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RANDOM WALK MODELS OF ADVERTISING,
THEIR DIFFUSION APPROXIMATION

AND HYPOTHESIS TESTING

BY CHARLES S. TAPIERO

Hypotheses concerning market behavior are shown to lead to stochastic process models of advertising.
Using diffusion approximations. these medels are transformed 10 stochastic differential equations which
are used for determining optimum approximate filter estimates and Jor hypothesis testing. Using a result
given by Appel (1}, the stochastic differential equation of the likelihood ratio of two h ypotheses is found.
This ratio is used 10 accept or reject specific equations as models of economic behavior. For demonstration
purposes, a numerical example, using the l.ydia Pinkham sales-advertising data (9). is used to test the
hypotheses of the Nerlove - Arrow (7} and Vidale-Wolfe (19) type models.

1. INTRODUCTION!

To date, advertising models with carry-over effects have assumed that sales
reflect past advertising efforts as well as the “forgetting” of these efforts over time.
Notable examples are the Nerlove-Arrow model (7), Stigler (14), Gould (4), and
Vidale-Wolfe models (19). The basic assumption of these models is that sales
response to advertising is deterministic. That is, given an advertising rate, given
the effects of an advertising effort on sales, and given the parameters describing
“forgetting” of past advertising by consumers, a resultant sales ievel can be
uniquely determined by solving one or a system of differential equations. Each of
these differentiai equations, implicitly and sometimes explicitly, makes specific
assumptions concerning market memory mechanisms and advertising effectiveness
functions. The choice of an advertising model, therefore, presupposes implicitly
market behavior which is for the most part untested.

The purpose of this paper is to propose random walk models of advertising
which render explicit the assumptions made concerning a market’s behavior.
This approach allows a probabilistic interpretation of advertising effectiveness
and forgetting. It will also be shown that under specific hypotheses concerning
the advertising process, we obtain Nerlove-Arrow and Stigler diffusion models
as mean evolutions. Further research is required, however, to determine the
implications of such models for optimum advertising policies. Given random walk
models of advertising, we provide several solutions—in terms of conditional
evolution of probability distributions and conditional probability moments.
For empirical parameter estimation purposes, diffusion approximations are used
to transform the random walk models into nonlinear filtering problems. Well-
known algorithms for the approximate optimum filters are then suggested
,5,6, 10, 11).

The basic assumption of this paper is that in economic and social science,
every stochastic model is a hypothesis concerning behavior. This hypothesis

' This research was supported in part by a graat from the Kaplan School of Secial Sc‘ience..Hebrew
University. The author is grateful to Professor Julian Simon for useful comments and discussion.
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usually taken for granted must be rendered chpIicitA miist be tested. and sAmtiAstiml
tools of analysis must be develeped to pmvldcA(:nnﬁdcn.u%‘ lcvcis and criteria for
aceeptance or rejection of the maodel on the hilL\‘AlS of empirical L‘\’I(IL‘I]L“L‘A By deter-
mining the likclihood ratio of say two competing models of cconomic hehavior,
the statistical acceptance and rejection of a model describing iag-!li.\ni(,,- can be
drawn from empirical data. For brevity. essential results are su vrmmrl'/.cd in Tables,
and a numerical example using the Lydia Pinkham data {9) is used to compare
the hypotheses of markct belavior,

2. Ranponm WALK MODELS OF ADVERISING

We assume that advertising cxpenditures alfect the probability of salcs and
that in a small time interval Ar. the probability that sales will increase by one unit
is a function of this advertising rate. Similarly, in a time interval Ar. the probability
that sales will decrease by one unit is a function of the forgetting raic. Thus. the
advertising modcl we construct is a random walk model (3).

Consider a fine taking the values x = 0.1, 2.3, M where represenis a
level of sales and M is the total market potential. Denote by P(x_ 1) the probability
of selling x at time t. At time 1 + At. the probability of selling v is given by:

2.1) Plx.1 + At) = P(x + 1, im(x + 1) Ar
+ P 0l — mix) A} {1 - g(M, x. a(n) At}
+ Plx — 1.0)g(M, x — 1. a(1)) At

where m(x) Ar is the probability that a unit of sales is lost by forgetting. This
probability is given as a function m of the aggregate sales v. The probability that
a unit sales is generated by an advertising effort a(¢) in a time interval At is given by
the function ¢(M, x, a(1)) At where M denotes the magnitude of a potential demand.
xis thesales at time ¢, and a(t) is the advertising rate at time 1. When A is very small.
cquation (2.1} with appropriate boundary restrictions on X, reduces to (2.2):

dP(x.0)fdt = m{x + DPIx + 1,1) ~ [mix) + ¢(M. x. alt WPix. 0
+ (M. x - 1, athP(x - g

m()P(L. 1) — g(M, 0. a(s)P{0. 1)

~[mM) + ¢(M, M_a(t))]P(M, 1)

+¢M.M — La@e)PM —~ 1.2).

A solution of (2.2) the Kolmogerov forward cquations {3) will yield the
probability of selling x units at time 7 as a function of the advertising rate a(r) and
the forgetting rate m. A genera! sofution to this equation requires that specific
assumptions be made concerning the functional forms m and ¢. These assimptions
can i fact be consirued as explicit kypotheses concerning a market's bohatior.
Therefore, specification of the transition probabilities m and ¢ provide a model of
market behavior. We shall consider below two hypotheses (sce Table 1).2

(22)  dP(0, 1)/dt
dP(M, 1)/dt

0]
1y

i

Other models can of course be considered by assuming other transition probabilities. For such
models. see Gould (4) for example.
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For the first hypothesis, which we call the Nerlove- Arrqu hypothesis,® x(r)
is interpreted in units of goodwill. It assumes that the probfibllny of losing a unit
by forgetting is proportional to the gocdwill I?V:el .\‘(t? at time t. The aneriising
effectiveness function, expressed as the prot?abllnty of increasing goodwill by one
unit is proportional to some (possibly nonlinear) function of the f\dve.rtising rate
irrespective of the market size which is assume'd to be:potem!ally lqﬁnlte. We can
also show (see Table 1) that the probability distribution of goodwill has a mean
evolution equivalent to that of Nerlove-Arrow (7) (see also 16, 17).

The second hypothesis is called the diffusion hypothesis.* It assumes a finite
market and an advertising effectiveness proportional to the remaining market
potential M — x(t) and to some function (possibly nonlinear) of the advertising
rate. This model can be shown to lead to a mean evolution given by Vidale-
Wolfe (19) and Stigler (14) (see also 15, 17). .

Given these hypotheses. we substitute the correspon ding transition probabili-
ties into (2.2) and solve for P(x, t}—the probability of selling x at time . An explicit
solution of P(x, t) is difficult. Nonetheless, by determining the probability generat-
ingfunctionof(2.2),an evolution of the probability moments under both hypotheses
can be found. For brevity, Table 1 includes both models, the partial differential
equation of the probability generating functions and a mean-variance evolution
of the random variable x(t). Given these (and higher order) moments, a ““certainty
equivalent” advertising strategy can theoretically be selected to reflect both
managerial motives and attitudes towards risk.

In practice, the transition probabilities reflecting market hypotheses can
hardly be assumed known. Further, sales are only probabilistically defined. For
this reason, it is necessary to obtain methods estimating sales and testing the
effects of the transition probabilities. This paper considers an approach which
reduces random walk medels (by diffusion approximations) to stochastic differ-
ential equations. Application of approximate filtering techniques, for example,
will then yield optimum sales response estimates to advertising programs. Further,
the filter estimates can be used to compute the likelihood ratio of two competing
alternative hypotheses. This likelihood ratio may then be used to accept or reject
a model of market behavior on the basis of empirical observations.

3. THE DIFFUSION APPROXIMATION AND OPTIMUM APPROXIMATE FILTERS

A diffusion approximation of (2.2) is found by replacing P(x + 1,t) and
P(x — 1,t) by the first three terms of a Taylor series expansion about P(x,).
The resultant equation is a Fokker-Plank partial differential equation whose
solution is a stochastic integral equation, given by:

t

[~ mx(o) + qlaio e + [ Dmxte) + afa(ol]?ds o)

o vito

3.1 x(t) - s° = f
x{()=0

?The model described however, has not been derived by Nerlove and Arrow (7). Rather. we find
a mean evolution which is structurally similar te that of Nerlove and Arrow.

“This is based on a market share hypothesis. Thus, advertising has an effect on the market share
of a firm (Stigler (14)).
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with dw(t) a standard Wiener process:
Edw(t) =0
E dw(t) dw(z) = é{t — 1)
and

1 ift=1
(3.2) ot — 1) ={

0 otherwise.
As usual in stochastic control, we assume that (3.1) is satisfied with probability
one, and therefore a stochastic differential equation in the sense of It6 can be
defined. Because of the reflecting barriers (at x = 0 and x — M), we replace the
initial conditions by inequality constraints. For both the Nerlove-Arrow 7
and Vidale-Wolfe (19) models, the diffusion approximations are given in Table 2.°
For simplicity, assume that x > Oandlet Y(¢) be a sales time series with continuous
measurements (i),

(33) Y(t) = {y(zit < ¢}.

Conditional mean estimates for x(¢) are given by:

(34) %= E(x|Y) = f " XP(Y) dx.

An algorithm for generating such sales estimates and the corresponding error
variance are found by non-linear filtering techniques. For simplicity, a first order
solution algorithm with known advertising strategy and appropriate measurement
model yields, for example, the optimum goodwill and sales estimates given in
Table 2. Greater accuracy can be reached by using higher order approximations
and other ron-linear filtering techniques. It is also evident that a wide variety of
approximations can be suggested since we can also consider alternate models of
advertising as indicated by the use of It6's differential rule. Specifically, if h(x)—
2 function of goodwill—denotes sales, the Nerlove-Arrow stochastic differential
equation can be transformed (using It6’s differential rule)to a non-linear stochastic
differential equation of sales.” Next, we consider the problem of hypothesis
testing which is of central interest to this paper. The results briefly summarized
thus far are required for the hypothesis testing on and of the models outlined
above.

% We include in this Table additional equations to be discussed below.
® The It5 differential rule is defined as follows. Given a random variabie x and given the stochastic
differential equation:
dx = f{x,t)dr + g{x, 1) dw
with dw a Wiener process, then the transformed variable ¥ = hi{x.1) is described by the stochastic
differential equation :

"oh oh L o oh
R R = (. 1)— x.1)—
dy { 5t fix, l}ax + dg2x, ')ax' dt + glx r)ax dw}

" Specifically the change of vatiables

r 1/2
(mx + q(a))
= ———— d
0 f aex X
will transform the Nerlove-Arrow model into a nen-linear model with additive disturbances.
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4. HyrotHesis TESTING

The stochastic advertising models defined earlier are now considered as
hypotheses concerning market memory mechanisms and advertising effectiveness.
The functional form of the transition probabilities renders explicit the mplicit
assumptions included in the advertising models.

The number of hypotheses one may test is of course very large. These include
hypotheses concerning paraineters, functional forms of transition probabilities
(i.e. process models), measurement models etc. Further, we may distinguish
between cases where available evidence (i.e. the data) is itself drawn from a
stochastic (or non stochastic) model. We shall consider four types of problems
below and treat one in detail in the next section. A summary of these problems
can be found in Table 3.

The first two problems assume a random sales-advertising process, and
hypotheses are built upon the qualitative and quantitative sales effects of advertis-
ing. Specifically, the first problem assumes a random Nerlove-Arrow process,
and establish hypotheses on the probable relationships between the measurement
of sales and goodwill. The second problem,® on the other hand assumes some
general random process of sales and advertising and uses the Nerlove-Arrow and
Vidale-Wolfe models as sales measurement hypotheses. Empirical evidence may
then be brought to bear on each of these hypotheses. The third and fourth problems
in Table 3, assume deterministic sales advertising processes. These processes
although unknown are given by sales and advertising time series. Tests of hy-
potheses are then conducted on two advertising effectiveness functions qola) and
4,(a) (problem 3) and the Nerlove-Arrow and Vidale~-Wolfe models (problem 4).
To test these hypotheses, we use empirical evidence as given by the sales and
advertising time series Y(f) and A(t) respectively, and compute the likelihood
ratio A(f). These are defined below:

Y(T) = (yir)t < T}
A(T) = {alt)t < T}

moP[H,|Y(T), AT))
(1= 7o) P[H| Y(T), A(T)]

(4.1)

4.2 ATy =

Here n, and (1 — n,)} are the a priori probabilities of the null and alternative
hypotheses H, and H, respectively and P[H AY(T), A(T)] (j = 0, 1) are therefore
the conditiona! probabilities of hypothesis H; (j=0,1) on the time series (4.1).
With binary hypotheses, ‘of course, we have

(4.3) PIH\|Y(T), A(T)] + P[H{Y(T), A(T)] = 1.

For computational purposes, it is more convenient to compute the log likeiihood
ratio, z(T)

(44) 2T) = log A(T)
and use it to reach a decision concerning each of the hypotheses.

® In other words, we assume that the sale-advertising process is random and use tests of hypotheses
on random measurement models. Problem 2, is however, an unsolved problem.
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In the nonlinear model defined by problem 1 for example, it can be shown?
(see Appel (1)) that z(1) satisfies  stochastic differential equation given by

4.5) dz/dt = [tho(x.t) — Elhl(x, n]- {S _ %[th“(x’[) + Elhx(v",'”}/()z
2(0)=0

where 87 is the error variance of v(t) in problem 1, and where Eq and E, denote
conditional expectations with respect to probability distributions pis, t{H,, Y(1),
At)) and pis,tlH,, Y(r), A(t) respectively. These conditional expectations are
precisely the mean (filter) estimates given in Table 2 under both hypotheses H,
and H,. If h, and h, are two non-linear functions, Taylor series approximations
yield;

, dh; 1 &%, ‘
(4.6) hix,1) = h{%, 1)+ ;3}1(2, Hix — 8) + 557’(2, ix — £)2.

Inserting (4.6) into (4.5)yields a log likelihcod ratio stochastic differentia] equation
given by;

A 1y P,
= —_——_—_— U . . 2
(4.7 dz/dt [Ah 2 V,.,J {s P ( hy+ 5= V;;)} / 6

z2{0) =0

where Ah = h (x, 1) - ky(x, 1) and the subscripts x and ¢ are implied in . Also,
V} denotes the error variance under both hypotheses as denoted in Table 2.

When h; are linear functions, the stochastic differential equation in 4.5)is a
quadratic stochastic differential equation and a solution for z(t) although difficult
is possible. When h; are non-linear, a solution for z(z) is almost impossible. In such
a case we turn to approximations.

Ifinstead of problems 1 and 2 we consider problems 3and 4, a general solution
for z(t) can be found. Specifically, consider the discrete time version of problem 3

a3 Null Ho: As = [—myx + g,(a)] At + [(mox + gola)]'’? Aw
' Alternative H,: As = [~mix + g,aM — x)] At

+ [mx + g.a(M — x)]V2 Aw

where As are sales increments, At the time interval is taken to equal one, and Aw
is therefore a standard normal distribution. Thus As(i}, i=1,... T is a normal
random vector with mean vector N ; and variance-covariance matrix K j under the
null (j =0) and alternative (j = 1) hypotheses. Given sales and advertising
measurement x(i), a(i), i=1,...T respectively, the likelihood ratio of the two

® Procf of this equation is found by computing conditional estimates probability distributions
and using 116's differential rule. For brevity. the proof is deleted.
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hypotheses in (4.8) is now desired. We let;
j [’lj(l) "'(2) ,(T)} ] = 0. 1

nyli) = —mex(i) + golali))

ny(i) = —myx(i) + q,a)[M — x()
K; & E[(As — N)(As — N))|H ]
k(1)
k{2) 0
(4.8) K;= .
0
kAT)

ko(i) = mox(i) + go(ali))
ky()) = myx(i) + q,a() (M — x(i)).

Computations of the variance-covariance matrices K; (j = 0, 1) in (4.8) can be
easily proved by noting that E(Aw(t) Aw(z)) = 0 for t # 7. Now define the likeli-
hood ratio of the two hypotheses:

KoM exp [—3(As — N1)'Q,(As - Ny)]
(4.10) A(T) = K| exp [= XAs — No)Qolhs — Ny))

where Q; = K/ '—the inverse matrix of K;. The log likeliliood ratio is clearly
given by z(T)

AT) = 1|(T) — Iy(T)

(4.11) :
IT) = ~3As — N)Q{As — N) —iln|K}] j=0,1
Orlo
[As(i) — nji)}? .
4.12) I(T) = 2{.-=1 T + In k,{l)}.

In continuous time (when As becomes very small), (4.12) is reduced to:

| T ( [ds(t) — nft)]
@13) YT = _5Jo {T

The log likelihood ratio is used next to accept or reject hypotheses. (For a thorough
study of this problem see Van Trees (18)). For simplicity, we shall consider a
decision threshold F, then

+ In k,(t)} d j=01
J

If2(T) > F accept H,
If2(Ty < F accept H,,.

. :Thls is easily proved by noting that Qj—the inverse matrix, is given by; g;; = 1/k;andg,; =0
ori#j

(4.14)
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This threshold. standard in statistics (e.g. Wald (200} is caleulated in terms of type 1
and type Il errors. Namely, consider the test of the hypothesis at time T (sec
Figure 1) and define

oAT): Type lerrorat time T (or falsc alarm probability}
f(T): Type Il error at time T
AT) = Prob [«(T) = FIH,)

(4.15) ‘
B(T) = Prob («(T) < FlH,}.

Probability distribution of
z(T) under null hypothesis

Probability distribution of z(T)
under ulternative hypothesis

A

£(T)

F
Decision theshold

The choice of the threshold level is an important and fundamental one in statistics.
In hypothesis testing, it is common to fix the type I error to a predetermined level
and solve for F. Given F, the type Il error is also determined. By balancing these
two errors, an appropriate threshold level can be found. To determine the threshold
level F from o T) and the corresponding error B(T), however, it is necessary to
compute the probability distribution of z(T) under both the null and alternative
hypotheses. Equation (4.5) expressing dz (t)/dt is a diffusion process whose solution
as we noted may be difficult. A possible approximation consists in computing
the mean-variance evolutions of z(t) and supposing that these are the parameters
of a normal probability distribution. Taylor series approximations may also be
used in computing the mean-variance evolutions of z(?) (see (4.7). If we let p 1)
be the conditional mean (normal) estimates under both hypotheses and let o}(t)
be the corresponding variances, then the type I and 11 errors are given by (see
Figure 1):

«(T) = erfc [FLIO(T):,
(4.16) 7o)
' e F]
B(T) = erfc G
where




Given jio(T), o3(T) and of T), it is evident that F can be found by using Tables {or

the erfc function. o
If the normal approximation 1s rot acceptable, we can solve for F using

Chernoff bounds (see also (18)). Recall that the type 1 error is given by:
4.17 «(T) = Prob (z(T) > FI|Hy) € E.jy, vzt -8
or

Ty <e” M (Wl H o)

is expectation of z under the null alternative. w > 0, and M, q, is the

where E 5, i
moment generating function of «(T).
(4.18) M.5(WHo) = E, e (M

Similarly, for the type I error, we require a bound on the lewer tail of the prob-
ability distribution of z(T). Using Chernoff s bounds

B(T) = Prob (z(T) < FIH,) € E.ju, e -k
BTy < e "M (vl H )

These expressions are valid when w > 0 and v < O, because of the definition of
the moment generating function. To determine tight bounds for ofT) and f(T),
we minimize (4.17) and (4.19) by differentiation. The tightest bounds are found
to be for w* and v* where

4.19)

djdw M (w*H,)
M. (w*Ho)
djde M_1(t*H}) _F
M. (v*H)) '
These equations may then be used to determine F, ofT), and #(T)."!

Extensions to sequential tests are straightforward by using Wald’s (20)
Sequential Probability Ratio Test (SPRT). It is then necessary to compute two
bounds F, and F,, and the decision test becomes

If (T) > F, accept H,

4.21) Iz(T)< F, accept H,

(4.20)

If F, < 2(T) < F, continue Data Collection.

To determine F, and F,, we use the fundamental relation given by Wald, and

note that :
A(T)

AT Fy
4.22) = oT)
% T) Fe
?ﬁ(—ﬂ <e o

! Rather we compule the bounds on a(T) and f(T). First we assume an upper bound for «T)
and solve for w* in (4.17). We use the first part of equations (4.20) to compute F, the second part 10
compute v* and finally, use {4.19) to compute the upper bound on (7).
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These inequalities, of course, provide only upper limits for o(T) and H(T). In
summary, given F {or F, and F,), the hypotheses we have considered can be tested
on-line. As additional data is accomulated, a decision carn ther be made regarding
the acceptance or rejection of the hypothesis,

When the model is non-stochastic (as problems 3 and 4 in Table 3), the log
likelihood ratio in (4.11) consists (because of the diffusion approximation) in the
difference of two non-central chi-squared random variables. The test of the
hypothesis is thus;

r_ l j
G(T) — Z ,(,v,,.zlj(As - Nj)lQ)(A“ - IVJ)

ji=0
(4.23) F* =F+3m|K,| - Linik
(> F* accept H,
G(T);

< Y aceept Hy.

of

In our case, of course.

Tl 1V TACY 112
G(T) = Z Z £3JX [AL'"J{_')_]-,
i=l j=0 -~ kj(l)
In the special case of zero-cost when the right decision is reached and equal costs

if a wrong decision is'reached, we have F = 0. Therefore, the decision rule to test
the hypothesis is;

L(T) > Iy(T) accept H,
I{T) < I4(T) accept H,

where I{T) (j = 0, 1) are given by (4.12) or (4.13). If an o(T) error is specified, it is
evident that G(T) is given by the difference of two chi-squared distributions.
Under the null hypothesis, [As{i} — no())/\/koli) is a standard normal distribution
Thus, the sum of the squares has a central chi-square distribution of degree T.
For the second sum, we note that under the null hypotheses, these have a non-
central chi-squared distribution (ie., resulting in the sum of independently normal
distributed random variables with mean (o) — n, D)/ /k () = An(i)/, /k (i) and
variance ko(i)/k ,(i). We make the approximation

4.25) ko(i)/k, (i) ~ o2

and define the noncentrality parameter i2:

(4.24)

T
4.26) A= % [An(i))2ik, ()
i=1
where ¢ is a constant for all i = 1,... T (ie, the ratio of variances under both
hypotheses is a constant). The moment generating function of the log-likelihood
ratio G(T') is then given by Mg r(wiH,);

i T2 wl?
(427) MG(T)(WIHO) = [(_1 + 2W)(1 _ ZWO'Z)] exP l:(l—-— 2‘1’;{72)]’
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The log of M is thus
T ) . . ,
(4.28) log M g(WHo) = -~ Er[log(l + 2w) + log (1 = 2we )] + w2l — 2wa?),

The mean and variance G(7) under the null hypothesis can then be computed by
taking successive derivatives of (4.28). The moment geqerating function M (W H,)
and probability moments of the log likelihood ratie underv the alternative hy-
pothesis are similarly found. To obtain a bound on the %(T) error. we take the
derivative of (4.28), equate it to F* (the threshold) and solve for w* Thus,
(4.29) F* = Tlo?{(1 — 2w*s?) — /(1 + 2w¥)] + A1 = 2w*g?),
A bound on the (T error is obtained by deriving M, {t|H,) which is also the
moment generating functicn of a diflerence of chi-squared distributions. To obtain
exact results, the moment generating functions MW H¢) and Mg(lH))
ought to be inverted. Although this is possible {see Omura and Kailath (8)), the
resultant distribution is an extremely complicated one.

The importance of the results obtained earlier is now demonstrated by apply-
ing them 10 an examination of advertising effectiveness functions using the Lydia

Pinkham data (9).

S. Tug Lypia PINKHAM CASE REVISITED

The Lydia Pinkham case has been extensively treated in the literature on
advertising theory (see (9) for an excellent survey and analysis). Popularity of this
case in the advertising literature is essentially due to the availability of extensive
sales and advertising time series. Furthermore, the firm, through its long history,
has essentially been unaffected by competition and sales have been shown to be
extremely sensitive to advertising budgets. We shall therefore use this data in
testing advertising effectiveness functions. Specifically, we use (seasonally adjusted
and the original) monthly sales-advertising time series’2 for the periods January
1954 to June 1960, to test the hypothesis of economies of scale in advertising.
The results we found corroborate studies by Simon (13) and Palda (9) although
we use an entirely different procedure. Further research is currently being con-
ducted to test alternative models and data’? in verifying this and other hypotheses.
The sales-advertising model we consider is of the Nerlove-Arrow type!* and is
given by;

(5.1) As = [—mx + ¢oa®] + [mx + qoa®] Aw.

Several thousand hypotheses were tested using alternative parameter configura-
tions.'® Maximum likelihood parameter configurations are summarized in Table4.
Results in this Table are given for the first 58, 68 and 78 measurements of the time

'2 Palda {9]. pp. 32-3.
:: Specifically. Schmalense’s (12) data on cigarettes as well as other diffusion models.
Here A7 = | and goodwill is equated to sales.
'*In other words, a large nurber of parameters (m. g,. 3) were tested and only the configurations
(m*_.¢*, 6% with very high likelihood accepted.
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TABLE 4

Seasonally Adjusted Data {monthly) Original Dag (momhly)ﬂ A B
Lenglh m q ] chi Length m q 3 chi
S8 0400 0500 103 354 580400 0400 10y 350
S8 0450 0500 105 360 80450 0600 097 343
68 0400 0400 107 350 B 0550 0400 105 jeq
68 0400 0600 101 3¢ 580600 0500 103 349
68 0450 0400 109 369 68 0450 0500 09 1y
68 0450 0500 105 360 68 0450 0600 097 343
68 0500 0500 107 362 68 0550 0700 097 3¢9
78 0400 0400 107 350 68 0600 0500 103 140
78 0400 0506 103 754 80550 0400 105 1ey
78 0400 0600 101 361 050 0700 097 1o
78 0450 0400 109 369 0600 0500 103 3¢

7% 0.560 0.500 1.07 362

series. We note here the é—-the scaling parameter, is extremely close to one.
Thus, any competing hypothesis with ¢ = | (oro < 1is likely to be rejected
compared to the hypothesis that ¢ = |. Such hypotheses were in fact tested and
rejected. Experiments were also conducted using the Vidale-Wolfe model. This
model was found to be insignificant, however.'6 This is to be expected since in the
Lydia Pinkham case, the concept of market share, on which the Vidale-Wolfe
model is based, makes little sense. Finally, in the analysis of the Lydia Pinkham
yearly data we encountered a trend which was not accounted for in the stochastic
models constructed in this paper.!” For empirical analysis purposes, such a trend
is necessary to reflect more precisely the effects of forgetting and advertising on
sales.

6. CONCLUSION

One of the first problems in the analysis of dynamical systems is to construct
appropriate models which reflect reality. This is particularly important when we
consider econemic, social, and management applications. In these fields, an
equation mapping behavior can be assumed at best to be a hypothesis. The choice
of the relevant variables and behavioral hypotheses in fact determine the resultant
dynamic models. If this is so, it is imperative that we provide the explicit mathe-
matical and statistical tools for testing the hypotheses we make concerning a
behavioral process.

In this paper, a set of advertising models were consiructed starting from
simple hypotheses concerning market behavior. Using the simple structure of
random walk models, hypotheses conce ming memory mechanisms and advertising
effectiveness were expressed in terms of transition probabilities. Given the cor-
responding random walk model, diffusion approximations were shown to lead

'®In other words, in all cases. the log likelihood was found to be large. Further study of the
Vidale -Wolfe's model is however currently investigated using the Schmalense cigareties data.

"" This is a particularly important point for empirical analyses since the stochastic process model
asstimed eonly the effects of forgetting and advertising on sales.
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to non-linear stochastic differential cquations. This formuiation of the problem

is standard in non-linear filtering theory.

The models of advertising suggested in this paper have mean evolutions
equivalent to the Nerlove-Arrow model (7). Viqale—Wolfe (19) and Stigler (i4)
models. This particular property of the models points out some explicit hypotheses
made by the authors. Evidently, there may be a great .num.ber of hypothf:ses which
can be shown to lead to mean evolutions as given in this paper. An interesting
and important question would be to consider t.he inverse pr.oblem—v—that of finding
the range of hypotheses giving rise to a particular evolution. This problem is a

difficult one and is not in the scope of this paper.

For empirical analysis purposes. we computed the likelihood ratio of hy-
potheses and thereby obtained 2 mechanism for testing on-line. modelis as well as
parameter configurations. To demonstrate our results. a numerical example
concerning economies of scale in advertising was considered. Maximum likelihood
scaling estimates were shown to be in the neighborhood of one, thereby rejecting
the hypothesis of economies of scales. Of course this n.umerical example is merely
a preliminary analysis and further empirical research is clearly required.

Columbia Unirersity
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