  These particular indexes are members of the class of linear estimators (or 

filters) defined by 

  

(26)   ˆ it it itg q    

 

where 1( ,..., ) 0.it it Jit        The Laspeyres, Paasche and Lowe quantity indexes are obtained by selecting 

 

                                                           
7
   The properties of Laspeyres and Paasche quantity indexes are well-known.  For a discussion of Lowe quantity indexes, see  O'Donnell (2010b). 
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(27)   
00

00 00

j
jit

p

p q
 


   (Laspeyres) 

 

(28)   
00

jit
jit

it

p

p q
 


   (Paasche)    and 

 

(29)   
00

j
jit

j

p

p q
 


   (Lowe) 

 

where 1
( ,..., ) 0it it Jitp p p    denotes the vector of output prices faced by firm i in period t and 1

( ,..., ) 0Jp p p    is a 

vector of arbitrary reference prices (e.g., sample average prices).  Similarly, Laspeyres, Paasche and Lowe input 

quantity indexes are linear estimators of the form 

 

(30)   ˆ
it it ith x  

 

where 1
( ,..., ) 0.it it Kit      Logarithms of these quantity indexes have been used to measure health care outputs and 

inputs and/or to construct the dependent variables in stochastic frontier models by Mai (2004), Ibiwoye (2010), Yu and 

Ariste (2008) and Yu (2011).  Other common quantity indexes (e.g., Fisher, Tornquist, Hicks-Moorsteen) can be 

viewed as nonlinear estimators.   

This paper estimates ( )it itg g q  and ( )it ith h x  using the linear estimators defined by (26) and (30).  We intend 

to apply the methodology in an empirical context where prices are unavailable, so we select the weight vectors in (26) 

and (30) using linear programming.   

To compute ˆ itg  we let 11
ˆ ˆmax( ,..., )NTU g g    denote the maximum value of ˆ itg  in the sample.  Computing 

ˆ itg  is simply a matter of selecting 0it   to maximise ˆ .it it itg q U     Aside from the non-negativity constraint, the 

only constraints on it  
are that if it is used to compute an estimate of ( )hs hsg g q  for any  Nh  or  Ts   (i.e., 

for any observation in the sample) then that estimate should also be no greater than U.   The linear program (LP) is: 

 

(31)  
,

ˆ max
it

it it it
U

g q


   

(32)  s.t. for 1,...,  and 1,...,it hsq U h N s T      

(33)  1U   

(34)  0.it   

 

The constraint (33) is a normalizing constraint that allows ˆ itg  to be interpreted as a quantity index8.  It also identifies a 

unique solution to the problem in the same way that normalising constraints are used to identify unique solutions to data 

envelopment analysis (DEA) problems.  Indeed, for practical purposes, it is useful to consider the standard DEA 

problem for estimating technical efficiency under the assumption of no technical change and constant returns to scale9 

(e.g., O'Donnell, 2010a, p. 543, eq. 6.5): 

 

                                                           
8
      Let ,

ˆ ˆ( , ) argmax {  for all ,  and , }.N T
s h hs its h g g h i s t        Then ˆ 1hsg U   and 

,
ˆ ˆ ˆ/hs it it hs itQ g g g   is an index that compares the 

outputs of firm i in period t with the outputs of firm h in period s.   
9
  In the DEA literature there is a convention to suppress subscripts indicating that it

 
may vary from one observation (or LP) to the next – see 

O'Donnell (2010a, p. 542) .   
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(35)  
,

max
it it

it it itTE q
 

   

(36)  s.t. for 1,...,  and 1,...,it hs it hsq x h N s T      

(37)  1it hsx    

(38)  , 0.it it    

   

Observe that this problem collapses to the problem given by (31) to (34) whenever inputs are the same for all firms in 

all time periods (i.e.., hs itx x  for , 1,...,i h N  and , 1,..., ).s t T   Thus, it is possible (and convenient) to compute ˆ itg  

by constructing an artificial dataset in which all the input values are replaced by a constant, and then solving the 

standard DEA problem under the assumption of no technical change and constant returns to scale.  Importantly, the 

‘technical efficiency’ estimates produced using this artificial data set are estimates of ( )it itg g q and should not be 

interpreted as measures of technical efficiency.   

In a similar way, we let 11
ˆ ˆmin( ,..., ) 0NTL h h   and compute a value of ˆ

ith  by selecting 0it   to minimise 

ˆ .it it ith x L    The LP is: 

 

(39)  
,

ˆ min
it

it it it
L

h x


  

(40)  s.t. for 1,...,  and 1,...,it hsx L h N s T      

(41)  1L   

(42)  0.it   

 

Again, it is convenient to compute ˆ
ith  by constructing an artificial data set in which all the output values are replaced 

by a constant.  We then solve the standard DEA LP under the assumption of no technical change and constant returns to 

scale.  The reciprocals of the ‘technical efficiency’ estimates obtained using this artificial dataset are estimates of 

( )it ith h x  and should not be interpreted as (reciprocals of) measures of efficiency. 

 

6.   DATA AND VARIABLES 

 

We apply the methodology to data on J = 3 outputs, K = 3 inputs and 1 2M    environmental variables drawn from 

the InfoBank and Casemix databases of Queensland Health.  The dataset is a balanced panel covering N = 116 public 

hospitals in the state of Queensland over the T = 9 financial years (i.e., years ended 30 June) from 1996 to 2004.  The 

vectors of outputs, inputs and environmental variables are: 

 

  ( , , )it it it itq OUTP WESC WEMC        

  ( , , )it it it itx MO NURS BEDS    and    

  (1, , )it itz t REGION         

 

where 

 

itOUTP  = the number of outpatient occasions of service (for firm i in period t).  Outpatients are patients 

who are not formally admitted to hospital.  Outpatient services include emergency department visits as well 
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as pathology, radiology, speech therapy and family planning examinations, consultations, treatments and 

services.  

 

itWESC   the number of weighted episodes of surgical care.  An episode of care is a period of care pro-

vided to an admitted hospital patient and characterised by a single treatment type.  Episodes of surgical care 

are those that involve an operating room procedure.   Weights are assigned to different types of surgical 

procedures according to an Australian Refined system of Diagnosis Related Groups (AR-DRGs).   

 

itWEMC   the number of weighted episodes of medical care.  These episodes of care do not involve any 

type of procedure.  Weights are also assigned to different types of medical care under the AR-DRGs sys-

tem. 

 

itMO   the number of full-time equivalent (FTE) medical officers.  Medical officers include both staff 

medical officers (usually a mix of general practitioners and specialists) and visiting medical officers (spe-

cialists only).  

 

itNURS   the number of full-time equivalent (FTE) nurses.  Nurses include registered, enrolled, clinical 

and assistant nurses.  

 

itBEDS   the number of beds (a measure of the capital input). 

 

1itREGION   for the two hospitals (Cooktown and Weipa) located in the tropical Cape York region; = 0 

otherwise. 

 

Descriptive statistics for all output, input and environmental variables are reported in Table 1.  Unfortunately, we were 

unable to find any hospital-specific measures of output quality (e.g., re-admission rates) or input quality (e.g., patient 

characteristics) for use in the analysis.  One of the advantages of the econometric approach to efficiency analysis is that 

any errors associated with omitting these types of variables can be subsumed into the idiosyncratic error term.   

 

7.   RESULTS 

 

We treat inputs as endogenous and estimate the preferred model given by equation (24) (hereafter referred to as Model 

24) and the conventional model given by equation (22) (hereafter referred to as Model 22).   In both cases, the set of all 

NT observations can be written in the compact form: 

 

(43)   y X u           

 

where 11 12( , ,..., )NT      and the remaining definitions are obvious, although it is worth noting that X is

( 1)NT M J K     in the case of Model 22 and ( )NT M J   in the case of Model 24.  To estimate both models we 

assume the idiosyncratic and technical inefficiency errors are normal and half-normal respectively: 2~ (0, )  NTN I  
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and 2~ (0, )
u NTu N I  where NTI  denotes an identity matrix of order NT.   This section reports maximum likelihood 

estimates of the unknown parameters and associated economic quantities of interest. 

 

Parameters 
 

Estimates of the parameters are reported in Table 2.  Most10 of the estimates obtained using Model 22 are qualitatively 

similar to those obtained using Model 24.  To avoid repetition, we focus on the estimates obtained using our preferred 

model, Model 24.  Using this model, the estimated elasticity of scale is ˆ 1.1997 1    (and significantly different from 

one) indicating that the technology exhibits increasing returns to scale.  The estimated coefficient of the time trend is 

1
ˆ 0.0322 0     (and significantly different from zero) indicating that the sector experienced technical regress over the 

sample period.  Indeed, the annual rate of technical regress is estimated to be 1
ˆ ˆln ( , , ) /O it it itD x q z t     

0.0322 1.1997 3.9%.        In the present context, technical regress means that advances in medical technology have 

not been fast enough or large enough to offset the effects of factors that cause deteriorations in the hospital production 

environment (e.g., increased resistance to antibiotics11) – this phenomenon is sometimes referred to as the Red Queen 

effect12.  Finally, the estimate of /u     is significantly different from zero indicating there is technical inefficiency 

in this dataset.    

 

Productivity and Efficiency (Change) 
 

Table 3 reports estimates of (the components of) the productivity index defined by (13).  This particular table compares 

the performance of selected hospitals in selected years with the performance of hospital 1 in 1996.  Hospital 1 is a large 

urban hospital providing a full range of healthcare services, including a 24-hour emergency department, intensive care, 

coronary care, day surgery, oncology and hospice respite services.   The measures of performance reported in Table 3 

are 

 

(44)   
11, 11, 11,it it itTFP ENV EFF       (TFP change) 

 

(45)   
11, 11, 11,it it itENV TIME REGION     (change in the production environment)    and 

 

(46)   
11, 11, 11,it it itEFF ITE ISE       (efficiency change)  

 

where 

 

(47)   1
11,

1

exp( )

exp( )
it

t
TIME





      (change in the production environment over time)  

 

(48)   2

11,

2 11

exp( )

exp( )

it
it

REGION
REGION

REGION





   (change in the production environment across regions)  

 

                                                           
10

  Model 24 does not involve the parameters 
1  or 

2.   Model 22 yields 1 1
ˆ ˆst.error( ) 0    because the constraint 

1 0   is binding. 
11

  For information on the severity of the problem of antibiotic resistance, see Miller and Miller (2011). 
12

  The term is a reference to the Red Queen's race in Lewis Carroll's Through the Looking-Glass.  The Red Queen said “ it takes all the running you 

can do, to keep in the same place.  If you want to get somewhere else, you must run at least twice as fast as that!" 
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(49)   
1

11, 1

11 11 11

( , , )

( , , )

I it it it
it

I

D x q z
ITE

D x q z



      (input-oriented technical efficiency change)  and 

 

(50)   

-1
1

11, 1

11 11 11 11

( ) ( , , )
.

( ) ( , , )

it I it it it
it

I

h x D x q z
ISE

h x D x q z





 
  
 

   (input-oriented scale efficiency change)  

 

The measures given by (47) and (48) were evaluated by replacing the unknown parameters 1
  and 2

  with their 

maximum likelihood estimates.  The numerator and denominator in equation (49) were evaluated separately using the  

Battese and Coelli (1988) technical efficiency estimator.  The aggregate outputs ( )ith x  and 11
( )h x  in equation (50) 

were evaluated separately using predictions from equation (14) (in the case of Model 22) or ˆ
ith  and 11ĥ  (in the case of 

Model 24).  Estimates of the components (47) to (50) were then used to compute estimates of (44) to (46).   

Interpretation of the index numbers reported in Table 3 is straightforward.  For example, the row corresponding to 

observation 929 reveals the following: hospital 1 was only 2.5% less productive in 2004 than it had been in 1996 (

11,1 0.9758);TTFP   a 33% improvement in the efficiency of hospital 1 (
11,1 1.3287)TEFF   was not enough to offset the 

effects of a 27%  deterioration in the production environment (
11,1 0.7344);TENV   and by far the largest contribution to 

the estimated efficiency improvement of hospital 1 came through technical efficiency improvement (
11,1 1.3054).TITE    

We conclude that the technical efficiency of hospital 1 increased (distance to the frontier decreased), not so much 

because the hospital used fewer inputs to produce the same outputs, but because the frontier moved inwards and in 2004 

was much closer to the point where hospital 1 was operating than it had been in 1996.  Some hospitals were unable to 

maintain their productivity levels in the face of this deterioration in the production environment.  For example, the rows 

corresponding to observations 116 and 1044 reveal that hospital 116 experienced the same deterioration in the produc-

tion environment and yet was only half as productive in 2004 as it had been in 1996: 
1, 1,11 11,h hT h hTTFP TFP TFP    

1 1

11, 1 11, 0.7397h hTTFP TFP     0.3826 0.5172  for h = 116.  The calculations in this last example exploit the facts that 

the TFP index defined by (13) satisfies all economically-relevant axioms and tests from index number theory, including 

a transitivity test and a time and space reversal test.  Transitivity is especially important in the present context – it 

means it is possible to compare the performance of all hospitals in all periods with the performance of an arbitrary 

hospital h in an arbitrary period s by simply dividing all the rows in the table by the row corresponding to hospital h in 

period s.  For example, Table 3 compares the performance of selected hospitals in selected years with the performance 

of hospital 1 in 1996.  If we were interested in comparing the performance of these hospitals with the performance of 

hospital 107 in 1996, say, then we would divide every row in the table by the row for observation 107.   

 The observation-by-observation results and the descriptive statistics reported at the bottom of Table 3 reveal that 

most of the productivity and efficiency estimates obtained using Model 22 are qualitatively similar to those obtained 

using Model 24.  To get a clearer picture of the similarities between the two sets of estimates, Figure 1 presents distribu-

tions of productivity and efficiency indexes for the N = 116 hospitals in 1996.   Observe that most hospitals tended to be 

less productive and less scale efficient, but more technically efficient, than hospital 1 (in that year).   They tended to be 

less productive because they were less scale efficient, and they tended to be less scale efficient because they were 

smaller than hospital 1 and (we estimate that) the technology everywhere exhibits increasing returns to scale. 

 Point and interval estimates of levels of input-oriented technical efficiency are reported in Table 4.  The results 

obtained using Model 24 indicate that the input-oriented technical efficiency of hospital 1, for example, increased from 

0.57 to 0.74 over the sample period (i.e., as we saw earlier, 
11,1 1 11/ 0.7441/ 0.5701 1.3054).T TITE ITE ITE     One of 

the payoffs from estimating the distance function in an econometric framework is that it is straightforward to construct 
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confidence intervals for estimated efficiency scores.  Table 4 reports 95% confidence interval limits computed using the 

results of Horrace and Schmidt (1996).  Again, the interpretation of these confidence intervals is straightforward.  For 

example, we are 95% confident that in 2004 the technical efficiency of hospital 1 was between 50% and 98%. 

 

Efficient Prices 
 

One of the advantages of estimating the production technology in a parametric framework is that we can obtain analyti-

cal expressions for the partial derivatives of the output distance function with respect to output quantities.  These 

derivatives are revenue-deflated support (or shadow) prices.  If the technology is represented by (1) then the revenue-

deflated support prices for firm i in period t are  

  

(51)   
* ln ( ) ln ( ) 1

( , , )
( , , )

kit it it
O it it it

it it kit kit I it it it

p g q g q
D x q z

p q q q D x q z 

 
 

  
 for 1,..., .k K  

 

The minimum (i.e., efficient) prices that would need to have been paid to hospital i in period t so that it could have 

produced itq  and still run a balanced budget are  

 

(52)   * ln ( ) ( , , )

( , , )

it it it it
kit

kit I it it it

g q c w q z
p

q D x q z 





     for 1,..., .k K  

 

To estimate these prices we observe that if g(.) is approximated by the same Cobb-Douglas function that was used to 

derive Models 22 and 24 then ln ( ) / /it kit k kitg q q q    and  

 

(53)   
*

1 1

( , , )

( , , ) ( , , )

it it it k it it
kit

kitit it I it it it I it it it

c w q z w x
p

qw x D x q z D x q z 

  
     

     for 1,..., .k K  

 

The first term in parentheses on the right-hand side of (53) is the measure of cost-allocative efficiency defined by 

equation (10).  In this paper we assume that all hospitals are cost-allocatively efficient (i.e., 1)itCAE   and estimate 

efficient prices by evaluating the second term on the right-hand side of (53).   Estimated efficient prices for a subset of 

hospitals are reported in Table 5.  If hospitals are not cost-allocatively efficient (i.e., if 1)itCAE   then the estimated 

prices reported in Table 5 are upper bounds on the prices that would have allowed these hospitals to produce the same 

outputs and run balanced budgets.  Irrespective of levels of cost-allocative efficiency, relative efficient prices are 

 

(54)   

*

*

jitkit k

j kitjit

qp

qp





     for , 1,..., .j k K  

 

Estimates of these relative prices are also reported in Table 5. The large variations in estimated support price ratios 

reported in Table 5 can be attributed to large variations in hospital output ratios.  In turn, large variations in output ratios 

reflect the fact that Australian public hospitals have a legal obligation to provide medical and healthcare services to all 

public patients, which is to say that outputs are determined exogenously, not by hospitals attempting to maximise 

revenue in a competitive market environment. 
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8.   SUMMARY 

 

Expenditure on public hospitals is the largest single component of Australian Commonwealth, state and territory 

government recurrent expenditure on health.   In 2010 the Commonwealth government announced that it will become 

the majority funder of the efficient price (i.e., cost) of hospital and outpatient services provided to public patients.  This 

paper shows how econometric methods can be used to estimate the minimum (i.e., economically efficient) prices of 

individual hospital services provided to public patients in different locations at different points in time.   Our approach 

can be implemented without data on input prices or input cost shares, and without any overly restrictive assumptions 

concerning hospital optimising behaviour or the structure of product markets. However, data on input and output 

quantities is needed in order to estimate a distance function representation of the hospital production technology.   

 Estimating distance functions is complicated by the fact that some of the explanatory variables in the estimating 

equation may be correlated with the error term.  Our solution to the so-called endogeneity problem involves the use of 

linear programming methods to construct a quantity index.  This quantity index allows us to re-write the distance 

function in the form of a conventional stochastic frontier model in which all the explanatory variables are exogenous.   

The methodology was applied to data covering 116 Queensland public hospitals over the period 1996 to 2004.   

The estimated parameters of the distance function were used to estimate spatially- and temporally-transitive indexes of 

total factor productivity change.   The decomposition methodology of O'Donnell (2008) was then used to decompose 

these indexes into two measures of environment change (i.e., time and region) and two measures of efficiency change 

(i.e., technical efficiency and scale efficiency). We found that the productivity effects of improvements in input-oriented 

technical efficiency tended to be offset by deteriorations in the hospital production environment.   We conclude that 

improvements in technical efficiency have been caused mainly by an inward shift in the production frontier and not by 

any significant changes in input or output levels – the frontier has been moving closer to the hospitals rather than the 

hospitals moving closer to the frontier.  Factors that contribute to such movements in the frontier include increasing 

resistance to antibiotics.     

The estimated parameters of the distance function were also used to estimate support (i.e., efficient) prices for in-

dividual hospital outputs.  Large variations in these estimated support prices were plausibly due to large variations in the 

outputs themselves.  These estimated support prices can be viewed as upper bounds on the hospital- and output-specific 

prices that an independent ‘umpire’ might set in order to meet the Commonwealth government’s hospital efficiency and 

fiscal objectives.  
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Table 1. Variables     

 

VARIABLE  MEAN  ST. DEV.  MINIMUM  MAXIMUM 

OUTP   64227  121710  806  1012000 

WESC   2276.9  6340.4  0.1  44825.0 

WEMC   3862.9  7573.4  85.5  51536.0 

MO     29.26  78.52  0.20  606.95 

NURS   114.58  257.52  6.09  1864.20 

BEDS   80.22  148.22  2  1138 

t  5.00  2.58  1  9 

REGION  0.02  0.13  0  1 

 

 

 

Table 2. Parameters 

 

PARAMETER  VARIABLE 
MODEL 24  ど PREFERRED  MODEL 22  ど CONVENTIONAL 

ESTIMATE  ASY. ST. ERROR  ASY. TどRATIO  ESTIMATE  ASY. ST. ERROR  ASY. TどRATIO 

 CONSTANT  4.7095  0.1260  37.3860  2.0741  0.1265  16.4010 

 t  ど0.0322  0.0044  ど7.2830  ど0.0160  0.0044  ど3.6244 

 REGION  0.1252  0.0819  1.5284  0.2265  0.0797  2.8414 

 MO     ど  ど  ど  0.0000  0.0000  0.0000 

 NURS   ど  ど  ど  0.7271  0.0307  23.6590 

 OUTP   0.0551  0.0208  2.6497  0.0009  0.0194  0.0467 

 WESC   0.0684  0.0082  8.3286  0.0620  0.0076  8.1800 

 WEMC   0.7100  0.0249  28.4957  0.7051  0.0237  29.6998 

 � 1.1997  0.0170  70.7241  1.3021  0.0206  63.1731 

 � 0.5240  0.0223  23.4750  0.4774  0.0200  23.9180 

 � 1.9173  0.2676  7.1657  1.7652  0.2398  7.3599 

 

 

 

 



Table 3. The Components of TFP Change 

 

Obs  Hospital  Year  MODEL 24  ど PREFERRED  MODEL 22  ど CONVENTIONAL 

Q11,it  X11,it   TFP11,it   ENV11,it  EFF11,it   TIME11,it  REGION11,it   ITE11,it   ISE11,it   Q11,it  X11,it   TFP11,it   ENV11,it  EFF11,it   TIME11,it  REGION11,it   ITE11,it   ISE11,it  

1  1  1996  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 

2  2  1996  0.5313  0.6569  0.8088  1  0.8088  1  1  0.8986  0.9001  0.5175  0.6226  0.8313  1  0.8313  1  1  0.9686  0.8583 

3  3  1996  0.7642  0.7031  1.0869  1  1.0869  1  1  1.1366  0.9562  0.742  0.6593  1.1254  1  1.1254  1  1  1.2061  0.9331 

4  4  1996  1.9113  2.1429  0.8919  1  0.8919  1  1  0.8008  1.1139  2.0367  2.1582  0.9437  1  0.9437  1  1  0.8001  1.1794 

:  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  : 

107  107  1996  0.0484  0.0571  0.8478  1.1621  0.7296  1  1.1621  1.2382  0.5892  0.0445  0.0593  0.7502  1.3429  0.5586  1  1.3429  1.2315  0.4536 

108  108  1996  0.0262  0.0329  0.7961  1  0.7961  1  1  1.4593  0.5455  0.0232  0.0411  0.5637  1  0.5637  1  1  1.3503  0.4175 

109  109  1996  0.0337  0.041  0.8218  1  0.8218  1  1  1.4449  0.5687  0.0331  0.0562  0.5892  1  0.5892  1  1  1.2993  0.4535 

110  110  1996  0.0232  0.0331  0.7001  1  0.7001  1  1  1.31  0.5345  0.0232  0.0455  0.5109  1  0.5109  1  1  1.2229  0.4177 

111  111  1996  0.0133  0.0261  0.5089  1  0.5089  1  1  1.0445  0.4872  0.0121  0.0314  0.3855  1  0.3855  1  1  1.0732  0.3592 

112  112  1996  0.3739  0.4337  0.862  1  0.862  1  1  1.0154  0.8489  0.3553  0.4341  0.8183  1  0.8183  1  1  1.0404  0.7865 

113  113  1996  0.0233  0.0288  0.8072  1  0.8072  1  1  1.5093  0.5348  0.0217  0.0384  0.5649  1  0.5649  1  1  1.3737  0.4112 

114  114  1996  0.0124  0.0288  0.4306  1  0.4306  1  1  0.8943  0.4814  0.0123  0.0351  0.3495  1  0.3495  1  1  0.9699  0.3603 

115  115  1996  0.0175  0.0257  0.6821  1  0.6821  1  1  1.3376  0.51  0.013  0.0264  0.4911  1  0.4911  1  1  1.3461  0.3648 

116  116  1996  0.0236  0.0319  0.7397  1  0.7397  1  1  1.3802  0.5359  0.0164  0.0307  0.534  1  0.534  1  1  1.3862  0.3853 

:  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  : 

929  1  2004  0.817  0.8372  0.9758  0.7344  1.3287  0.7344  1  1.3054  1.0179  0.8163  0.814  1.0027  0.8469  1.184  0.8469  1  1.1942  0.9915 

930  2  2004  0.6454  0.8108  0.7959  0.7344  1.0838  0.7344  1  1.1074  0.9787  0.6123  0.6914  0.8856  0.8469  1.0456  0.8469  1  1.1274  0.9275 

931  3  2004  0.6421  0.7087  0.9061  0.7344  1.2338  0.7344  1  1.2617  0.9779  0.6309  0.6447  0.9785  0.8469  1.1554  0.8469  1  1.2371  0.934 

932  4  2004  1.7638  2.4324  0.7251  0.7344  0.9874  0.7344  1  0.8534  1.157  1.8717  2.2427  0.8346  0.8469  0.9854  0.8469  1  0.8198  1.202 

:  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  :  : 

1035  107  2004  0.0396  0.0626  0.6324  0.8534  0.7411  0.7344  1.1621  1.2356  0.5998  0.0394  0.0685  0.576  1.1374  0.5064  0.8469  1.3429  1.1047  0.4584 

1036  108  2004  0.0178  0.0298  0.596  0.7344  0.8115  0.7344  1  1.5078  0.5382  0.0167  0.0361  0.4625  0.8469  0.5461  0.8469  1  1.3579  0.4022 

1037  109  2004  0.0266  0.0514  0.5181  0.7344  0.7055  0.7344  1  1.2253  0.5757  0.0265  0.0615  0.4313  0.8469  0.5093  0.8469  1  1.1375  0.4478 

1038  110  2004  0.0176  0.0319  0.5527  0.7344  0.7526  0.7344  1  1.3999  0.5376  0.0185  0.0431  0.4296  0.8469  0.5073  0.8469  1  1.2317  0.4119 

1039  111  2004  0.0093  0.0308  0.3032  0.7344  0.4128  0.7344  1  0.8539  0.4835  0.0089  0.0342  0.2602  0.8469  0.3072  0.8469  1  0.8841  0.3475 

1040  112  2004  0.3336  0.4235  0.7878  0.7344  1.0727  0.7344  1  1.2232  0.8769  0.3108  0.3896  0.7977  0.8469  0.9419  0.8469  1  1.1885  0.7925 

1041  113  2004  0.0204  0.0376  0.5417  0.7344  0.7376  0.7344  1  1.3394  0.5507  0.0187  0.0418  0.4486  0.8469  0.5297  0.8469  1  1.2823  0.4131 

1042  114  2004  0.0119  0.0303  0.3911  0.7344  0.5326  0.7344  1  1.0584  0.5032  0.0113  0.0327  0.345  0.8469  0.4073  0.8469  1  1.109  0.3673 

1043  115  2004  0.0188  0.0419  0.4484  0.7344  0.6105  0.7344  1  1.1237  0.5433  0.0171  0.0424  0.4031  0.8469  0.476  0.8469  1  1.1773  0.4043 

1044  116  2004  0.0147  0.0385  0.3826  0.7344  0.5209  0.7344  1  0.9986  0.5216  0.0131  0.0364  0.3597  0.8469  0.4248  0.8469  1  1.1174  0.3801 

MEAN  0.2954  0.3323  0.7167  0.8636  0.8323  0.8612  1.0027948  1.254  0.6717  0.2993  0.3277  0.6112  0.927  0.6606  0.9216  1.0059121  1.1624  0.5778 

MINIMUM  0.0064  0.018  0.2072  0.7344  0.2695  0.7344  1  0.5644  0.4315  0.0061  0.0143  0.1419  0.8469  0.1641  0.8469  1  0.4558  0.3087 

MAXIMUM  4.8226  5.4545  1.2337  1.1621  1.4101  1  1.1621  1.6723  1.3582  5.0957  5.1548  1.2231  1.3429  1.3217  1  1.3429  1.4585  1.4947 

 



Table 4. Levels of Input-Oriented Technical Efficiency 

 

Obs  Hospital  Year 
MODEL 24  ど PREFERRED MODEL 22  ど CONVENTIONAL 

2.5% limit  ITE  97.5% limit  2.5% limit  ITE  97.5% limit 

1  1  1996  0.3666  0.5701  0.8415  0.4197  0.6358  0.9066 

2  2  1996  0.3288  0.5123  0.7615  0.4056  0.6158  0.8857 

3  3  1996  0.4202  0.6479  0.9256  0.5262  0.7668  0.9805 

4  4  1996  0.2928  0.4565  0.6795  0.3336  0.5087  0.7435 

:  :  :  :  :  :  :  :  : 

107  107  1996  0.4645  0.7059  0.962  0.5424  0.783  0.984 

108  108  1996  0.5935  0.8319  0.9917  0.6365  0.8585  0.9938 

109  109  1996  0.5827  0.8237  0.9908  0.5915  0.8261  0.9907 

110  110  1996  0.4999  0.7468  0.9768  0.5368  0.7775  0.9829 

111  111  1996  0.3836  0.5954  0.873  0.454  0.6824  0.9448 

112  112  1996  0.3724  0.5788  0.8528  0.4383  0.6615  0.9296 

113  113  1996  0.6348  0.8604  0.9942  0.6602  0.8734  0.995 

114  114  1996  0.3272  0.5098  0.7579  0.4062  0.6167  0.8866 

115  115  1996  0.5148  0.7625  0.9808  0.6324  0.8558  0.9936 

116  116  1996  0.5395  0.7868  0.9856  0.6739  0.8813  0.9955 

:  :  :  :  :  :  :  :  : 

929  1  2004  0.4975  0.7441  0.976  0.5189  0.7592  0.9786 

930  2  2004  0.4083  0.6313  0.9109  0.4814  0.7168  0.9637 

931  3  2004  0.4756  0.7193  0.9677  0.5461  0.7865  0.9847 

932  4  2004  0.3121  0.4865  0.7238  0.3419  0.5212  0.7615 

:  :  :  :  :  :  :  :  : 

1035  107  2004  0.4633  0.7044  0.9613  0.4697  0.7024  0.9567 

1036  108  2004  0.6334  0.8595  0.9941  0.644  0.8633  0.9942 

1037  109  2004  0.4586  0.6985  0.9585  0.4868  0.7232  0.9665 

1038  110  2004  0.5519  0.7981  0.9875  0.5425  0.7831  0.9841 

1039  111  2004  0.3123  0.4868  0.7242  0.369  0.5621  0.8186 

1040  112  2004  0.4576  0.6973  0.958  0.5156  0.7557  0.9776 

1041  113  2004  0.5158  0.7635  0.981  0.5782  0.8153  0.9893 

1042  114  2004  0.389  0.6033  0.8821  0.4719  0.7051  0.9581 

1043  115  2004  0.4149  0.6406  0.9194  0.509  0.7485  0.9755 

1044  116  2004  0.3661  0.5693  0.8405  0.4762  0.7104  0.9608 

MEAN  0.4918  0.7149  0.9249  0.5190  0.7391  0.9408 

MINIMUM  0.2063  0.3217  0.479  0.19  0.2898  0.4239 

MAXIMUM  0.8409  0.9533  0.9987  0.7703  0.9273  0.9978 
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Table 5. Efficient Prices (Model 24) 

 
Obs  Hospital  Year  p1  p2  p3  p2/p1  p3/p1 

1  1  1996  5.77  115.94  1170.67  20.09  202.84 

2  2  1996  8.41  229.07  1870.27  27.23  222.32 

3  3  1996  27.17  714.91  1713.41  26.31  63.05 

4  4  1996  3.66  34.33  435.95  9.38  119.09 

:  :  :  :  :  :  :  : 

107  107  1996  195.47  51204.19  42574.03  261.95  217.8 

108  108  1996  199.3  754131.27  89649.6  3783.85  449.82 

109  109  1996  41.1  25946.73  15595.44  631.33  379.46 

110  110  1996  141.11  19639.23  21793.87  139.18  154.45 

111  111  1996  56.81  62697.26  33493.37  1103.64  589.57 

112  112  1996  4.97  445.01  1704.12  89.53  342.85 

113  113  1996  101.47  256282.48  32510.5  2525.58  320.38 

114  114  1996  225.64  75711.48  38865.37  335.54  172.25 

115  115  1996  72.67  984576.25  52121.09  13547.81  717.19 

116  116  1996  89.29  647335.96  43447.84  7249.66  486.58 

:  :  :  :  :  :  :  : 

929  1  2004  0.93  24.87  226.6  26.62  242.53 

930  2  2004  1.01  28.94  238.25  28.56  235.11 

931  3  2004  3.52  55.48  297.95  15.77  84.66 

932  4  2004  0.46  4.71  69.07  10.18  149.08 

:  :  :  :  :  :  :  : 

1035  107  2004  4.11  3061.65  1788.61  744.08  434.69 

1036  108  2004  3.14  20831.39  1874.83  6630.03  596.71 

1037  109  2004  3.69  66054.29  1055.01  17898  285.86 

1038  110  2004  9.4  8189.66  2592.64  871.01  275.74 

1039  111  2004  5.51  5257.48  2758.53  954.76  500.95 

1040  112  2004  0.5  48.7  163.42  97.73  327.94 

1041  113  2004  10.24  72015.5  2413.79  7033.18  235.74 

1042  114  2004  12.38  76403.57  2816.56  6171.09  227.49 

1043  115  2004  8.16  74789.13  2336.04  9166.21  286.31 

1044  116  2004  6.67  19018.37  2641.98  2852.94  396.32 

MEAN  64.511954  252426.59  12936.979  4427.4296  279.24872 

MINIMUM  0.01  0.29  2.51  9.23  41.41 

MAXIMUM  2839.41  45775782  465221.7  185447.33  1804.71 
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Figure 1.  Distribution of TFP and Efficiency Indexes for N = 116 firms in 1996 
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