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Annals flf Economic <1lul Social Mells!lremelll. ~/4, 1974

FULL INFORMATION INSTRUMENTAL VARIABLES ESTIMATION

OF SIMULTANEOUS EQUATIONS SYSTEMS

BY J. A. HAUSMAN

Tlm?e full informarion eSlimarors--.JSLS, Fl M L, and full infurmmion insrrumenral l'a,iables (fll V)
are compared, based on an insrrumen/ol l'oriablt- inrerprerarion of FlM L In a resr of rhe esrimarors on
Klein .WodeII, 3SLS is used ro form rhe insrrumenrsfor FlIV, and rhe lal/a is irerawl ru compure rhe
FI M L esrimares. An algorirhm is specified for enSllring an increase in rhe likelihood filllcrion ar each
irerarion ofrne FIML esrimaror.

I. INTRODUCTION

Full information estimation of simultaneou5 equation models makes use of all
a priori information and thus provides consistent and asymptotically efficient
estimates of the parameters of the model. Under suitable regularity conditions the
method of maximum likelihood applied to such models attains the Cramer-Rao
lower bound as the sample size becomes large. This estimator, the full information
maximum likelihood (FlML) estimator, in general requires the iterative solution
of a set of nonlinear equations. Therefore other estimators have been proposed.
requiring less computational effort but providing equivalent asymptotic properties.
Zellner and Theil [11] proposed the method of three-stage least squares (3SLS),
and recently Lyttkens [5], Dhrymes [2], and Brulldy and Jorgenson [IJ have all
proposed full information instrumental variables (FIIV) estimators which are also
consistent and asymptotically efficient. Extending my previous work [3], in this
paper I investigate the relation of all three estimators by examining their properties
in the form of instrumental variables estimators.

After specifying the standard linear simultaneous equations model in the next
section, in Section 3 I develop an instrumental variable interpretation of FIML (as
in [3]). This interpretation of FIML permits easy comparison of other estimators
with FlML; it does not require asymptotic expansions that have previously been
necessary. Also, 3SLS and the full information estimator are compared with FIML
by determining how their instruments differ from the FIML instruments. Lastly,
the asymptotic covariance matrix of the FI ML estimates is easiiy determined due
to the instrumental variable form of the estimator.

In Section 4 the recently proposed FIIV estimators are shown to be one step
of the bas:c FIML iteration when it is begliii '.,.,ith a consistent estimate. The
instruments are identical, so that if these estimators are iterated and converge. the
resulting estimate will be the FIML estimate. The iterative property does not hold
for 3SLS, and I show that the essential difference is that 3SLS ignores overidenti
fying restrictions in formation of the instruments. Although by the usual first
order definition of efficiency this difference vanishes asymptotically, in finite
samples there seems no reason to ignore a priori information.

In Section 5 the properties of the three estimators are tested on Klein Model I,
a well-known, three-equation econometric model. The 3SLS estimate is computed
first and then used to form the instruments for the FIIV estimator. The FIIV
estimator is then iterated, and the FIML estimates computeG. ;\s expected, the
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FIIV estimates lie "between" the 3SLS eSiimates and FIML estimates. Even for
the small Klein Model I the point estimates of the three models differ sUbstantially.

The FIML estimator 35 computed here has one severe drawback. it lacks
the "uphill property" of ensuring an increase in the likelihood function at each
iteration. The uphill property holds only when a certain matrix is positive definite.
Therefore in Section 6 I propose an approximation to the matrix which would
yield the uphill property when the matrix is not positive definite. The approxima
tion is asymptotically equivalent to the original matrix and is easily computed.
Further experiments will be required to ascertain its properties in relation to other
commonly used numerical procedures.

In the concluding section I refer to the obvious need for the extension of these
techniques to find efficient estimators for nonlinear simultaneous equations
models. I have made this extension for the special case of nonlinearity in the
parameters. but the case of nonlinearity in the variables remains to be solved.
Consistent estimates of the parameters can be found; but as consistency is a weak
property. it would be desirable to have asymptotic efficient estimators.

2. SPECIFICATfON AND ASSUMPTIONS FOR THE LINEAR CASE

The standard linear simultaneous equations model is considered where,
without restricting generality. all identities are assumed to have been substituted
out of the system of equations:

(I) YB + zr = V.

Here Y is the T x M matrix of jointly dependent variables. Z is the T x K matrix
of predetermined variables. and V is a T x M matrix of the structural disturbances
of the system. The model thus has M equations and Tobservations. It is assumed
that B is nonsingular. rk(Z) = K; that all equations satisfy the rank condition for
identification; and that the system is stable if lagged endogenous variables are
included as predetermined variables. Further. an orthogonality assumption.
£(2' V) = O. between the predetermined variables and structural errors is required;
and the second-order moment matrices of the current predetermined and endog
enous variables are assumed to have nonsingular probability limits.

The structural errors are assumed to be mutually independent and identically
distributed (iid) as a nonsingular M-variate normal (Guassian) distribt:tion:

(2)

where ~ is positive definite almost surely. and no restrictions are placed on L
Thus for the present we assume the presence of contemporaneous correlation but
no intertemporai correlation. The (row) vectors of V are rhus distributed as multi
variate normal. Vi"" N(O. L).

Now the identification assumptions will exclude some variables from each
equation. so let r j and Sj denote the number of included jointly dependent and
predetermined variable':>. respectively. in the i-th equat ion. Then re\vrite (I) after
choice of a normalization rule:

(3) Yi= X"jb j + Vi (i= 1,2, ...• M)
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where

Xi = [~ZJ

so that X i contains the (i = r j + .'>j - 1 variables whose coefficients arc not known
a priori to be zero. It will prove convenient to stack these M equations into a
system:

(4)

where

f
rl
.1

r = ..
y'~f

X=

y = Xb + II

f
C)ll l-Ull

c) = :. II = : .

C)\f- L\rJ

3. AN INSTRUMENTAL VARIABLE INTERPRETATION OF FIML

The technique used to derive an instrumental variable interpretation of
FIML is similar to. but not identical with, a proposal by Durbin in an unpublished
paper. While not deriving Durbin's result from the likelihood function. Malinvaud
states the estimator. which he calls "Durbin's Method" [7. pp. 686--7]. The in
strumental variable interpretation of a maximum likelihood estimator. while
known in the case of nonsimultaneous equations models. is here extended to the
case of FIML: this extension gives an integrated method in which to interpret the
many estimators proposed for econometric models.

Given assumption (2). the likelihood function of the sample is

(5) [(B. r. 1:) = (2m-\fTt2 del (1:) - T:2 det (lBW

. exp [-! tr( YB + Zr):L- 1
( YB + zr)'J.

Taking logs and rearranging. we derive the function to be maximized

(6) L(B. r. L) = C + ~ log det (1:)- 1 + T log det (IBll

~ ~ t{+1:- 1(YB + Zf)'(YB + znJ
where the constant C may be disregarded in maximizing the likelihood function.
Since no restrictions have been placed on the elements of L. the usual procedure
is to "concentrate" the likelihood function by partially maximizing the function
with respect to L. This procedure sets L = T- I( YB + Zrr( YB + Zr). thus
eliminates I: from the likelihood function. and leaves a function L*(B. r) to be
maximized. Our procedure instead concentrates on the presence of the Jacobian
det IBI in the likelihood function, which differentiates the simultaneous equations
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problem from the Zellner [IOJ multivariate least squares problem. For if the
Jacobian of the transformation from U to Y, au/v Y, were an identity matrix, the
maximum likelihood estimator would be the generalized least squares estimator.

To maximize the log likelihood function L(B, r. ~), the necessary conditions
for a maximum are the first-order conditions obtained by differentiating (6) using
the relation iJ log det (A)jilA = (A') - I. Note that the a priori restrictions have been
imposed so that only elements corresponding to nonzero elements of Band r
are set equal to zero:

?L T(B')-I - }"( YB + zr)r - 1 = 0(7) 2B·
eL

-Z'(YB + zr)r- I = 0(8) iT·

eL
Tr - (YB + Zrj'(YB + Zr) = 0(9) iJ~-1 :

Concentration of the likelihood function follows from solving for r in equation (9);
here we solve for T using equation (9). Since the M-variate distribution has been
assumed nonsingular, from equation (2) r is positive definite almost surely and so
from equation (9)

(10) T·l = (YB + ZrnYB + Zr)r- I
.

Substituting this result for the first term in equation (7) yields

(11) Wrl(YB+Zr)'(YB+Zr)r- 1
- Y'(YB+Zr)r- 1 =0.

The first term in (II) represen ts the presence of the non-identity Jacobian, but this
term can be simplified by rearranging to get

(12) [(B')- 1B' Y' + (B')- I r'Z'][ YB + zr]r - 1 - Y'( YB + zr)r- I = O.

Noting that in equation (12) the first and last terms are identical with opposite
sign, we have the desired first-order condition

(13) (B,)-lr'Z'(YB + zr)r- I = O.

Therefore equations (8) and (13) must be solved, and "stacking" them together
yields the final form of the necessary conditions where the included variables
correspond to the unknown parameters in Band r:

(14)
, -Z' )

YB+Zrr-l=o(B')-I r'z' ( ) .

Rewriting equation (14) in the form of equation (4), the FIML estimator J of the
unknown elements of <5 in instrumental variable form is:

(15)

where the instruments are

(16) W' = .~'(S ~)/T)- J.
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The elements of W' are then

(17) X = dlag(X 1 ,X 2 •... ,XM ),

and from equation (9)

(18)

The instrumental variable interpretation of equations (15) and (16) is immediate
since the second-order moment matrices exist and are nonsingular, and by the
orthogonality assumption E(Z'U) = O. In the instrumental variable interpretation
of generalized least squares where only predetermined variables appear in X, the
instruments are all the predetermined variables W' = Z'( S @ I) - 1 while here the
included endogenous variables are replaced by consistent estimates which are then
used as the instruments.

Equation (15) is nonlinear since both X and S depend on 8, f, which are
elements of J and would therefore be solved by an iterative process ("Durbin's
Method")

(19)

where subscripts denote iteration number. b"', the limit of the iterative process
(if it converges~ is the FIML estimate with asymptotic covariance matrix
(X*'(S* ® IT)-l X)-l since asymptotically

(20) JT(J - (j) ~ N(O, y-I)

where V = limn_a: E[(I/T)(j2L(iMoo']. Thus equation tiS) extends the concept of
instrumental variables to the maximum likelihood estimation of sImultaneous
equations models, so that very simple comparisons with other proposed estimators
are possible.

4. THE RELATIONSHIP OF FIML TO RECENTLY PROPOSED INSTRUMENTAL

VARIABLE ESTIMATORS

Three recent papers have proposed new instrumental variable estimators for
linear simultaneous equations systems. Here all these estimators are shown to be
particular cases of the basic FIML iteration developed in equatiC'n (19). Lyttkens
[5J, and Dhrymes [2J, and Brundy and Jorgenson's [I] estimators all have the
following form:

(i) Construct a consistent estimate of the structural parameters (£5, ~).
These initial consistent estimates may be obtained by the use of consistent,
but possibly inefficient, instrumental variable estimators using the format
ofequation (3). This procedure is always possible so long as T?:. r; + s; -1
for all i = 1, ... , M. When W;, the instruments for equation (i), are
constructed, to ensure consistency it is necessary to include all Sj pre
determined variables from equation (i) as instruments. The remaining
rj - 1 instruments can be constructerl by regressing the r j - I jointly
dependent variables in equation (i) on a subset of all the excluded pre
determined variables. By the orthogonality assumption, L(Z'V) = 0,
the estimates bj will be consistent but, in general, not efficient estimates.
This procedure is followed for all M equations; and S, a co~sistent
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estimate of L. is derived from the residuals of the struc!ural equations
in the usual manner. 1

(ii) Construct system instrumental v.clri;lbles W using the form of cyuation
(16). W' = X'(S0 '.,.)-1. Consistent estimates of X arc provided from
the first step of the procedure. since by definition Jj = [8l'J and from
equation (16) Xi = [2([8- 1 )jZ,.]. Note that this estimate imposes all
a priori restrictions to estimate the instrumental variables W'; whereas
k-c1ass and 3SLS ignore a priori restrictions in following the instruments
W', as shown in equation (22). ~

(iii) Estimate the structural parameters as in equation (19), b = (W X) -I W'y.
If desired. compute efficient estimates of L and the reduced form param
eters, fi = -f8- 1 and Q = 8- I 'S8- J

•

Brundy and Jorgenson stop at this point and have efficient estimates. since
their estimates converge in distribution to the FIML estimates. Lyttkens and
Dhrymes propose an iterative process between steps (ii) and (iii) while unaware of
the properties of the final estimates. But since this procedure is in every way
identical to equation (19), by the earlier derivation if the iteration converges the
estimates (J*. S*) are the FIML estimates! Thus these iterated instrumental pro
cedures will be numerically identical to FIML if both use identical initial consistent
estimates. Thus Dhrymes' [2J question of the effect of the initial estimates used in
step (i) is answered for small samples: and for large samples even without identical
initial estimates. under the usual regularity conditions the Cramer-Rao theorem
can be invoked to ensure a unique maximum likelihood estimate almost surely.

Also. note that the so-called limited information procedure proposed by
Brundy and Jorgenson is misnamed. The procedure is identical to Lyttkens in
using the identity matrix as an estimate of the contemporaneous correlation
matrix L. This procedure is /lOC limited in;ormation since it utilizes all the a priori
restrictions on the 0, in estimating the instrumental variables of step (ii). Thus any
error of misspecification will be propagated throughout the entire system rather
than being confined to the equation in which it occurs, as in true limited information
methods. Since the a priori restrictions are being imposed, FIML or its one
iteration special case might as well be used to provide fully efficient estimates
rather than only consistent estimates which the Bnmdy-Jorgenson "limited
information" procedure gives.

The last full information instrumental variable estimator which will be dis
cussed is three stage least squares. In instrumental variable form as first expressed
by Madansky [6]. 3Sl.S has the form

(21 )

where the instruments are

(22) W = X'(S-l ® Z(2'Z)-IZ').

. I Lyttkens' method does not compute S. but rather uses the identity m'ltrix. Thus his est,malor
IS consistent but not generally efficient.
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The clements of the instruments matrix Ware

(23) x = diag (X I ..... X\/), ,X i = [l"iZJ

and S is the consistent estimate of r derived from the residuals of the structural
equations estimated by 2SLS. A comparison of 3SLS and FIML is made in
Hausman [3]; the main diflerence is that 3SLS fails to use all the a priori restrictions
in forming the instruments w. Thus while multicollinearity often makes it extremely
diHicult to compute the unrestricted instrumental variables. W. in 3SLS, this
problem will no longer exist since FIML and the FIIVestimators use fully restricted
estim'ltes of W. In the finite sample case, the other two estimators might well be
preferred to 3SLS since they impose all restrictions in estimation. However, these
differences will probably be more serious in medium and large models. Since most
empirical studies of full information estimators have concentrated on testing
performance of small models. further evidence on larger models should be val uable
in evaluating their respective finite sample properties.

5. A NUMERICAL CO:-.1PARISON OF 3SLS. FIIV. A:-.iJ) FIML

For purposes of comparison the three proposed full information estimation
techniques-3SLS. FIJV, and FIML-are applied to the often studied Klein
Model I. The model consists of six equations. of which three are identities. The
first equation is the consumption function

(24)

where C, is aggregate consumption. p, and P,_ I are current and lagged IOtal profits.
H-; is the private industry wage bill, and W; is the government wage bill. The next
equation is the investment function

(25)

where I, is net investment, P, and P'-l are again current and lagged profits, and K,
is the capital stock. The last stochastic equation is the wage equation

(26)

(27)

where H~ is the wage bill. Q, and Q,_ I are current and lagged private output. and
t is the time trend variable. The model is then closed by the three identities

K,=K,_I+I,

Q, = C, + I, + G,

P, = Q, - It; - or,

where the additional variables G, and 1; are nonwage government expenditure and
business taxes. respectively.

In estimation the three identities are deleted and therefore we arc left with
three equations having 12 unknown structural parameters. Three of these param
eters are the constants corresponding tocx 10' Ct: 20' and cx 30. and of the nine remain
ing parameters five correspond to predetermined variables. The time variable t
along with the lagged variables P, _I' K,. I' Q,_ I are predetermined while
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(a; + W;), Pr, and Qr are all endogenous. The estimation is done over Klein's
original sample 1921 1941, so there are 21 annual observations.

While 3SLS and FIIV are linear in the sense of only solving a set of linear
equations, FIML as shown in equation (15) is nonlinear since the elements of W
depend on elements of J and therefore an iterative procedure is needed. Now as
equation (19) makes clear, the full information instrumental variables efficient
(FIVE) estimator proposed by Brundy and Jorgenson is merely the first step of the
iterative process where the initial guesses are derived from a consistent estimation
procedure. Ifequation (19) is iterated, which corresponds to the Dhrymes estimator,
and if it converges. then the resulting estimates are the FIML estimates. This
iterative procedure is not being advocated as an efficient computational procedure
for FIML since it lacks the "uphill property" (to be discussed later), but this
experiment is merely to show that Dhrymes' estimator is identical to FIML while
the Brundy-Jorgenson estimator corresponds to one iteration of a FIML proce-
dure and when iterated yields FIML.

The 3SLS estimates need no further explanation since the instruments W'
are formed by using all the predetermined variables while neglecting overidenti·
fying constraints in forming W' in equation (22). These initial consistent estimates
are then used to form the instruments for the first stage of the FIML iteration.
Here in forming W' all the overidentifying restrictions are used. The structural
parameters corresponding to the first iteration JJ are then the FIIV estimates.
Alternative efficient estimates can be obtained by other initial consistent estimates
but all such estimates have identicai asymptotic properties. Equation (19) took 41
iterations to reach the convergence criterion of

I
IJu Jx- JAI<0.0005

.5A I

where the norm used is the maximum change in an element of the J vector.
The final estimates (with asymptotic standard errors) are shown in Table I.

The FIIV estimates in the consumption equation (24) and wage equation (26) are
reasonably close to the FIML estimates while the investment equation (25) "still
has a long way to go". However, an examination of the covariance matrix presented
below shows that the investment equation has by far .the largest variance, which,
in fact, exceeds the variance of the investment series over the 1921-1941 data
period. Therefore it is not suprising that the point estimates of FIML differ
markedly from the point estimates of the other estimators. The FIML estimates
agree to three significant digits with the FIML estimates of the same model pre
sented by Chernoff and Divinsky in Hood and Koopmans [12], page 284. The
maximum of the log likelihood function (6) is --0.54815.

To complete structural estimation for Klein Model I, the asymptotic co
variance matrix, S, for each estimator is presented. These estimates all follow from
equation (18), which leads to the estimate of the covariance matrix, S =
T-J(YB + ZrnYB + Zf). Along with the coefficient estimates, the covariance
estimates provide asymptotic sufficient statistics for the normal distribution of
equation (2). If desired, the reduced form coefficients and covariance matrix can
then be calculated from fi = -tB- t and fi = jj~t·sjj-J. The covariance
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TABLE I

3SLS. FlIV. AND FIML ESTIMATES OF KLHN MODEL I
(Asymptotic standard errors in parentheses)

Equation Parameter Variable 3SLS FllV F1ML

Consumption (24) ~II If, + w,' 0.79008 0.80145 0.80183
(0.03794) (0.03496) (0.03589)

~12 P, 0.12489 -0.17713 -0.23214
(0.10813) (0.21225) (0.31\ 65)

~ 11 P'-I 0.16314 0.35691 038557
(0.10044) (0.16370) 10.21720)

C! 10 16.441 17.897 18.341
(1.305) (2.149) (2.858)

Investment (25) ~21 P, - 0.013079 -0.71470 -0.80067
(0.16190) 10.36873) (0.49099)

"'22 1':-1 0.75572 1.0274 1.0517
10.15293) (0.28989) (0.35224)

(1.23 K,_, - 0.19485 -0.15044 -0.14811
(0.03253) (0.03299) (0.02986)

tl 20 28178 26.676 27.263
(6.794) 18.026) (8.668)

Wage (26) el ll Q, 0.40049 0.24264 0.23415
(0.03181) (0.04557) (0.04882)

Cl ll Q'-I 0.18129 0.28337 0.28465
(0.03416) (0.04341) (0.04521)

Cl ll 1-1931 0.14967 0.22686 0.23483
/0.03416) (0.03286) (0·03450)

~10 1.7972 5.3582 5.7939
(1.116) (2.034) (2.229)

estimates for the three estimators are:

[

0.89176
Sms = 0.41.132

-0.39362

[

1.9859
SFIIV = 3.0973

0.29126

[

2.1026
SmlL = 3.8754

0.48080

2.0930
0-40305

10.900
13799

12.764
3.8558

1
1.6650 J

1

1.8007J
No unique accepted method exists to evaluate the three estimators. While all

three have identical asymptotic properties, the parameter estimates and covariance
estimates differ substantially. To evaluate the parameter estimates, the quadratic
loss function R = (8 - <5),Q(8 -- <5) is used, where Q is the weighting matrix and <5
the vector of true (unknown) parameter values. Then the measure of asymptotic
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e~.pected loss is tr(Q ,. - I). where v- I is the estimated covariance matrix of the
structural parameters. Two weighting matrices are used. an identity matrix leading
to the Irace of Ii - I and ,1 m:ltrix consisting of ones leading w the sum of the
dements of V - I. The results for this experiment on Kkin Modell arlo:

Expected Loss 3SLS FIIV FIML
tr( V - I) 56.R 73.5 81U(
trlQI'-11 43.4 96.4 122.5

These results are not surprising since 3SLS can be deriv'ed as the solution tCo the
programming problem

min [(y - XM'(S-l @ Z(Z'Z)- I Z)(y - .'(c')I]
J

where s- I is the consistent estimate of covariance matrix from 2SLS. Thus. 3SLS
minimizes the generalized distance of the errors when projected onto the subspace
spanned b~' the predetermined variables. FIML. on the other hand, ··trades 01T"
the value of the .Jacobi'iIl, det (E), against a generali7ed distance term. The FlIV
estimator, as expected. falls between the two othns. Thus although 3SLS seems to
prodnce a ··tighter" estimate, this result may be an illusion due to thl: dilrerent
objective functions being maximized. The "Irlle ,. parameter values would have to
be known to make a valid comparison ,lmong the three estimators.

6. COMPUTATION OF FIML ESTIMATES

While it vvas shown th,lt iterating equation (19) led to the FlML estimate and
is equivalent to iterating the FIIV estimator. this procedure is not a very efficient
method of computing FI M L estimates. An easy way to see the problem is to re
write equation (19) in the form of a change in the () vector

(28) .13k+ I = ak+ I - bk = (W~X)- I W~(y - XJd = (W~X)-l W~lIk

where ilk is the vector of calculated residuals using <5k . The maximum likelihood
estimate is then attained when .1Jk+ I = O. The problem which arises is that
UV~X) is not in general positive definite and so one cannot hope to prove that the
likelihood function will increase at each iteration. This monotonicity property is
the "uphill property" referred to in the last section. Since equation (14) shows that
lV.illk is a gradient of the likelihood function, any vector in the same halfspace as
the gradient will be in a direction of increase for the likelihood function. Therefore
for i.. a scalar, small enough the new estimate

(29)

will give an increaseJ v,~lue of the likelihood function provided that (W~X) is
positive definite. This property is very desirable since, in principle, convergence is
guaranteed.! In practice, it also is an advantage since the procedure does not
become stopped at a point where .1<5k + I is not zero although the likelihood
function is not increasing in tht calculated diretlion.

2 To actually prove guaranteed convergence. one musI show that i. docs not bc..:ome "100 small".
e.g.. that /. is bounded away from zero.
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An obvious way around this problem is to me asymptotically equivalent
1\llproximation to (W~X) when it is not positive definite. A possible procedure is to
check whether W~X is positive definite; and ifnot use

(3U) W'X = X·(S 0 I/r I X

where: X = diag(X J ,X2 , ... ,X.u ), Xi = [Z(fB1)jZ;], and S is the cstimate of
the covariance matrix. Since f and B are consistent estimates of rand B. the
matrix W~X is asymptotically equivalent to the matrix W~X. Furthermore, S is
positive definite so W~X will be positive definite, and the iterative procedure of
equation (30) has the monotonicity property with respect to the likelihood function.

Many other iterative procedures are possible. The Newton-Raphson pro
cedure has often been used. Since the likelihood function is not conC,lve in general,
this method, when not in the neighborhood of the optimum, often encounters
difficulty choosing directions of increase. A wide class of algorithms based on the
Davidon variable metric procedure docs guarantce the monotonicity property
and h,lS other computational advantages. The choice of a general procedure to
calculate FIML estimates will require further experimentation~especially in
larger systems, for which almost no results have been reported. The procedure
outlined here has desirable asymptotic properties, but its use in ,letual calculations
remains to be evaluated. It does have the computational advantage of not requiring
second derivatives, but instead using the vector of instruments used in computing
the gradient. This algorithm is the analogolls procedure to the Gauss-Newton
algorithm for nonlinear least squarcs. Since the Gauss-Newton algorithm (or
minor modifications of it) have proved extremely eftective, the algorithm proposed
here, with the uphill property modification in equation (30). might also prove
effective in computing FlML estimates.

7. CONCLUSION AND DIRECTIONS I·UR FUTURE RESEARCH

An instrumental variable of interpretation of FIML has been developed
which permits easy comparison with other proposed instrumental variable
estimators such as 3SLS, and the FIIV estimators recently proposed by Lyttkens,
Dhrymes, and Brundy and Jorgenson. The exact role of overidentifying constraints
becomes clear, and 3SLS is seen to differ from the other full information estimators
in failing to use all overidentifying restrictions in forming the instruments. While
this difference vanishes asymptotically, it may be of importance in finite samples
where the constraints can be expected to hold only approximately.

The instrumental variable interpretation also provides an algorilhm (called
"Durbin's Method" by Malinvaud) to compute the FIML estimates. This algo
rithm is tested on Klein Modell and provides acceptable estima tes. These estimates
are compared to the 3SLS and FII V estimales, using 3SLS to provide the initial
consistent estimates. The algorithm's main shortcoming-lack of the uphill
property--is discussed and a technique is proposed to overcome this problem by
a positive definite approximation when the (W'X) matrix is not definite. This
altered "Durbin's Method" may prove computationally valuable since it has the
uphill property and does not require computation of second d~rivatives. Further
experience is required before a juJgement can be made in its comput(ltional
efficiency.
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For future research the greatest need is the extension of asymptotically
efficient methods to nonlinear models. In Hausman [3]. I propose two new
estimators. nonlinear 3SLS and a nonlinear instrumental variable estimator for
the special case of nonlinearity in the parameters. Thts use covers the common
situations of serial correlation and partial adjustment models. Further work needs
to I-..c done to find efficient estimators for the case of significant nonlinearity in the
variables. A Gauss-Newton procedure like equation (30) seems promising for
FIML but will be more complicated because the Jacobian is not constant as in the
linear case and second derivates are therefore involved. As FIML will still be time
consuming to compute in the nonlinear problem, less time-consuming nonlinear
methods would permit convenient full-information system estimation of non
linear models currently in use. Then the econometric model builder could use
efficient estimates to test his various models.

iHassachusetrs Instill/te of Techllology and NBER Computer Research Cellter

REFERENCES

[IJ Brundy. 1. and D. W. 10rgenson. "Efficient Estimation of Simultaneous Equation Systems by
Instrumen!al Variables:' Rel'ie,,' of Economi:" Wid SUl/iSlin, 53. 1971. pp. 207-224.

[2J Dhrymes, F. 1.. "A Simplific-d Strucilirul Estimator for Large-Scale Econometric Models.'"
The Australian JouilwlofSlalislics. 13. 1971. pp. 168-75.

i3J Hausman, 1.. "An Instrumental Variable Approach to Full Information Estimators for Linear
and Non-Lmear Econometric Models:' forthcoming in EconomeJrica.

[4J Klein. L. R.. "Estimation of Interdependent Systems in Macroeconometrics:' EconomeJrica, 37.
1969. pp. 171-92.

(5] Lyttkens, E.. "Symmetric and Asymmetric Estimation Methods." in E. Mosback and H. Wold.
lll/erdependeni Syslems. Amsterdam 1970. pp. 434-59.

[6J Madansky. A., "On the Efficiency of Three-Stage Least Squares Estimation:' EconomeJrica. 32.
1964. pp. 51-6.

[7] Malinvaud. E.. SlaliSlical Melhods of ECOllomelricJ. Amsterdam 1970.
[8J Rothenberg, T. and C. Leenders. "Efficient Estimation of Simultaneous Equation Systems:'

EconOl1lelrica. 32. 1964. po. 57-76.
[9J Sargan, 1. D.. "Three-Slage Least Squares and Full Maximum Likelihood Estimates:' Econo

metrica, 32.1964, pp. 77-81.
[10] Zellner, A.. "An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for

Aggregation Bias:' Journal of the American Slalistical Associalioll. 57. 1962, pp. 348-68.
[IIJ Zellner. A. and H. Theil. "Three-Stage Least Squares: Simultaneous Estimation of Simultaneous

Equations." Economelrica. 30. 1962. pp. 54-78.
[12] Hood. W. C. and T. C. Koopmans. SlUdies in Ecollol1lClric Melhod. New Haven. 1953.

652




