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RANDOM WALK MODELS OF ADVERTISjNG
THEIR DIFFUSION APPROXIMATION

AND HYPOTHESIS TESTING

BY CHARLES S. TAPIERO

Hypotheses concerning market hehatior are shown to lead to stochastic process models of aduertising.
Using diffusion approximations, these models are transformed to stochastic differential equations which
are used for determining optimum approximate'flhter estimates and for hypothesis testing. Using a result
given by Appe! (I), the stochastic differential equation of the !ikelihood ratio of two htpotheses is found.
This ratio is used to accept or reject specific equations as models of economic behavior. For demonstration

purpose's, a numerical example, using the Lydia Pinkham sales-advertising data (9), is used to test the
hypotheses of the Nerlot'e-Arrow (7) and J/idaIe-Wofe (19) type models.

I. INTRODUCTION'

To date, advertising models with carry-over effects have assumed that sales
reflect past advertising efforts as well as the "forgetting" of these efforts over time.
Notable examples are the NerloveArrow model (7), Stigler (14), Gould (4), and
VidaleWolfe models (19). The basic assumption of these models is that sales
response to advertising is deterministic. That is, given an advertising rate, given
the effects of an advertising effort on sales, and given the parameters describing
"forgetting" of past advertising by consumers, a resultant sales level can be
uniquely determined by solving one or a system of differential equations. Each of
these differential equations, implicitly and sometimes explicitly, makes specific
assumptions concerning market memory mechanisms and advertising effectiveness
functions. The choice of an advertising model, therefore, presupposes implicitly
market behavior which is for the most part untested.

The purpose of this paper is to propose random walk models of advertising
which render explicit the assumptions made concerning a market's behavior.
This approach allows a probabilistic interpretation of advertising effectiveness
and forgetting. It will also be shown that under specific hypotheses concerning
the advertising process, we obtain NerloveArrow and Stigler diffusion models
as mean evolutions. Further research is required, however, to determine the
implications of such models for optimum advertising policies. Given random walk
models of advertising, we provide several solutionsin terms of conditional
evolution of probability distributions and conditional probability moments.
For empirical parameter estimation purposes, diffusion approximations are used
to transfoi-m the random walk models into nonlinear filtering problems. Well-
known algorithms for the approximate optimum filters are then suggested
(2, 5,6, 10,11).

The basic assumption of this paper is that in economic and social science,
every stochastic model is a hypothesis concerning behavior. This hypothesis

'This research was supported in part by a grant from the Kaplan School of Social Science. Hebrew
University. The author is grateful to Professor Julian Simon for useful comments and discussion.
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usually taken for gi aitted nuist he rendered explicit, must be tested, and Statistical
tools of analysis must he developed to provide COflfi(lCFIcC levels and Criteria for
acceptance or rejection of the model on the basis of emnrical cv idence IV (leter-
mining the likelihood ratio of say two conipetiii models of economu' ht'h1j0
the statistical acceptance and rejection of a model describing behavior can he
drawn from empirical data. For brevity, essential results arc sumniaiiiccl in Tables
amid a nunierical example using the I .ydia Pink ham data (9) is used to compare
the hypotheses of market behavior.

2. RANDOM WAlk MOi)liS Di /\i)VFRIiSlNG

We assume that advertising expenditures affect the probability of sales and
that in a small time interval At, the probability that sales will increase hy one unit
is a function of this advertising rate. Similarly, in a time interval At, the probability
that sales will decrease by one unit is a function of the forgetting rate. Thus, the
advertising model we construct is a random walk model (3).

Consider a line taking the values x = 0. 1, 2,3,... M where x represents a
level of sales and M is the total market potential. Denote by P(x, I) the probahilit'
of selling x at time :. At time : + Ar, the prohahilit of selling x is given by:

(2.1) P(x. I + At) = P(x + I, t)nl(x -f 1)/ti

.4. P(x. 1) [I ._ ,n(x) A:J [I -. q(A!. i. aft)) At]

+ P(x .- 1. t)q(M, x - . a(t)) At

where m(x) At is the probability that a unit of sales is lost by forgetting. This
probability is given as a function rn of the aggregate sales x. The probability that
a unit sales is generated by an advertising effort 0(1) in a time interval A: is given by
the function q(M, x, 0(1)) At where M denotes the magnitude ofa potential demand,
xis the sales at time:, and 0(t) IS the advertising rate at timet. When A: is very small,
equation (2.l)with appropriate boundary restrictions on x, reduces to(2.2):

dP(x. r)/th = m(x -1- 1 )Pfx -F I, 1) - [m(x) + q(M, x. a(r 0]P(x, I)

.4.. (/( M, v - I, a( t )) !'(v , 1)

(2.2) dP(0, r )/dt rn( I )I'( 1, 1) - q( Al, 0. o(t ))P(0, t)

dP(A4', t)/d: = - [m(M) 4- (J(M, Al, a(t))]P(Ai, I)

+ q(M. Al I, a(r ))P(M - I. t).
A solution of (2.2) the Kolmogorov forward equations (3) will yield the
probability of selling x units at time t as a function of the advertising rate i() and
the forgetting rate in. A genera! solution to this equation requires that specific
assumptions be made concerning the functional forms in and q. These assiniptions(W fl fiwi be (OflSit!i('(/ US explicit Iitf!OlJJ'5(" (OPtierflhij' (I ?1U,rk('(S behjot.
Therefore, specification of the transition probabilities in and q provide a model of
market behavior. We shall consider below two hypotheses (see Table l).2

Other models can of u'urse be conside!e(j by assuming oilier iriri,iiion probabilities For suchmodels, see Gould (4) for example.
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I 4 -

For the first hypothesis, which we call the Nerlove-- Arrow hypothesis,3 x

is interpreted in units of goodwill It assumes that the probability of losing a Unit

by forgetting is proportional to the goodwill level x(:) at time t. The advertising

effectiveneSS function, expressed as the probability of increasing goodwill by one

unit is proportional to some (possibly nonlinear) function of the advertising rate

irrespective of the market size which is assumed to bepotentially infinite. We can

also show (see Table 1) that the probability distribution of goodwill has a mean
evolution equivalent to that of Nerlove-Arrow (7) (see also 16, 17).

The second hypothesis is called the diffusion hypothesis.4 It assumes a finite

market and an advertising effectiveness proportional to the remaining market

potential M - x(t) and to some function (possibly nonlinear) of the advertising

rate. This model can be shown to lead to a mean evolution given by Vidale-
Wolfe (19) and Stigler (14) (see also 15, 17).

Given these hypotheses, we substitute the corresponding transition probabili-

ties into (2.2) and solve for P(x, t)--the probability of selling x at time t. An explicit

solution of P(x, t) is difficult. Nonetheless, by determining the probability generat-

ing function of(2.2), an evolution of the probability moments under both hypotheses

can be found. For brevity, Table 1 includes both models, the partial differential
equation of the probability generating functions and a mean-variance evolution
of the random variable x(t). Given these (and higher order) moments, a "certainty
equivalent" advertising strategy can theoretically be selected to reflect both
managerial motives and attitudes towards risk.

In practice, the transition probabilities reflecting market hypotheses can
hardly be assumed known. Further, sales are only probabilistically defined. For
this reason, it is necessary to obtain methods estimating sales and testing the
effects of the transition probabilities. This paper considers an approach which
reduces random walk models (by diffusion approximations) to stochastic differ-
ential equations. Application of approximate filtering techniques, for example,
will then yield optimum sales response estimates to advertising programs. Further,
the filter estimates can be used to compute the likelihood ratio of two competing
alternative hypotheses. This likelihood ratio may then be used to accept or reject
a model of market behavior on the basis of empirical observations.

3. THE DIFFUSION APPROXIMATION AND OPTIMUM APPROXIMATE F1I,TERS

A diffusion approximation of (2.2) is found by replacing P(x + 1,1) and
P(x - 1, t) by the first three terms of a Taylor series expansion about P(x, i).
The resultant equation is a Fokker--Plank partial differential equation whose
solution is a stochastic integral equation, given by:

(3.i) x(t) - s°
= j [-mx(t) + q(a(t))] dr + f [mx(r) + q(a())]'2 dw(r)

x(t)

model described however, has not been derived by Nerlove and Arrow (7). Rather. we find
a mean evolution which is structurally similar to that of Nerlove and Arrow.

4This is based on a market share hypothesis. Thus, advertising has an effect on the market share
of a firm (Stigler(l4)).
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with dw(i) a standard Wiener process;

E dw(t) 0

£ dw(t) dw(r) = (t

and

(I jft=t
(3.2) - r) =

(0 otherwise.
As usual in stochastic control, we assume that (3.1) is satisfied with probabilityone, and therefore a stochastic differential equation in the sense of Ito can bedefined. Because of the reflecting barriers (at x 0 and x M), we replace theinitial conditions by inequality constraints. For both the NerloveArrow (7)and VidaleWolfe (19) models, the diffusion approximations are given in Table 2.For simplicity, assume that x and let Y(t) be a sales time series with Continuous
measurements y(t),

(33) Y(t) = {y(t)jT t}.

Conditional mean estimates for x(t) are given by:

(3.4)
. E(x Y) f XP(xI Y) dx.

An algorithm for generating such sales estimates and the corresponding error
variance are found by non-linear filtering techniques. For simplicity, a first order
solution algorithm with known advertising strategy and appropriate measurement
model yields, for example, the optimum goodwill and sales estimates given in
Table 2. Greater accuracy can be reached by using higher order approximations
and other non-linear filtering techniques. It is also evident that a wide variety of
approximations can be suggested since we can also consider alternate models of
advertising as indicated by the use of Ito's differential rule.6 Specifically, if h(x).-
a function of goodwilldenotes sales, the NerloveArrow stochastic differential
equation can be transformed (using ItO's differential rule) to a non-linear stochastic
differential equation of sales.7 Next, we consider the problem of hypothesis
testing which is of central interest to this paper. The results briefly summarized
thus far are required for the hypothesis testing on and of the models outlined
above.

We include in this Table additional equations to be discussed below.
The Ito differential rule is defined as follows. Givena random variable x and given the stochastic

differential equation:

dx = f(x, t) di + gtx, t)dw
with dw a Wiener process, then the transformed variable y = h(x, t) is described by the stochastic
differential equation:

dl'dv = + f(x, + jg2(x. 0i di + g(x. t) dw
di Ox dx dx

Specifically the change of variabics
f [mx + q(o)]2

dx

will transform the NerloveArrow model into a non-linear model with additive disturbances.
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4. HYPOTHESIS TESTING

The stochastic advertising models defined earlier are flow Considered ashypotheses concerning market memory mechanisms and advertising effectiveness.
The functional form of the transition probabilities renders explicit the implicit
assumptions included in the advertising models.

The number of hypotheses one may test is of course very large. These include
hypotheses concerning parameters, functional forms of transition probabilities
(i.e. process models), measurement models etc. Further, we may distinguish
between cases where available evidence (i.e. the data) is itself drawn from a
stochastic (or non stochastic) model. We shall Consider four types of problems
below and treat one in detail in the next section. A summary of these problems
can be found in Table 3.

The first two problems assume a random sales-advertising process, and
hypotheses are built upon the qualitative and quantitative sales effects of advert is-
ing. Specifically, the first problem assumes a random Nerfove-Arrow process,
and establish hypotheses on the probable relationships between the measurement
of sales and goodwill. The second problem,8 on the other hand assumes some
general random process of sales and advertising and uses the Nerlove.-Arrow and
Vidale-Wolfe models as sales measurement hypotheses. Empirical evidence may
then be brought to bear on each of these hypotheses. The third and fourth problems
in Table 3, assume deterministic sales advertising processes. These processes
although unknown are given by sales and advertising time series. Tests of hy-
potheses are then conducted on two advertising effectiveness functions q0(a) and
q1(a) (problem 3) and the Nerlove-Arrow and Vidale-Wolfe models (problem 4).
To test these hypotheses, we use empirical evidence as given by the sales and
advertising time series Y(t) and A(t) respectively, and compute the likelihood
ratio A(t). These are defined below:

Y(T) = {y(t)Ir T}
(4.1)

A(T) = {a('r)Ir T}

A T noP[H1IY(T),A(T)]
(4.2)

(1 -- it0)P[H0IY(T), A(T)J

Here r0 and (1 - 1t0) are the a priori probabilities of the null and alternative
hypotheses H0 and H1 respectively and P[H14 Y(T), A(Tfl (j = 0, 1) are therefore
the conditional probabilities of hypothesis H (j = 0, 1) on the time series (4.1).
With binary hypotheses, of course, we have

(4.3) P[H1I Y(T), A(T)J 4. P[H01 Y(T), A(T)] = 1.

For computational purposes. it is more convenient to compute the log likeihood
ratio, z(T)

(4.4) z(T) = logA(T)

and use it to reach a decision concerning each of the hypotheses.

In other words, we assume that the sale-advertising process is random and use tests of hypotheses
on random measurement models. Problem 2, is however, an unsolved problem.
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In the nonlinear model defined by problem I for example, it can he shown9(see Appel (I)) that zO) satisfies a stochastic differential equation given by
(4.5) dz/dt = [E0h0(x. t) - E11i1 (x, t)]. - [E0h()(x ) + E1h1( v, r)]}/0

z(0) = 0

where 02 is the error variance of v(t) in problem I, and Where E and E1 denoteconditional expectations with respect to probability
distributions p(s, tjH0, Y(i),A(t)) and p(s, tJH1, Y(t), A(t)) respectively. These Conditional expectations areprecisely the mean (filter) estimates given in Table 2 under both hypotheses H0and H1. If h0 and h1 are two non-linear functions, Taylor series approximationsyield;

(4.6) h/x, t) t)+ t)(x - + ! 2h
t)(x

Inserting (4.6) into (4.5) yields a log likelihood ratio stochastic diftërential equationgiven by;

Aô2h 1

(

i32h(4.7) dz/dt = [Ah - -- Vj s - h + vi)}/0225x '
2

z(0) 0

where Ah h1(x, t) h0(x, t) and the subscripts x and t are implied in h. Also,V denotes the error variance under both hypotheses as denoted in Table 2.When h3 are linear functions, the stochastic differential equation in (4.5) is aquadratic stochastic differential equation and a solution for z(t) although difficultis possible. When h3 are non-linear, a solution for z(t) is almost impossible. In sucha case we turn to approximations
If instead of problems I and 2 we consider problems 3 and 4, a general solution

for z(t) can be found. Specifically, consider the discrete time version of problem 3

Null H0: As = [m0x + q0(a)J At + [rn0x + q0(a)]112 tw
Alternative H1: As=[-_mix+q1a(M x)]At

+ [m1x + q1a(M - x)J"2Aw

where As are sales increflients, At the time interval is taken to equal one, and Eswis therefore a standard normal distribution. Thus As(i), i = 1,... T is a normal
random vector with mean vector N3 and variance-coyariance matrix K1 under thenull (j = 0) and alternative (j = 1) hypotheses. Given sales and advertising
measurement x(i), a(i), I = I, . - . T respectively, the likelihood ratio of the two

Proof of this equation is found by computing conditional estimates probability distributionsand using Ito's differential rule. For brevity, the proof is deleted.
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hypotheses in (4.8) is now desired. We let:

N1 = {n.( 1), n2), . n,(T)} j 0, I

n0(i) = - in0x(i) + c10(o(i))

n1(i) = --m1x(i) + q1a(i)[M - x(i)]

K E{(As - N,)(As - NJ)'IH ]

k, I)

k,2) 0

(4.8) K,

k0(i) = m0x(i) + q0(a(i))

k1(i) = m1x(i) -f q1a(i)(M - x(i)).

Computations of the variance-covariance matrices K, (j = 0, 1 in (4.8) be
easily proved by noting that E(Av(t) Aw(t)) = 0 for t r. Now define the likeli-
hood ratio of the two hypotheses:

IK0I"2exp[(As - N1)'Q1(As - N1)]
(4.10) ,(T)

= 1K11"2 exp [{As - N0)'Q0(As - N0)]

where Q = K 1the inverse matrix of K,. The log likelihood ratio is clearly
given by z(T)

z(T) = 11(T) - 10(T)

IJT) = .(As - N1)'Q,{As - N3) - ln KJI j = 0, 1

In continuous time (when As becomes very small), (4.12) is reduced to:

I I Ids(t) - n,4t)]2
dt j = 0, 1.(4.13) 1,4T)

= -J0 1 k,t)
+ Ink

1

The log likelihood ratio is used next to accept or reject hypotheses. (For a thorough
study of this problem see Van Trees (18)). For simplicity, we shall consider a
decision threshold F, then

If z(T) > F accept H1
(4.14)

If z(T) accept H0.
10 This is easily proved by noting that Qjthe inverse matrix, is given by; q, = I/k33 and q13 = 0

for I j.



This threshold, standard in statistics (e.g. Wald (20)) is calculated in terms of type I
and type Ii errors. Namely, consider the test of the hypothesis at time T (seeFigure l)and define

iT): Type I error at time T (or false alarm probabilityj
11(T): Type II error at time T

(T) = Prob[z(T) FiI0]

11(1') = Prob[z(T) < FIH,J.

Probability distribution of
z(T) under null hypoThesis

Probability distribution of z(T)
under alternative hypothesis

(4.15)

(4.16)

where

erfc (y) =

F'
Deciejon theholc1

The choice of the threshold level is an important and fundamental one in statistics.
In hypothesis testing, it is common to fix the type I error to a predetermined level
and solve for F. Given F, the type II error is also determined. By balancing these
two errors, an appropriate threshold level can be found. To determine the threshold
level F from (T) and the corresponding error )'J(T), however, it is necessary to
compute the probability distribution of z(T) under both the null and alternative
hypotheses. Equation (4.5) expressing dz (t)/dt is a diffusion process whose solution
as we noted may be difficult. A possible approximation consists in computing
the mean-variance evolutions of z(t) and supposing that these are the parameters
of a normal probability distribution. Taylor series approximations may also be
used in computing the mean-variance evolutions of z(r) (see (4.7)). If we let p(t)
be the conditional mean (normal) estimates under both hypotheses and let a(t)
be the corresponding variances, then the type I nd II errors are given by (see
Figure 1):

rF + p0(T)1
(T) = erfc

[ t70(T) ]
I/hi(T) - Fl

/3(T) = erfc
c1(T)

iT
303
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Given 110(T), c(T) and (T), it is evident that F can be found by using Tables for

the erfc function.
If the normal approximation is not acceptable. we can solve for F using

Chernoff bounds (see also (la)). Recall that the type I error is given by:

(4.17) (T) = Prob (z(T) > FIH0) e"'
or

ci(T) eM.{T(tt'IHo)

moment generating function of z(T).
where E.1110 is expectation of z under the null alternative, w 0. and M1T) is the

(4.18) M(T)(wIHo) = E1110 eT).

Similarly, for the type II error, we require a bound on the lower tail of the prob-

ability distribution of z(T). Using Chernoff's bounds

/3(T) = Prob(z(T) < FIH1) E,,1 C1(:(TtI)

(4.19)
11(T) e'M(T)(vIHI).

These expressions are valid when w and t because of the definition of

the moment generating function. To determine tight bounds for ct(T) and /1(T)

we minimize (4.17) and (4.19) by differentiation. The tightest bounds are found
to be for w and v where

d/dw M(T)(w*!Ho)
= F

Mz(T)(w*i H0)
(4.20)

d/dt M(T)(v*IH1)
F.

M.(T)(v*1H )

These equations may then be used to determine F, (T), arid /(T).''
Extensions to sequential tests are straightforward by using Wald's (20)

Sequential Probability Ratio Test (SPRT). It is then necessary to compute two
bounds F3 and F1, and the decision test becomes

If z(T) accept H1

(4.21) If z(T) accept H0

1fF0 < z(T) < F1 continue Data Collection.

To determine F0 and F1, we use the fundamental relation given by Wald, and
note that:

/3(T) <

(4.22)
I - ri(T) -

I - fl(T) -
(T) <eF0.

' Rather we compute the bounds on 2(T) and fl(Tt rirsi we assume an upper bound foi(T)
and solve for w in (4.17). We use the first part of equations (4.20) to compute F, the second part to
compute v and finally, use (4.19) to compute the upper bound on /3(T).
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These inequalities, of course, provide only upper limits for (T) and /1(T). Insummary, given F (or F0 and F1), the hypotheses we have Considered can be testedon-line. As additional data is accumulated, a decision can then be made regardingthe acceptance or rejection of the hypothesis
When the model is non-stochastic (as problems 3 and 4 in Table 3), the loglikelihood ratio in (4.11) consists (because of the diffusion approximation) in thedifference of two non-central chi-squared

random variables The test of thehypothesis is thus:

G(T) -- N)'Q1(As - N)

(4.23) F* = F + nIK1I - lnjK0I

In our case, of cow se.

G( T)
accept II

accept I-1.

G (T) (-1}' [As(i) -
, 2 k4i)

In the special case of zero-cost when the right decision is reached and equal costsif a wrong decision isreached, we have F = 0. Therefore, the decision rule to testthe hypothesis is

11(T) > 10(T) accept H1

11(T) !0(T) accept H0

where IAT) (j = 0, 1) are given by (4.12) or (4.13). II an (T) error is specified, it is
evident that G(T) is given by the difference of two chi-squared distributions.
Under the null hypothesis, [is(i) - no(i)]/,.,/k0(j) is a standard normal distribution
Thus, the sum of the squares has a central chi-square distribution of degree T.
For the second sum, we note that under the null hypotheses, these have a non-
central chi-squared distribution (i.e., resulting in the sum of independently normal
distributed random variables with mean [110(i) n1(ifl/s,/k1(i) = An(i)/.Jk1(j and
variance k0(i)/k1(j). We make the approximation

(4.25) k0(O/k1(j) a2

and define the noncentrality parameter .2:

(4.26)

=
where cr2 is a constant for all i = 1,... T (i.e., the ratio of variances under both
hypotheses is a constant). The moment generating function of the log-likelihood
ratio G(T) is then given by

(4.24)

MG(r(wjHO);

(4.27) MG(r)(wIHo) L + 2w)(1 - 2wa exp Li- 2wa2)j
I

2)]T/2

r 2 1
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L.

The log of M is thus

(4.28) log M(;(Tt(tIHo) - -- [log (I + 2w + log (1 -- 2w2)] + w2/( I 2wa2)

The mean and variance G(T) under the null hypothesis can then be computed by

takingsuccesSive derivatives of (4.28). The moment generating function M(;(T)(WI H,)

and probability moments of the log likelihood ratio under the alternative hy-

pothesis are similarly found. To obtain a bound on the (T) error, we take the

derivative of (4.28). equate it to F* (the threshold) and solve for w. Thus,

(4.29) F = 7'1a2/(l - 2w*,12) - 1/(1 ± 2w*)] + A/(l 2w*a2)2.

A bound on the fJ(T) error is obtained by deriving M(;(T)(u!H,) which is also the

moment generating function of a difference of chi-squared distributions. To obtain

exact results, the moment generating functions MG(T,(wIHC) and MctT,(t'Hi)

ought to be inverted. Although this is possible (see Otnura and Kailath (8)), the

resultant distribution is an extremely complicated one.

The importance of the results obtained earlier is now demonstrated by apply-

ing them to an examination of advertising effectiveness functions using the Lydia

Pinkham data (9).

5. THE LYDIA PINKHAM CASE REvlsrrED

The Lydia Pinkham case has been extensively treated in the literature on
advertising theory (see (9) for an excellent survey and analysis). Popularity of this

case in the advertising literature is essentially due to the availability of extensive
sales and advertising time series. Furthermore, the firm, through its long history,
has essentially been unaffected by competition and sales have been shown to be
extremely sensitive to advertising budgets. We shall therefore use this data in
testing advertising effectiveness functions. Specifically, we use (seasonally adjusted

and the original) monthly sales-advertising time series'2 for the periods January

1954 to June 1960, to test the hypothesis of economies of scale in advertising.
The results we found corroborate studies by Simon (13) and Palda (9) although
we use an entirely different procedure. Further research is currently being con-
ducted to test alternative models and data'3 in verifying this and other hypotheses.
The sales-advertising model we consider is of the NerloveArrow type'4 and is

given by;

(5.1) As = [nix + q00ö] + [mx + q0a6] Aw.

Several thousand hypotheses were tested using alternative parameter configura-
tions.'5 Maximum likelihood parameter configurations are summarized in Table 4.
Results in this Table are given for the first 58, 68 and 78 measurements of the time

11
Palda [91. pp. 32-3.

'3Specifically. Schmalcnses (12) data on cigarettes as well as other diffusion models.
' Here i = I and goodwill is equated to sales.
' In other words, a large number of parameters (m. q0. ) were tested and only the contigurations

(m*.q*, 5) with very high likelihood accepted.
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TABLtj 4

series. We note here the S--the scaling parameter, is extremely close to one.Thus, any competing hypothesis with ó> I (or < I) is likely to be rejectedcompared to the hypothesis that ö = I. Such hypotheses were in fact tested andrejected. Experiments were also conducted using the Vidale-Wolfe model. Thismodel was found to be insignificant, however.'6 This is to be expected since in theLydia Pinkham case, the concept of market share, on which the Vidale-Wolfe
model is based, makes little sense. Finally, in the analysis of the Lydia Pinkhamyearly data we encountered a trend which was not accounted for in the stochastic
models constructed in this paper." For empirical analysis purposes. such a trendis necessary to reflect more precisely the effects of forgetting and advertising onsales.

6. CONCLUSION

One of the first problems in the analysis of dynamical systems is to construct
appropriate models which reflect reality. This is particularly important when weconsider economic, social, and management applications. In these fields, anequation mapping behavior can be assumed at best to be a hypothesis. The choiceof the relevant variables and behavioral hypotheses in fact determine the resultant
dynamic models. If this is so. it is imperative that we provide the explicit mathe-
matical and statistical tools for testing the hypotheses we make concerning a
behavioral process.

In this paper, a set of advertising models were constructed starting from
simple hypotheses concerning market behavior. Using the simple structure of
random walk models, hypotheses concerning memory mechanisms and advertising
effectiveness were expressed in terms of transition probabilities. Given the cor-
responding random walk model, diffusion approximations were shown to lead

' In other words, In all cases, the log likelihood was found to be large. Further study of theVidale -Wolfe's model is however currently investigated using the Schmalense cigarettes data.17 This is a particularly important point for empirical analyses since the stochastic process model
assumed only the effects of forgetting and adventising on sales.
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LenghmqJLength ' 'I chi

58
c

68

68
68

0.400
0.450
0.400
0.400
0.450
0.450

0.500
0.500
0.400
0.600
0.400
0.500

.03

1.05

1.07

1.01

109
1.05

3.54
3.64)

3.59
3.61
369

58 0400 0.400 1.01
58 0.450 0.600 0.97
5 0.550 0.400 1.05
58 0.600 0.500 1.03
68 0.450 o.soo 0.99

352
363
3.64
369

g

78

78

78

78

78

0.500
0.400
o.400
0.400
0.450
0.500

0.500
0.400
0.500
0.600
0.400
0.500

1.07

1.07
1.03

1.01

1.09
1.07

3.60
3.62
359
3.54
3.61
3.69
3.62

68
68

68
78

78

78

0.450
0.550
0.600
0.550
0.550
0.600

0.600
0.700
0500
0.400
0.700
0.500

097
0.97
1.03

I 05
0.97
1.03

3.63

3.69
3.69

3.64

3.69
3.69
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to non-linear stochastic differential equations. This formulation of the problem
is standard in non-linear filtering theory.

The models of advertising suggested in this paper have mean evolutions
equivalent to the NerloveArrow model (7), VidaleWolfe (19) and Stigler (14)
models. This particular property of the models points out some explicit hypotheses
made by the authors. Evidently, there may be a great number of hypotheses which
can be shown to lead to mean evolutions as given in this paper. An interesting
and important question would be to consider the inverse problem--that of finding
the range of hypotheses giving rise to a particular evolution. This problem is a
difficult one and is not in the scope of this paper.

For empirical analysis purposes, we computed the likelihood ratio of hy-
potheses and thereby obtained a mechanism for testing on-line, models as well as
parameter configurations. To demonstrate our results, a numerical example
concerning economies of scale in advertising was considered. Maximum likelihood
scaling estimates were shown to be in the neighborhood of one, thereby rejecting
the hypothesis of economies of scales. Of course this numerical example is merely
a preliminary analysis and further empirical research is clearly required. -

Co!,ipiihj Unit'ersit
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