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FRED L. BOOKSTEIN

CENTER FOR HUMAN GROWTH AND DEVELOPMENT
AND INSTITUTE FOR SOCIAL RESEARCH
UNIVERSITY OF MICHIGAN

ANN ARBOR, MICHIGAN

1. Introduction. Latent Variables and Soft Models

For the phenomena social scientists study, causation generally operates
at the level of events: decisions, outcomes, and opportunities. But were
each event measured separately, there would be no such activity as predic-
tion, only prophecy. In accounting for patterns of events in any predictive
way, causal theories must depend on measurable attributes—of individuals,
institutions, interactions—presumed stable over events. Then the variables
we measure are usually misspecified for the causal schemes we believe to
govern the process of their interrelations; they are all proxies, all at the
wrong level of aggregation.

In modern quantitative practice the method of latent variables emerges
as a general response to this perplexity. By way of compensating for the
misspecification of any causally relevant empirical attribute, we measure it
variously and repeatedly. Each “variable” becomes, in practice, a block of
many items. A latent variable (Lv) is a scale score which combines the items
of a block into a single quantity for arithmetic use later in a particular
causal model. The Lv is formed by three considerations: the items whose
causal force it embodies; the other variables, observed or latent, in the causal
scheme; and the details of the algorithm by which we generate the scale
scores to combine the items of a block in a single aggregate. Latent variables
may be linear expressions in the items of a block, integers, switches, or any
other sort of statistical artifact required by a particular style of prediction.

Over several years of exposition and collaboration Herman Wold has
developed for latent variable analyses a set of conventions which he calls
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76 FRED L. BOOKSTEIN

soft modeling. By “soft” here Wold means weak in assumptions, un-
demanding. His soft models presume several blocks, each an assemblage
of items that are all proxies of one Lv. The blocks are related by an arrow
diagram, a causal chain specifying that certain Lvs must have an expected
value depending linearly on the values of others. Each Lv is to be an explicit
linear combination of the items of its block. No other information is supplied,
no other assumptions are made.

To estimate such a model is to fix coefficients of two sorts: the regression
weights (“inner relations”), whereby values of an Lv “affect” values of others
further down the causal chain, and the item weights (“outer relations”),
which describe the manner in which the items of a block severally deter-
mine the Lv which represents them. Whereas conventional multiequation
estimators require a stringent parametric model, namely, a family of joint
distributions for all the items in all the blocks, the soft specification is
translated into a collection of partial linear models separately, almost
trivially, analyzed by ordinary least squares regressions. This unexpected
tactic is directed by two formal themes, suboptimality and simplicity.

1. Suboptimality refers to the formal disaggregation of the computations.
Each block in the model, its items together with its eventual Lv, can be
interpreted as the basis of a submodel consisting just of that block and the
other blocks with which it communicates, that is, to which it is linked by
explicit arrows of the causal scheme. In Wold’s prescriptions, each Lv
is related only to the other Lvs of its submodel together with the items of
its own block. Nevertheless, since the submodels overlap, the result is an
interdependent system of equations between latent variables.

2. For the sake of simplicity any Lv is characterized in terms of pro-
jections of the Lvs of its submodel upon the items of its own block. The
minimum-distance property of projection onto a block is the only optimi-
zation principle invoked in the course of soft modeling.

The Lvs of a soft model may be jointly characterized using a complex,
nonlinear operator for which the vector of all estimated item weights (outer
relations) serves as a fixed-point. Soft estimation, then, does not resemble
at all the search for zeroes of certain derivatives which characterizes the
estimation of “harder” models. In its stead, in order to find the fixed-point
of a soft model, Wold proposes a succession of regressions and linear com-
binations within submodels—a cycle of replacement of “old” Lvs (earlier
estimates) by new—which seems always to converge.

In this essay I will explore the role of these two formal themes in Wold’s
exposition. Regarding his prescriptions for submodel regressions, I will
indicate which are dictated by the needs of suboptimality or simplicity and
which are left for determination by content of the theory, model, or data
at hand. The procedures I derive from the principles are somewhat more
flexible than Wold’s own.
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Fig. 1. Typical arrow diagram. A latent variable X3 -
Ly, proxied by indicators X, X, X3, and an Lv -2y
Ly proxied by Y;, Y,, Y3, jointly and linearly deter- -5
mine the expected value of an Lv L, proxied by items ~7Z
3
Zl) ZZ) ZS' Y| N
Y37

2. The Command Diagram

~ We begin with an arrow diagram. The specimen in Fig. 1 sets out three
blocks of items with corresponding Lvs. The Lvs are to capture X-ness,
Y-ness, and Z-ness in the context of a joint linear determination of Z-ness
by X-ness and Y-ness. (Latent variables here are denoted by the letter L
subscripted by the block name, e.g,, LX,Ly,LZ J)

Under Wold’s rules the arrow diagram is transformed into a series of
operations replacing each tentative Lv by a new linear combination of the
items in. its block. The new Lv is not a function of the old Lv at all, but is
rather a function of the Lvs of the other blocks of its submodel as they relate
to the items of its own block. The new Lv is always some sort of orthogonal
projection; we may disregard details by using the general operator Opt,
without specifying its precise functional form. The operator Opt has two
arguments. The first is the block for which the operator’s output is the new
Lv; the second is a list of all Lvs linked to the output block by direct paths
in the arrow diagram—a roster of the submodel. In this manner the arrow
diagram in Fig. 1 is replaced by the command diagram in Fig. 2, which
makes explicit the arguments and outputs of the various operations, that is,
the flow of partial regressions over the diagram. The various Opt commands
have been written out over paths connecting their arguments to their outputs,
the Lvs for the next round- of iteration. For example, the path Opt(X;Lj)
is a regression, of form not yet specified, which computes a new Lv Ly by
relating the current Lv L;, a linear combination of items Z;. . .Z5, to the

Lx

Fig. 2. Command diagram transcribing Fig. 1. Each Opf(,\f L
operation is an optimization for a new latent variable
as a function of all the Lv’s communicating with it. The
arrows express association of inputs and outputs, not

causation.

\
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items of the X-block. The direction of the arrows in the command diagram
expresses the order of operations and outputs, not the flow of causation,
which will be embodied in the detailed formulation of the functions Opt.

The command diagram directly implies the algorithm to be used for
estimating both sorts of coefficients, regression weights and item coefficients,
as follows.

1. Begin by defining each latent variable as an arbitrary linear com-
bination of the items in its block. Reasonable starting values might be
Ly=Y X, etc.

2. Determine the exact form of each Opt command in terms of some
short sequence of regressions and linear combinations, utilizing the con-
siderations set forth later in this exposition.

3. Execute all the commands of step 2 just once, without updating the
Lv formulas.

4. Have we arrived at the fixed-point?—are the Lvs consistent with
their joint characterization to some preset tolerance? If so, we are done;
otherwise,

5. Replace each Lv by the output of the appropriate Opt operator,
scaled to unit variance, and return to step 3.

In practice these algorithms always converge. At convergence, each Lv
is a projection onto its block of the Lvs from the other blocks of its sub-
model. Only in these projections does optimality lie; otherwise the estimates
are characterized by their self-consistency as tested in step 4.

3. Polygon Diagrams

The intrinsic geometric content of soft techniques stems from the equiv-
alence of regression and orthogonal projections from point to hyperplane.
The fixed-point of a soft model can be expressed in terms of the mutual
orientations among hyperplanes in a high-dimensional space. Their soft
modeling is mainly geometry, so we should be able to visualize what we
are doing,

I shall try to demonstrate how to distinguish between alternative forms
of the Opt operator with diagrams on flat paper, but to do so I shall need
to establish some visual conventions. Figures 3a—g illustrate the standard
constructions to which I shall be referring. Until one notices the apparent
inconsistency of the right-angle (I") symbols scattered throughout the dia-
grams, the figures appear to be of points, lines, and planes from ordinary
three-dimensional space. But, in fact, all of the objects depicted lie in the



(g)

Fig. 3. Elements of the polygon diagram. (a) The line of multiples ofanitem X,.0is the zero
vector. (b) The hyperplane corresponding to the X-block, viewed plane-on. (c) Two hyperplanes,
each with a latent variable, viewed from in between. For any vector of a block the dotted lines
connect it to a basis for its block. (d) The same, viewed through the X-hyperplane to the Y-
hyperplane. () Three hyperplanes all edge-on. (f) Two projections from hyperplanes onto a
line. Orthogonality of projection onto a rank-1 subspace is shown by the symbol ™ drawn in
perspective. (g) Two projections from hyperplanes onto a hyperplane viewed plane-on. Orthog-
onality of projection onto a higher-rank subspace is shown by a combination of symbols [ for
each basis vector separately.
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space dual to that of the items in an analysis, namely the vector space of
their linear combinations. Points in these diagrams are particular scores,
such as the Lvs themselves; lines and planes depict subspaces spanned by the
items of a block or by sets of Lvs. The diagrams are drawn in no particular
coordinate system at all, though the representation of regression as explicit
orthogonal projection suggests a set of orthonormal axes as the appropriate
basis. In terms of the items themselves, the variables of the raw data matrix,
the inner product here is defined not in terms of the Euclidean cosine, but
in terms of the familiar covariance matrix T. Submatrices Zyy, Zyy, €tc.
of ¥ incorporate the covariances within and between the separate blocks
of the model.

Let us proceed through the frames of Fig. 3.

Figure 3a shows a typical line of our space. Here it is the set of all multiples
of an item, X ;. Note the zero vector 0, which is represented by a point on
this and all other lines and higher-rank subspaces.

Figure 3b shows a hyperplane of this space, viewed plane-on so that
we can see two of the items making it up. Note that these axes are oblique,
as items X, and X, are, in general, correlated. Any block of the soft model
can be drawn as a hyperplane whose points are all the possible Lvs for
that block. The algorithms of soft modeling determine one Lv per block
—one point per hyperplane which is in the proper relation to the Lvs of
the other blocks of its submodel.

Figure 3c shows two hyperplanes, after the fashion of Fig. 3b, with an
Lv in each one. We indicate the (hyper)plane in which a point resides by
dropping dashed lines to the lines determined by the items spanning that
(hyper)plane. Note that these planes can intersect only at the point O;
elsewhere they avoid each other like two lines in a plane. We are looking
at them “from in between.”

Figure 3d shows the same two hyperplanes, from a viewing position
now “through the X-block to the Y-block.” Certain constructions will appear
more legible from this perspective.

Figure 3e shows three hyperplanes, all edge-on to the viewing eye, in
some inconceivable high-dimensional rotation. These three entities intersect
in a single point only, the origin of coordinates, and do not intersect, even
in pairs, anywhere else at all. One must imagine them curving around to
the point of concurrence through dimensions unrelated to flat paper or
even physical space. It should be clear why the point O is not drawn; there
is no'logical place to put it.

Figure 3f shows two regressions, from hyperplanes representing two
blocks of a model, onto the line of multiples of an item Z, from the Z-block.
An Lv Ly, residing within the hyperplane corresponding to the X-block of
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the model (here seen edge-on), is regressed on a single item Z,, that is to
say, projected orthogonally onto the line from 0 through Z,. (Recall that
0 is included in both blocks as well as in the line.) The predicted value of
Ly is the vector Qy, some multiple of Z; the residual of that regression is
the vector difference Ly — Qy, orthogonal to the lines of multiples of Z,,
as shown. Note that the symbol for orthogonality of two lines is drawn in
perspective.

Similarly, in this figure the latent variable Ly is regressed onto the same
single item Z,. The perception that these projections come from different
directions is to be encouraged; that they seem to come from different dis-
tances is tempered by the difficulty of representing all Lvs at the same distance
from O (as they are all normalized to the same variance).

Figure 3g shows two regressions onto a hyperplane viewed plane-on.
The symbol for orthogonality of a projection onto a hyperplane is a com-
bination of s, in perspective, indicating orthogonality to the basis vectors
of the plane of view. The “normals” for these two projections (residuals of
the regressions) come from different directions in hyperspace, resulting in a
paradoxical perspective for the diagram as a whole.

A soft algorithm terminates when a loop of Opt operations returns to
the very latent variables, hyperplane by hyperplane, with which it began.
The fixed-point itself, though really a vector, can then be drawn as a whole
closed polygon in the diagram, a path whose edges bear Lvs at one end and
right angles at the other, as in Fig. 9b and 10c. In terms of its symbols of
perpendicularity the polygon diagram indicates the precise form of each
Opt command to be programmed for calculation through regression
analysis. For instance, the model of Fig, 9a-b is executed by the following
command sequences:

0. Set L; =Y Z,;, normalized to variance 1.

1. Compute Ly by determining the predicted value of L; given the
X-items.

2. Compute Ly by determining the predicted value of L, given the
Y-items.

3. Compute Ly by determining the predicted value of L, given Ly and
Ly. ,
4. Compute L} by determining the predicted value of Ly given the
Z-items.

5. Set Ly = L}/o;, where the denominator is the observed variance
of L.

6. TEST. If L), is sufficiently close to L, exit; otherwise,

7. Set L, = L} and go to step 1 again.
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The flow of computation is drawn in Fig. 9c by associating the step
numbers from the preceding list to the appropriate edges in the polygon
diagram, paths from dependent variables to predicted value which link the
hyperplanes of the model.

4. Precise Forms of the Operator “Opt” for the Relationship
between Two Latent Variables

Using the elements introduced in Fig. 3 we can explore a diversity of
Opt commands by combining projections in various ways.

Consider first the simplest submodels, those containing only two blocks
of items. These correspond to Opts whose second argument is a single
Lv only. In the absence of formal asymmetries among the items of the out-
put block, there seem to be only two reasonable ways to proceed, shown
in Fig. 4 for the case of the command Ly = Opt(X; L,) from Fig. 2. As the
notation indicates, either construction is intended to provide a tentative
Lv in the X-hyperplane. That is, a linear combination of the X-items is to
to determined with respect to a tentative Lv L, in the Z-hyperplane.

7-plock

Z_b\oc\‘

Optg (X;Ly)

0 X, 0 X4
(a) (b)

Fig. 4. The two modes of the Opt command for a block X communicating with only one
other block Z. (a) Factor estimation mode. Ly is the sum of the simple regression functions of
Lz upon the X-items separately. (b) Linear estimation mode, orthogonal projection of L, upon
the X-hyperplane.

Mode A projects L, upon the items X; of the X-block separately, then
constructs the sum of these projections. When all items are of unit variance,
as will be assumed throughout the remainder of this exposition, the result
is Ly = Xy;L;. The geometry of this Opt,(X;L,) is diagrammed in Fig. 4a.

Mode B projects L, onto the X-hyperplane directly, in one operation.
The result, shown in Fig, 4b, is Opty(X;L,) = Ex% ZxzLz, which differs
from Opt, whenever the Xs show any intercorrelation, ie., when X,y is
nondiagonal.
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To each of these modes, A and B, corresponds a familiar statistical model.
Opty is the multiple regression of L, on the X-items, that linear combination
Ly which minimizes the root-mean-square of & in the regression equation
L; = Ly + &. Opt, is factor estimation. If each indicator X is representable
by a;L; + &, where the ¢ are mutually independent random deviates with
mean zero, then Opt,(X; L,) is the estimator of L, with the smallest summed
mean squared g;.

Though Wold requires us to choose one mode or the other, A or B,
for each block, there seems to be no way to decide between them on the
basis of observation of distributions or to estimate their relative import
for an estimate of the “true situation” by any simple technique. This ambi-
guity is unfortunate, since the factor x4 which distinguishes the modes
can have a great effect—as the indicators of any block are almost certainly
correlated, this inverse will have some large eigenvalues with associated
eigenvectors not necessarily uncorrelated with Xy,L,. To guard against
ill-conditioning of Z, one might, for instance, “deflate” Opt; by an additional
multiplication by Zyy ,, suppressing dimensions of the X-hyperplane
according to their alienation from the Z-items. Perplexities of the single-
block Opt operation are a prime site for further research into soft modeling.

S. Precise Forms of the Operator “Opt” for the Relationships
among Several Latent Variables: Approaches to Eigenanalysis

Inthe previous section we considered whether or not to use the covariance
structure Xy of the indicators of a single block. When we attend to larger
submodels, three blocks or more, there is an analogous choice to be made:
we must examine the consequences of i gnorlng or recognizing the covariances
among the connected Lvs themselves.

Wold favours the most straightforward of approaches, simply dis-
regarding the covariances of Lvs. Mode C will combine this strategy with
mode A within blocks,' mode D with mode B within blocks. Figures 5a
and b show the constructions which result for the operation L, = Opt
(Z; Ly, Ly) from Fig. 2. In either case the output L, is the simple mean of
the appropriate Opt,s or Optgs computed in block Z with respect to the
communicating Lvs separately. By linearity of projection, the Lv Optc
predicts the Zs from Ly + Ly—minimizes mean squared prediction error
over all the Zs separately—while Opty, finds a Lv L, to predict Ly + Ly
with minimal mean-squared error in the units of Ly + Ly.

'This is not the mode C of Wold’s exposition.
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Zy
(a) (b)
Fig. 5. Opt operators that ignore the covariance structure of the Lvs within a submodel.
(a) Factor estimation mode Optc, mean of the separate Opt,s for each communicating Lv: sum
of the means of all the simple regression functions item by item. (b) Linear estimation mode
Optp, mean of the separate Optgs block by block.

Fig. 6. The plane W spanned by the Lvs Ly,
Ly from two separate blocks X and Y.

Simple contradiction of this direct route suggests other possibilities in
which the communicating Lvs are considered jointly. Mode E will maximize
the sum of the squared simple correlations of L, with Ly and Ly; mode F
will maximize the squared multiple correlation of L, with Ly and Ly. These
new optima emerge from computations involving a new hybrid block W
spanned by Ly and Ly themselves. W is a plane, not a hyperplane—the
collection of all linear combinations of Ly and Ly only. It does not lie wholly
in either the X- or the Y-hyperplane, but rather straddles the “space” between
them, as in Fig. 6.

In terms of the matrices X, and Ty, of correlations among the Lvs
of the Weplane and between them and the indicators of the Z-block, the
optima of modes E and F are expressible as eigenvectors. The vector L,
which maximizes R*(L, | Ly, Ly) is the first canonical variable of the Z-block
with respect to the W-block, the dominant eigenvector of the matrix
TowEwiZwz With respect to Xz the vector L, which maximizes
R*(Lz|Ly) + R*(Lz|Ly) is easily shown to be a closely related quantity, the
dominant eigenvector of the matrix Xy, With respect to ;5.
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Fig. 7. The polygon diagram for classic two-block
canonical analysis. Vector Ly is in the (X, X,)-plane,
vector Ly in the (Y}, Y;)-plane. The expected value of
Ly, when regressed on the items of the Y-block, is
proportional to Ly; and the expected value of Ly re-
gressed on the X-block is proportional to Ly.

Now, as eigenvector extractions, these would seem to be excluded from
the repertoire of soft modeling. But, in addition to regression, we have
another privilege, the passage to the limit, which contributes the needed
extension to this class of algorithms. Figure 7 shows, for instance, a two-
block model, estimated according to mode B, at convergence. The normal-
izations after each round of optimization are shown explicitly. In view of
the algebraic characterization of mode-B optimization, we may write
Ly = AXx4ZxyLy, Ly = pZ 3} Zyx Ly, where 4 and u are normalizing factors.
Substituting either equation in the other, we see that each of Ly and Ly is
an eigenvalue of the appropriate matrix for the problem of canonical variates
of the X-block with respect to the Y-block; and although they are eigen-
vectors, we have computed them by iteration of regressions only.

At convergence, then, the mode-F L, drawn out in Fig. 8b will have
maximized R*(L,|Ly, Ly). Note that we cannot write this as Optg on the

0
(a) (b)

Fig. 8. Polygon diagrams for optimization modes E, F. Vector L, is in the (Z,, Z,)-plane,
Ly in the X-block, Ly in the Y-block. Vector Ly, is in the (Ly, Ly)-plane. At convergence, L is
the predicted value of Ly, given the items of the Z-block. (a) Computation of L, by optimization
mode A. The eigenanalysis shows the maximization of the mean-square of the simple correlations
of Ly, Ly with L. (b) Computation of L, by optimization mode B. The eigenanalysis is that of
canonical correlation analysis, showing maximization of the multiple correlation of L, with L,
and Ly jointly.
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command diagram, for it is not a finite sequence of regressions—it emerges
only at convergence from the succession Ly = Opts, Lz = Opts.

Similarly, when the estimation of a model according to the polygon in
Fig. 8a has converged, it is to a variable L, which is an eigenvector maxi-
mizing R*(Lz|Lx) + R*(Lz|Ly). This mode-E optimization emerges at con-
vergence from the sequence Ly, = Opt,, Lz = Opts.

The inclusion of the ancillary plane W in the polygon diagram (or the
ancillary block Win the command diagram) makes it possible to reflect in
the operator Opt the differences in position of blocks within the causal
structure of the model. When determination is joint, as in Fig. 1, optimization
should proceed according to mode F (command diagram, Fig. 9a, and
polygon diagram, Fig. 9b), in which the maximand for computation of Lz
is the multiple correlation with Ly and Ly. Corresponding to the postulation
of a single linear dependency in this submodel, there is a single scalar to
to be maximized. In a submodel like that of Fig. 10a, where two separate
dependencies are being described, I believe optimization should proceed

—
omo(w;Lz)—-
R
[ ]

L)

(a)

‘o

(b) (c)

Fig. 9. Recommended algorithm, mode F, for the causal model of Fig. 1. (a) The command
diagram displays the ancillary Lv Ly,. (b) The polygon diagram displays the ancillary plane W.
{Compare Fig. 8b.) (c) The sequence of regressions 1-4 along edges of Fig. 9b is followed by a
normalization, step 5.
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Lx

Op\()(.\-z
<— Opt(Z;Ly)— «— Opt(W;L;)
\

Fig. 10. Adjustment of Fig. 9 when the postulated direction of causation is reversed. (a) The
revised arrow diagram. (Compare Fig. 1.) (b) The command diagram. Note that Ly, is computed
by optimization mode C, rather than mode D as in Fig. 9b. (c) The polygon diagram, incorpo-
rating Fig. 8a.
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according to mode E instead, with maximand the summed squared simple
correlations of L, with Ly and Ly separately. There are two dependencies
postulated here, corresponding to the two arrows out of the Z-block; in
the absence of any instructions to the contrary, their strengths can only be
summated.

In a four-stage model, such as that of Adelman and Morriss excerpted
in Wold’s essay elsewhere in this volume, a suitable command diagram
will combine several of these modes as in Fig. 11. Two ancillary structures
are invoked here: a plane W, spanned by Lvs Ly and Lg of the two
exogenous blocks “economic levels” and “social conditions”; and a hyper-
plane W, spanned by those two Lvs and also Lp (“political conditions”)
as well—all the Lvs causally prior to the criterion variable “growth rates.”
Latent variables Lg and Lg may be computed (1 and 2 in the figure) from
their communicating Lvs L, and L by simply averaging of the projections,
mode-C optimization, as in Fig. 5. For the operation (4) whose output is
Lp, the instrumental variable in this little model, we additively combine
Optg(W,;; Lp), the net projection (3) of the exogenous variables onto the
P-block (as in Fig. 8a), with the projection of L from the “other direction,”
causally speaking. (The role of this intermediate block P is the same as that
of block Z in Fig. 10a, even though one of the arrows is reversed. The Lv |
Lp enters into two different linear determinations the efficacies of which—
one a multiple R?, one a simple r*—should be strictly summed.) Finally,
the operation (6) whose output is Lg invokes the ancillary Lv Ly, (5) in a

<—— Ople(S;LpiLe)

Optc(Pilg.by,)

C ®
“— Opic(E;Lp,Lg)

Fig. 11. Command diagram for the Adelman—Morriss model. See Wold’s essay in this
volume for an explanation of the blocks E, S, P, G. There are two ancillary blocks. W, is spanned
by Lvs Lg, Lg, and W, by Lvs Lg, Lg, L. The numbering of the Opt commands corresponds
to the order of their computation, as described in the text.
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construction which extends that of Fig. 8a by one further block. Without
information about the matrices Xgp, Zgs, Xgg, Zpp ONE Cannot guess at
their condition numbers or prescribe mode-B projection with respect to
any but the blocks W;, W, of ancillaries; then operations 1, 2, 4, and 6 are
all performed item by item.

6. How Soft Modeling Relates to Canonical Analysis
and to Maximum-Likelihood Estimation

Expansion of so modest an assumption as the mere block structure
into these detailed sequences of regressions can be justified by recourse to
the rationale of canonical analysis. Were we presented (well out of context
of soft modeling) with the problem of predicting Z-ness by the X- and
Y-items in Fig. 1, we would no doubt settle upon a global figure-of-merit,
the proportion of variance in L explained. By this criterion the optimum L
is the first canonical variate of the Zs with respect to the pool of the Xs
and the Ys together; Ly would then be the collection of X-terms in the
predictor, Ly the Y-terms. Such an analysis neglects the existence of the
X- or Y-blocks as separate pools of variables presumed to have some
coherence among themselves.

I find the easiest way of declaring the block structure to be by way
of side conditions upon the optimization. An insistence that Ly, the
X-component in the prediction function of L, be itself an optimal predictor
of L, seems to imply the existence of the X-block satisfactorily. We shall
insist, too, that Ly be optimal for prediction of L, from the Y-block alone.
That L, which is optimally predicted by a linear combination of Ly and
Ly obeying these side conditions is just the fixed-point drawn out in Fig. 9b.
In other words, at convergence of the command sequence of Fig. 9a, L is
in canonical relation to the plane of its own best predictors. The soft model,
by restating this optimum in terms of partial least squares, has provided
a simple iterative algorithm for the analytically unwieldy solution. In all
these determinations the polygon diagram lets us see what we are doing.

The preceding paragraph may be thought of as adumbrating a “model”
which the partial least squares (PLS) procedure is “estimating,” Soft modeling
is in effect the estimation of a recursive system of simultaneous linear equa-
tions under very specialized nonlinear constraints. Nevertheless, most
writers on the subject, in particular Wold and myself, choose not to make
much of this interpretation, for two reasons. First, in the context of any
family of distributions likely to have generated the data in practice, the
constraints make no sense at all. They are not counterfactual, merely ir-
relevant. In specifying that the analysis be consistent with the only prior
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knowledge we have, the block—causal structure, they speak not about the
data but about the explanatory use we propose to make of them, explanations
whose strength is embodied in the sums-of-squares we are optimizing.
Second, from such a model it would be pointless to pass to distribution-
based estimates of standard errors in the parameters. These errors conform
only to sampling variation in the units of analysis, but PLS is applied rather
in the attempt to smooth out into Lvs those long lists of proxies. The sampling
variation most crucial for reasoned applications is of those lists of items
themselves, and as the items are not drawn randomly from any universe,
no sampling theory is of any avail here at all. '

Axiomatic simplicity aside, the main advantage of soft modeling by the
partial least squares approach over likelihood-based estimators such as
LISREL is the proximity of maximands to our intuitive statistical experience,
the possibility of viewing the fixed-points in diagrams of perpendiculats
and linear combinations. Only during a single regression is likelihood to be
seen in the dual space, manifested as ellipses about the foot of a perpendic-
ular. Otherwise, likelihood relates to our vector geometry not by these
visible constructions but through hypervolumes and determinants, far too
subtly for any simple depiction at all.

In short, likelihood is invisible. Its maxima have no tangible attributes
in terms of the subsystems of a model, the arenas wherein our explanatory
theories stand or fall. At the conclusion of a partial least-squares analysis,
by contrast, we have a collection of true sentences, embodying geometric
facts, about precisely those local optima which we know how to interpret:
little two- and three-block configurations. In “complex situations with scarce
prior information,” least-squares optima are treacherous enough, what with
outliers, multicollinearity, item selection bias, that ubiquitous misspecifica-
tion of levels, and all the other familiar difficulties. It seems gratuitous to
augment these very real frustrations by the introduction of multivariate
normality assumptions, various hypotheses of zero residual correlation, and
the like, just for the sake of arriving at asymptotic estimates of the covariance
matrix of error of estimate. The decentralization of soft modeling corresponds
to a lack of faith, in interdisciplinary problems of any complexity, that the
data will bear the imposition of a single function, however general, relating
the observed covariance structure to a theoretical distribution.




