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REGEN-COMPUTER PROGRAM TO GENERATE MULTIVARIATE
OBSERVATIONS FOR LINFAR REGRESSION EQUATIONS*

BY YOEL HAITOVSKY AND SIDNEY JACOBS

b the past few years the National Burcachas been giving inereasing emphasis 1o 1 exearch in econometries
and wethodology. As part of this cffort, the REGEN (REgression GENorator) computer program was
dercloped. This program offers the statistician a method of investigating the sampling properties of
estimators when analytical methods fail or when they become more costly than the moderate ('mnpm{-r
time needed for this program. The program uses a Monte Carlo technizue which simulates the taking of
a random sample of multivariate obscrvations which satisfy a linear equation. The wser of the program
may specify the equation. and the wmean. standard errors. distributions. and maocorrelations of the
independent variables and of the crror termi, as well as the correlation between suceessive variables The
commonly nsed distributions are included in the program: moreover provision is made for the nser to
add his own distributions 1o the program. Features inclided in the program arc: lagged variables, multiple
time series. multicollinearity. errors of measurement (superimpozed on independent variablesy. sanipling
from previously simulated populations or from a multiple time series. and aggregation of obserrativns.
Al results of the program can be saved cither temporarily in the internal computer wemory or per-
manently on cards or magnetic tape. This mekes it possible 1o modify previously generated observations
by any of the abore-mentioved iecknigues. Another powerful tacility that wses this retricrability of the
data is the repetition option. which allows previous data 10 be vensed. but in new equattions or with new
error terms. The anthors show low this makes ir possibie to simdate simulianeons cquation problems.

1. INTRODUCTION

Properties of estimators can be derived not only by analytical methods. but also
through experimentation with models with known (or prespecified) structure and
properties. The most commonly used of this class of analyses is the so-called
Monte Carlo method. Its main use in statistical methodology is to investigate
samphing properties of estimators when anaiytical methods fail or are too cumber-
some.' When the statisticianhas thisobjective in mind he may simulate a “universe™
by specifying its structure and parameters. and the distributions of the random
variables appearing in the “universe.”” Then. the “universe™ 1s sampled and the
statisticai technique under investigation is applied to the sanmiple. By repeating the
last step enough times. he can generate the distribution of the estimators under
investigation, from which their sampling properties can be derived.
It is the belief of the authors that the potentiais of the Monte Carlo anatysis
are not fully recognized by most statisticians. Many other statisticians are reluctant
* The authors would like to thank the reading committee: V. K. Chetty. Gregory Chow. Thomas
Sargent. and especially its chairman Franklin Fisher for comments and suggestions that improved
both the program and the paper. We are indebted to Mr. Barry Geller for nis patience and care in
checking the accuracy of test runs of the program and for preparing Section 1V of this paper: and 10
Mrs. Virginia Meltzer for editorial assistance. Finally. we are gratcful to John R. Meyer for his steady
encouragement and support for the project.
' An economic justification for the use of Monte Carlo analysis is given by R. So:nmcr; { l965¥:
“A capital intensive approach to the small saumple properties of various simullan_cgus_cquauon_ esti-
mators.” Ecenometrica 33, 1-41. His arsument is that high power analytical ability is becoming a

scarce resource as compared to the availability of computer time. Thus. rational economic behavior
would involve shifting towards more capital intensive methods.
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to use it because it lacks the clegance and generality of analytical methods. The
authors indeed recognize these limitations and the danger of making erroncous
inferences by investigating only & narrow range of possible structures and param-
cters. Thus there is an additional burden on the nser of the Monte Carlo methods -
the need to investigate a wide range of parameters and many possible combinations
when several parameters are involved. However. the authors belicve that jf
appropriate computer programs are made readily available to the statistician, the
relative ease of applying this “experimental” approach will more than compensage
for the extra work involved in checking a wide range of possibilities,

The specific purpose of REGEN. the compatter program described i this
paper. is to generate multivariate observations which satisfy a linear equation.
These observations m: y serve as cither a sample or a universe for analyzing
estimators of linear regressions. A dependent variable will be construeted as
linear combination of several independent variables plus an error term with
spectfied distribution and parameters. (It will be shown in Section 11 thay this
procedure may be used also to construct systems of structural cquations.) The gen-
erated data will be printed and punched on cards or saved on magnetic tapes. and
will be ready for the application of the estimation technique under investigation.
The program was made flexible enough so that a great variety of struetures and »
wide choiee of parameters and distributions may be postuiited.

The plan of the paper is as follows : a detailed description of the main program
and the available options is presented in Seetion 1L, the tethods used in gencrating
the variables and the random number generators used for this purpose are de-
scribed in Section 111, Seetion [V contains a listing of the input used in a specifie
example and the output generated by it. and finally Section V contains the listing
of the computer algorithm. which also includes the input instructions.

1 DI{S('RH’TION OF THE EFFL"CT OF THE AL(}ORITHM
B[L\'i(' !\(’ i‘(’.S'Si()H Gt’"t’l’(lli())l
£

The program generates random variables XYL Xre by sampling, in effect,
from infinite populations. \''. Y7 represent the independent variables in a
regression. while ¢ is an error vartable whose mean is forced to zero. The user
specifies the number of independent variables p. the number of observations n,
and. for each random variable, the distribution. its mean and standard error.? as
well as the eorrelation r; between the populations corresponding to variables X'
and X' for j =23 P- The uniform. Gaussian-normal, exponential. and
Cauchy distributions are available in the program. Other distributions can easily
be added to the program by the user. (For details. see the comments in the program
listing)

The user can also speeify autocorrelation cocllicients for each independent
variable, that is, correlations between Xiand Xi_ | fori = l...., p. By doing this,
the user generates values which simulate the observations of a time serics. The

* The user is not. kowever. limited 10 distributions whose first anq second moments are defined.
Thus for the Cauchy distribution. the program interprets the two input moments as the center of

symmetry agr_xd the intergnartrile range (the distance between the 25th and 75th percentile). respectively.
of the speeified population. (Samuel S, Wilks. Mathemayical Statistics. 1962, pp. 255-256.)
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number of observations of this time series is an integer £ which is provided by the
user. This number 15 used te subdivide the n observations on cach imlcpcn'dcni
variable X7 and on « into m antocorrelated series with ! ohservations per series.
where mxli = n. Altogether there are mx(p + 1) scries composed of m seis of
{p + 1)-tuples. Thus the program simulates m observational nnits {e.g. mdividnals
or famihes) by providing m multiple time series. cach consisting of { multiple obser-
vations of (p + 1) tuples. Each observational unit is linked through time by the
antocorrelations. which are common to a1l nnits. but may be diflerent for each
variable. Applications are discussed in Sections 3.2 and 4 below. Notice that when
both the vorrelation and autocorrelation options are jointly nsed. i.c.. when auto-
correlated series are to be intercorrelated, the user must choose compatible
specifications (for conditions that must be satisfied cf. Section 3. Step 3).

In addition the user may request that variable X' be lagged by k; observations.
i =1,...,p. These lagged variables will appear (in addition to X', ... Y and ¢)
as NPT X where ¢ is the number of k; that are greater than zero. (1 the
following discussion ¢ if present has been absorbed into j for brevity.)

Once these p variables have been generated. the program then caleulates the
dependent variable Y using the formmnla

v
(1) Y=fl,+ 3 BN + ¢

=1
where regression coeflicients f§,..... 1, and an intercept fi, are supplied by the
user, and each variable X' as well as « is a coluinn vector with » entries.

However, the user may request the program to include among the independent
variables a dependent variable Y lagged by s (>0) observations. We write ¥, for
observation 1 of Y and X! for observation tof X'.1 = 1,...,n. Then. the user muist
also supply initial values Y_,.Y_,....,Y__ for the dependent variable. and
coefticients C,, C;, ..., C, for the autoregressive part. Then for 1 > 0, equuation (1)
becomes

s p
(2) V=8 + ) Yoo+ Y BXi+e
k=1 =1

By the above procedures the program generates a set of observations satistying
the user’s specifications. This much of the procedure will be referred to as a basic
regression generation. After a basic regression generation. the user can (a) request
modifications of it. and/or (b) request another basic regression generation. and so
on. The ouput from a basic regression generation, aund from each moditication
requested, consists of the dependent variable Y, the independent variables X and
the error variable ¢, for each observation. The output can be printed, punched. and
or saved on binary tape at the user’s option.

Maodifications:
1. Multicollinearity

Adjoin one additional variable which is a specitied linear combination of the

independent variables X'. .. .. XP:
|4

rpt+ 1 o Y
XPl = Xut,-,\‘.

i=1

4

N
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Then recalculate the dependent variable Y. using specified regression coeflicients
which may be different from those that were used in the basic regression generation.
This step may be repeated several times iir succession to generate several additiong]
variables thatare linear combinationsof the preceding variables. This moditication
in conjunction with Maodification 2 helow. generates regressions that are useiul in

studying multicollinearity.

2. Errors of Measurement

For each variable X i == | p obtamed in the busic regression generation
{or in the multicollinearity option). generate an ciror variable £ whose distribution
and standard error is specified by the user. Then superimpose this error on the
variable: X' = X* + E The user has the choice, in this modification. of recaleulat-
ing or not recalculating the dependent variable ¥ If Y is not recalculated. Ef can
be regarded as the error of measurement in the variable X' whereas the & variable
mentioned earlier can ke regarded as the error of measurement in the variable Y.
(The user can also specily the mean and autocorrelation of each E', and the
correlation between E'and E°7 ' i = 2. p. but all these are normally zero )

3. Sampling

3.1 Sampling form a single population. The output discussed so far may be
regarded as a random sample from an infinite population. or it may be itself
regarded as the total population. In the latter case. the user can use the sampling
option to request a random sample. of specified sample size. from this total popula-
tion. (This is a special case of 3.2 below.) This can be done repeatedly to simulate
repeated sampling from a fixed population.

3.2. Sampling fromarepeated population over time. This modification considers
the observations obtained by a basic regression generation. or by a previously
executed modification. to be a succession of m: observational units. each unit being
traced over / time intervals (i.e.. a time series of I abservations). For each of the /
time intervals, the program selects a random sanple of the m observational units
and outputs the observations for these units only. The user can request either a
new sample [or each time period or the same sample for all the time perieds. ie..
a panel. The user specifies /, m. and the sample size.

4. Aggregation

This moedification aggregates observations by summing for each time interval
over the observations obtained from a basic 1egression generation or from a
previous modification. This is most likely to be of interest when the observations
were obtained from a basic regression generation using the time series option.

Modifications 3and 4 can be uscfully combined. and applicdto a Monte Carlo
study of regression parameters estimated by pooling time series and Cross-section
data.® This is done by generating time series for each individual in a population.

3Cf J. Durbin. "A. Noie on Regression when 1here is Exirancous Information aboul one of 1he
C olet.hmems.j' Journal of the American Staristical Association. 48 (1958). 799- 808 : V. K Chelly. ~“Pooling
of Time Series and Cross-Section Dara.” Econometrica. Vol. 36. No. 2 (1968). 279-290.
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Aggregation across the population in a given “time interval ™ resuits in aggregative
time scries data. Sampling within a “time interval ™ results in cross sectional
samples.

5. Repetition of Diitu

5.1. In this modtfication the program generates an error vector only, and then
recalculates the dependent variable in accordance with equation (1). using pre-
viously generated values of the independent variables. {These repeated values of
the independent variables may be already in core or may be read into core from a
binary tape that was either created by this program or obtained from another
source.) If the regression coeflicients and the specifications of the error variable are
left the same for each repetition, the process can be interpreted as simulating
repeated samples drawn from the same distribution. However. one can also change
the error specification and regression coefhcients.

5.2. Simultaneous equations. Another application of this option. in which the
regression coefficients are different for each repetition. is to the so-called simulta-
neous equation problem in which ene has a system of equations

(3) YI'=XB+U

in which I is a nonsingular p x p matrix, Yand U are cach t x p matrices, while X
ist x gand Bisg x p. Here each column of the matrix U represents an error term.
If we multiply both sides of (3) by I' ~!. we obtain an equivalent system of equations
called the reduced form:

@) Y=Xn+ UA

where m = B "' and A = '™ ! are respectively ¢ x pand p x p matrices.

To generate this problem with our program. we regard (4) as p distinct
problems, where each problem has the form:

Column i of lefthand side of (4) = column i of righthand side of (4) for

i=1....p

or formally, problem number i is

Yi = X’T[il + + x\,qnf‘ + Ul/\il 4+ ... + L”,A;,
where Y, X/, U* are the ith_jth.and kth t x 1 column vectors of matrices Y. X.and
U respectively (i=1....,p;j=1 g:k=1.....p)and n} and A} are the
entries ip column i, row j of matrices 7, A respectively. Thus problem number 11s
just an ordinary regression (see equation (1)) with dependent variable Y = Y.
constant fi, = 0. ¢ + p independent variables X', X? ... X4 U U’ U”*.
and error term & = 0. and regression coeflicients
(5) Bo=ni By =nh . By = P = AL By = A

if one is interested in including an intercept in (3), ene should interpret X'asa
t x 1 vector of ones. In this case m’ should be input as the (possibly nonzero)
intercept B, for the i-th problem. To generate all the data for the reduced form of the
simultancous equation problem, one runs problem number | with 1its beta
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coethicients (equation (5) with i = [). obtaining ¥' X! S XU UP. Then
one runs successively problems 2. 3 p using the repetition option in each case,
obtaining V2 Y? For each of the p problems one sets the error vector ¢ equal
to zero. by specifying its standard error to be 7ero. . v

Any of these p problems can also include a lagged depcpdcnt variable (sge
equation (2)). In particular. if one wants the same lagged variable to be used in
several of the p problems, one can arrange for the fagged variableto be Y ! generate
YL, ¥', etc.in problem 1. and repeat this lagged variable in any of problems 2,

Fil:mlly. weillustrate how the repetition of data option can be used to generate
a system of equations in which Y? lagged occurs in the 1st equation and Y* lagged
occursin the 2nd equation. For simplicity. assume that there are only two equations
in all. and that they are already in reduced form :

p

(6) Y'=fo+ ¥ pxt 4+ Bos Y20 + 2, U + 4,02

i=1

P
(7) Y2 =9, + Z X'+ fpei YL+ inU' + 4,,U2
i=1
If we lag equation (7) by one observation we obtain an expression for Y2 | which
can be substituted into equation (6), giving

P o 1 P i
6) Y'=p + (Bpri70) + 2 BX + AnU' +4,,U% + Y Bpo 10X,
=1

i=

+ By UL+ Bpirh UL + Bovivpe Y0,

The pair of simuitaneous equations (6), (7) is equivalent to the given pair (6),
(7),and moreover can be generated by REGEN., because Y2 has been eliminated in
{6'). One generates equation (6') as problem 1. in which one also generates Y,
(even though it does not occur explicitly in the equation) along with the other
lagged variables. Then. using the repetition of data opticn. one passes Y! onto
equation (7), which is generated as problem 2.

II. MetHOD OF GENERATING VARIABLES

Once the p independent variables have been generated, the remaining
variables (namely the dependent variable. lagged dependent and independent
variables), samples, and aggregaites are generated in accordance with the formulae
and methods described in Section I1. It remains to describe. in the present section,
the method of generating the p independent variables. The following discussion
also applies to the generation of the error variables E/ used in Modification 2
(see Section II).

For each distribution included in the program. there is a generator. ie. g
subroutine that generates random numbers from that distribution. The mean and

ulation from which the generator draws its random
e subroutine : when referring to the generator specified
ill call them #; and g, respectively. For each variable
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X’,j=1,....p (and for & which the program considers as X?"') the program
invokes the generator for its distribution n times. obtaming random numbers
Xy i=L...n We denote the observed mean of these n numbers by M,. (M;
will be statistically “near™ to ;) ' !

As is well known all the statistics computed from the sample will differ from
the corresponding population specifications. The deviation will depend on the
sample size and on the population specitications. The deviation will be particularly
pronounced when small correlation cocflicients are specified {see R. A. }-‘ishc;.
Statistical Methods for Research Workers. 1925. pp. 81-84) and when large
variances (relative to the same size) are requested. The program is designed to
reflect this situation, so that the observed statistics will be close. but not necessarily
equal to the user’s specifications.

These quantities X;; undergo several operations whose effect is to transform
the column vector X;; so that it meets the user’s specifications for the variable X/.
We use the following notation for the user’s specifications.

XM; mean of j-th variable

S, standard error of j-th variable

A, autocorrelation of j-th variable
R. correlation between X/~ ' and X’

The steps to obtain the variable X7 are as follows:
Step. 1. Calculate the observed mean X ; of X:

= . S,
X;j=XM; +(M; - )2
;
Step 2. Replace X;; by a normalized variable whose observed mean is 0. and
whose expected standard error is 1.0:
Xij=(X;; — Mo,

Step 3. If the time series option is used. an autocorrelation equal to A; is
specified for X’. The interdependence between autocorrelations and intercorrela-
tions is expressed by the restriction

—[10— R0+ 4; )] <A4; < 10— RHIO—A;.)

forj = 2,...,p. Ifthespecified A;does not meet this restriction. it is equated to the
nearer of the two bounds.
Moreover, because of this interdependence. one finds that one must impose an
autocorrelation equal to A} instead of A;, where
AL = A,.
A ={4; - R}A;_)/(0 — R}). j=2....p.
The variable X7 with expected autocorrelation A;. but with expected mean and
standard error unchanged from Step 2. is produced by the replacement :

X, ; unchanged
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Step4. Impose anexpected correlation R between X/and X7~ ! by the replace. |

ment

T e S

Ny= N, R+ ‘\,U\,;‘i"_ Rf

i

p. This alse has the effect of changing the expectey §
autocorrelation of X/ from the value A of Step 3. buck to A as specified, but with-
out disturbing the mean and standard error of Step 3. »

» Step 5. Change the expected mean and standard error of X to the specified
values by the replacement

) L X

]

e e S o

= X8+ X,

J

The simplest illustration of the above operations is for the case where al] the
A/’s and Rj's are zero. Then the net eflect of Steps {5 is the transformation

el t

o , s,
(\"} = _«\’1\/!}- + (1\0- - llj);l

B I S KRSt

Remarks on the Random Number Generators

In the following paragraphs. the particular random number generators
implemented in the program are identified. We emphasize, however, that the user
can incorporate his own generators into the program either in place of or in
addition to those presently in the program. For each generator, one supplies to
the main program the mean and standard error of the distribution, one call state-
ment to the subroutine. and. if appropriate. statements to supply a starting random
number or retrieve the final random number.

The uniform random number generator used by the program is RANNO
(Harvard Computing Center), which employs the power residue method to
generate random numbers between 0 and 1. It allows the program to supply the
starting random number, which is to be specified by the user. In addition to its use
in producing random variables, RANNO is also used to select sample observations
in Modification 3, Section II.

The normal random number generator is GAUS. which applies the central
limit theorem to 12 uniform random numbers obtained from RANNO to generate
one normal number. Subroutine GAUS thus indirectly uses the same starting
random number as RANNO.

The random numbers from the exponential and Cauchy distributions are
obtained from entry points EXPRN and CAUCHY respectively of a subroutine
ORMC, which calls a subroutine FLOAT. The subroutines for these two distribu-
tions were originally coded for the IBM 704 by R. E. Coveyou and J. G. Sullivan
(SHARE distribution No. 743) and have becn slightly modified for use on the
IBM 7094. A version for System 360, with different random number routines will
be available shortly.

IV, Sameie InpuT AND OUTPUT

A sample of the input options and variable parameters (not in input format)
aswell as the resulting output generated from REGEN are shown in Tables Aand B.
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TABLE A
INPUT OPTIONS FOR THE REGRESSION GENERATION PROGRAM
No. of Observations = 20 T
d No. of Variables = 4
h- NEW SAVE PUN COV t.C M SAMP FIXS
! 0 0 0 1 0 0 0 0
S REX TS DB TAPE NOP NOREP LTS
ed 0 0 I I 0 5 0 5
Starting Random No. = 13579
Distribution for Variable 1 2 3 4 S 6 ? 8 9 10
{ 2 3 4 2 0 0 0o ¢ 0
Dependent Variable Lagged by 0 Observations
he Independent Variable No. 1 2 3 4 5 6 7 8 9 Laggedby
0 0 0 0 1] ¢ 0 0 0 Observations
Masimum Lag of Indep. Variables s ¢
No. of Lagged Indep. Variables 1s 0
Specified Means of Independent Varnables
100.000 50.000 1.000 —-20.000
Specified Standard Errors of Independent Variables (Error Term Last)
10000 1000 5000 10000 100.000
Specified Auto-correlations of Independent Variables
0.500 0.595 0.741 0.900 0.000
Rors Specified Correlations Betv.een Successive Variables
ser 0.000 0.900 0.300 0.600
. Regression Coeflicients {Intercept Last)
n 2.000 1.000 20.000 5.000 45.000
to
ate- . . : - . .
bom respectively. Appendix I consists of a listing of the first part of the program, while
Appendix 11 shows the input for the sample problem. The user specifies the fellowing
iO (see Table A):
b to (a) 20 observations on four independent variables are to be generated
the (NEW = 0);
use {b) The observations shall be neither saved on binary tape (SAVE = 0) nor
ions punched on cards (PUN = 0);
¢) Both the covariance and the correlation matrices of the independent
p
tral variables are to be printed (COV = 1);
L Fate (d) No variable which is a linear combination of independent vanables is
- created (L.C = 0) and no errors of measurement are su erimposed on
ting p
any of the independent variables (EM = 0):
are {e) No previously gencrated time series data in core are to be used (SAMP =
1tine FIXS = 0) and thus, no aggregation of previously generated time series
ibu- (€S = 0);
b ivan (f) No generation of the error for repeated use of the data (REX = 0):
the (g) Autocorrelated variables are generated (TS = 1);
. (h) The unadjusted random numbers as gencrated by the random number
will ! ge .
generator are printed (DB = 1), for the first five observations (of the total
20) that are to be printed (NOP = 5):
(i) No printing is suppressed (NOREP = 0) except for the last 15 observa-
tions, and no variables (independent. error, or dependent) are obtained
rmat) from binary tape (TAPE = 0); and
hnd B, (j) Five time intervals of lime series data are requested (LTS = S).

s
]
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Theprogramalso prints the nnmber from which ll.lc r;mdom m.unh.cr gencrator
begims generating random nmmbers (13579) after .whlch the dxslrlblmo.n [Qr cz.ich
‘ariable is shown. As can be scen from Table A variable | has anormal distribution
feode 1). variable 2 has a uniform distribution (2), variable 3 has an exponential
distribiition (3). variable 4 has a Cauchy distribntion (4) and the error variable
(variable 5) has a uniform distributzon (2). There are no lagged variables in the
sample.

The program then prints the parameters of the mdependent variables specitied
by the user. For example. variable 1 has a mean of 100 and a standard error of 10
while the errov term (printed last) has a mean of zero and a standard error of 100,
The anto-correlations of the independent variables as well as the specified cor-
relations between snceessive variables are also printed in Table A. Morcover. the
user-specitied regression coeflicients. which are unsed to derive the dependent
variable. are printed (with the intercept term last).

The generated ontput is shown in Table B. The unadjusted random num bers
as generated by the respective random number generators for cach of the four
independent variables and for the error term are shown for the first five observa-
tions with respective means. variances and standard errors. For example. the
lirst tive observations on variable 1 have mean = —0.32915. variance = 0.72072
and standard error = 0.84895. These random mumbers are then moditied by the
input specitications ontlined above and the resnlting numbers. which conform (o
the input specifications. are shown in the X-matrix of Table B. The Y-vector of
dependent variables (to the left of this X-matrix) is derived by excluding the Jast
column vector of error tenus from the X-matrix. multiplying the remaimng X-
matrix by the vector of pre-specified regression cocfticientsfexcinding the mtercept).
adding the column vector of error terms to this product and finally adding the pre-
specitied intercept value 10 each element of the resulting vector. For example. the
first element in the Y vecior is derived by first adding the products of the elements
of the first row vector of the X-matrix (excInding the last term) and the respective
elements of the column vector of pre-specitied regression coeflicients (excInding
the intercept) and then adding this sum to the sum of the prespecified intercept
value and the first element of the error vector as follows:

—165.23779 = 2(93.64462) + H48.83626) + 20( —4.39606) -+ 5(—38.27237)
+ 45 — 167.0%019

Thus. the X-matrix consists of the generated independent variables and the error
terms (printed last) and the Y-vector is the vector of dependent variables generated
from this X-matrix and the vector of pre-specitied regression parameters.

The program then prints the observed means. vartances and standard errors
of cach of the cutput variables as well as the covariance and correlation matrices of
cach of the fonr independent variables and the auto-correlation coeflicients. For
example. variable 1 has pre-specified mean eqnal to 100 and pre-specified standard
error equal to 10 (see Table A) while the variable I'produced by the program has
mean equal to 95.78670. variance equal to 29.96899 and standard error cqual to
3.47439. 1t should be noted that the diagonal elements of the covariance matrix
imdicate the variance of the ontput variables. while the off-diagonal elements show

52




i_ Lt e s
. . . . . . L L I

3
K
H
3

%«’ﬂ.,’:&m& PSR

their covariances. For example, variable | has variance cqual to 2996924 while
the covariance between output variable | and output variable 2 is shown to be
equal to 269739 (scc Table B). The auto-correlation coeflicients of the output
variables are shown at the bottom of Table B.

TABLE B
Outpur oF THE REGEN PROGRAM BASED 0% IHE INPUT SPECIFICATIONS OF Tapie A

Regression Generation
Urnadjusted Random Numbers

-0.63554 005784 0.13741 -0.81710 0.01768
—-0.88170 0.97590 0.15926 --0.41353 0.03036
0.72417 0.33483 485599 —041580 0.02304
~1.24936 0.22587 0.54992 —0.899i5 0.86497
0.39685 0.33075 0.00791 5.20690 0.98249
Mcan
-0.32915 0.38724 1.14210 0.53226 0.38371
Variance
0.72072 0.12143 4.35134 6.87883 0.24477
Sigma
0.84895 0.348513 2.08599 262275 049474

Regression Generation
Observational Unit No. 1

Y X Matrix
—165.23779 93.64462 48.83626 —4.39606 —38.27237 - 167.08019
—207.85787 90.39138 48.54377 — 5.56651 —41.63328 — 162.68775
—79.44145 102.67194 49.64899 —i.14369 —38.26707 — 16522511
71.60774 91.71927 48.66317 - 508730 —46.03539 126.42891
268.26692 100.50128 4945353 -1.92645 —31.15973 167.13852

Regression Generation

Observed Means, Variances, and Standard Errors

Y X Variables
Mean
—22.53248 95.78670 49.02914 —3.62400 -- 3907357 —40.28513
Variance
37843.89648 24.9689Y 0.24283 388606 29.735(9 29371.88159
Sigma
194.53508 347439 049278 197131 545299 171.38227
Regression Generation
Covariance
29.96924 269739 10.79171 2081854
2.69739 0.24786 097127 187347
10.79171 097127 3.88606 749385
20.81954 187347 749385 29.73514
Correlations
1.00000 099990 1.00000 L.69740
0.99990 100000 0.99985 0.69721
1.00000 0.99985 1.00000 0.6Y713
0.69740 0.69721 0.69713 100000
Auto-correlations
—0.68523 —0.68441 —0.68482 - 095826
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Copies of the REGEN program (decks or print-outs) and related documenta-
tion are available at rnarginal cost from the National Bureau of Economic Rescarch.
Contact Charlotte Boschan. Chief of Data Processing.

The Hebrew University Jerusalem and
National Bureau of Economic Research
National Bureau of Economic Research

APPENDIX |
Listing of the First Part of REGEN Program

INPUT INSTRUCTIONS.

REFER TO STATEMENTS 125 180. 181, 195 THRU 215, AND 345

PROGRAM READS AN OPTION CARD AND ANY SPECIFICATION CARDS
REQUIRED. IT THEN GENERATES DATA SPECIFIED BY THESE CARDS -LE. A
BASIC REGRESSION GENERATION (0 IN COLUMN Y) OR ONE OI' THE MODIFI-
CATIONS DEFINED IN COLUMNS 13 19 (1 IN COLUMN 9). THEN THE PROGRAM
RECYCLES TO STATEMENT 125 TO READ ANOTHER OPTION CARD. AND SO ON.
EXECUTION IS TERMINATED ON READING AN OPTION CARD WITIH Bi. ANKS IN
COLUMNS 1-4,

(1) OPTION CARD
EF IS THE COLUMN NO. OF THE RIGHT-MOST COLUMN OF THE FIELD.
EF  NAME DEFINITION

04 NOBS NO. OF OBSERVATIONS. NCBS+MLX MUST NOT EXCEED 1700

06 NVAR NO. OF INDEPENDENT VARIABLES X. IT DOES NOT INCLUDE
LAGGED INDEPENDENT VARIABLES. LAGGED OR UNLAGGED
DEPENDENT VARIABLES Y. NOR THE ERROR VARIABLE EPSILON.
NYAR + NLX MUST NOT EXCEED 9 BUT NVAR MUST BE AT LEAST
ONE.
=0. REQUEST BASIC REGRESSION GENERATION (BRG).
SPECIFICATION CARDS FOR XM. V. GAMMA IF ITS=1. W. AND
BETA ARE REQUIRED.
=1. REQUESTS MODIFICATION (MOD. OF PREVIOUS BRG OR OF
PREVIOUS MOD  SPECIFIC MOD. S ARE DEFINED IN COLUMNS
13-19.
=2 SAVE X. LAGGED X. LAGGED Y. EPSILON. AND UNLAGGED Y.
IN THAT ORDER. ON BINARY TAPE 9. THIS TAPLE IS REWOUND
BEFORE WRITING.
=1. SAVE THE OBSERVATIONS AS ABOVE. BUT OMIT EPSIL.LON.
=0. DO NOT SAVE THE OBSERVATIONS ON BINARY TAPE.

IPUN =2. PUNCII SERIAL NO. OIF OBSERVATION. X. LAGGED X.
LAGGED Y. EPSILON. AND UNLAGGED Y. IN THAT ORDER. ON
CARDS (USING SYSTEM PUNCH TAPE 7) IN FORMAT (14.8F9.3
{4X819.3)).
=1. PUNCH THE OBSERVATIONS AS ABOVE. BUT OMIT EPSIL.LON
=0. DO NOT PUNCH OBSERVATIONS.
=1. PRINT COVARIANCE AND CORRELATION MATRICES FOR X
VARIABLFS (UNLAGGED AND LAGGED).
=0. OMIT THIS PRINTOUT.
=1 MULTICOLLINEARITY. GIVEN P X-VARIABLES EITHER
ALREADY IN CORE OR READ INTO CORE IFROM BINARY TAPE 9
(SEE ISAVE=2 AND ITAPE =2 BELOW). GENERATE A (P+ 1)ST
X-VARIABILE AS A LINEAR COMBINATION OI' THE OTHERS.

THIS MOD. REQUIRES SPECIFICATION CARDS FOR ALPHA AND
BETA ONLY.

NOTE -USE NVAR=P=+1 IFOR THIS MOD.

=0. IGNORE.
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~1. ERRORS OF MEASUREMENT. GIVEN NVAR PREVIOUSLY
GENERATED VARIABLES. AND EPSILON AND Y. SUPERIMPOSE AN
ERROR VARIABLE ON EACH OF THE NVAR VARIABLES, BUT
LEAVE EPSILON AND Y UNCHANGED. THE PREVIOUSLY
GENERATED DATA MUST BE ON BINARY TAPE 9. AND MAY
HAVE BEEN CREATED BY A PREVIOUS BRG OR MOD.

iSEE 15AVE - 2 BELOW) OR MAY BE FROM SOME OTHER SOURCE
SPECH. CARDS DEFINE THE SPECIFICATIONS OF THE ERROR
VARIABLES. SPECI. CARDS FOR XM. V. GAMMA IF ITS 1.

AND W ARE REQUIRED.

=0. [GNORE.

SAMPLING.

IF GREATER THAN 0. ISAMP IS THE SAMPLE SIZE. FOR EACH
TIME INTERVAL. RANDOMLY SELECT ISAMP OBSERVATIONAL
UNITS. AND OUTPUT THE OBSERVATIONS FOR THESE UNITS
ONLY.

(THE NO. OF TIME INTERVALS IS LTS. Q.V))

USES PREVIOUSLY GENERATED TIME SERIES DATA ALREADY IN
CORE OR READ INTO CORE FROM BINARY TAPE 9 (SEE ISAVE
AND ITAPE BELOW). NO SPECIFICATION CARDS REQUIRED.

=0. IGNORE.

USED IN CONJUNCTION WITH ISAMP GREATER THAN 0.

0. FOR EACH TIME INTERVAL. SAMPLE THE OBSERVATIONAL
UNITS INDEPENDENTLY.

=1. FOR FACH TIME INTERVAL. USE THE SAME SAMPLYE OF
OBSERVATIONAL UNITS.

=1. AGGREGATION.

AGGREGATLE PREVIOUSLY GENERATED TIME SERIES DATA.

(THE NO. OF TIME INTERVALS IN THE TIME SERIES IS LTS, Q.V)
NO SPECIFICATION CARDS REQUIRED.

=0, IGNORE.

—1. REPETITION OF DATA.

GENERATE AN LRROR VARIABLE EPSILON ONLY. USING
PREVIOUSLY GENERATED INDEPENDENT VARIABLES.
RECALCULATE THE DEPENDENT VARIABLE Y.

SPECIFICATION CARDS FOR V. AND FOR GAMMA IF ITS=i ARE
NEEDED. IN WHICH ONLY EPSILON IS DEFINED. IN THE FIRST
FIELD. THESE CARDS ARE FOLLOWED BY THE SPECIFICATION
CARD FOR BETA. IN WHICH ALL NVAR + 1 VALUES OF BETA ARE
GIVEN.

-0, IGNORE.

=1, GENERATE AUTOCORRELATED VARIABLES FOR TIME SERIES
DATA. THE NO. OF TIME INTERVALS 1S LIS Q.V. "THIS OPTION
IS AVAILABLE IN CONJUNCTION WITH BRG (INEW =01 ERROR OF
MEASUREMENT {INEW =1 AND 1EM=11. AND REPETITION OF
DATA (INEW =1 AND IREX=1)

THE PROGRAM GENERATES A COMPLETE SET OF LTS OBSER-
VATIONS ON THE AUTOCORRELATED VARIABLES FOR EACH
OBSERVATIONAL UNIT SUCCESSIVELY. TIHE NO. OF
OBSERVATIONAL UNITS IS GIVEN BY NOU =NOBS LIS THE
AUTOCORRELATIONS ARE SPECIFIED ON THE CARD FOR
GAMMA. Q.V.

=0. IGNORE.

—1 PRINT UNADJUSTED RANDOM NUMBERS AS GENERATED
BY THE RANDOM NUMBER GENERATOR SUBROUTINES. FOR
FRROR OF MEASUREMENT (IEM = 1. ALSO PRINT THE MATRIX
OF ERRORS.

=0. IGNORE.

—7  OBTAIN THE INDEPENDENT VARIABLES. THE ERROR
VARIABLE. AND THE DEPENDENT VARIABLE FROM BINARY TAPE9
FOR FURTHER PROCESSING BY A MODIFICATION (INEW=1)
THIS OPFION IS NOT AVAILABLE FOR A BRG (INEW = 0). AND
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SHOULD NOT BE USED FOR THE ERROR OF il\‘ﬂiAS.L.'Rl{MI{J\f"I;
MOD . WHICH AUTOMATICATLY OB} f\l.\:f\'. DATA{INCILUDING
THE ERROR AVAILABLE FROM BINARY FAPL 4

=1 SAME AS ITAPE=2 ABOVE. BUT IT IS ASSUMED THAT THE
FFRROR VARIABLE IS NOT PRESENT ON THE TAPE.
={0. IGNORE.
AN ODD INTEGER OF 10 DIGITS OR LESS TO BI USED AS THE
STARTING FIXED POINT QUANTITY FOR SUBROUTINES RANNO
AND GAUS (UNIFORM AND NORMAL RANDOM NL!MBIER
GENERATORS RISP.).
ON THE 2ND AND LATER OPTION CARDS. IRN =0 CAN BE USED
TO SIGNAL THE PROGRAM TO CONTINUE WITH THE NEXT
AVAILABLE STARTING RANDOM NO. AS SAVED FROM THE LAST
PRECEDING BRG OR MOD. THE PRINTED OUTPUT SHOWS THE
ACTUAL STARTING NO. USED. SO THAT THE USER CAN
CONTINUE A SERIES OF EXPERIMENTS FROM WHERE HE LEFT
OIF.
THIS FIELD IS IGNORED IN THE MULTICOLLINEARITY AND
AGGREGATION MORS. WHICH DO NOT USE RANDOM NUMBIRS
10 ONE-COLUMN FIELDS. SPECIFYING THE DISTRIBUTIONS OrF
X 1. X 2...._X-NVAR. AND EPSILON RESPECTIVELY.
THE CODES FOR THE DISTRIBUTIONS ARE

I NORMAL

2 UNIFORM

3 EXPONENTIAL

4 CAUCHY
THE MEANS AND STANDARD ERRORS OF THESE DISTRIBUTIONS
ARE GIVEN IN THE LISTING STARTING AT STATEMENT 120.
NOTE IN THE ERROR OF MEAS. MOD., SUPPLY A CODE OF 2 IFOR
EPSILON EVEN THOUGH EPSILON IS NOT AFFECTED BY THIS
MOD.
NOTE --IN THE REPETITION MOD.. ONLY THE CODE FOR EPSILON.
NAMELY NUDIS(NVAR +1). IS USED.

NUMBER OF OBSERVATIONS TO PRINT (OF EACH OBSERVATIONAL

UNIT. IF 1TS=1). IF 0. PROGRAM PRINTS ALL NOBS OBSERVATIONS
(OR ALL LTS OBSERVATIONS OF EACH OBS. UNIT OF TIME SERIES
DATA IF ITS=1)

IF NEGATIVE. NO OBSERVATIONS ARE PRINTED.

=+ 1L SUPPRESS THE PRINTING OF MEANS. VARIANCES AND
STANDARD ERRORS OF VARIABLES (AND OF AUTOCORRELATIONS
IF TS =1y,

=--1 IN ADDITION SUPPRESS THE PRINTING OF THE REPORT
OF INPUT. THIS SUPPRESSES ALJ. PRINTED OUPUT EXCEPT WHAT
MIGHT BE REQUESTED BY THE SETTING OF IDB AND NOBRBSP.

=0. IGNORE.

NUMBER OF TIMFE INTERVALS OF TIME SERIES DATA,

NOTE- UNDER THE SAMPLING OR AGGREGATION MODS.

AN INPUT VALUE OF LTS=0 IS RESET BY THE PROGRAM TO
LTS=1 LE. ONE SAMPLE OR ONE AGGREGATE OBSERVATION
ONLY. RESP. IS TAKEN FROM THE ENTIRE SET or
OBSERVATIONS.

AN INTEGER BETWEEN I AND 8 INCLUSIVE. USED BY THE
MULTICOLLINEARITY MOD. ONLY THE FIRST IQ OF THE
P=NVAR-| PREVIOUSLY GENERATED INDEP. VARIABLES WILI. BE
USED IN OBTAINING A LINEAR COMBINATION.

NUMBER OF TIME INTERVALS BY WHICH THE DEPENDENT
VARIABLE iS TO BE LAGGED. LY LAGGED DEPENDENT VARIABLES
WILL BE OUTPUT WITH 1LAGS OF L2 Ly RESPECTIVELY.

IF LY IS GREATER THAN 0. SPECIFICATION CARDS FOR BY AND
YIN ARE REQUIRED.

=0. NO LAGGED DEPENDENT VARIABLES
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65 72 FOR EACH F= 1.2, NVAR, FOR WHICHE EXtH IS NON-U. GENERAT I ‘
LX(D) LTI INDEP. VARIABLE LAGGED BY LX) INTERVALS AS AN ;
THRU  ADDITIONAL INDEP. VARIABLE :
LX(8)
a5 74 MLX MAXIMUM OF LXI'S ABOVE.
75 NIX NO. OF LAGGED INDEP VARIABLES i =NO. OF NON-O LN(IVS
ABOVE). :
E (1) SPECIFICATION CARDS 5 ~
NO ALL THE CARDS HAVE FORMAT (10FX.3). -
EACH ITEM IN THE NAME COLUMN IS A VECTOR PUNCHED ON A SEPARAT
CARD.
ED NAME MEANING
BY COEFFICIENTS OF AUTOREGRESSION. BY(1). BY12). .. BY(LY}
AST REFER TO Y—1.Y-2....Y—LY RESPECTIVELY. :
HE YIN INITIAL VALUES OF DEPENDENT VARIABLE. Y- 1Y -2, Y - LY
IN THAT ORDER.
FT BY AND YIN ARE INPUT ONLY WHEN LY IS GREATER THAN 0.
M SPECIFIED MEANS OF INDEPENDENT VARIABLES. XM(h 1S THE
SPECIFIED MEAN OF THE [-TH INDEP. VARIABLE.
BERS v SPECIFIED STANDARD ERRORS OF INDEPENDENT VARIABLES.
OF VINVAR+ 1) IS THE SPECIFIED STD. ERROR OF EPSILON,
GAMMA SPECIFIED AUTOCORRELATIONS OF INDEPENDENT VARIABLES

AND OF EPSILON.
INCLUDE THIS CARD ONLY WHEN ['TS- 1

W SPECIFIED INTERCORRELATIONS BFIWEEN SUCCESSIVE
INDEPENDENT VARIABLES. Wiy IS IGNORED. FOR T2 .. NVAR.
Wii) IS THE SPECIFIED CORREEATION BETWEEN THE (1-1ST AND

IONS I-TH INDEPENDENT VARIABLE.
. BETA SPECIFIED REGRESSION COEFFICIENTS FOR THE INDEPENDENT i
F 2 FOR VARIABLES. IF NLX IS GREATER THAN 0. COEFFICIENTS
HIS BETA(NVAR + 1)..... BETAINVAR + NLX) ARE INPUT FOR THE H
LAGGED INDEP. VARIABLES. IN ANY CASE THE INTERCEPT OR
PSILON. CONSTANT TERM IS INPUT AS THE EAST BETA. NAMELY i
BEVA(NVAR + NLX ¢ 1), £
TIONAL ALPHA COEFFICIENTS FOR THE LINEAR COMBINATION GENERATED BY
'ATIONS THE MULTICOLLINEARITY MOD. ONLY ALPHM{) THRU ALPHALQ)
SERIES ARE USED.
Aprpexnix 1
ND :
ATIONS Tuput For Sample Problem .
CPORT 20 4000100000001 1000000CUONN 357912 34200 XKNUOKKN N0 SHOOO0URX00
T WHAT 120. S0. 1. —20.
m 10. 1. 5. 10. 100,
5 6 8 9 0 ¢
9 K 6
2 L. 20. s 45,

20 4120100 30000 100NBOOKONCHUIYIYI GO0 MO RY SHIGOOH RO

To ) >
()L N 1S 41001000001 001 2006000000000000000000UGORXKINOOOOCOD SHKIHKRIXIX)
' S 4000 [00000001 10000G0GR000000T 33791 23420000000HXINN0I0 021 3020000033
5 -.5 .
30 40. 3
100. 0. . =2 4. 3. 2 1. s ¥
‘ILL BE 10. i 5. 10. 100. :
3 6 8 Y B
T 4 3 2 ) 3
RIABLES 2. 1. 20 s, 1. 1. 2 2 -2 43,
Y. 5 71001000000 101 DO000COOCAHNONNNBONONNT TN IONAOKIXKXKK) £
©AND 0. :
2 1. 20. 3. 1. i 2 ?
Bi. ANK v
4
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