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The Evaluation

of Economic Forecasts

JACOB MINCER AND VICTOR ZARNOWITZ

INTRODUCTION

An economic forecast may be called "scientific" if it is formulated as
a verifiable prediction by means of an explicitly stated method which
can be reproduced and checked.1 Comparisons of such predictions and
the realizations to which they pertain provide tests of the validity and
predictive power of the economic model which produced the forecasts.
Such empirical tests are an indispensable basis for further scientific
progress. Conversely, as knowledge accumulates and the models im-
prove, the reliability of forecasts, viewed as information about the
future, is likely to improve.

Forecasts of future economic magnitudes, unaccompanied by an
explicit specification of a forecasting method, are not scientific in the
above sense. The analysis of such forecasts, which we shall call "busi-
ness forecasts," is nevertheless of interest.2 There are a number of
reasons for this interest in business forecasts:

NOTE: Numbers in brackets refer to bibliographic references at the end of each
chapter.

'The definition is borrowed from Henri Theil [7, pp. 10 if.].
2 In practice, sharp contrasts between scientific economic model forecasts and busi-

ness forecasts are seldom found; more often, the relevant differences are in the degree
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1. To the extent that the predictions are accurate, they provide in-
formation about the future.

2. Business forecasts are relatively informative if their accuracy is
not inferior to the accuracy of forecasts arrived at scientifically, par-
ticularly if the latter are more costly to obtain.

3. Conversely, the margin of inferiority (or superiority) of business
forecasts relative to scientific forecasts serves as a yardstick of prog-
ress in the scientific area.

4. Regardless of the predictive performance ascertainable in the
future, business forecasts represent a sample of the currently prevail-
ing climate of opinion. They are, therefore, a datum of some impor-
tance in understanding current economic behavior.

5. Even though the methods which produce the forecasts are not
specified by the forecasters, it is possible to gain some understanding
of the genesis of forecasts by relating the predictions to other avail-
able data.

In this paper we are concerned with the analysis of business fore-
casts for some of these purposes. Specifically, we are interested in
methods of assessing the degree of accuracy of business forecasts both
in an absolute and in a relative sense. In the Absolute Accuracy Analy-
sis (Section I) we measure the closeness with which predictions ap-
proximate their realizations. In the Relative Accuracy Analysis (Sec-
tion II) we assess the net contributions, if any, of business forecasts
to the information about the future available from alternative, relatively
quick and cheap methods. The particular alternative or benchmark
method singled out here for analysis is extrapolation of the past
history of the series which is being predicted. The motivation for this
choice of benchmark is spelled out in Section II. It will be apparent,
however, that our relative accuracy analysis is suitable for compari-
Sons of any two forecast methods.

The treatment of extrapolations as benchmarks against which the
predictive power of business forecasts is measured does not imply

to which the predictions are explicit about their methods, and are reproducible. In-
formation on the methods is not wholly lacking for the business forecasts, nor is it al-
ways fully specified for econometric model predictions. Note also that distinctions be-
tween unconditional and conditional forecasting, or between point and interval forecasts
are not the same as between scientific and nonscientific forecasts. The latter are usually
unconditional point predictions, but so can "scientific" forecasts be. [Cf. 7. p. 4.]
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that business forecasts and extrapolations constitute mutually exclu-
sive methods of prediction. It is rather plausible to assume that most
forecasts rely to some degree on extrapolation. If so, forecast errors
are partly due to extrapolation errors. Hence, an analysis of the pre-
dictive performance of extrapolations can contribute to the understand-
ing and assessment of the quality of business forecasts. Accordingly,
we proceed in Section III to inquire into the relative importance of
extrapolations in generating business forecasts, and to study the ef-
fects of extrapolation error on forecasting error.3

All analysts of economic forecasting owe a large intellectual debt to
Henri Theil, who pioneered in the field of forecast evaluation. A part
of the Absolute Accuracy Analysis section in this paper is an expan-
sion and direct extension of Theil's ideas formulated in [8]. Our treat-
ment, indeed, parallels some of the further developments which Theil
recently published.4 However, while the starting point is similar, we
are led in different directions, partly by the nature of our empirical
materials, and partly by a different emphasis in the conceptual frame-
work. The novel elements include our treatment of explicit benchmark
schemes for forecast evaluation, which goes beyond the familiar naive
models to autoregressive methods; our attempt to distinguish the
extrapolative and the autonomous components of the forecasts; and
our analysis of multiperiod or variable-span forecasts and extrapola-
tions.

The empirical materials used in this paper consist of eight different
sets of business forecasts, denoted by eight capital letters, A through
H. These forecasts are produced by groups of business economists,
economic departments of large corporations, banks, and financial
magazines. Most use is made here, for illustrative purposes, of a sub-
group of three sets of forecasts, E, F, and G, which represent a large
opinion poii and small teams of business analysts and financial experts.
The data for all eight sets summarize the records of several hundred
forecasts, all of which have been prc,cessed in the NBER study of
short-term economic forecasting.5 It is worth noting that our substan-
tive conclusions in this paper are broadly consistent with the evidence

' For an analysis of a particular extrapolation method, known as "adaptive forecast-
ing," see Jacob Mincer, "Models of Adaptive Forecasting," Chapter 3 in this volume.

Theil [7, Chapter 2, especially pp. 3 3—36].
For a detailed description of data and of findings, see [13].
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based on the complete record. A summary of the analyses and of the
findings is appended for the benefit of the impatient reader.

I. ABSOLUTE ACCURACY ANALYSIS

ERRORS IN PREDICTIONS OF LEVELS

At the outset, it will be helpful to state a few notations and defini-
tions: represents the magnitude of the realization at time (t + A-);
and z÷kPs, the prediction of At÷k at time t. The left-hand subscript of P
is the target date, the right-hand subscript is the base date of the fore-
cast; and k is the time interval between forecast and realization, also
called the forecast' span.

Although the terms "forecast" and "prediction" are synonyms in
general usage, we shall reserve the former to describe a set of predic-
tions produced by a given forecaster or forecasting method, and per-
taining to the set of realizations of a given time series A. Single
predictions t+kPt are elements in the set, or in the forecast P, just as
single realizations A(+k are elements in the time series A. Different
forecasts (methods or forecasters) may apply to the same set of
realizations, but not conversely.6

Consider a population of constant-span (say, k = 1) predictions and
realizations of a time series A. The analytical problem is to devise
comparisons between forecasts ,P1_1 and realizations which will
yield useful descriptions of sizes and characteristics of forecasting
errors = —

A simple and useful graphic comparison is obtained in a scatter
diagram relating predictions to realizations.7 As Figure 1 indicates,
a perfect prediction = 0) is represented by a point on the 450 line
through the origin, the line of perfect forecasts (LPF). Clearly, the
smaller the dispersion around LPF the more accurate is the forecast.
A measure of dispersion around LPF can, therefore, serve as a meas-
ure of forecast accuracy. One such measure, the variance around LPF,
is known as the mean square error of forecast. We will denote it by

For some purposes, not considered in this paper, the converse may be admissible.
A forecaster may be evaluated by the performance of a number of forecasts he pro-
duced, each set of predictions pertaining to different sets of realizations.

The "prediction-realization diagram" was first introduced by Theil in [8, pp. 30 if.].
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Its definition is:

(1) = E(A — P)2,

where E denotes expected value. Preference for this measure as a
measure of forecast accuracy is based on the same considerations
as the preference for the variance as a measure of dispersion in
conventional statistical analysis: This is its mathematical and statisti-
cal tractability. We note, of course, that this measure gives more than

FIGURE 1-1. The Prediction-Realization Diagram

— Line of perfect forecasts
— Regression line
— Mean realization
— Mean prediction
— Mean corrected prediction
— Mean point
— Corrected mean point
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proportionate weight to large errors, an assumption which is not par-
ticularly inappropriate in economic forecasting.8

The square root of measures the average size of forecast error,
expressed in the same units as the realizations. The expression = 0

represents the unattainable case of perfection, when all points in the
prediction-realization diagram lie on LPF. In general, most points are
off LPF. However, special interest attaches to the location of the
mean point, defined by [E(A), E(P)]. The forecast is unbiased if that
point lies on LPF, that is if E(P) = E(A). The difference E(A) — E(P) =
E(u) measures the size of bias. The forecast systematically under-
estimates or overestimates levels of realizations, if the sign of the bias
is positive or negative, respectively.

Unbiasedness is a desirable characteristic of forecasting, but it does
not, by itself, imply anything about forecast accuracy. Biased fore-
casts may have a smaller than unbiased ones. However, other
things being equal, the smaller the bias, the greater the accuracy of the
forecast. The "other things" are the distances between the points of
the scatter diagram: Given that E(P) E(A), a translation of the axes
to a position where the new LPF passes through the mean point will
produce a mean square error, which is smaller than the original
This is because the variance around the mean is smaller than the vari-
ance around any other value.

Formally, we have:

(2) = E(A — P)2 = E(u2) = [E(u)]2 + cr2(u)

and

= o2(u).

The presence of bias augments the mean square error by the mean
component [E(u)]2. The other component of the variance of the
error around its mean, o-2(u), is an (inverse) measure of forecasting
efficiency.

Further consideration of the prediction-realization scatter diagram
yields additional insights into characteristics of forecast errors. Thus
nonlinearity of the scatter indicates different (on average) degrees of

'From a decision point of view, this measure is optimal under a quadratic loss cri-
terion. For an extensive treatment of this criterion see Theil [9].
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over- or underprediction at different ranges of values. its heteroscedas-
ticity reflects differential accuracy at different ranges of values.

These properties of the scatter are difficult to ascertain in small
samples. Of greater interest, therefore, is the inspection of a least-
squares straight-line fit to the scatter diagram. The mean point is one
point on the least-squares regression line. Just as it is desirable for the
mean point to lie on the line of perfect forecasts, so it would seem in-
tuitively to be as desirable for all other points. In other words, the
whole regression line should coincide with LPF. If the forecast is
unbiased, but the regression line does not coincide with LPF, it must
intersect it at the mean point. At ranges below the mean, realizations
are, on average, under- or overpredicted, with the opposite tendency
above the mean. The greater the divergence of the regression line from
LPF, the stronger this type of error. In other words, the larger the
deviation of the regression slope from unity, the less efficient the fore-
cast: It is intuitively clear that rotation of the axes until LPF coincides
with the regression line will reduce the size of cr2(u).

Before the argument is expressed rigorously, one matter must be
decided: As is well known, two different regression lines can be fitted in
the same scatter, depending on which variable is treated as predictor
and which is predictand. Because, by definition, the forecasts are pre-
dictors, and because they are available before the realizations, we
choose P as the independent and A as the dependent variable.

While

(3)

is an identity, a least-squares regression of on produces, generally:

(4)

Only when the forecast error is uncorrelated with the forecast values
is the regression slope f3 equal to unity, in this case, the residual

variance in the regression o2(v) is equal to the variance of the forecast
error cr2(u). Otherwise, cT2(u) > o'2(v). Henceforth, we call forecasts
efficient when o'2(u) = o-2(v). If the forecast is also unbiased, 0,
cr2(v) = cr2(u) =

To illustrate the argument, consider a forecaster who underestimated
the level of the predicted variable repeatedly over a succession of
time periods. His forecasts would have been more accurate if they were
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all raised by some constant amount, i.e., the historically observed
average error. Other things being equal—specifically, assuming that
the process generating the predicted series remains basically un-
changed as does the forecasting method used—such an adjustment
would also reduce the error of the forecaster's future predictions. Now
suppose that the forecaster generally underestimates high values and
overestimates low values of the series, so that his forecasts can be
said to be inefficient. Under analogous assumptions, he could reduce
this type of error by raising his forecasts of high values and lowering
those of low values by appropriate amounts.

Since, generally, o-2(u) o-2(v), a forecast which is unbiased
and efficient is desirable. In the general case of biased and/or inefficient
forecasts, we can think of regression (4) as a method of correcting the
forecast to improve its accuracy.9

The corrected forecast is PC a + and the resulting mean square
error equals M$ = o2(u) M,. We can visualize this linear
correction as being achieved in two steps: (I) A parallel shift of the
regression line to the right until the mean point is on the 450 diagonal
in Figure 1. This eliminates the bias and reduces the mean square
error to o-2(u), in equation 2. (2) A rotation of the regression line
around the mean point (E = EC) until it coincides with LPF (i.e.,
/3 = 1). This further reduces the to 472(v).

We can express the successive reductions as components of the
mean square error:

(5) = E(u)2 = {E(u)]2 + ff2(u) = [E(u)]2 + [o.2(u) — + cr2(v).

"Theil calls it the "optimal linear correction," [7, p. 33, ff.1.
It might be tempting to call optimal those forecasts which are both unbiased and

efficient. We refrain from this terminology for the following reason: The regression
model (4), in which we regress A on P rather than conversely, can also be interpreted
by viewing realizations (A,) as consisting of a stochastic component €, and a nonstochas-
tic part A, [cf. 7, Ch. 2], (4a) A, = A, + €,, with E(e,) = 0, and E(A,€,) = 0.

The stochastic component can be viewed as a "random shock" representing the
outcome of forces which make future events ultimately unpredictable. The forecaster
does his best trying to predict A, attaining €, as the smallest, irreducible forecast error.
Thus, we prefer to reserve the notion of optimality to forecasts P, = A, whose is
minimal, namely = o.2(€,). It is clear, from this formulation, that optimal forecasts are
unbiased and efficient, but the converse need not be true. Questions of optimality are
not directly considered in the present study.

The concept of "rational forecasting," as defined by J. F. Muth [5, pp. 3 15—335],
implies unbiased and efficient forecasts utilizing all available information.
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If denotes the coefficient of determination in the regression of A
on P, then r2(v) = (1 — Also,'° cr2(u) — cr2(v) = (1 — /3)2o2(P).

Hence, the decomposition of the mean square error is:

(5a) = [E(u)]2 + (1 — /3)2o-2(P) + (1 —

We call the first component on the right the mean component (MC),
the second the slope component (SC), and the third the residual com-
ponent (RC) of the mean square error. In the unbiased case, MC
vanishes; in the efficient case SC vanishes. In forecasts which are
both unbiased and efficient both MC and SC vanish, and the mean
square error equals the residual variance (RC) in (4).

Thus far we have analyzed the relation between predictions and
realizations in terms of population parameters. However, in empiri-
cal analyses we deal with limited samples of predictions and realiza-
tions. The calculated mean square errors, their components, and the
regression statistics of (4) are all subject to sampling variation. Thus,
even if the predictions are unbiased and efficient in the population, the
sample results will show unequal means of predictions and realiza-
tions, a nonzero intercept in the regression of A on P, a slope of that
regression different from unity, and nonzero mean and slope compo-
nents of the mean square error. To ascertain whether the forecasts are
unbiased and/or efficient, tests of sampling significance are required.

Expressing the statistics for a sample of predictions and realizations,
regression (4) becomes:

(6)

and, corresponding to (5a), the decomposition of the sample mean
square error, is:

(7)

The test that P is both unbiased and efficient is the test of the joint
null hypothesis a = 0 and /3 = 1 in (4). If the joint hypothesis is re-
jected, separate tests for bias and efficiency are indicated. The respec-
tive null hypotheses are E(u) 0 and /3 = 1.

= ff2(A) + cr2(P) — 2 Coy (A, P) = o-2(A) + —

cr2(v) = o-2(A) —

Subtracting, o2(u) — = o-2(P) — 213cr2(P) + = (1 — /3)2a2(P)



12 ECONOMIC FORECASTS AND EXPECTATIONS

TABLE 1-1. Accuracy Statistics for Selected Forecasts of Annual Levels of Four
Aggregative Variables, 1953—63

Code and

A. Summary Statistics for Predictions (P), Realizations (A), and Errors

Root Percentage of Accounted for by
Standard Mean

Mean Deviation Square Mean Slope Residual
Type of Error Component Component Variance

Line Forecast a Ab P SA VM (MC) (SC) (RV)
(1) (2) (3) (4) (5) (6) (7) (8)

Gross National Product (GNP)
(billion dollars)

1 E (11) 458.1 447.3 76.4 79.3 16.7 39.4 5.4 55.2
2 F (11) 458.1 453.2 76.4 79.5 8.8 28.1 14.0 57.9
3 G (11) 458.1 459.9 76.4 82.3 7.9 4.6 54.8 40.6

Personal Consumption Expenditures (PC)
(billion dollars)

4 E (11) 296.4 287.6 49.0 52.6 5.5 76.2 12.2 11.7
5 F (11) 296.4 293.4 49.0 52.1 10.0 27.7 27.8 44.5

Plant and Equipment Outlays (PE)
(billion dollars)

6 E (10) 32.6 32.0 3.8 5.2 2.9 4.2 44.1 51.7

Index of Industrial Production (IP)
(index points, 1947—49 = 100)

7 E (Ii) 149.6 148.8 21.6 21.9 6.0 1.7 3.1 95.1
8 F (11) 149.6 150.4 21.6 21.8 4.6 2.6 2.0 95.4
9 0 (11) 149.6 152.1 21.6 23.3 4.8 24.2 17.0 58.7

(continued)

Table 1-1 presents accuracy statistics for several sets of business
forecasts of GNP, consumption, plant and equipment outlays, and
industrial production. Part A shows means and variances of predic-
tions and realizations, as well as the mean square error and its com-
ponents expressed as proportions of the total. Part B shows the re-
gression and test statistics for the hypotheses of unbiasedness and
efficiency.

The statistical tests in most cases reject the joint hypothesis of un-
biasedness and efficiency. This is accounted for largely by bias, and
the preponderant bias is an underestimation of consumption and of
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TABLE 1-1 (concluded)

Line

Code and
Type of

Forecast a

B. Regression and Test Statistics

F-Ratio for
(a = 0,

a b /3 = 1)

(1) (2) (3) (4)

t-Test for
E(A) = E(P)

(5)

t-Test for
/3 =

(6)

Gross National Product (GNP)

10
11

12

E (11)
F (11)
G (11)

33.252 .950 .972 3.85 *

24.357 .957 .992 2.45
32.531 .925 .995 *

—2.68 *

—2.07 *
•93

1.47 **
349 *

Personal Consumption Expenditures (PC)

13

14
E (11).
F (11)

28.753 .931 .995 40.04*
20.893 .939 .994 68.20 * —2.07 *

3.25*
2.61 *

Plant and Equipment Outlays (PE)

15 £ (10) 13.256 .605 .667 3.70* —.66 2.61*

Index of Industrial Production (IP)

16
17

18

E (11)
F (11)
G (11)

8.771 .950 .918 .14
3.968 .968 .952 .24

10.989 .912 .968 3.10*

—.44

.54
1.87*

.53

.43
1.62**

Number of years covered is given in brackets. All forecasts refer to the period 195 3—63, except the
plant and equipment forecasts E (line 6), which cover the years 1953—62.

The realizations (A) are the first annual estimates of the given variable reported by the compiling agency.
* Significant at the 10 per cent level.
• * Significant at the 25 per cent level.

GNP. Most of the forecasts seem inefficient. However, the degree of
inefficiency is relatively minor, as the regression slopes are close to
unity, though they are consistently below unity (Part B, column 2).

The decomposition of the mean square error in Part A of Table 1-1
suggests that the residual variance component is by far the most im-
portant component of error, and the slope component rather negli-
gible. The mean component often accounts for as much as one-fourth
of the total mean square error.

The correlations between forecasts and realizations are all positive
and very high (their squares are shown in Part B, column 3). This is
to be expected in series dominated by strong trends. Where trend dom-
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ination is weaker, as in the plant and equipment series, the correlation
is lower. These coefficients do not measures or components
of absolute forecasting accuracy. They are shown here merely for the
sake of completeness and conventional usage. The coefficient of deter-
mination is, at best, a possible measure of relative accuracy. It spe-
cifically relates the mean square error of a linearly corrected forecast
to the variance of realization [see Section III, equation (18), note 28].
This is not a generally useful measure of forecasting accuracy.

ERRORS IN PREDICTIONS OF CHANGES

Economic forecasts may be intended and expressed as predictions.
of changes rather than of future levels. The accuracy analysis of levels
can also be applied to comparisons of predicted changes (P, — A,...,)
with realized changes (A, —A,_,). A complicating factor in this analysis
of changes are base errors, due to the fact that the value of A,_, was
not fully known at the time the forecast was made.'1 This is why the
base is denoted by A,_,.

If the forecast base were measured without error, the accuracy
statistics for changes would be almost identical with those for levels.
Clearly, the forecast error and, hence, the mean square error would
be the same since:

(A, — A,_,) — (F, — A,_,) = A, — P1 = Ut.

By the same token, the mean and variance components of the mean
square error would be identical. The only difference would emerge in
the decomposition of the variance into slope and residual components.
This is because the regression of on (P,—A,_,) differs from
the regression of A, on P,.

Denote the regression slope in this case by

Coy (A, —A,_,, P,
2 '

from which it follows that:

Though we excluded them in the preceding section, base errors also tend to obscure
somewhat the analysis of forecast errors in predictions of levels. For an intensive
analysis of the effects of base errors on forecasting accuracy, see Rosanne Cole, "Data
Errors and Forecasting Accuracy," in this volume.
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— Coy (u,, — Coy (ui, F,)
(8) 1 —

— cr2(P, — A,_1)

Assume that the level forecast is efficient in the sense that f3 = 1,

because Coy (u,, F,) = 0. Then = 1 only if Coy (u,, A,...,) = 0. The
additional requirement that Coy (U,, A,_,) = 0 for the efficiency of fore-
casts of changes 12 is an additional aspect of efficiency in forecasts of
levels. It indicates that forecast errors cannot be reduced by taking
account of past values of realizations or, put in other words, the extrap-
olative value of the base (A,_,) has already been incorporated in the
forecast.

In Table 1-2 the same accuracy statistics are shown for forecasts of
changes as were shown for forecasts of levels in Table 1-1. We note
that, while the regression slopes b in Table 1-1 were close to unity,
here they are substantially smaller. It appears that this is explainable
largely by a positive Coy (u,, A,...,) in equation (8) and also as an effect
of base errors.'3 Not surprisingly, the correlations between forecasts
and realization (Part B, column 3) are weaker here than they are for
predictions of levels.

UNDERESTIMATION OF CHANCES

A systematic and repeatedly observed property of forecasts is the
tendency to underestimate changes. Comparisons of predicted and
observed changes permit the detection of such tendencies. We search
for their presence also in our data.

In order to understand better the empirical results, it is useful to
define clearly the existence of such tendencies and to inquire into their
possible sources.'4 Underestimation of change takes place whenever
the predicted change (F, — A,...,) is of the same sign but of smaller size

12 = I also when Coy (U,, A,_,) = Coy (ui, P,) 0. However, in that case both level
and change forecasts are inefficient, since is larger when Coy (u,, P,) 0 than when
it is zero.

" See Rosanne Cole's essay, pp. 64—70 of this volume. It might seem that the base
errors which bias the regression slopes downward in Table 1-2 would also increase the
mean square errors of predicted changes compared to the mean square error in levels.
This is not necessarily true, however, and Table 1-2, in fact, shows mean square errors
smaller than in Table 1-1. According to Rosanne Cole's analysis, the explanation, again,
lies in the way base errors affect forecasts.

For a different and more extensive discussion of this issue, see Theil [8, especially
Chapter V].
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TABLE 1-2. Accuracy Statistics for Selected Forecasts of Annual Changes in Four
Aggregative Variables, 1953—63

A. Summary Statistics for Predictions (Pa), Realizations and Errors

Percentage of
Accounted for by

Root
Mean Mean Slope

Code and Mean Standard Deviation Square Corn- Corn- Residual
Type of Error ponent ponent Variance

Line Forecast a b (MC) (SC) (R V)

(1) (2) (3) (4) (5) (6) (7) (8)

Gross National Product (GNP)
(billion dollars)

1 E (11) 19.8 11.3 14.1 13.4 14.0 34.7 9.0 56.3
2 F (11) 19.8 17.5 14.1 17.0 7.5 8.8 29.7 61.5
3 G (11) 19.8 22.8 14.1 16.2 7.9 13.4 21.2 65.4

Personal Consumption Expenditures (PC)
(billion dollars)

4 E (11) 12.9 6.5 4.9 6.5 4.6 63.1 16.0 20.9
5 F (11) 12.9 11.2 4.9 8.3 7.9 12.3 67.2 20.5

Plant and Equipment Outlays (PE)
(billion dollars)

6 E (10) 1.1 .3 3.5 2.2 2.9 7.3 1.0 91.7

Index of Industrial Production (IP)
(index points, 1947—49 = 100)

7 E (11) 5.2 2.4 8.6 5.0 6.3 18.5 5.9 75.6
8 F (11) 5.2 4.5 8.6 9.5 3.6 3.4 17.3 79.3
9 G (11) 5.2 7.1 8.6 8.9 4.3 17.8 7.3 74.9

(continued)

than actual change Graphically, it occurs whenever a point
in the predictions — realizations diagram (as in Figure 1, but relating
changes rather than levels) is located above the LPF in the first quad-
rant or below LPF in the third quadrant. A tendency toward under-
estimation exists when most points in the scatter are so located. In
terms of a single parameter, such a tendency may be presumed when
the mean point of the scatter is located in that area.

Algebraically, we detect a tendency toward underestimation of
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TABLE 1-2 (concluded)

Line

Code and
Type of
Forecast

B. Regression and Test Statistics

t-Test for
F-Ratio for =

a b rLpA a = 0, $ 1

(1) (2) (3) (4) (5)

t-Test for
/3 = 1

(6)
r515,_1

(7)

Gross National Product (GNP)

10
11

12

E (11)
F (11)
G (11)

12.160 .676 .412 377*
6.728 .749 .814 2.95**
2.324 .766 .778 2.48** 1.31 **

1.20
2.10*
1.71 **

—.3950
.3323

Personal Consumption Expenditures (PC)

13

14
E (11)
F (11)

9.600 .501 .442 18.85*
6.973 .526 .808 18.27*

2.68*
553*

.1094
—.0212

Plant and Equipment Outlays (PE)

15 E (10) .874 .832 .292 .43 —.89 .36 .2580

Index of Industrial Production (IP)

16

17

18

E (11)

F (11)

0 (11)

2.073 1.300 .567 1.24

1.449 .834 .846 1.96** —.62

—0.924 .865 .799 1.61 1.54**

.79
1.40**
.94

—.1537
—.4020
.1865

See notes to Table 1-1.

changes by:

(9) — <E/A1 —

provided — A1_1) is of the same sign as E(A1 —

Or, what is almost equivalent, and more tractable:

(10) — < —

with the same proviso.
Inequality (10) is highly suggestive of the sources of tendencies

toward underestimation of changes. The left-hand side is the mean
square error in predicting forecasts by means of the past values

the right-hand side is the mean square error in predicting realiza-
tions by means of the past values The inequality can be
broadly interpreted to mean that underestimation arises when past
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events bear a closer (and positive) relation to the formation of fore-
casts than to future realizations. This is very plausible. Forecasts
differ from realizations because information is incomplete. To the
extent that some elements of information are lacking, the effect is
likely to be produced.

Now, decomposing (10), we get:

(11)
— + — A1_1) < [E(A,) — +

According to (II), underestimation of changes occurs because:

(12a) E(P1)

when both and are greater than A1_1, or

(12b) E(P1) >

when both and are less than and/or because

(13) — < — A1_1).

It is important to note that condition (13) necessarily holds when pre-
dictions of changes are efficient, i.e., when = 1, because, in that
case: o2(A1 — = + cT2(Ut).15 Thus, underestimation of
changes is a property of unbiased and efficient forecasts of changes,
or, what is equivalent, of unbiased and efficient forecasts of levels in
which all of the extrapolative information contained in the base (A1_1)
has been exploited.t6 But, as the analysis shows, it can also arise in
biased or incorrect forecasting.

In Table 1-2, the actual forecast base contains errors. These,
as we noted, tend to bias the regression slopes downward. They may
therefore contribute to the observed reversal of inequality (13). As
comparisons of columns 3 and 4, Part A, show, > S2(A,—

A1_1) in six of the nine recorded cases. Whether a better agreement
with the inequality in (13) would obtain in the absence of base errors

Since A, — A, = P, — A,_ + u,, it follows that var (A, — A,_1) = var (P, — A,_) +
var (u,) + 2 coy (P, — A,.,, u,). But the last term in the above vanishes under the assumed
conditions, since, for efficient forecasts with = I, coy (u,_,, A,_,) = coy (U,, P,) = 0
(see note 12).

' A fortiori, underestimation of changes is a property of "rational" forecasting in the
sense of Muth [5, p. 334].
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is not clear. It depends,. in part, on the effects past errors exert on the
forecast levels

Where the variance of predicted change exceeds the variance of
actual change in Table 1-2, the source of underestimation of changes
in our data must lie in the underestimation of levels (12). This char-
acteristic is observed in Table 1-1. Changes are, indeed, underesti-
mated in all these forecasts where levels were underestimated, and
overestimated in those few forecasts where levels were overestimated.
(Compare Part A, columns I and 2,-of Tables 1-1 and 1-2.)

The tendency to underestimate changes is explored in greater detail
in Table 1-3. Here each of the individual predictions of change is
classified as an under- or overestimate. We find that two-thirds of the
increases in GNP were underestimated, and one-third overestimated.
But of the decreases, which were relatively few and shallow, half were
missed and barely one-fourth underestimated. For consumption, no
year-to-year decreases are recorded, and underpredictions of in-
creases represent nearly two-thirds of all observations. It seems un-
likely that such high proportions could be due to chance.

At the same time, in series with weaker growth but stronger cyclical
and irregular movements, underestimates of increases, while frequent,
are not dominant. Table 1-3 shows this clearly for the forecasts of
gross private domestic investment and plant and equipment outlays.
For industrial production, the situation is similar, though the pro-
portion of underestimates for the decreases may be significant.'8

We conclude that the underestimation of changes reflects mainly a
conservative prediction of growth rates in series with upward trends.
This implies, in turn, that the levels of such series must also be under-
estimated, a fact already noted. To what extent the purported general-
ity of underestimation of changes is true beyond the conservative un-
derestimation of increases remains an open question.

'7The reader is referred again to Rosanne Cole's essay. Here we may note that
to the extent that base errors are incorporated in P,. S2(P,) is augmented. This may
explain the observation in Table I - I where > S2(A,) in all cases (columns 3 and
4. Part A).

18 It should be noted that Table 1-3 includes all forecast sets that have thus far been
analyzed in the NBER study and is thus based on much broader evidence than Table
I-I. In particular, the representation of investment forecasts is greatly strengthened
here by the inclusion of gross private domestic investment forecasts (GNP component)
along with those of plant and equipment outlays (OBE-SEC definition).
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TABLE 1-3. Forecasts of Annual Changes in Five Comprehensive Series, Distribu-
tion by Type of Error, 1953—63

Predicted Variable

Forecast of An nual Changes b Probability
of as Many

or MoreTurning
and Total Under- Over- Point Under-

Type of Change a Number
(1)

estimates
(2)

estimates
(3)

Errors
(4)

estimates
(5)

Gross national product (8)
Increases 64 43 21 0 .004
Decreases 14 3 4 7 .756

Personal consumption expenditure (5)
Increasesd 45 29 13 3 .010

Gross private domestic investment (4)
Increases 22 10 9 3 .500
Decreases 12 5 4 3 .500

Plant and equipment outlays (2)
Increases 5 4 2 .500
Decreases 5 2 3 0 .812

industrial production (7)
Increases 57 28 23 6 .288
Decreases 13 9 3 1 .073

0 The number of forecast sets covered is given in parentheses. Increases and decreases refer to the direc-
tion of changes in the actual values (first estimates for the given series).

Underestimates indicate that predicted change is less than the actual change; overestimates, that pre-
dicted change exceeds actual change; turning point errors, that the sign of the predicted change differs from
the sign of the actual change.

Based on the proportion of all observations, other than those with turning point errors, accounted for
by the underestimates (i.e., column 2 divided by the difference between column I and column 4). Prob-
abilities taken from Harvard Computation Laboratory, Tests of the Cumulative Binomial Probability Dis-
tribution, Cambridge, Mass., 1955.

All observed changes are increases.
° Includes one perfect forecast (hence the total of observations in columns 2—4 in this line is II).

II. RELATIVE ACCURACY ANALYSIS

The quality of forecasting performance is not fully described by the
size and characteristics of forecasting error as analyzed in Section 1.
Sizes of forecasting errors cannot even be compared when sets of pre-
dictions differ in target dates or in the economic variables to be pre-
dicted. Theil goes beyond the matter of comparability in suggesting
that a sharp distinction must be made between size of forecasting error
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and consequences of forecasting error. According to him, "the quality
of a forecast is determined by the quality of the decision to which it
leads." 19

This emphasis on consequences can be further generalized by re-
lating, incrementally, the gains obtainable from reducing forecast
errors which the particular forecasting method accomplishes relative
to an alternative, to the cost of producing such reductions. In prin-
ciple, such a rate-of-return criterion is a ratio of imputed dollar val-
ues, in which numerator and denominator provide for comparability
and for an economically unambiguous ranking of forecasting perform-
ance regardless of target dates and variables.

In this part of our analysis, we suggest a criterion for the appraisal
of forecasting quality which derives from this economic concept but
is necessarily more limited. In the absence of a gain function (for the
numerator) and of an investment cost function (for the denominator),
we measure the payoff only in terms of the reduction in forecasting
error obtained by the forecast (P) compared with an alternative, less
costly, "benchmark" method (B). The benchmark we propose is the
extrapolation of the past own history of the target series. Our pro-
posed index of forecasting quality is the ratio of the mean square error
of forecast to the mean square error of extrapolation M1. The ratio
represents the relative reduction in forecasting error. It ranks the
quality of forecasting performance the same way as a rate-of-return
index, in which the return (numerator) is inversely proportional to
the mean square error of forecast, and the cost (denominator) inversely

20 to the mean square error of extrapolation, the latter
representing the difficulties encountered in forecasting a given series.

Benchmarks other than extrapolations could be used when the com-
parison is considered relevant. In this sense, our procedure is general
and the particular benchmark illustrative. However, the justification
for the extrapolative benchmark is that it is a relatively simple, quick,
and accessible alternative; at least the recent history of a variable to
be forecast is usually available to the forecaster. Trend projection is
an old and commonly used method of forecasting, and naive extrapo-

'9TheiI [7, p. 15].
20 With proportionality coefficients fixed across forecasts.
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lation models have already acquired a traditional role as benchmarks
in forecast evaluation.21

It should be noted that the generally used naive extrapolation bench-
marks do not depend on the statistical structure of the time series and
require no more than knowledge of the forecast base. This knowledge,
moreover, is not utilized optimally.22 In contrast, our B assumes, in
principle, that all the available information on past values has been
utilized optimally fo¼r prediction; a best extrapolation being defined
as one which produces a minimal forecast error.

Optimal extrapolations are not easy to construct. In this paper we
use autoregressive extrapolations (to be labeled X) as comparatively
simple substitutes.23 The regression estimates used in producing
benchmarks are derived from values of realizations which are avail-
able to the forecaster in the base period. In this respect, the practical
forecasting situation is reasonably well simulated, including the lim-
ited knowledge that the forecaster has of current and of more recent
data, which are typically preliminary.

THE RELATIVE MEAN SQUARE ERROR AND ITS DECOMPOSITION

We shall call our index of forecasting quality, which is a ratio of the
mean square error of forecast to the mean square error of extrapola-
tion, the relative mean square error, and denote it by RM. If "good"
forecasts are those that are superior to extrapolation, the relative mean
square error provides a natural scale for them: 0 < RM < 1. If
RM > 1, the forecast is, prima facie, inferior.

Since each of the mean square errors entering RM can be decom-
posed into mean, slope, and residual components, it is useful to in-
quire how the components affect the size of RM. Denoting the "lin-
early corrected" mean square errors (or residual components) by
and and the remainders by and we have:

2) An early application of a model test is found in [4]. See also Carl Christ in [2]
and Milton Friedman, "Comment" in the same volume, pp. 56—57, 69, 108—Ill. More
recently, Arthur M. Okun has applied such tests to selected business forecasts in [6,
pp. 199—211]. Furthermore, our index can be seen as a generalization of Theil's "in-
equality index," where B is the "most naive," "no-change" extrapolation [7, p. 28].

22 For recent references from a large and growing mathematical literature which
addresses itself to optimality defined by the mean square error criterion, see P. Whittle
[11] and A. M. Yaglom [12].

23 For a description and evaluation of these models, see Section 111 below.
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(14) .RMC.

If X is a best extrapolation, it must be unbiased and efficient. In that

case, we would expect = and g
=

1, and, therefore,
RMC RM.

The autoregressive extrapolations used in our empirical illustra-
tions may be far from optimal. Moreover, sampling fluctuations tend to
obscure expected relations. Nonetheless, we find in Table 1-4 that
RMC < RM in twelve out of The instances in which
RMC > RM are concentrated in forecasts of industrial production,
where the extrapolations used are apparently well below the envisaged
standard. Similar results are obtained below for predictions with vary-
ing spans in quarterly and semiannual units (Table 1-8, columns 3 and
4).

Judging by the size of RM, most forecasts (six out of nine) studied
in Table 1-4 are superior to autoregressive extrapolations, and all
but one set (this one predicting plant and equipment outlays) of cor-
rected forecasts are superior. The margin of superiority in the cor-
rected forecasts is substantial: Most RMC are less than half. Note that
some forecasts, which would seem inferior on the basis of RM > 1,
are nevertheless relatively efficient judging by RMC < 1.

It is also interesting to note that forecasts perform relatively poorly
in series which are very volatile, hence very difficult to extrapolate,
such as plant and equipment outlays. They also perform relatively
poorly at the other extreme, where the series, being smooth, are quite
easy to extrapolate, as in the case of consumption. In the former case,
however, the inferiority is due mainly to inefficiency, whereas in the
case of consumption, the inferiority is largely due to bias: the RMC
are small.

CONTRIBUTIONS OF EXTRAPOLATIVE AND OF AUTONOMOUS
COMPONENTS TO FORECASTING EFFICIENCY

Thus far, we have viewed extrapolation as an alternative method of
forecasting. In practice, however, P and X are not mutually exclusive.
Extrapolation is likely to be used in some degree by forecasters in



TABLE 1-4. Absolute and Relative Measures of Error, Selected Annual Forecasts
of Four Aggregative Variables, 1953—63

Absolute Error Measures b Relative E rror Measures
Relative

Mean Ratios t&Mean Mean Components
Code and Square Components of M Square Error Square of RM
Type of Error Error

Line Forecast a M U MC UIM MCIM
(1) (2) (3) (4) (5)

RM
(6)

g RMC

(7) (8)

Gross National Product (GNP)

I E Level 279.12 125.05 154.07 .448 .552 1.178 1.444 .816
2 Change 195.52 85.44 110.08 .437 .563 1.074 1.461 .735
3 F Level 78.15 32.90 45.25 .421 .579 .330 1.375 .240
4 Change 56.24 21.65 34.59 .385 .615 .309 1.338 .231
5 G Level 62.85 37.33 25.52 .594 .406 .265 1.963 .135
6 Change 62.55 21.64 40.91 .346 .654 .344 1.260 .273
7 X Level 236.85 48.15 188.70 .203 .797
8 Change 181.98 32.21 149.77 .177 .823

Personal Consumption Expenditures (PC)

9 E Level 100.72 88.94 11.78 .886 .117 2.855 7.613 .375
10 Change 61.84 48.92 12.92 .791 .209 2.314 3.679 .629
11 F Level 30.23 16.78 13.45 .555 .445 .857 2.002 .428
12 Change 20.70 16.46 4.24 .795 .205 .774 3.739 .207
13 X Level 35.28 3.85 31.43 .109 .891
14 Change 26.73 6.20 20.53 .232 .768

Plant and Equipment Outlays (PE)

15 E Level 8.58 .74 7.84 .086 .914 2.480 .908 2.732
16 Change 8.58 .71 7.37 .083 .917 2.124 1.095 1.939
17 X Level 3.46 .59 2.87 .171 .829
18 Change 4.04 .24 3.80 .059 .941

Index of Industrial Production (IP)

19 E Level 36.63 1.79 34.84 .049 .951 .397 .841 .472
20 Change 39.21 9.57 29.64 .244 .756 .540 .81 1 .666,
21 F Level 21.59 .99 20.60 .046 .954 .234 .839 .279

22 Change 13.09 2.71 10.38 .207 .793 .180 .773 .233
23 G Level 23.31 9.63 13.68 .413 .587 .252 1.362 .185
24 Change 18.37 4.61 13.76 .251 .749 .253 .819 .309
25 X Level 92.35 18.47 73.88 .200 .800
26 Change 72.59 28.09 44.50 .387 .613

a Eleven years were covered in all cases except lines IS and 16, when only ten were covered. For more
detail on the included forecasts, see Table 1-1, note a. Code X refers to autoregressive extrapolations used
as benchmarks for the relative error measures (see text).

Lines 1—18: billions of dollars squared; lines 19—26: index points, squared, 1947—49 100. In each
case, M = U + Mc (i.e., the numbers in column I equal algebraic sums of the corresponding entries in
columns 2 and 3).

RM = gRMC. See text and equation 14.
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producing P. Indeed, we can think of every forecast P as having been
derived from: (a) projections from the past of the series itself, (b)
analyses of relations with other series, and (c) otherwise obtained
current anticipations about the future. Write P =

P is a sum of the extrapolative component and a remainder,
the autonomous component PR.

This scheme of forecast genesis leads to a further analysis of fore-
casting quality in terms of two questions: (a) To what extent is the
predictive power of P due to the autonomous component? (b) Does P
efficiently utilize all of the available extrapolative information? These
questions have a bearing on the interpretation of our indexes RM.

It is clear that when RM < 1, useful (that is, contributing to a re-
duction in error) autonomous information must have been applied
in the forecast P. Otherwise, the forecast can do no better than the
extrapolation. We have already seen, however, that even when
RM> 1, the forecast may well be relatively efficient, that is when
RMC < 1. This case again reveals the contribution of autonomous
components to predictive efficiency. In other words, the corrected
forecast and, therefore, P may contain predictive value beyond
extrapolation, even when RM> 1. But what if RMC> 1? Do we then
conclude that P contains no predictive value beyond extrapolation?

It is obvious that such a conclusion is unwarranted in the example
when RMC = 1. Here the mean square error of and of X (assume
XC = X) are the same. But this does not mean that X, unless each
of the predictions produced by the two forecasts are identical. Hence,
in general, so long as differs from X, but RMC = I, P must contain
predictive power stemming from sources other than extrapolation,
while X must contain predictive power not all of which was used by
P. Relating, in multiple regression, both P and X to A, the partial
correlations of P and of X must be positive. Indeed, in the special
case RMC = 1, it is easily shown that these partials must be equal to
one another. For recall the well-known correlation identities:

1 — — (1 2 \!1 — 2 \ — (1 — 2 \(1 — 2A.PX — \ — \1 rApx

It follows that:

(15) RMC= 1

1 — 1 —



26 ECONOMIC FORECASTS AND EXPECTATIONS

For RMC = 1, the equality = must hold. But for PC X,
both partials must be equal to zero. In the general case when RMC 1,

we see from expression (15) that RMC < 1 when > and
RMC> I when <

The fact that > 0 means that the forecast P contains predictive
power based not only on extrapolation but also on its autonomous
component. Indeed, is a measure of the net contribution of the
autonomous component. At the same time, > 0 means that X
contains some amount of predictive power that was not used in P.

P, is not identical with X, and is
indeed inferior to X in terms of predictive power. is thus a meas-
ure of the extent to which available extrapolative predictive power
was not utilized by the forecast P.

Combining (14) and (15), one can now also write:

(16) RM=g 1 —r3p.1

The anatomy of the measure of relative accuracy and its usefulness
are now fully visible. The extent to which P is better than X depends
on:

a. the relative mean and slope proportions of error measured by g.
This is more likely to affect adversely the performance of P than of X.

b. the relative amounts of independent24 effective information con-
tained within P and X (i.e., on and

The above analysis makes it clear that a thorough evaluation of P
cannot rely merely on the size of RM, the ratio of the total mean square
errors. RM may be large, indicating a poor forecast. But P may be
highly efficient (its RMC being small) and, even if it is not, it may still
contain information of value, in the sense of being capable of reducing
forecast errors when introduced in addition to X. This information,
the net predictive value of the autonomous component of the forecast
P, is measured by the partial regardless of the sizes of the other
components.

Table 1-5, columns 1—5, shows, for the selected forecasts, the ele-
ments that enter the function RMC according to equation 15.

The predictive efficiency of P, as measured by the simple determina-
24 Strictly speaking, uncorrelated, since the applied decomposition procedures are

linear.
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tion coefficients in column 4, is typically very high for the level
forecasts (.910 to .995) and considerably smaller, but still significantly
positive (.412 to .846) for changes. There is, however, one particularly
weak set of plant and equipment forecasts of set E, for which these
coefficients are much lower (.667 for levels and .282 for changes, see
lines 11 and 12).

TABLE 1-5. Net and Gross Contributions of Forecasts and of Extrapolations
to Predictive Efficiency a

Coefficients of Determination
Partial Simple

Code and Type
Line of Forecast RMC

(1) (2) (3) (4) (5)

Gross National Product (GNP)

1 E Level .816 .345 .180 .972 .965
2 Change .736 .361 .107 .412 .179

3 F Level .240 .804 .176 .992 .965
4 Change .231 .789 .074 .814 .179

S G Level .135 .873 —.067 .995 .965
6 Change .273 .736 .029 .778 .179

Personal Consumption Expenditures (PC)

7 E Level .383 .694 —.075 .995 .986
8 Change .617 .647 —.389 .442 .042
9 F Level .438 .775 .427 .994 .986

10 Change .202 .822 —.119 .808 .042

Plant and Equipment (PE)

11 E Level 2.732 .007 .344 .667 .783
12 Change 2.704 .038 .531 .282 .650

Index of Industrial Production (IP)

13 E Level .474 .542 .044 .910 .829

14 Change .672 .324 .001 .567 .361

15 F Level .280 .833 .412 .952 .829

16 Change .235 .783 .092 .846 .361

17 G Level .186 .816 .001 .968 .829

18 Change .312 .733 .145 .799 .361

This table includes the same forecasts as those covered in Tables I-I. 1-2. and 1-4. Eleven years
are covered except for lines II and 12, where ten years are covered.
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The correlations between A and X are, as a rule, lower than those
between A and P (compare columns 4 and 5). Also, the coefficients
tend to be much higher for levels than for changes (column 5). Again,
the FE forecasts of set E provide some exception to those regulari-
ties. The values of are very low for changes in GNP and consump-
tion, but significantly higher for changes in production and rather
high for those in plant and equipment outlays.25

The partial coefficients are lower than the simple ones
except for the forecasts of changes in consumption (compare col-
umns 2 and 4). However, all but two of them (those for the FE out-
lays) are significantly positive. On the other hand, the partials are,
with four exceptions, very low and not significant. Only for the ex-
tremely poor forecasts of investment does exceed in all
other instances, the reverse is emphatically true (columns 2 and 3).

The interpretation of these results is as follows: The included fore-
casts of GNP, PC, and IF are more efficient than the autoregressive
extrapolations X, since they show RMC < 1 (column 1). The pre-
dictive efficiency of these forecasts is attributable in large measure
to (autonomous) information other than that conveyed by the extrapo-
lations, as indicated by the relatively high coefficients (column 2).
The extrapolations contribute very little to the reduction of the re-
sidual variance of A, which was left unexplained by these forecasts,
as indicated by the very low coefficients in columns 3 (the two
exceptions here are the level forecasts F for consumption and pro-
duction, see lines 9 and 15). This is not to say that forecasters do
not engage in extrapolation. It means, rather, that whatever extrapo-
lative information (X) was available was already embodied in P.

For the FE forecasts of set E, the situation is almost reversed. Here
RMC > 1, and is not significantly different from zero, but is;

and, for changes, is even larger than (lines 11 and 12).
To sum up the findings in Table 1-5: With the exception of PE

forecasts, autonomous components significantly contribute to the
predictive power of forecasts. At the same time, again with the ex-

25The coefficients rix for changes in GNP, in PC, and inIP are .179, .042, and .361,
respectively. For PE, the coefficient rix is .650.

There is, of course, only one value of (or of for any given series covered
(levels or changes). For convenient comparisons, some of these values are entered more
than once in column 5.
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ception of FE forecasts, business forecasts P seem to exploit most of
the extrapolative information available in X. Since is small,
there is an almost perfect (inverse) correlation between and RMC.

RMC is, therefore, a good index of the contribution of autonomous com-
ponents to forecasting efficiency of P. Indeed, significant contributions
of autonomous components are reflected in RMC below unity.

III. FORECASTS AS EXTRAPOLATIONS

EXTRAPOLATIVE COMPONENTS OF FORECASTS

Table 1-5 and other evidence suggested that most of the predictive
value contained in extrapolations was exploited by forecasters in P.
This does not mean, however, that extrapolations necessarily are an
important ingredient in business forecasting. To the extent that they
are important, extrapolation errors (A — X) are an important part of
forecast errors (A — P), and the analysis of the predictive performance
of extrapolations is useful in evaluating the quality of forecasting P.

In order to establish the empirical relevance of extrapolation error
in appraising forecast errors, we first inquire about the relative im-
portance of extrapolation in generating the forecasts P. Next we pro-
ceed to a closer study of extrapolations and their forecasting prop-
erties. The conclusions are in turn applied to the analysis of forecast
errors.

Since a good extrapolation is expected to be unbiased and efficient,
the mean and slope components are not likely to be attributable to
extrapolation errors. We, therefore, restrict our question to the role
of extrapolation in generating the adjusted forecast If X is the
extrapolation, the question can be answered by the coefficient of deter-
mination These coefficients are shown in column I of Table 1-6.

We may note that underestimates the relative importance of
extrapolative ingredients .in P. This is because our autoregressive

26 Our statistical procedures, which measure the net contribution of the forecast to
predictive efficiency by and the importance of extrapolative components in gen-
erating the corrected forecasts by classify as extrapolative all the autonomously
formulated forecasting which is collinear with extrapolation. We implicitly treat as
autonomous only those elements of P6 which are uncorrelated with
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benchmark X does not necessarily coincide with the extrapolative
component contained in P, even if it was arrived at by linear auto-
regression: The implicit weights allocated to the various past values
of A in formulating P1 may be different from those which determine X.
Our X is the systematic component in the autoregression of A on its
past values. The best estimate of however, is the systematic com-
ponent of the regression of P on the past values of A:

(17) = a + + . . +

The residual in (17) is an estimate of the autonomous component
in P; the systematic part of (17) is an estimate of the extrapolative
component The coefficient of determination measures the
relative importance of (autoregressive) extrapolation in generating
jOC• Clearly, is an underestimate of since P1 is a linear combi-
nation of the same variables as X, but the coefficients in are deter-
mined by maximizing the correlation.

As a comparison of columns 1 and 2 in Table 1-6 shows, there is
actually little difference between the two measures and es-
pecially in the GNP forecasts. Extrapolation is an important ingre-
dient in all forecasts of levels. Trend projection is a common, simple
method of forecasting. It is not surprising to find the extrapolative
component of forecasting to be more important when the trend is
stronger and the fluctuations around the trend in the series are less pro-
nounced. As shown in Table 1-6, the relative importance of extrapo-
lative components is greatest in consumption, least in industrial pro-
duction and plant and equipment. And, by the same token, forecasts
of change contain much less extrapolation than forecasts of levels.

Regression (17) constitutes an orthogonal decomposition of the fore-
cast P into an extrapolative component P1 and autonomous com-
ponent = 6. The net contribution of each to forecasting efficiency
can, therefore, be measured by the simple coefficients of determination

2 2rAo
and Moreover, since + = the ratios and —j--

— can be used to measure the relative contribution of each corn-

ponent to the forecasting power of
These absolute and relative coefficients of determination are shown
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TABLE 1-6. Extrapolative and Autonomous Components of Forecasts: Their
Relative Importance in Forecast Genesis and in Prediction

Line
Code and Type

of Forecast '1p
(5)

'18

(6)

Gross National Product (GNP)
1 E Level .983 .984 .967 .005 .995 .005
2 Change .002 .064 .001 .411 .002 .998

3 F Level .968 .968 .976 .016 .984 .016

4 Change .046 .078 .097 .717 .119 .881

5 G Level .987 .988 .978 .017 .983 .017

6 Change .063 .091 .110 .668 .141 .859

Personal Consumption Expenditures (PC)

7 E Level .991 .991 .994 .001 .999 .001

8 Change .003 .481 .032 .410 .072 .928

9 F Level .987 .987 .994 .000 1.000 .000
10 Change .039 .097 .023 .785 .028 .972

Plant and Equipment Outlays (PE)

11 E Level .775 .923 .481 .186 .721 .279

12 Change .289 .289 .362 .060 .856 .143

Index of Industrial Production (IP)

13 E Level .950 .968 .880 .030 .967 .033

14 Change .143 .143 .022 .545 .039 .961

15 F Level .851 .877 .849 .103 .892 .108

16 Change .116 .255 .152 .694 .180 .820

17 G Level .922 .922 .864 .104 .893 .107

18 Change .066 .145 .242 .557 .303 .697

Note: Forecasts cover eleven years in all cases.

in columns 3 through 6 of Table 1-6. We find that wherever extrapola-
tion is an important ingredient of forecasting (see column 2), its rela-
tive contribution (column 5) to predictive power is also very strong.
Thus the importance of trend extrapolation in predicting levels dwarfs
the autonomous component both as an ingredient and in its relative
contribution to predictive accuracy. The relative importance of autono-
mous components becomes visible and strong in the (trendless and
volatile) predictions of changes.
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Quite reasonably, we may ascribe to forecasters a heavier reliance
on extrapolation whenever it is likely to be relatively efficient.

EXTRAPOLATIVE BENCHMARKS AND NAIVE MODELS

Table 1-6 showed that linearly corrected forecasts of levels very
strongly resemble extrapolations. Thus, aside from mean and slope
errors, which are more properly attributable to autonomous forecast-
ing, errors in forecasting levels consist largely of extrapolation errors.
We proceed, therefore, to the analysis of the predictive properties of
extrapolations.

Different kinds of extrapolation error are generated by different
extrapolation models. Various models have been used in the fore-
casting field, either as benchmarks for evaluating forecasts or as
methods of forecasting. If extrapolation is viewed as a method of fore-
casting, those extrapolations are best which minimize the forecasting
error.27 If extrapolative benchmarks are to represent best available
extrapolative alternatives, the same criterion applies. The same naive
model, therefore, cannot serve for any and all series. The optimal
benchmark in each case depends on the stochastic structure of the
particular series. When the assumptions about the structure of A are
specified, the appropriate benchmarks and their mean square errors
can be deduced.

For example, consider a series A which is entirely random. The best
extrapolation is the expected value of A, and the mean square error of
extrapolation is the variance of A. Our relative mean square 28 is, in

this case:

(18)

Proceeding to the case of serially correlated realizations A, the
simplest specification of the stochastic structure of A is a first order
autoregression:

(19)

where is uncorrelated with has mean zero, and is not serially

27 Minimization of the mean square error is the prominent criterion in the mathematical
literature (see note 22).

28 Note that the randomness of A does not make it unpredictable by means of P. P may
possibly utilize lagged values of another, related random series. Note also that RM =
when P = PC.
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correlated. Here, the mean square error of extrapolation is the variance
of which can be expressed

(20) = = (1 — p2)aj

where p is the first order autocorrelation coefficient in A. The relative
mean square error becomes:

(21) RM= (1—p

It is easily seen that expression (21) holds in the more general case,
with p as the multiple autocorrelation coefficient, when the series to
be predicted has the following linear autoregressive structure:

(22) = a + + . +

Specification (22) is not necessarily the best or even a sufficiently
general assumption about the stochastic nature of most economic time
series. However, it can easily be generalized into a polynomial func-
tion with power terms for the various A's including time and its
powers as variables.

(23)
k=1 i=I

The relative mean square error (21) remains of the same form in this
generalized case. In all cases, RM is a criterion which takes into ac-
count the difficulty in extrapolating: The larger the variance of the
series and the smaller the serial correlation in it, the more difficult it
is to extrapolate. The denominator of RM, the benchmark for is

precisely the product of these two factors.
It might seem that a best benchmark derived from an optimal ex-

trapolation is too stringent a criterion of forecasting quality. Recall,
however, that forecasts contain (autonomous) information in addition
to extrapolation. A good forecast is one which exploits all available
knowledge, not just the past history of the series A. In terms of our
criterion, good forecasts should exhibit RM < 1, even when the bench-
mark is optimal.

Naive models are benchmark forecasts which have been con-
structed as shortcuts for purposes here under consideration. Indeed,
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the present discussion is an extension of the ideas underlying this
construction.29

(Ni) and

(N2) = + — +w1.

The first of these models projects the last known level of the series
(say, that at t) to the next period (t + 1); the forecast here is simply

= The second model projects the last known change one
period forward, by adding it to the last known level; in this case, the
forecast is = + It is clear that these models are special
cases of the general autoregressive model (22). For example, N I as-
sumes that in (23) equals one, and all other coefficients equal zero.
The naive models obviously exploit only part of the information con-
tained in the given series.

While some knowledge of the structure of the series may suggest
a preference for one or the other of the two naive models,3° it should
be clear that neither is in any sense an optimal benchmark. In fact, no
claim was ever made on behalf of these models that they can serve
such a function. They are simply very convenient, and can serve as
sufficient criteria for discarding inferior forecasts. But they cannot be
used alone to determine acceptability of the forecasts, even in the
restricted sense here proposed.

Table 1-7 shows that the root mean square errors of the naive models
N I and N2 are substantially greater than those of the linear autoregres-
sive models X for each of the four variables covered in this study
(compare the corresponding entries in lines 1—8 and 9—16, columns
1 and 2). The margins of superiority of X are large, except for in-
dustrial production. N 1 is slightly better than N2 for plant and equip-
ment outlays; it is worse than N2 for the other variables (compare
columns 1 and 2, lines 9—16).

N 1 shows substantial biases for GNP and consumption, but not for
investment and industrial production (Table 1-7, column 3, lines 9—16).

29 See note 21. An interesting application of a particular autoregressive model as a
testing device is found in [1, pp. 402—409]. (These tests use exclusively comparisons of
correlation coefficients.)

30 If a first order autoregression holds (as in equation 19), then N I can be shown to
be more suitable than N2. If the autoregressive structure is of a higher order (with more
lagged terms), N2 will likely do a better job than NI.
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The bias proportions for N2 are negligible for levels but fairly large
for changes in GNP, consumption, and production (only in the last
case is N2 more biased than Ni; see columns 3 and 4, lines 9—16 in
Table 1-7). The autoregressive extrapolations, which are virtually all
unbiased, are on the whole definitely better in these terms than either
of the naive models.

TABLE 1-7. Accuracy Statistics for Autoregressive and Naive Model Projections of
Annual Levels and Changes in Four Aggregative Variables, 1953—63

Line
Predicted
Variable a

Proportion of
Root Mean Square Systematic Error

Error

Correlation with
Observed Values

(rAy)

Autoregressive Models b
Selected Selected Selected
Model c Range ci Model c Range ci Model c Range

1 GNP Level 15.39 15.39—18.12 .203 .07—.28 .982 .977—982
2 Change 13.49 13.49—15.23 .177 .09—.27 .424 .018—424
3 PC Level 5.94 5.94— 6.40 .109 .l1—.23 .993 .993

4 Change 5.17 5.17— 5.33 .232 .23—.30 .204 .204—427

5 PE Level 1.86 1.86— 2.32 .171 .12—.20 .885 .808—885

6 Change 2.01 2.01— 2.42 .059 .0i—.07 .806 .567—806

7 IP Level 9.61 9.61—11.23 .200 .09—.36 .911 .865—911

8 Change 8.52 8.52— 9.81 .387 .14—.48 .601 .200—601

Naive Models

Ni N2 Ni N2 Ni N2

9 GNP Level 24.60 19.34 .657 .195 .981 .972
10 Change 23.96 17.46 .664 .527 0 .460
11 PC Level 13.68 8.77 .881 .206 .995 .986
12 Change 13.67 7.64 .876 .669 0 .319
13 PE Level 2.23 1.65 .144 .208 .824 .915
14 Change 3.46 1.66 .050 .007 0 .379
15 1P Level 10.58 11.78 .154 .324 .883 .882

16 Change 9.75 10.36 .268 .553 0 .512

GNP = gross national product; PC = personal consumption expenditures; PE plant and equipment
outlays; tP = index of industrial production.

For explanation of the general form of autoregressive models, see equation (24) in the text.
Five-lag models for GNP and industrial production and two-lag models for consumption and plant and

equipment outlays were selected on the basis of minimum M5. For a description of these models, see p.
34ff.

Refers to the results for models with varying numbers of lagged terms (from one to five quarters), as
estimated for each of the variables covered.

Naive model N I extrapolates the last known level of the given series, N2 extrapolates the last known
change. See the text below.
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Finally, the highest correlations with observed values obtained for
the X models exceed those for Ni and N2 in most instances, but the
differences here are often small (Table 1-7, columns 5 and 6, lines
1—8, compared with lines 9_16).31 This is not surprising, since corre-
lations for N models are equivalent to X models with one or tw9 lagged
terms. The correlations based on levels are high for both N 1 and N2
but those based on changes are, of course, always zero for the N 1
model, which assumes that the change in each forecast period is identi-
cally zero.

To sum up, the differences in predictive performance between the
extrapolative models reflect the differences in statistical structure of
the series to which the models are applied. Thus, for series such as
GNP, IP, and PC, which are fairly smooth and have persistent trends
(are highly autocorrelated), N2 proves to be superior to Ni. For the
more cyclical and irregular series, such as PE (which are less strongly
autocorrelated), N2 is, on the contrary, the inferior one.32 But for all
four series X has a better over-all record than either Ni or N2. In-
deed, only one lagged term in the X model suffices to achieve superior-
ity over Ni, since in that case X is identical with a linearly corrected
Ni.

EMPIRICAL AUTOREGRESSIVE BENCHMARKS

In practical applications it is difficult to specify and to estimate the
autoregressive extrapolation function. If specification (22) is assumed
to be correct,33 the best estimate is obtained by a linear least-squares
fit of to past data.34

(24) = a + + + v1.

The prediction made at the end of the current year t for the next year
t + I then takes the form:

(24a) = a + + b2A1_1 . . + 0;

31 Large margins in favor of X are found for industrial production and changes in PE
outlays only. Model N2 shows slightly higher correlations than X in two cases (GNP
changes and PE levels) and Ni in one case (consumption).

32 Note that such series have greater frequencies of turning points, it is also clear
that N I produces smaller errors than N2 at turning points.

:13 For experiments with the more general specification (23), see [3].
34See [10, pp. 173—220].
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and

= — is the extrapolation error.

Given (24a) and realizations for n periods, the estimated mean square
error of extrapolation is:

(21a) _At+i)2.

If the extrapolation Xis unbiased and efficient, the form of its mean
square error is the same as the denominator in (21); since

(21b) = (1 — 'Si.
Note, however, that the correlation between A and A, is not the
same as the multiple correlation coefficient implicit in (24). Only if
specification (22) were a correct description of the population, and the
sample large enough, would the value of rAx approximate Given,
unavoidably, a less than optimal specification, is likely to over-
estimate, and rAx to underestimate, the proper parameter p in the
mean square error of the "ideal" (optimal) benchmark. The rela-
tive mean square errors based on (21a) constitute, therefore, less than
maximally stringent benchmark criteria.

Regressions (24) were fitted to data beginning in 1947 and ending
in the year preceding the forecast.35 Quarterly, seasonally adjusted
data were used to derive corresponding extrapolations. Annual ex-
trapolative predictions were computed by averaging the extrapola-
tions for the four quarters of the target year.36

The question of how many lagged terms to include in (24) in order
to produce extrapolations could be answered, in principle, if we had
confidence that specification (22) is, indeed, the best. In that case we
could adopt the rule that we add successively more remote terms to

35That is, the period of fit for the 1953 forecast was 1947—52, and so on, ending with
the forecast for 1963 based on the fit to the data covering the period 1947—62. In these
computations, data on the levels of the given series were the forecasts of changes
were derived from those of levels.

The value of A in the last quarter of the current (base) year was also derived by
extrapolation, since it is typically not known to the end-of-year forecaster. This is
especially true for series available only in quarterly rather than monthly units, such
as GNP and components. For the PE series, however, anticipations of the fourth quarter
and the following first quarter are available from the Department of Commerce—Securi-
ties and Exchange Commission surveys, and have been used.
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the right hand side of (24) until we used At_k, such that the additional
set At_k_I to (in our case, t — n is 1947) yields no further increase
in the adjusted multiple correlation coefficient

In practice, again, maximization of will not necessarily minimize
Experiments with stopping rules on autoregressive equations

(24) of successively higher order showed that the addition of longer
lags does reduce the over-all extrapolation error in some cases where
it does not increase ,E. Such reductions, however, are, on the whole,
small. The experiments indicate that the smallest extrapolation errors
are obtained by using five-term lags for GNP and industrial produc-
tion, and two-term lags for consumption and plant and equipment ex-
penditures.37

Table 1-7 (columns 3 and 4, lines 1—8) shows the proportions of
systematic error in the extrapolative forecasts and the co-
efficients of correlation between the extrapolated and observed
changes (rAx). As would be expected, the autoregressive predictions
are largely free of significant biases: the systematic components are
small, not only for the models selected here but typically also for
those with fewer or more lagged terms in the range covered in these
tests.38 The correlations rAx are high for the autoregressive predictions
of levels, but (except in the case of investment) rather low for changes.
Here the results often differ considerably, depending on the number
of the lagged terms included in the models. But the models selected,
which are those with the lowest values, also turn out, with only
one exception, to be the models with the highest r4x values (compare
columns 5 and 6, lines 1—8).

We conclude that the autoregressive extrapolations, while not
necessarily optimal, show a substantial margin of superiority over the
usual naive models. This is partly because the former are less likely
to be biased than the latter, and partly because they are more efficient.
A relatively small number of lags is sufficient to produce satisfactory
benchmarks in terms of minimizing

It should be noted that these particular conclusions are based on the entire forecast
period 1953—63. The choice of numbers of lagged terms is thus ex post, utilizing more
information than was available to the forecaster. But, as Table 1-7 shows, the effects of
varying lag periods on the mean square extrapolation errors are rather small, at least in
the selected data.

Only for the changes in industrial production did some of the X models yield sig-
nificant bias proportions.
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EXTRAPOLATION ERRORS IN MULTIPERIOD FORECASTING

Consider a series that has an autoregressive representation (22).
Suppose that, in addition to extrapolating one period ahead, we also
want to extrapolate any number (k) of periods ahead: It can be shown
that an optimal (in the sense of minimum extrapolation error) extrapo-
lation at t — k for k spans ahead is achieved by substitution of the as
yet unknown magnitudes in the autoregression (22) by their extrapo-
lated values:

(25) tAl_k = 135(t_IAt_k) + /32G_2A1_k) . . +

/3 kA 1-k + /3k+lA

For example, let k = 2: We substitute

= a + /31A1_2 + f32A1_3

into

(22a) A1= a+/31(A1_1 + +• . . +

obtaining

(26) A1 = a (1 + /3k) + + /32)A1_2 + (131/32 + f33)A1_3

+ (J3i€t_i E1).

According to (26), the mean square error of extrapolation in pre-
dicting A1 at time t — 2 is the variance of + Given the
stationarity assumptions underlying the autoregressive model (22),
which state that El is not serially correlated and that the variance
of El_k 15 the same for all k, we have:

(27) = (1 +

It can be seen, by similar substitutions, that the mean square extrapo-
lation error for any span (k) is equal to:

(28) hMX = (1 + + + • + .

40

=
$çy1_3, (with Yo = 1).

For a sophisticated mathematical treatment of this topic, see [II].
For the derivation and a more intensive study of these patterns and their implica-

tions in forecasting see Mincer's "Models of Adaptive Forecasting" in this volume.
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We see that in stationary linear autoregressive series, the extrapola-
tion error kMX increases with lengthening of the span k. The rate at
which the predictive power of extrapolations deteriorates as the target
is moved further into the future depends on the patterns of coefficients
in the autoregression (22) (see reference in footnote 40).

To the extent that forecasts P rely on extrapolations, and the latter
are based on, or can be represented by, linear autoregressions, we
would expect their accuracy to deteriorate with lengthening of the
span. There is, indeed, ample evidence that forecasts deteriorate with
lengthening span.

This can be seen in Table 1-8, where mean square errors of fore-
casts kMp and of extrapolation kMx increase with span k (columns 1
through 4). As in the previously observed case k = 1, we now also
find that forecast errors are generally smaller than extrapolation
errors in multispan forecasting.

Accordingly, the relative mean square errors are, without excep-
tion, less than one (column 5). On the whole, the RM indexes are
larger for changes than for levels, indicating that forecasts have a com-
parative advantage in predicting levels, regardless of span.

The mean square errors of forecasts and of extrapolations increase
with span, as we expected. An interesting question is: Do forecasts
or extrapolations deteriorate more rapidly? The answer is given by the
RM indexes in Table 1-8 (column 5), which show a tendency to in-
crease with span. With the exception of quarterly GNP forecasts
(lines 1—8), this regularity is more closely observed in the corrected
relative mean square errors RMC (column 6).

Looking further into the components of RMC =
1

we see
1 —

that the partials rApt decline with the extension of span (column 7),
while rAx.p increases (column 8). Evidently, the contribution of the
autonomous component of P to predictive efficiency tends to decline
in longer-span forecasts. At the same time, the degree to which fore-
casts fail to utilize the predictive power of extrapolations tends to
increase with lengthening of the span.

Our finding that the autonomous components of forecasts deter-
iorate with span faster than the extrapolations can be explained by
the following: Consider the ingredients of general economic forecasts.
In addition to extrapolations of some kind, forecasters use relations
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between the series to be predicted and known or estimated values of
other variables; various anticipatory data, such as investment inten-
tion surveys and government budget estimates; and, finally, their own
presumably informed judgments. Each of these potential sources of
forecast is subject to deterioration with lengthening span. The fore-
casting relations between time series involve lags of various lengths.
Typically, the relations weaken as the lags are increased. Most indi-
cators and anticipatory data have relatively short effective forecast-
ing leads beyond which their usefulness declines. Informed judgments
and estimates will probably also serve best over short time ranges.
Hence, a hypothesis that P would tend to improve relative to X for
the longer spans may well be contradicted by the data, and apparently
often is, according to Table 1-8.

Evidence presented elsewhere indicates that similar results are also
obtained in comparing forecasts with certain simple trend extrapola-
tions: The errors of forecasts tend to increase more than the errors
of these extrapolations. Relative to the naive models Ni and N2,
however, the performance of most forecasts improves with extensions
of the span.4' Clearly, these models fail to provide trend projections.

Such projections become more useful with lengthening of span.
Forecasts do in part incorporate trend projections. Still greater re-
liance on them might improve forecasting performance in the longer
spans.

SUMMARY

This study is an exposition of certain criteria and methods of evalu-
ating economic forecasts, and provides examples of their empirical
application. The forecasts are sets of numerical point predictions,
classified by source (individuals or groups), subject (time series for
aggregative economic variables), and span (time from issue to target
date).

Analysis of absolute forecast errors proceeds from a simple scatter
diagram and a regression of realizations on predictions. A forecast is
unbiased if the mean values of the predictions and the realizations are
equal, that is, if the average error is zero. It is efficient if the pre-

Zarnowitz [13].
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TABLE 1-8. Comparisons of Forecasts and Extrapolations for Varying Spans,
195 3—63

Relative
Mean Square

Error
Partial

Span RM RMC Correlation

Line
Code and Type

of Forecast a

of
Fore-
cast b

k

Mean Square Error (col. I (col. 2
÷ ÷

col. 3) col. 4)
(5) (6)

Coefficients

r4py
(7) (8)

kMP kMcp kMX
(1) (2) (3) (4)

A. Gross National Product

Quarterly forecasts,
1953—63

Forecast G (20)
1 Level 1 83.6 68.5 205.2 160.6 .407 .427 .771 —.228

2 Level 2 99.5 62.3 340.3 247.2 .292 .252 .873 —.234
3 Level 3 243.0 223.1 512.3 498.6 .474 .447 .751 —.162
4 Level 4 306.4 91.5 446.6 311.4 .686 .294 .840 .048

5 Change 1 36.9 29.3 52.7 44.0 .700 .666 .589 .138
6 Change 2 89.0 71.1 119.5 100.0 .744 .712 .614 .352
7 Change 3 306.8 252.0 377.0 377.0 .814 .668 .599 .079
8 Change 4 211.4 136.7 221.0 191.4 .957 .714 .614 .357

Semiannual forecasts, .

1955—63

Forecast D (16)

9 Level 1 160.0 87.6 265.0 186.6 .604 .470 .728 .048
10 Level 2 327.1 211.3 429.8 288.7 .761 .732 .562 .254

II Change I 67.1 61.9 143.9 107.0 .466 .579 .649 .020
12 Change 2 223.0 181.2 273.2 203.6 .816 .890 .390 .217

Forecast G (16)
13 Level 1 79.5 45.5 265.0 186.6 .300 .244 .888 —.360
14 Level 2 169.0 87.2 429.8 288.7 .393 .302 .836 —.016

15 Change 1 53.2 38.0 143.9 107.0 .370 .355 .804 .075

16 Change 2 179.1 99.2 273.2 203.6 .656 .487 .719 .097

(continued)
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TABLE 1-8 (concluded)

Relative
Mean Square

. Error
Partial

Span RM RMC Correlation

Line
Code and Type

of Forecast a

of Mean Square Error
Fore-
cast b kMp

k (1) (2) (3) (4)

(cot. I (col. 2
÷ ÷

cot. 3) cot. 4)
(5) (6)

Coefficients

(7) (8)

B. Index of Industrial Production

Quarterly forecasts,
1953-63

Forecast G (19)
17 Level 1 14.4 10.3 68.6 60.4 .210 .171 .922 —.352
18 Level 2 25.4 20.0 100.3 80.9 .253 .247 .868 .002
19 Level 3 88.4 36.4 113.9 94.1 .776 .387 .786 .121
20 Level 4 73.7 52.3 163.0 108.8 .452 .480 .730 .165

21 Change 1 9.9 9.0 18.9 18.4 .524 .488 .743 .287
22 Change 2 23.8 23.6 51.1 40.1 .467 .588 .698 .356
23 Change 3 49.9 45.9 83.2 59.3 .600 .773 .593 .402
24 Change 4 76.5 66.8 126.6 79.1 .604 .845 .528 .383

Semiannual forecasts,
1955—63

Forecast D (16)
25 Level 1 29.1 29.1 85.9 78.9 .339 .369 .764 .104
26 Level 2 69.7 69.7 165.8 123.3 .420 .570 .667 .382

27 Change 1 32.3 32.3 56.4 49.0 .573 .659 .537 .262
28 Change 2 75.7 75.7 136.4 94.4 .555 .802 .455 .369

Forecast G (16)
29 Level 1 18.0 14.9 85.9 78.9 .210 .189 .901 —.069
30 Level 2 70.3 55.9 165.8 122.3 .424 .457 .751 .210

31 Change 1 40.0 17.2 56.4 49.0 .708 .352 .808 .114
32 Change 2 75.6 64.4 136.4 94.4 .554 .682 .615 .300

a Number of predictions for each forecast set per span is given in parentheses.
Quarterly forecasts refer to levels and changes in the given series one, two, three, and four quarters

following the quarter (base period) in which the forecast was made. Semiannual forecasts refer to levels
and changes in the series one and two halves following the half (base period) in which the forecast was made.
Changes are computed from the base period to the relevant quarter (or half).

Lines 1—16, billions of dollars squared; lines 17—32, index points squared (1947—49 100).
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dictions are uncorrelated with errors, so that the slope of the re-
gression equals unity. A convenient summary measure is the mean
square error, which includes the variance of the residuals from that
regression as well as two other components reflecting the bias and
inefficiency of the forecast, respectively. The mean component is
zero for an unbiased forecast, and the "slope component" is zero for
an efficient forecast; hence, if the predictions are both unbiased and
efficient, the mean square error reduces to the residual variance.

In dealing with limited samples of predictions and realizations, sta-
tistical tests are necessary to ascertain whether the forecasts are
significantly biased or inefficient, or both. Measures of accuracy and
decomposition of mean square errors are presented for several sets of
business forecasts, along, with test statistics for lack of bias and for
efficiency. Bias is found most often in predictions of GNP and con-
sumption. The residual variance accounts for most of the total mean
square error, while the slope component is the smallest.

Another fact revealed by the accuracy analysis of forecasts of
changes is the tendency to underestimate the absolute size of changes,
a tendency reported in other studies. This tendency may be due to
underestimation of levels in upward-trending series, or to an appar-
ent underestimation of the variance of actual changes. The latter is
theoretically implicit in efficient forecasting and is, therefore, not in
itself a forecasting defect. In the forecasts examined here, however,
it is the underestimation of levels that mainly accounts for the observed
underestimation of changes. There is also evidence that increases
in series with strong upward trends are likely to be underpredicted, but
this is not so for decreases in series with little or no such trends. In
short, the one established phenomenon is tendency toward a con-
servative estimation of growth prospects.

Extrapolations of past values are relatively simple and inexpensive
forecasting procedures which can be.deflned and reproduced. A fore-
cast may be judged satisfactory according to its absolute errors; but
if a less costly extrapolation is about as accurate, the comparative
advantage is on the side of the extrapolation. We compared forecast
errors to extrapolation errors in the form of a ratio of the two mean
square errors. This ratio, the relative mean square error, can thus be
viewed as an index of the marginal rather than total productivity of
business forecasting. Moreover, it provides a degree of commensura-
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bility for diverse forecasts whose absolute errors cannot be meaning-
fully compared.

Optimal, that is predictively most accurate, extrapolations are diffi-
cult to construct. As convenient substitutes, we use autoregressive
extrapolations of a relatively simple sort, based on information avail-
able to the forecaster. Unlike the naive models, which have been
widely used as standard criteria of forecast evaluation, the autore-
gressive benchmarks take partial account of the statistical structure
of the time series to be predicted. They are largely free of bias and
definitely superior to the naive models.

It is possible for a forecast to be less accurate than the benchmark
extrapolations, yet to be superior after correction for bias and in-
efficiency. Even without such corrections, our collection of forecasts
shows a consistently greater accuracy than autoregressive predic-
tions.42 The margin of superiority is increased when corrected fore-
casts are compared to corrected extrapolations.

Extrapolation is an alternative, but not an exclusive, method of fore-
casting. It is, to some degree, incorporated in the business forecasts,
and, to that degree, implicit extrapolation errors are a part of ob-
served forecast errors. Our analysis permits us to decompose observed
forecasts into extrapolative and other (autonomous) components, and
to estimate the relative contributions of each to the predictive accu-
racy of the forecast.

It is, of course, the autonomous component that is responsible for
the superior efficiency of forecasts over the benchmark extrapolations.
At the same time, we find that available extrapolative information is
largely utilized by forecasters. The extrapolative component of fore-
casting is clearly more pronounced in strongly trending and relatively
smooth series than in others.

In the final section we extend our accuracy analyses to multispan
forecasting. We compare errors of forecasting one quarter to four
quarters ahead. On the average, forecast errors increase with length
of predictive span. One reason for this is that forecasts consist, in
part, of extrapolations whose accuracy declines for more distant tar-
get dates. However, longer-term forecasts are generally worse than

42 Some other forecasts, however, particularly those for GNP components and longer
spans, were found to be inferior to extrapolative benchmark predictions; see Zarnowitz
[13, pp. 86—104].
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the short ones, when compared with such extrapolations. Evidently,
the predictive power of the autonomous components of forecasts
deteriorates more rapidly with lengthening span. In addition, the po-
tential of extrapolative prediction is utilized to a lesser degree by
the longer-span forecasts. Such forecasts, therefore, can gain from in-
creased reliance on trend projection.
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