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Annals of Ewn!Jmetric and Sodal Measuremem, 3/4, 1974

THE RELATIVE EFFICIENCY OF INSTRUMENTAL VARIABLES

ESTIMATORS OF SYSTEMS OF SIMULTANEOUS EQUATIONS

BY JAMES M. BRUNDY AND DALE W. JORGENSON

Consistent and effiCient estimaton of simultaneous equation.~ by the method of instrumenral I'l/riables
require an initial con.;istent estimator of the slructural form. Ins/rumental l'ariabie.~ estimators that are
consislent but not necessarily efficient can be employed for this purpose. The first objecti!"e Jj this paper
is to measure the relative efficiency of alternUlil'e instrumental variables estimators proposed in the
literature. The secotui objective is to assess the sensitivity oflimited ;,iformation efficienr (LIVE) andfull
informatioll instrumenlal variables efficient (FIVE) estimators 10 the (hoice of an initial consistellt
estimator.

1. INTRODUCTION

In previous papers (1971, 1973) we have provided a complete characterization of
the class of consistent and efficient estimators of simultaneous equations by the
method of instrumental variables. Our characterization of consistent and efficient
instrumental variables estimators suggests two alternative ~pproaches to the
estimation of simultaneous equations: 1

l. First estimate the reduced form by any consistent estimator. This approach
underlies the methods of two- and three-stage least squares.

2. First estimate the structural form of the model by any consistent estimator;
then derive a consistent estimator of the redu-;ed (orm from the structural
form estimator. This approach underlies the methods of limited informa
tion efficient (LIVE) and full information instrumental variables efficient
(FIVE) proposed in our earlier paper.

The approach to simultareous equations estimation based on consistent
estimation of the structural form is easier to apply in practice. To obtain an initial
consistent estimator of the structural form the method of instrumental variables
provides a promising approach. 2 A number of alternative instrumental variables
estimators have been proposed in the literature. Although these estimators differ
in efficiency and in computational difficulty, all of them are consistent. The first
objective of this paper is to compare these estimators with regard to computational
difficulty and to evaluate their relative efficiency.

In the following sections we first outline the simultaneous equations model
of econometrics. We then describe the statistical properties and computational
requirements of alternative instrumental variables estimators. To evaluate the
relative efficiency of the alternative estimators we compute estimates for Klein
Model I.

The second objective of this paper is to assess the sensitivity of the LIVE and
FIVE estimators to the choice of an initial consistent estimator of the structural

1 Ahistorical survey ofthese alternative approaches:s given in our earlier paper (1973), pp. 215--219.
The LIVE and FIVE estimators were proposed, independently, by Dhrymes (1971).

2 The method of instnlmental variables was originated by Reiersel (1945) and Geary (1949). A
definitive treatment of the method of instrumental variables for a single structural equation is given
by Sargan (1958).
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form. We also consider the effect of iteration of the LIVE and FIVE estimators.
On the basis ofour results we recommend the following approarh to the estimation
of simultancous equations:

I. Estimate the strm;tural form by ordimuy least squares. This method is
generally inconsistent.

2. Compute fitted values from the ordinary least squares estimators and use
these as instruments for the corresponding jointly dependent variables.
This method is consistent but generally inefficient.

3. Compute fitted values for the second round estimator and proceed to
compute the LIVE or FIVE estimators proposed in our earlier paper.

The process described above can be truncated at the LIVE or FIVE estimators.
Alternatively, the third step can be reiterated until the process converges. This
iterative scheme coincides with Durbin's method for full information maximum
likelihood estimation ofsimultaneous equations in the case of the FIVE estimator. 3

The scheme coincides with Lyttkens' iterative instrumental variables method in
the case of the LIVE estimawr.4

2. THE SIMULTANEOUS EQUATIONS MODEl

We consider a simultaneous equations model with p equations: the structural
form of the model is denotcd:

(I) yr + XB = E,

with Y the matrix of observations on the p jointly dependent variables, X the
matrix of n observations on the q predetermined variables, and E the matrix of
random errors; the matrices {r, B} of structural c.oefficients are unknown paramo
eters to be estimated. The reduced form of the model may be written:

Y = xn -I- 1',

where the matrix n = - Br- 1 of reduced form coefficients is unknown and
r = Er- I is a matrix of random errors.

Following the notation of Zellner and Theil (1962), we may denote the
individual structural equations by:

(2)

where

z· = (y. X.]
J J J '

(j = I, 2, ... , p),

in this notation Yj is a vector of observations on the j-th column of Y; the structural
coefficient of this variable is normalized at unity; y. is a matrix of observations on
the other jointly dependent variables included in (he equation, Xj is a matrix of

J.S~ Durbin 0.963) and Malinvaud (1970~ pp. 686-687. The iterative process associated with
Durbin s method IS Interpreted as an iterative application of the method of instrumental variables by
Hausman (1974) and Lytlkens (1971).

4 See Lyttkens (19'/0).
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observations on the induded predetermined variables, <lnd I:j is the j-th column
of E. The vectors {y j' fi j: are structurall:oefficients of the included jointly dependent
variahles (other than the variahlr with coefficient normalized at unity) and the
induded predetermined variables, respectively.

Comhining the p equations into a system of simultaneous equations, we may
denote the system by:

(3) )' :=; Z () + I:,

where

o ... 0

z=

l ~ 0 ... Zp

In this notation we write the reduced form as:

rJ1

l
J2

b = . , t: =

Jp

<: 2

(4) y = [I 0 X]rr + v,

where ® is the Kronecker product and

X 0 0' 1t 1 VI

0 X 0 1t2 V2
I® X = , 1t= , v=

0 0 X 1tp L up

The vector lrj is the j-th column of n and the vector vj is the j-th column ofY.
The statistical specification of the simultaneous equations model, including

the instrumental variables, is given by the following list of assumptions:
(i) X and Ware random matrices.
(ii) X' X, W'W, and W' X have ranks q, t and min (q, t), respectively, with

probability one.

(iii) plim n- I X' X = I:x ' x ' plim n- I W'W = L\\""" plim n ~ I lV'X = L w'x ,
"-00 n~CL' n-"'x.

I:...x and 1:,.",., positive definite and rank L",..< = min (q, r).
(iv) E(e) = O.
(v) V(e) = 1: ® I, 1: positive definite.

(vi) The vectors of disturbances (c 1n , e211 , " . ,ern)' each corresponding to a
given observation (i = 1,2, ... ,11), are distributed independently and
identically over observations, and are distributed independently of X
and W.

(vii) The structural model is complete.
Under these assumptions:

plim n-1E'E = 1:,

plim n- I X'E == 0,

plim n- I WE =: O.
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Further, the vector ,,- 1/2[1 @ Xl I: is asymptotically normal with mean zao and
variance-covariance matrix L @ L,.,: the vector /1- 11

2
[1 ® W)'/: is asymptotically

normal with mean zero and variance-covariance matrix 2: @ [ ....... 5

The most important properties of instrumental variables are that these
variables are uncorrelated (asymptotically) with the errors E and that they are
correlated (asymptotically) with the predetermined variables X. From the reduced
form we can deduce that

plim /I-I W'Y = plim /I-I W'XO + plim /1"1 WT = [ ....,0,

so that under our assumptions the instrumental variables are correlated (asympto
tically) with the jointly dependent variables.

An additional assumption:

(viii) I: is N(O, I: ® I),

is essential for consideration of the problem of efficient estimation. Under this
assumption and the other assumptions we have made, the full information maxi·
mum likelihood estimator attains the Cramer-Rao lower bound for the asymptotic
variance--eovariance matrix of (essentially) any consistent estimator of the struc
tural parameters. This bound, stated in terms of the asymptotic information
matrix, depends on the likelihood function. Without an explicit likelihood function,
such as that associated with a normal distribution of the errors, it is impossible to
discuss efficient estimation. Of course, the asymptotic distribution theory we
develop for instrumental variables estimators is valid whether or not the errors
are normally distributed, provided that our other assumptions on the distribution
of the errors are satisfied. While alternative estimators may be compared with
regard to relative efficiency, no lower bound is available that would enable us to
characterize any estimator as efficient in the class of consistent estimators.6

We consider estimation of the structural coefficients (j in the absence of
restrictions on the variance--eovariance matrix L of the errors: the full information
maximum likelihood and three-stage least squares estimators are efficient. The
asymptotic variance--eovariance matrix of these estimators, also the Cramer-Rao
bound, is {L~.JI: ® Lx·,r I Lx':} - I , where X = I ® X and the matrix Ix·: has the
form,

Further,

o

o

o
o

(j = I .... ,p).

5 This specification of the simultaneous eql:~tions model is employed. for example, by Malinvaud
(1970), pp. 250-253,369-373.

6 For further discussion of efficiency in simultaneous equations estimation, see Rothenberg (1974~
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In this expression X'X j is a submatrix of X'X and n
j

is a submatrix of n
corresponding to the reduced form equations,

Yj = xn j + Y j •

We also consider estimation of the structural coefficients of a single equation
bj , subject only to the identifying restrictions for that equation; the limited
information maximum likelihood and two-stage least squares estimators are
efficient. The asymptotic variance-covariance matrix of these estimators, also the
Cramer-Rao bound, is UjjP;~'!JL;,~ Lx'x) - I, (j = 1,2, ...• pl. This completes our
discussion of the simultaneous equations model.

3. THE MHHOD OF INSTRUMENTAL VARIABLES

The method of instrumental variables for estimation of a single equation in
a system of simultaneous equations is the following: We suppose that r

j
jointly

dependent and Sj predetermined variables are included in the j-th equation and
that a subset or'tj = r j + Sj - I instrumental variables Wj is selected from the
set of t instrumental variables W. The instrumental variables estimator d

j
of b

j
is

obtained by solving the equation:

Wi)'} = WjZjd j ,

obtaining,

(5) dj=(WiZrIWj.l'j.

Examples of instrumental variables are:
I. The indirect least squares estimator,

dj = (X'Zr IX'Yj'

where t = P = r j + Sj - 1.
2. The two-stage least squares estimator:

dj = {ZjX(X'X)-1 X'Zj} -IZjX(X'X)-1 X'Yj'

where W. = XIX'Xl- 1X'Z., the fitted values from a regression of the right-hand
side vari~bles in the equation Zj on the matrix of predetermined variables X.

We first observe that any instrumental variables estimator dj is consistent
since:

where:

plim (n- I WjZ) = [Lw;xI1j

is a matrix of constants and:

Lw,.•.J= Lw'.z·
J"') r J

I· (-IW" 0p 1m n lj' = .

Second, this estimator is asymptotically normal, since the vector n- I
/
2 W~-€j is

asymptotically normal. Further, this distribution has expectation zero and
. . . {~' ~-I '<' }-lvanance-<:ovanance matrIX Ujj ~Wj%/"wj'N/"wj:j .
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The principal results of estimation theory for instrumental variables methods
can be embodied in two theorems presented here witholit proof. They are proved,
and their implications discussed In detail, in our earlicr paper [1971 J.

Theorem A. Undcr the a:;silmptions given abo\'c, the cstimator

(6) dj = (WjZF Ill'jYj

of the parameters Jj of the equation (3) is asymptotically efficient if and only
jf the matrix of instrumental variables Wj can be transformed by means of a
nonsingular matrix into a matrix that includes two subsets Wj = [Wjl , Wd
with the properties:

plim n- i Wjl X = njLx'x

I" -I W' X l'~p.!m n j2 = j"'x'x'

This theorem provides the necessary and sufficient conditions for consistent and
efficient estimation of one equation from the model (I). The following theorem
provides the same conditions for an estimation of all equations taken together.

Theorem B. Under the assumptions given above, the estimator

(7)

of the parameters e5 in model (4) is asymptotically efficient if and only if the matrix
of instrumental variables can be transformed by means of a nonsingular matrix
into a matrix with typical submatrix Wjj (W = :Wij}) that can be partitioned
into two subsets Wi; = [Wjjl ' Wij2] such that:

I· - I u:· X - ijn'~p 1m n Yf ijt - a j"'x'x'

I· -tW" X - ijl'~P 1m n ij2 - a j"'x'x'

where aij is the (i, j) element of the matrix I: - I.

With the above results available, alternative techniques for choosing It] and
W can be considered.

Observe that for 2SLS and 3SLS, the instrumental variables for the included
jointly dependent variables in a particular equation may be written, in the notation
used above,

(LIVE),

and

H~j' = s;jXfl j (FIVE).

The estimator fi j is a consistent estimator of the portion of the reduced form
associated with the j-th structural equations. Any consistent estimator of these
redueed form parameters can be used to generate estimators that are consistent
and efficient. We have called estimators based upon a consistent estimator of the
reduced form parameters Limited Information Instrumental Variables Efficient
(LIVE) and Full Information Instrumental Variables Efficient (FIVE) estimators.

The instrumental variables used in LIVE and FIVE estimation are of the
form xfi j , fi j a consistent estimator of the reduced form parameters n j' Because
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model (I) is complete,

(8)

and a consistent estimator 01 II is given by

(9)

where Band f are consistent estimators of the structural parameter matrices B
and r of model (I).

Now the vectors Xfiare "fitted values" from a consistent estimator of the
reduced form; they need not be developed from least squares, as in 2SLS or 3SLS,
but can be obtained from the derived reduced form estimates (9). The "fitted val ues"
can be determined without sOlving explicitly for the derived reduced form by the
following iterative algorithm:

Define the fitted values by

(10) Yr' 1 = - ¥.([ - I - l) - xD.

for any consistent estimators rand B, and iterate until ¥.+ 1 = Y,. + jl, II arbitrarily
small. At that point,

(II)
(; AA 1 ~

1,= -XBr- -jl=xn-/I.

The error in this iterative process (jl) must be zero if LIVE estimates obtained
from (II) are to be asymptotically efficient.

A. "True" Exogenous Insfrllrnental Variabies

In estimating the Liu quarterly model (1963) used to illustrate LIVE and
FIVE estimation in our earlier paper (1971), we used as instruments those pre
determined variables which were not lagged values of jointly dependent variables.
Instrumental variables do not need to be drawn from among the predetermined
variables in the model, so long as the conditions stated above hold for the matrix
of instrumental variables W.

In this method a set of instrumental variables Wi, which may d\lfer from
equation to equation, is chosen for consistentl) estimating the structural param
eters according to

dj = (WjZl-l Wj»

This preliminary consistent estimate provides the estimate of the reduced form
from which instrumental variables for efficient estimation are obtained.

B. Repeated Least Squares ESlimarors

Theil [1958] and independently Basmann [1957] devised the method of two
stage least squares, in which the reduced form is estimated without constraint by
ordinary least squares, and the resulting fitted values used as regressors in struc
tural estimation. Zellner and Theii [1962] proposed the method of three-stage,
least squares for estimating all equations simultaneously in a way equivalent to
full information maximum likelihood. Klein [1955] and Madansky [1964j demon
strated that the 2SLS and 3SLS estimators were instrumental variables estimators.
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(12)

In the typical cconometric model, the number oi predetermin~d variables is
large in relation to the l1!1mbu (If nbscr\JllOm Further. predetermlncd variablcs
arc often high Iy co!linear. ComputatIOn of ordinary lea~.' ~quares estImator of the
reduced form is dlthcult. and inJu;J. lA-L0ni'::~ imr,,::'5~ib:.: wh.:n the number of
predetermined variables ex<:ecd~the number of obscf\i:tions Computation of a
derived reduced form estimator Circumvents thes::: dIfficultIes.

By analogy with two- and three-stage least squares. a number of estimators
have been proposed whidl employ a multistage procedure. In such estimators
regressions arc nm upon a subset of the predetermined variables. and the fitted
values from these regressions substituted for the included jointly dependent
variables in second-stage regressions to estimate the SlrUClUral parameters. The
resulting estimator can be written

[
f'r

d = )!
) V'}·

,l\. j )

where f:. is the set of fitted \aiues from th.:: initial regressions:

(Di f, = l:d·,I'I<~ r.

In this expression J j is a set l)f predetermined \:iriables ,·hl)sen by any of the
methods proposed abo..e.

Cooper (19721 employed arbitrary subsets (If the predetermined \"ariables in
a rcpe3.ted least squares estimator. Fisher ll9651 proposed a method that took
11 priori information in the IDl1del into a":":('unt in 5ele.:tmg subsets (If the pre
det~rmined y:.uiab!es thre-ugh a s~erwise regrns:CI!! prcx'X"\iure. A repeated least
squares estimator based upon prin..:ipal components of the predetermined variables
was d~cribed by Klock and Mennes 119601 and discu~5oed by Arnemiya (1966).
Another \ersion of the prin":lpal components estimator was applied by hans and
Klein 119681 h.l the Wharton rnodei: this version has had \\idespread application.

Repeated Iea~i ~uares estimat0rs must be designed with ..:ace ifthe~' are to be
cl'nsistent or ~fficient. in our earlier pa~r. we Shl)WN that such e-stimaters are
consistent if they rNuee w instrumental variables estimators. Or if the initial
regres.sil)ns happen to estimate the rele,ant rx"l111l)nS ef the reduced fonn con·
~istentl~·. Repeated kast ~uarcs estlm..ilOrs are efficient l)nl~ if they pro\'ide
":l)nsistent >'stimators l)f the rNu,,"ed fl)rm parameters.

The son· methl1d \\a~ prl1j:X)sed by fisher i J%:'l \\.b later Cl1m~ded by
\ht..:hell Jnd Fi~her tI \)~Ot and was ;lppliN W the Br("-1ktn~s m(xiel by Miil;hell
! 19'"'1 I. The meth,~ empll)ys the fl)!i,1\\ iug .1!~lmthm in ..:h,',)sing instraments for
a jl.)intl\, dependent \ anahit :

1. Tl) c~ch predeurmineJ \;'!riJ.bk, .l.sslgn a \lXil'r \\ nh..1 number of elements
,.'~u.ll W the rn.nimum ··l)rder·· ,)1 pre-.:ietermmN uriables app::aring in
the model. The mJ,\imurn ··,)!".ler"· l~ \jet~rmm~ in the Ct)UI'Se of further
J~\el,1pment l)i the 31~,)rithm .

... Order one is a..'i."igneJ ll.) c.a..:h rreJetermine-J ,.mable appoearing in the
~u3til.)n defining the jl)intly dependent uriJ.1'k i"f \\hi..:h iostrutn(nts are



being developed. Order two is assigned to predetermined variables
appearing in equations defining the jointly dependent variables appearing
in the first equation. Reappearance in the remaining equations of jointly
dependent variables that have already been treated is ignored. Order three
is assigned to predetermined variables appearing in the equations defining
jointly dependent variables appearing in the second equations. The proces;
continues until all of the equations to be estimated as a simultaneous block
have been used in accumulating the ordering vector.

3. At each occurrence of a predetermined variable in the previous procedure,
an entry is made in the next unused location in the ordering vector for that
variable. Entries from the equation defining the jointly dependent variable
for which instruments are sought are defined to have order one, and the
first unused entry is assumed to have indefinite value.

4. The ordering vectors determine a lexicographic ordering on the predeter
mined variables. A variable with the ordering vector (1,3, (0) precedes one
with the vector (1,4,5, cx::-), and follows one with the ordering vector
(I, 2, 3, (0). Frequently, two or more variables will have the same ordering
vector; these variables are treated together as if they were a single variable
for purposes of the following analysis.

5. The significance of a variable or set of variables in explaining the variance
of the jointly dependent variable for which instruments are sought is
tested by a stepwise procedure. A regression is performed of the jointly
dependent variable upon the largest possible number of variables or sets
in the ordering for which moment matrices are nonsingular, omitting only
the variables lowest in the lexicographic ordering, if any must be omitted.
Then, the variable or set of variables appearing lowest in the ordering is
dropped from the list ofregressors, and the resulting regression calculated.
If the sum of squared residuals from the latter regression is SSEo, while
that from the former set is SSE, the test statistic

F = SSEo/SSE [(n - q)/(n - qo)],

where q is the number of regressors in the former regression, and qo is the
number in the latter, is distributed as F. A level of significance is chosen,
and the hypothesis that the variable(s) omitted from the second regression
is significant is tested. If the variable is significant, it forms part of the
instrumental variables for the jointly dependent variable under study.
The process is repeated until all variables or sets in the "structural order"
have been tested. At each stage, significant variables (s) are retained in the
set of regressors used for testing further sets.

If the resulting subset of the predetermined variables is denoted Xo, the
Mitchell-Fisher (1970) estimator is

(14)

where

2J = Xo(XoXo)-'XoZj'
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nU~ber of components is increased b.y using the next component in the ordering,
until all components or all degrees of Ircedom are used without the standard errors
increasing.

The Kloek and Mennes method results in a choice of "j for equation (13) that
hils the form

v = [X P.]
J J .r'

SO that the substitution estimator based upon the method reduces to an instrumen
tal variables method. As a result, the estimator always is consistent. but it will be
efficient only in the mosl unlikely of circumstances.

The principal components estimator developed by Evans and Klein (1968) is
a substitution estimator in which

This estimator will be consistent and efficient only if all principal components are
used in Fj , in which case 2S'LS should be applied directly, or if the resulting estimate
of the reduced form is consistent, a very unlikely event.

Taylor (1962) used principal components directly as instrumental variables,
not in a repeated least squares estimator, in estimating the structural equations.
While this method always is consistent, it cannot be efficient unless the conditions
of Theorem A, above, are fulfilled.

E. Iterated Instrumental Variables (1/ V)

The method of iterated instrumental variables was originated by Lyttkens
(1970) and has been employed by Dutta and Lyttkens (1974). This method is
initiated by estimating the structural equations by ordinary least squares and
deriving (inconsi3tent) estimates of the reduced form parameters for the purpose
of computing reduced form fitted values. These fitted values then are used as
instruments for consistent estimation of the structural parameters, and the process
is iterated until the parameter estimates cease to vary upon iteration. Clearly, only
one additional iteration is required to produce LIVE estimates.

Durbin (1963) described a method for estimating the linear structural model
by full-information maximum likelihood that required that the following set of
normal equations be solved by iteration:

[I ® W'Z][S-I @ I)c5 = [I ® WnS- t ® I)y.

In this expression, W is the set of instrumental variables obtained by fitting the
derived reduced form estimates produced in the previous iteration and combining
these with the predetermined variables appearing in the equations. Beginning
from some consistent set of parameters, Wand b are calculated and the equation
is solved for o. Iterating the process prod uces a new Wand a new lJ at each iteration,
by using the implied estimator of the derived reduced form and the moment matrix
of the residuals. At convergence, the estimator of b is the maximum-likelihood
estimator.
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4. EMPIRICAL COMPARISON OF INSfRllME:-JTAL VARIABLFS ESTIMATORS

In view of the fact that only large-sample results are availahle about the
statistical properties of estimators for the linear simultancous equations model, it
is of some interest to consider comparisons ;lInong consistent estimaiors of the
covariance matrices of the instrumental variables estimators disclIssed earlier. It
has been shown above that a number of consistent estimators of the parameters
exist which are not efficient. Comparisons ofconsistent estimators of the asymptotic
covariance matrices of these parameter estimators might provide some information
helpful in selecting a method for choosing instrumental variables for consistent
estimation. Intuitively, at least, it is appealing to argue that a method for choosing
instrumental variables which is estimated to have smaller asymptotic covariance
is superior to one having greater. Of greater importance are empirical evaluations
oftlie effect that choices of instrumental variables for the initial consistent estima
tion have upon the resulting LIVE and FrVE parameter estimates. If LIVE and
FIVE are relatively insensitive to the initial choice of instrumental variables, that
choice becomes of much less consequence.

Rothenberg (1947) presented measures of the gains in efficiency resulting from
taking into account more a priori information. We employ similar measures in
comparing the efficiency of IV, LIVE, and FIVE estimators. The results on
minimum variance bounds given above imply that efficiency must increase as the
estimation method moves from IV to LIVE to FIVE. Empirical estimation of the
asymptotic covariance matrices of the estimators provides a means of evaluating
the efficiency gain. While it is quite inexpensive to solve for reduced form fitted
values when proceeding from IV to LIVE, LIVE estimates are at least twice as
expensive to produce as IV estimates. The increase in cost arises from the need
to obtain reduced form fitted values and then to re-estimate the model, FIVE
estimates are very substantially more expensive, since they involve not only
computation of the estimate of the structural covariance matrix ~, but also
estimates of the coefficients. Preparation of these estimates requires inversion
of a matrix whose order is the number of structural parameters. Even when
this is possible, it is extremely expensive, since the computational effort involved
in most algorithms for inversion increases with the cube of the order of the
matrix to be inverted. The value of incurring such a computational burden
can be weighed against the estimated increase in efficiency from proceeding
from LIVE to FIVE.

Forecasting with an econometric mode! makes use of the reduced form of the
model. Therefore it is of interest to make the same inquiries about the estimates
of the reduced form that have just been described for the structural form:

1. What is the relative efficiency of alternative methods of developing reduced
form estimates, using different choices of instrumental variables?

2. How sensitive are the reduced form parameter estimates derived from IV,
LIVE, and FIVE estimates of the structural parameters to alternative
choices of the instrumental variables for initial IV estimation?

3. How significant is the gain in efficiency from proceeding from IV to LIVE
to FIVE in terms of the efficiency of the reduced form estimators derived
flOm the structural estimator?
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A. Klein Model J and Covariance Comparisons

We employ an annual model of the United States economy 1921-1941
developed by Klein (1950), commonly referred to as Klein Model J, in measuring
the relative efficiency of alternative estimators of the structural and of the reduced
form parameters. Kkin Model I has three behavioral equations and three identitie",.
and is linear. It determines six jointly dependent variables from eight predetermined
variables, including a dummy variable of constant unit value corresponding to the
intercept in each behavioral equation. The model, as estimated by 2SLS, is given
in Table l. The parameter estimates given there are in al:cord with previous

TABLE I

KLEIN MODEL I 2SLS ESTIMATES

All Predetermined Vari<ibles as Inslruments

I. Consumplion
C = O.017P + O.216P_, + 0.8!flW + 16.6

(0.118) (0.107) (0.040) (1.32)

R2 = 0.977 SE = 0.223
2. Inveslmenl

1 = 0.150P + O.616P_ , - 0.158L, + 20.3
(0.173) (0.163) {O.0361 (7.54)

R2 = 0.885 SE = 0.257

3. Privale Wages
w· = 0.439E + 0.147E_, + O.l30T + 1.50

(O.0361 (0.039) (O.029) (Ll5)
R2 = 0.987 SE = 0.151

4. Corporate Profits
P = C + I + G .- X - W

5. Wages
w= W· + W"~

6. Private Producl
E = X + P + w·
Exogenous Variables:
a. P_ 1 = Profils. lag I
b. K _, = CapiIal slock. lag I
c. E_, = Privale producl.lag I
d. T = Timelrend. 1921. = -10

e. X = Indirecl laxes
f. W·~ = Govemmenl wage bill
g. G = Governmenl expendiIures

estimates, for example, those reported by Rothenberg and Leenders (1964),
although the computer program used for estimates treated 2SLS as a type of
instrumental variables estimator.

For the purpose of quantitative comparisons of the relative efficiency of
alternative estimators, we employ consistent estimates of the covariance matrices
of the alternative estimators, and compare these estimates against consistent
estimates of the minimum variance bounds. The assumptions stated above imply
that

(15) VlS = [Z;X(X'XrlX'Zirl(Z;X(X'X)-IX'Za

. (ZjX(X'xy-IX'Zjr1 'Sjj
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is a consistent estimator of the minimum variance bound (9) for the covariance
mairices of the estimators of the distinct equations which are efficient in the class
of limited information estimators. The same assumptions, together with the
assumptions abollt the properties of the instrumental variables, ensure that

'1IoF ) If _ rZ~II:(I".".u,:·) lU':L.J" l·lZ'.W{WW)-IW~W(W:w.)-IW'Z.]IV l" H, H, Yr, n, 'I '" I 'J) J ) J

. [Z'.W'W'.w.)-1 W'Z.J I. 5..
- J j' ) J J) , I)

is a consistent estimator of the covariance matrix of the estimators of two distinct
equations. when those estimators are consistent but not efticient. Because (15) is
a consistent estimator of the minimum variance bound (MVB) for any consistent
estimators of two distinct equations, (16) must differ from (15) by a positive semi
definite matrix, when the estimators for which (16) is the estimate of the covariance
matrix are not efficient.

The MVB for estimators from the class of full information estimators (10) can
be estimated consistently, under the assumptions given above, by

(17) JlJS = [S- 1 ® Z'X(X' X)-l X'Zr I.

The MVB for limited information estimators of all parameters, considered
together, differs from the MVB for full information estimators by a positive semi
definite matrix, and the same property holds for comparisons between a consistent
estimator of the covariance matrix of the limited information estimators anI) the
consistent estimator of the covariance matrix for (efficient) full information
estimators (17).

Comparisons of the relative efficiency of alternative (derived) estimates of the
reduced form depend upon the estimates of the covariilnce matrices for the
structural estimators just stated. The comparisons make use of the expression

(18)

for the covariance n'atrix of the derived reduced form, where ~ is the covariance
matrix of the structural. estimator from which the reduced form estimates are
derived. Expression (18) was obtained from Goldberger, Nagar, and Odeh (1961);
a more direct derivation is available in Dhrymes (1970). The covariance matrix
(18) is estimated consistently by replacing r, n, and ~ with consistent estimators.

The covariance matrix of the unconstrained reduced form (8) is estimated
consis~ently by
(19) VURF = ft ® (X'X)-l,

where ft is a consistent estimator of the reduced form covariance matrix n. The
estimator of the covariance matrix of the unconstrained reduced form (19) differs
from any consistent estimator of the derived reduced form {I 8) by a positive semi
definite matrix.

Whenever the covariance matrices of the structural and reduced forms Land
n, or any of their elements, appear in this analysis, they must be replaced by
consistent estimators. These matrices are estimated consistently by the moment
matrices of the residuals from consistent estimates of the structural and reduced
forms, respectively. Throughout the subseqltent analysis, r, n, and L are replaced
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by the estimates developed from two-stage least squares, while Q is estimated from
the moment matrix of the residuals from ordinary least squares estimation of the
reduced form.

To reduce the covariance matrices which are being compared to scalar
measures of efficiency, three functions of the covariance matrices have been
computed: 1) the sum of the elements of a covariance matrix; 2) the trace of a
covariance matrix; and 3) the determinant of the covariance matrix. Each of these
measures preserves the ranking of the matrices in terms of relative efficiency, that
is, if B1 is the covariance matrix of an estimator that is more efficient than one with
covariance Bo, then anyone of the measures has the property that M(Bol > M(B t ),

where M denotes the fact that the measures are functions of the elements of the
covariance matrices.

Table 2 contains the results of estimating Klein Model I consistently by the
four inefficient instrumental variables methods we have presented. The coefficient
estimates are very similar to those prepared by two-stage least squares in Table 1.

TABLE 2
KLEIN MODEL I. CONSISTENT STRl;CTURAL ESTIM ...TES BY INSTRUMENTAL VARIABLE

Equalion Coefficienls

Variables (Slandard Errors)

SOIV PCIV TEIV IIV

I. Consllmplion
Constanl 16.43 i6.62 16.05 16.9!

(1.35) (1.42) (1.34) (1.33)
*Profils 0.0667 -0.0003 0.0611 -0.1499

(0.142) (0.165) (0.140) (0.134)
Profils. Lag I 0.1790 0.2305 0.1650 0.3388

(0.124) (0.145) (0.122) (0.117)
·Wages 0.8078 0.8100 0.8248 0.8214

(0.040) (0.040) (0.041) (0.041)

2. Inveslment
COnSlaJ'it 21.22 25.77 22.84 21.41

(7.73) (11.3) (9.49) (8.04)
·Profils 0.1i97 -0.0281 0.0671 0.1136

(0.182) (0.325) (0.255) (0.195)
Profils, Lag I 0.6421 0.7690 0.6874 0.6474

(0.169) (0.287) (0.229) (0.180)
Capilal Stock,

-0.1694 -0.1629Lag I -0.162(' -0.1827
(0.037) (0.053) (0.044) (0.038)

3. Private Wages
1.351Conslanl. 1.571 1.846 !.686

(1.15) (1.15) (1.15) (1.15)
·Privale Product 0.4253 0.3732 0.4035 0.4673

(0.036) (0.041) (0.039) (0.040)
Private Produel,

Lag I 0.1594 0.2087 0.1801 0.1198
(0.03'.» (0.043) (0.041) (0.042)

Time Trend 0.1337 0.1464 0.1390 0.1235
(0.029) (0.030) (O.O29) (0.029)

• Indicales an endogenous variable.
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The coefficients are relatively stable across alternative choices of instrumental
variables, with the pelV estimates varying slightly more from the 2SLS estimates
than the others.

Parameter estimates derived from the use ofeach of the methods of consistent
structural estimation to develop fitted values for us~ as instrumental variables in
preparing LIVE estimates are given in Table 3. As might be expected, the parameter

TABLE 3

KLEIN MODEL I. STRUCTURAL PARAMETERS ESH\fATED IlY LI.\lITED INFORMATION EH"lClENr
INSTRUMENTAl. VARIABlF$ (LIVE) METHODS

Equation Coefficients

Variable (Standard Errorl

2SLS SOIV PCIV TEIV I1V

I. Consumption
Constant 16.55 16.79 16.74 16.77 16.80

(1.32)
• Profits 0.0173 -0.1182 -0.1097 -0.1153 -0.!156

(0.118)
Profits, Lag I 0.2162 0.3133 0.3056 0.3105 0.3121

(0.107)
'Wages 0.8102 0.8214 0.8222 0.8217 0.8205

(0.040)

2. Investment
Constant 20.28 21.50 21.52 21.63 21.60

(7.541
·Profits 0.1502 0.1105 0.1098 0.1062 0.1076

(0.1 731
Profits, Lag 1 0.6159 0.6500 0.6506 0.6537 0.6527

(0.!63)
Capital Stock.

Lag I -0.1578 -0.1633 -0.1634 -0.1639 -0.1638
(0.036)

3. Private Wages
Constant 1.500 1.552 1.607 1.571 1.601

(US)
'Private Product 0.4389 0.4290 0.4186 0.4254 0.4197

(0.0361
Private Product,

Lag I 0.1467 0.1561 0.1658 0.1593 0.1648
(0.039)

Time trend 0.1304 0.1328 0.1353 0.1337 0.1351
(0.029)

• Indicates an endogenous variable
Note: All limited information instrumental variables efficient estimators have asymptotic variances

and covanances equal to those oftwo-slage least squares.

estimates for each of the LIVE estimates except 2SLS are very similar, and they do
not vary slgmficantly from the 2SLS estimates. Thus, the choice of instrumental
variables for LIVE does not make appreciable difference to the resulting coefficient
estImates.
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The outcome of structural estimation by full-information methods is shown
in Table 4. for each of the methods of choosing inslrumental variables, and for
Durbin'5 method of obtaining full information maximum likelihood cstimates.
Once again, the parameter estimates show little effect of the choice of instrumental
variables. The full information maximum likelihood estimates appear to differ
slightly from the others, but none of the variation in coefficients is significant.

TABLE 4

KLEIN MODEl I. STRVtTURAI. PARAMETERS ESTIMATfO ElY FULLINWRMATION EFflUENT
INSTRUMENTAL VARIABLES (FIVE) METHODS

Equation Coefficients

Variable (Standard Errors)

3SLS SOIV PCIV TEIV ttV FIML

i. Consumption
Constant 16.61 16.60 16.44 16.54 16.55 16.52

(UO)
"Profits 0.0557 0.0514 0.0583 0.0532 0.0744 0.0569

W.W8)
Profits,
L~g I 0.2240 0.2260 0.2186 0.2234 0.2134 0.2336

(0.100)
'Wages 0.7902 0.7913 0.7955 0.7932 0.7883 0.7881

(0.038)

2. Investment
Constant 25.78 25.73 25.1 2 25.44 25.62 27.99

(6.79)
"Profits --0.0169 -0.0.\58 -0.0136 -o.om --0.0207 -0.1733

(0.162)
Profits. Lag I 0.7514 0.7506 0.7462 0.7473 0.7529 0.85.16

(0.1 53)
Capital Stock

-0.1812 -0.1884Lag I -0.1822 -0.1820 -·0.1788 -0.1805
(0.032)

3. Private Wages
Constant 1.972 1.965 2.052 1.996 2.047 2.507

(1.12)

"Private Product 0.3886 0.3900 0.3802 0.3866 0.3782 0.3555
(0.032)

Private Product. 0.1905 0.1893 0.1980 0.1922 1l.2001 0.2157
Lag I (0.034)

Time Trend 0.1 579 0.1572 0.1588 0.1577 0.1614 0.1694
(0.028)

" Indicates an endogenous variable
Note: All futl information instrumental variables efficient estimates have asymptotic variances

and covariance equal to those of three-stage least squares.

The measures of relative asymptotic efficiency of structural estimates are
given in Table 5. Performance of the estimators varies from equation to equation.
Except for the consumption function, however, the method of structural ordering
is the most efficient.

695



TABLE 5

KUIN MODEl. 1. VARIANCE MEASURES "OR AI.HRNATlV!'. SlRUnURAl. ESTlMAlI';;

Equalion

M~asure

I. Consumption
Sum
Trace
Generalized
Variance

2. Investiment
Sum
Trace
Generaljzed
Variance

3. Private Wages
Sum
Trace
Generalized
Variance

Entire Model
Sum
Trace
GenerLllized
Variance

SOIV

1.700
1.846
0.479
XIO"

58.83
59.77

0.667
XIO "

1.306
1.322
0.680
XIO-"

64.65
62.94

1.26
X10- 29

!'elV

1892
2.068
0.695
XIO- ~

126.5
128.9

2.13
XIO- s

1.318
1.333
0.886
XIO .1

137.5
132.2

4.82
XIO- 29

TEIV

1.695
1839
0.474
Xlo- s

88.61
90.16

1.31
XIO-"

1.312
1.327
0.781
XIO- II

97.45
93.32
172
X10- ~9

IlV

1.665
1.802
0.425
XIO- g

6171
64.75

0.772
XIO- s

1.314
1.330
0.831
X10- II

70.74
67.88

158
X10 - 29

2SLS

1.643
1.772
0..124
XIO- S

56.07
56.95

0.607
XIO" R

1.305
1.321
0.668
XIO- I

'

62.66
60.04
0.746
\10- 29

3S1.S

1.599
1.725
0.239
XIO- "

45.47
46.26

0.476
XIO" s

1.232
l.248
0.460
XIO- Il

51.42
49.18
0.220
X/O- 29

The principal components method performed uniformly least well. Differences
among the methods other than principal components (PCIV) are relatively small,
in most cases. In view of the very considerable expense of developing SOIV
estimates, UV would appear to be the method of choice for estimating Klein
Model I by instrumental variables.

A gain in efficiency is achieved by employing limited information efficient
estimators in place of any consistent but inefficient ones. Table 6 shows the gain
in efficiency, based on the trace measure, from using 2SLS (or any other LIVE
estimator) in place of the four consistent but inefficient methods. The efficiency
gain is defined as the percentage increase from the trace of the covariance matrix
of the LIVE estimator to the trace of the covariance matrices of the consistent but

TABLE 6

EfFICIENCY GArN FROM USE OF MORE INFORMA nON STRUCTURAL ESTIMATES

(In Percen!. Based on Trace)

Estim~tjon Method Equation

IV to LIVE eNS INV w· MODEL

SOIV 4.2 4.9 0.0 4.8
PCIV 16.7 126.3 0.9 120.2
TElY 3.8 58.3 0.5 55.4
IlV 1.7 13.7 07 12.4

LIVE 10 FIVE 2.7 29.8 5.9 22.1
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inefficient estimators. Since SOIV estimat~sare relatively the most efficient of the
consistent but inefficient methods, the gain is least pronounced for this method.
A further gain in efficiency is obtained by employing a full information estimator
in pla..:e of a limited information onc. The tracc measure used to construct Table 6
makes it diilieul! to tell whether a greater gain is achieved by employing a full
information method instead of a limited information method or by using a
limited information method in preference to a consistent but inefficient one. This
result is not in accord with results we reported earlier (1971) for the Liu model
using generalized variance as the measure but agrees with the result reported for
Klein Model I by Rothenberg (1974).

B. Comparison of Structural and Reduced Form Estimators

In this section, it is our objective to compare alternative estimators of the
structural and reduced form which employ different algorithms for selecting
instrumental variables, and which use different amounts of information. While
we have not reproduced the tables of reduced form parameter estimates which are
analogous to Tables 3, 4, and 5 above, the reduced form parameter estimates are
no less stable than the structural estimates, with respect to choice of estimation
method and choice of instrumental variables.

TABLE 7
KLEIN MODEL I. EFFICIENCY MEASURF.5 FOR Rwucm FORM ESTIMATES

Equation E5timation Method

Measure SOIV pelv TEIV IIV 2SLS 3SLS OLSQ

I. Consumption
Trace 85.70 108.59 85.12 75.88 67.98 63.49 829.85

2. Investment
Trace 43.02 47.96 44.89 42.45 42.01 39.74 423.72

3. Private Wages
Trace 52.00 62.00 54.55 50.78 48.26 45.63 576.47

4. Model·
Trace 535.69 650.14 550.76 496.46 467.81 44i.91 5444.30

• In add~tion to measures for the three structural equations givcn above, the measure for the
entire model includes the results for the three idcn tilies.

Table 7 gives the values of the efficiency measures for estimates of the reduced
form parameters derived from the consistent but inefficient estimation methods
we have discussed, and for three efficient methods using differing amounts of
information. For the derived reduced form too, principal components is uniformly
the least efficient method. In this case, iterated instrumental variables provides
unequivocally more efficient estimates than the other consistent but inefficient
methods.

Table 8 depicts the gain in efficiency of estimate of the derived reduced form
that is obtained by employing an efficient structural estimator for each equation
in place of a consistent but inefficient method, for each of the four instrumental
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TARLE R
EFFIClE"ICY GAIN FROM STRlIClLJRAL ESTlM" 1101" DrRIVED REIlUCW FORM

(In Percent. Based upon Trace)
~ ---- .'--_-:::....-~":;: -,----'--~. --, .-=_ c--c:_,~, c_.=-

Etlua!ion

Estimation Method ----~--_._---

eNS INY w· MODEl.

IV to LIVE

SOIV 26.1 2.4 7.7 14.5
pelv 59.7 14.2 285 390
TEIV 25.2 6.8 no 17.7
I/V 11.6 I.l 5.2 6.1

LIVE to FIVE 7.1 5.7 5.8 5.9

variables methods we have described. The table also reflects the results of employ
ing FIVE instead of a LIVE estimator. The percentage gain from the use of LIVE
methods is substantial except for iterated instrumental variables, indicating that
for Klein Model I the !IV method is nearly as efficient as LIVE. The gain from
using structural information about the covariance matrix in obtaining derived
reduced form estimates is modest.

5. SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH

The results reported above lead to the following conclusions, on the basis of
alternative estimation of Klein Model I:

A. The most appealing method for consistent estimation of the linear struc
tural model is to begin with ordinary least squares applied to the structural
form. The fitted values of jointly dependent variables can be used as
instrumental variables to obtain a consistent estimator.

B. For efficient estimation the fitted values of the jointly dependent variables
from an initial consistent estimator should be lIsed as instruments in
obtaining a LIVE estimator. The expense of computing FIVE estimates
may well outweigh the benefits.

C. Choice of instrumental variables for obtaining a consistent estimator
appears to have little impact on the resulting LIVE or FIVE structural or
reduced form parameter estimates. The implication is that the initial
instrumental variables should be chosen so as to minimize computational
difficulty.

D. There appears to be no advantage and great computational difficulty
associated with iteration of the method of instrumental variables beyond
liVE or FIVE estimators.

E. Where structural estimation is possible, it is to be preferred, as a means of
deriving an estimate of the reduced form, to unconstrained estimation of
the reduced form.

The principal shortcoming of the research reported here is that the results
apply with assurance only to one simple model. In the absence of general results
on the small sample properties of estimators for the linear simultaneous
equations model, there is no way to avoid this difficulty. It would be ofconsiderable
value to have available further results based on the application of our methods to
larger models.

698



The results could also be strengthened by using Monte Carlo techniques to
develop repeated samples for estimating the model. By repeating the analysis many
times, based upon repeated samples from the same population, the degree of
dependence of coefficient stability and relative efficiem;y upon the data used to
estimate the model could be investigated. Direct comparisons 01 the methods
could be made with respect to the error ofestimate, and some additional hypotheses
could he tested. Such Monte Carlo experiments would be expensive and as open
to criticism for dependence on a particular model as the results reported here.

The estimation techniques used here are not computationally dependent upon
the linearity of the model in the variables. Where nonlinearities can be expressed
in terms of identities defining variables appearing in stochastic equations, the
instrumental variables methods can be applied. However, the statistical properties
of such estimates are unknown; the results given above certainly do not apply.
Since models used for practical purposes of economic analysis and forecasting
make extensive use of nonlinearities, the most pressing theoretical problem in
simultaneous equations econometrics is to find estimators with desirable statistical
properties that are suitable for nonlinear models.

The model we have used assumes that no autocorrelation is exhibited by any
of the errors on any equation. A useful generalization of the LIVE and FIVE
methods would be to modify them for the case of autocorrelated residuals. 7

Federal Reserlie Bank of Sall Francisco
Harvard University
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