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Preface

'IE'h paper presents a simple and economical test of the existence
in time series, or other data in which sequence of appearance is an
essential characteristic, of systematic tendencies related to sequence
or order. Although it. has seemed desirable to express the derivation
of the test. in mathematical terms, we have endeavored to explain
the procedures in such a. way that a reader to whom the mathematical
expressions as such carry little nmaning will nevertheless be able to
gras) their genera1 context. Use of the test involves no higher
mathematics whatever.

The test is a byproduct of studies of the cyclical behavior of pro-
duction carried out at the National Bureau in 1939-40 under Research
Associateships provided by the Carnegie Corporation of New York.
In the cyclical behavior of the production of major crops in the
United States, Great Britain, France, and Germany we found no
regular relation between busmess cycles and the specific cycles of
quantity harvested, acreage planted or harvested, and average yield
per acre. The striking contrast between this and our findings for
most other production series necessitated a close examination of crop
cycles. One plausible hypothesis is that crop production is domi-
natedby a complex of factors whose resultant is essentially 'random'--
weather, insect depredations, plant diseases, etc. investigation of
this hypothesis required a criterion of randomness of expansion and
contraction in time series. Since the criterion which resulted is
adaptable to a range of tine.scries problems much wider than the
one we originally faced, it is published independently of the analysis
of the cyclical behavior of agricultural production.

We are deeply indebted to Milton Friedman for invaluable counsel
and assistance on numerous aspects of this paper. R.ollin F. Bennett,
Arthur F. Burns, Louis Gut.tman, John H. Smith, Abraham Wald,
Jacob l,\Tolfowitz, and Holbrook Working have made especially care-
fIll criticisms of the manuscript, and Martha Anderson, Harold
Barger, J. B. D. Derksen, Pave! Egoroff, rIrIg\Te Haavelmo, Roy W.
Jastrarn, Milton Lifshitz, Jakob Ma.rschak, Horst Mendershausen,
Frederick C. Mills, Wesley (.. Mitchell, Russell T. Nichols, Paul S.
Olmstead, Julius Shiskin, Frederick F. Stephan, Vladimir P. Timo-
shenko, Gerhard Tintner, and C. Ashley Wright. have also provided
helpful comments at one stage or another of its preparation.

xi



\l ilton Lifshitz (al(ulate(l the fourth fllOIlI('nts 0! t lie (listlibtition
of eetioii \II and made itiost of the (0))i1)1Ittt1(i1)5 for the sanipling
(listribiltion an(l the examples, ('XCC1)t those toniiected with t he

least squares polynomial, which we owe to 1)orothy Karger ( ott-
fried. The sampling (listril)utiolt for twelve observations was corn-
puted chiefly by John D .lc Leami, foi' whose services we aie grateful
to the National Youth Administration at Stanford University. the
('harts are the work of H. Irving Foi'man.

A summai'y of this paper was read before the Nineteenth Annual
('onfeienec of the Pacific Coast Economic Association at StaiIfor(l
Tniveisity on December 28, 194O, and appears in the Journal /

the it in eiicun ta1it leal it oehtt ion for Sept ember 1 fi4 I.
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in the List of References.



I

I Introduction

Analyses of time series would be greatly facilitated by Siml)ie signifi-
cance tests of general applicability. Simplicity is essential if tests
are to be practicable, for time series usually contain many observa-
tions, and investigations using them often involve numerous series.
The standard error of estimate, to cite one example, is too expensive
a statistic for many investigations of time series, and is, besides, en-
cumbered by assumptions and restrictions that narrowly circumscribe
its a)phcabi1ity. Generality is especially desirable, for ecOiiomic
data seldom justify assumptions of noimality, homoscedasucity, in-
dependence, etc., nor do they provide a basis for selecting any specific
alternative to these assumptions. Furthermore, it is frequently ad-
vantageous to use significance tests with such devices as moving
averages or even free-hand curves, whose very nature is abhorrent
to modern tests of significance that have proved so potent with data
(including those of economics) free from the peculiarities of time
series.

A test of significance is, of course, a test of randomness, in that it
shows whether the discrepancies between a set of data (a 'sample')
and exl)ectations based on some null hypothesis can reasonably be
ascribed to chance. The simple question 'Caii this sample be re-
garded as random?' is not, however, sufficiently exact to admit of an
answer. For any sample either 'yes' or 'no' is justifiable if the statis-
tician is allowed to frame his own definitions of the ambiguous ele-
ments in the question. These elements upon whose specification the
answer usually hinges are of two types. First, the form of the popula-
lion the inquirer has in mind must be specified; he must ask: 'Can
this be regarded as a random sample from such and! such a popula-
tion?' Second, the characteristics with respect to which randomness
is to be juaged must be specified; the question should be amended
still further to: With respect to this or that trait, can these data
reasonably he regarded as a random sample from such and such a
population?'

The characteristics with respect to which randomness is tested may
be simply the values of certain parameters. If a normal population
is assumed, for instance, the seventeenth or any pre-designated odd
moment about the mean should not differ significantly from zero; or
if a Poisson population is specified, the mean, variance, and third

1



mt)Ifletit slioukl not vary significantly from one another. The char-
acteristic may also be a frequency (iistribution by certain stated
intervals; thus, if a uniform (listubution is assumed, the frequencies
should be pioiortional to the lengths of the intervals. Another type
of characteristic, particularly relevant to time series, and the subject
of this paper, is the order of appearance 'of the observations in
sampling.

It is essential that both the form of the population and the charac-
teristic(s) by which randomness is to be judged be chosen entirely
without reference to the sample. For any sample it. is possible to
find some population of which it can be regarded as a random repre-
sentation; and an ingenious statistician can iiot only find a popula-
tion, but can also justify theoretically its use with the subject matter
under investigation. Similarly, it is always possible to select some
characteristic of a sample w'ith respect to which it does not appear
to be a. random sample of a specified population.

rf1.e necessity of specifying, mdepeideiilly of the (1010 U1l(tel' ww1ysi.s,
what. characteristic of the sample will be the test criterion and what
hypothesis will l)e t.este(l is often overlooked. A great many spurious
findings iii statistical investigations, especially in the field of correla-
tion and regression analysis, are attributable to neglect of this
fundamental tenet.. Unless it. is adhered to rigidly, the conclusions
reached are at best suggestive hypotheses, perhaps worthy of further
inquiry hut in no sense substantiated. It. is, of course, permissible
to estimate parameters from the data, l)rOvidcd the form of the
population is clearly specified without. reference to the particular
sample. This would be subject to the same limitations as is selecting
the form, were it not usually l)OSSible to make an exact mathematical
allowance for the extent to which the hypothesis is in this respect
simply (in Fisher's felicitous phrase) a tautological reformulation of
the observations; i.e., by deducting degrees of freedom.

III practice there is usually no difficulty in selecting the charac-
teristic by which randomness is to he tested. Indeed, the decision is
usually imposed by the nature of the problem or data, by the avail-
ability of established methods and tables, by considerations of
economy in calculation, by the traditions of the particular field of
study, etc. (It is not intended by this statement to ignore the great
advances made in recent work, initiated and l)i'inciPahlY developed
by J. Neyman and E. S. Pearson,' on the choice of test criteria. But
this work is not yet generally practicable, partly for the reasons just
suggested and partly because it usually presupposes specification of
the form of the l)oPUlatiOn --in this regard, however, see the second
paragraph of the footnote at the end of Section VIII.)

On the other hand, the difficulties of specifying the population of
2



which the data may be regarded as a random sample are, in the
social sciences at least, usually considerable and frequently insuper-
able. And even when it is possil)Ie to specify the form of the l)OPt1la-

on it may be difficult or impossible to obtain necessary estimates of
parameters. In regression analyses, for example, the usual hypothe-
sis is that the residuals are normally distributed about a mean of zero
with a variance to he estimated from the data. But when there is
only one observation for each value of the independent variate (which
with economic time series is virtually always) there is no satisfactory
way to estimate what variance the observations would have if the
independent variate were constant, since the validity of the estimate
depends upon the adequacy of the litted regression and the test of
its adequacy is the vaiiance of the residuals (i.e., the standard error
of estimate).

For these reasons there has been a great deal of interest recently
in tests that are independent of the form of distribution.* A test
of this nature, especially relevant to certain problems of time series
analysis and to other problems involving ordered observations, is set
forth in this paper. It is based upon sequences in direction of move-
ment, that is, upon sequences of like sign in the differences between
successive observations.

* See references 20, 23, 25, 26, 28, 30, 31, 32, -10, 42, 45, 48, 49, 52, 53, 54.



II General Method

Each point at which the series tinder analysis ceases to d.c1ine and
starts to rise or ceases tO rise and starts to (Ie('IiIIe is noted; these
turning points are thus relative maxima or minima, for the first
differences change sign there. A turning point is a 'peak' when it is
a relative maxtmum and fl iroiigh' when it is a relative minimum.
The interval between consecutive turning points iS a 'phase. (The
interval between consecutive troughs or peaks might be referred to
as a 'cycle'.) When a phase starts from a trough and ends at a
peak it is an 'expansion'; when it starts frotim a peak aiid efl(l5 at. a
trough, a 'contraction'. The 'length' or 'duration' of a phase is the
number of intervals (hereafter referred to as 'years', though they
may represent. any system of denoting sequence) between the initial
and terminal turning points of the phase.*

From these definitions several deductions may be drawn. The
turning points in a series of A' observations may l)e as few as zero or
as many as - 2: there will be tione if the direction of movement is
the same thi'oughout. the series, and X - 2 if it alternates regularly
throughout the series. If the nuinbt'r of turning points is even, there
will l)C the same number of peaks as troughs but a (1ifferenc' of one
l)etween the number of expansions and the number of contractions;
if it is odd, there will be a di1erence of one betveen the miumber of
peaks and the number of troughs l)IIt the same number of expansions
as of contractions. The shortest 1)Ossible 1)IlaSe, occurring when two
consecutive observations are both turning points, is one year. The
longest pOssil)le phase, occurring when the only turning points are at
the second and l)emiultiivate observations, is X - 3 years. The sum
of the phase lengths is the number of years between the first and last
turning point.; since neither the first nor last. ohsei'va.tioti can be a.
turning pomt, it cannot exceed .V 3.

* The definition ef a pnas' excludes t In nioveinpilt preceding the initial turning point :ititl that
following the final turililig lniiiit iii the series. Iliw exclusion ('otIfutIns the kuiuiit ions
used iii the NatIonal flu rcatl 's t ccii iii que of ineast iii ug evel i cat ho'iiav i r ; hut b r the presPi it
purpose it would be prefeta l)le. Cspeei a IIV iii short series, to iii CititlO them an(h record t
additional phases (a ihci t from a slight lv di iferen t population) . The advatu t age ii t hici r iii ci u-

stout was not appreciated u lit ii imit of our Comput at toils \:ee citinpiet e, awl hen it diii ii ot
seem suflicieiitly important to justify the u'xteliSive recalculations that would lie iequi tel.
l'he i ticoinpiete phases are not ciii irel ignored b the lust of significance developed in I his
paper, for I heir ditrat ion affects the number and durat louis of t lie (Oltiplet e phases -

4



With these definitions and their corollaries ill iinwi, th cxI)ected
frequency (listribution of phase lengths iii a series of N observations
drawn at random from a stable population can be calculated. It is
apparent that, as such a series is being drawn, the greater the number
of consecutive rises the less is the probability of an ad(litional rise;
for the higher the observation the smaller is the chance of drawing
one that exceeds it. Perhaps surprisingly, the rapidity with which
the basic distribution tapers off from its mode does not affect the ex-
pected frequency distribution of phase durations; iii fact, it is shown
below that. this expected frequency distribution of phase durations
is practically independent o the probability distribution of the origi-
nal data.

The only restriction on the original probability distribution is that
it be such (or else that the method of sampling he such) that the
probability of two consecutive observations beiiig identical is infini-
tesiinal. This condition is fulfilled by all distributions for which the
cumulative probability (i.e., the ogive) increases continuously; all
continuous distributions, therefore, and hence virtually all metric
data, meet the restriction.

Without. spe.cifymg anything forther about the form of the basic
distribution, we may make a mathematical transformation of it that
leads to a known distribution but leaves unaltered the pattet'i of

rises and falls of the original observations. r1h1at, is, if .r represents
the original variate we replace it by a new variate z, winch is a
mathematical function of x; the function we choose is such that is

greater than, equal to, or less than z" according as x' is greater than.
equal to, or less than x", where z' and .i'' are the transformed values
of two observations x' and x".

A familiar transformation of this type is the rank transformation.
If each observation is replaced by its rank according to magnitude
within the entire series, the new variate has a simple and definite
distribution; that is, z may be any integer from I to N LV being the
number of observations in the sample) and the probability of each
value is 1/N. The ranks have e:actly the same pattern of rises and
falls as the original observations. The distribution of phase dura-
tions expected in a random arrangement of the digits 1 to ,V is, there-
fore, that. to be expcted in a. sample of N from any populatioi;
that is to say, it is completely independent of assumptions about the
original distribution, hence comparable with the observed distribu-
tion of phase durations in any set of data.

Another familiar example of such a transformation, one more easily
handled analytically, is the probability transformation. Without.
knowing the original probability distril)ution, we may imagine each



value ol x to be replaced by its cumulative j)robability, i.e.,

= L f(x) (IX.

While this J'Cl)laCCIIlent cannot actually be performed, since we cannot
knOw the cumulative probability when we do not know the basic
distribution, it is obvious that whatever the original distribution,
f(s), may have been (provided, of course, that it meets the continuity
condition indicated above), the distribution of z will be uniform
a straight line of unit height and length over the interval 0 z 1.

Indeed, this simply amounts to the tautology that any observation
with a given probability is exactly as probable as any other observa-
tion with the same probability, for the probabilities are defined by
what is in effect the condition of uniformity in their distribution.
Whenever the original va;iate, x. increases, the transformed variate,

increases also, and similarly for decreases; so the pattern of phase
duratiol!s is precisely the same in the transformed values as in the
original observations. \Ve can, therefore, tabulate the actual distri-
bution of phase lengths from the original observations and calculate
the expected distribution of phase lengths for the transformed variate;
each operation can be carried out without knowing the fundamental
probability law and the results will be comparable in the strictest
sense.

A completely general determination of the expected distribution of
phase lengths in a random scrica can, then, be obtained by working
with a. unifoim distribution of unit height and length.

6



III Derivation of Distribution

A preliminary step that illustrates the method of solution is to calcu-
late the expected number of phases in asei ics of N observations.
Three observations are required to define a turning point. The
probability of any particular ordered set of three observations,

is d21 d2dz, r sum of the Probabilities of all possible
sets is the triple integral of this l)roduct over the entire possible
range of z,

L' .i: j (1Z1 (/22 (/23 1.

It may be helpful to visualize this geometrically: iiiay be plotted
along the axis of abscissae, 22 along the axis of ordinates, and 23 along
an axis perpentheular to the I-Z2 plane at its origin. Then, since
each variate is uniformly distributed from zero to one, a cube of unit
edge represents all l)OSSible sets of three observations, and the points
within the cube are equally likely. To ask what the probability is
that a set of three observations constitute a turning point is to ask
iii what portion of the volume of this cube z2 is either greater than or
less than both Zj and 23.

If the turning point is a trough, 22 is less than Z! hence only that
part of the cube is acceptable which lies above the half of the 21-22

base in which z exceeds 22 i.e., above the triangle formed by the
points (0, 0, 0), (1, 0, 0), and (1, 1, 0). And since 22 must also be less
than 23 , only that Portion of the cube is acceptable which also lies
within a projection of the triangle on the 22-23 face defined by the
points (0, 0, 0), (0, 1, 1), and (0, 0, 1). The square pyramid that
has the 21-23 face as its base and the point (1, 1, 1) as its apex thus
represents all sequences Z1Z2Z3 that pi'odiice a trough; the volume of
this portion of he cube is given by

1 z3 .1

Z3 Zj

which may be evaluated as follows:

(1Z1 dz2 (123,

JZ2

za
2

.1 I 2

J --
1

o 2

(1 - 22) dz2 = Z3 -

7



From the symmetry of the function it is apparent that the proba-
bility of a peak is also 1/3. The probability that any particulai set
of three observations constitute a turning point is, therefore, 2/3.
Since in a series of N there are N - 2 sets of three consecutive items,
the expected number of turning points is

2CV - 2)

Since a phase is the uninterrupted expansion or contraction between
two turning points, there are one fewer phases than turning points,
and

2N - '7
3

is the expected number of phases. This is not absolutely accurate.
since there may be no turning 1)oints but cannot be a negative number
of phases; when there are no turning points, the number of Phases
is zero, or equal to the number of turning points. The expression
obtained by subtracting one from the expected number of turning
points is therefore too small by one times the probability that there
will be no turning pomts. This occurs only if each item exceeds or
is exceeded by its predecessor, the l)rol)ability of which is

I r.rr..1 2
(1) 2 f f f .. f (lZjdZ2 ... =

i.e.. twice the reciprocal of the number of permutations of N different
things. This amount should, therefore, be added to the expression
for the exl)ectcd number of l)hases. It is, however, so rninute--less
than ftO()00006 when N is oniy 10--and declines so rapidly as N in-
creases, as to be utterly negligible.

An expansion of exactly one year is defined by four consecutive
observations in which neither the first nor the third is as small as the
second, and neither the second nor the fourth is as great as the third.
The probability of any particular ordered set of four, 21-22-23-24, is
dz1 ; and its quadruple integral over all possible values
is again 1. The probability that the four define a one-year expan-
sion is the same integral over that portion of the four-dimensional
hyper-cube in which z is between 23 and 1, z2 between 0 and z ,

between 24 and 1, and 24 between 0 and 1, i.e.,
i' fr3 ci

5
I I I I dzj dz2 dz3 (1Z4 =
0 -' 0 24

Since the probability of a one-year contraction is exactly the same,
the probability of a one-year phase is 5 / 12. Arid since there are
N - 3 sets of four consecutive items in a sample of N,

5(N - 3)
12

is the expected number of phases of exactly one year's duration.

S



3

Similarly, the probability that a. set. of five consecutive observa-
tions define a phase of exactly two years' duration is

2 [11
1 1

11
J' J f dzi 4Z2 (1Z3 dz4 dz

=

Since there are N 4 sets of 5 consecutive items iii a series of N,
the expected number of two-year phases is

(2)

number of phases of exactly

181440

These results are summarized in Table 1.
The general expression for the expected number of phases of exactly

d years' duration is
2(d2 -4- 3d + 1)(N - d - 2)

(d+3)!
This may be derived inductively. It may also be obtained by start-
ing with the probability of a sequence of il rises or declines, the
extremes of which may or may not. be turning pomts. Tl' proba-
bility of such a sequence, which represents phase of d 01' more
years, is shown by formula 1 to be

2

(il +1

By substituting (1 -j- 1 for d and differencing, then placing d + 1 for (I
in the result and differencing again, and finally multiplying by
N - d - 2, expression 2 is obtained in the form

2(N - d - 2)[( 1 1 \ / 1

L&' + 1)! (d + 2)!) (d + 2)! l + 3)!

Substituting d + 1 for d and clifferencing amounts to closing one end
of the sequence by subtracting the probability of a rise or decline of
d + I or more from the probability of a rise or decline of d oi' more;
t.he process is performed twice to close both ends arid thereby define

9

Proceeding in the same way,
three years is

11(N - 4)
60

the expected

19(N 5)
360

of exactly four years,
29(N - 6)

2520
of exactly five years,

41(1\r - 7)
20160

and of exactly six years.
55(N - 8)
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a phase. N - d - 2 is the number of sets of d + 3 consecutive items
in a series of N, d + 3 being the number of points required to define
a phase of d.

Division of each expectation by the expected total number of
phases,

2N - 73'
gives the probability that a phase selected at random will have a
specified duration as

6(d2+3d+ 1)(N d 2)
(d+3)!(2N-7)

It may riot be apparent that this division is legitimate. Among the
N! equally likely possible arrangements of the digits 1 to N (refer-
ring now to a rank transformation instead of to a probabihty trans-
formation) there are

(3)

phases. Of these,

N! (21'3T7 ±

2N!(N - d - 2)(d2 + 3d + 1)
(d + 3)!

are of duration d. The proportion of phases that are of duration d
may therefore be obtained by dividing the second quantity by the
first; and, neglecting the term

N!

this ratio is expression 3. Table 1 shows the values of expression 3
for d from 1 to 6. the numerical values of the probabilities for N =
10, 20, 40. and 70, and the limits approached by these probabilities
as the saniple size increases. The probabilities approach their limit-
ing values rapidly; when N is as great as, say, 40, there is little ad-
vantage in allowing for the length of the series.

As noted in Section II, the same expectations ca.n be calculated
with a rank transformation. This brings out the fact that they are
exactly those obtained by considering all possible arrangements of the
actual observations in a particular sample, provided no two observa-
tions in the sample are equal. For example, the probability that
three different observations define a turning point may be found by
considering all permutations of three observations. Of the six permu-
tations two produce a peak two a trough, and two produce no turning
point; hence the probability of a turning point is 2/3. Similarly,
formula 1 is inmediately apparent from the fact that two of the N!
permutations of N different numbers produce an uninterrupted move-
ment; and from it the derivation of formula 2 proceeds as before.

2

11



had the definition of a phase included the incomplete phase Pre-
ceding the first turning point and that following the last turning 1)Oiflt

(see the footnote to the first paragraph of Section II), formula 2

would have been increased by

4(d-f- 1)
(d + 2)!

'when d < N - 1 and by
2

N!

when (1 = N - 1. The expected total number of phases would have
been

2N - 1
3

and formula 3 would have had a 1 in the denominator in place of the 7
and would have been greater by

12(d + 1)

12

(d + 2)!(2N -



IV Mean and Variance of Distribution

The niean, or expected, duration of a phase is derived by multiplying
each duration by its probability and summing the products:

6d(d3 + 3d + 1)(K - (1 - 2) 3(N + 7 - 4e)1xpceted Duration -- --- - =
(where e is the natural logarithmic base. 2.7182818285). This sum-
mation is evaluated as follows: First place the factor

6

2N - 7'

which is common to all terms of the sum, outside the summation sign
and break the numerator of the remaining fraction into two terms:
(N - 2) (d3 + 3d2 + d) (d4 + 3d3 + d2). The first contains a
factor N - 2 which may be placed outside tile summation sign; the
remaining factor is then written as (d + 3)(d + 2) (d + 1) -
3(d + 3)(d -- 2) ± 5(d + 3) 3, to which it is equal. Upon
dividing this by the denominator we have

These sums are easily evaluated from tile fact that

xO

approaches e so rapidly that unless r is very small the difference is
negligible; hence they are essentially e - 1, e - 2, e - 2, and
e - 2. The second term into which the numerator was broken is
writtenas(d+3)(d+2)(d+1)d-3(d+3)(d+2)(d+1)+8(d+3)
(d + 2) - 13(d + 3) + 9 and when this is divided by the denominator,
it yields sums similar to those above.

The precise expression for the expected duration, allowing riot oniy
for tue apl)roximation involved in summing to infinity but also for
that referred to in expression 1, is

3(V+7-4) 2(N-1)
6 N!(2N-7)+6'2N -
N!

13



which is exact, for any value of N. Wlieii \ = 6 it agrees with the
simpler form to two decimal places, when N - 7 there is a difieren cc
of 0110 in the third place, and when \ = S, there is a difference of
one in the fourth place.

The variance of the distribution is simply the sum of the products
of the probabilities by d2, minus the square of the expected duration,
and may be found by a similar process of summation to he essentially

3[(8e - 21)N2 + (4e - 17)N - (48e2 - 140r + 14)1
(2N -- 7)2

2.238764N2 - 18.380618N + 35.654290
(2N - 7)2

Calculation of the variance requires, after common factors are re-
mOve(l from the summation, evaluation of

(t(d + 3d + 1)(N -- - 2)
fi (d + 3)!

The numerator breaks into two terms: (N - 2) (d4 + 3d3 + d2) -
(d + 3d ± d). The first involves oniy a summation already evalu-
ated in connection with the mean duration; the second may be writ-
ten (d + 3)(d + 2)(d .- 1) (kd - 1) - 2(d ± 3)(d + 2) (d ± 1)d +
8(d + 3)(d + 2)(d + 1) - 21(d + 3)(d + 2) + 35(d -- 3) - 27,
which (since the ( - 1)! may here be regarded as infinite) reduces to
summations of the form evaluated for the mean.

The variance has been evaluated for various values of N and en-
tered in Table 1. As N increases, it. rises toward a. limiting value of
0.55969097. Because the phases in a single sample are not inde-
pendent of one another, as is pointed out in Section VI, and because
the number of phases is itself a stochastic variate related to the
distribution of l)h9se (Ilirations, the variance cannot be used in the
usual way as a t.est of the observed mean (hiration (see Section VII).

14



F

V Empirical Verification

The foregoing mathematical deductions were checked by three em-
pirical tests. The first involved 200 random series of 25 items each,
the second, 300 random series of 50 items each, and the third, 200
random series of 75 items each. Each series was copied from a deck
of N playing cards bearing the integers I to N, shuffled ten or a
dozen times by the 'fan' method. Not all 700 series are completely
independent, although all series of a given length are. One hun-
dred of the series of fifty were gotten by omitting the integers above 50
iii the first 100 series of 75. All 200 of the series of 25 were taken
from the first 67 series of 75 by treating the integers 1-25, 26-50, and
51-75 as three independent series.

Deriving some series from longer ones does not involve as mitch
duplication as it may seem to at first glance. The longer series are
in no sense simple sums of their component series, for the manner in
which the components are intermingled is an important characteristic
of the full series. rn. becomes clear when we consider the problem
of combining three independent series of 25 into a single series of 75.
It would be necessary to determine by chamice for each of the 75 posi-
tions which of the three series should fill it., this determination being
such that each series would necessarily be selected exactly 25 times
out of 75. A possible procedure would be to place in a bowl 25 chips
of each of three colors, and draw thee (without replacement) to
determine which series should fill each position. While the frequency
distribution of phase durations in the final series is not entirely un-
related to the distributions for the component series, the redundancy
introduced by this economizing device was not deemed sufficient to
offset the advantages of the increased number of series.

The turning points in the 7(X) series were marked and the lengths
of the intervening phases tabulated. Table 2 gives the observed fre-
quency distributions, the theoretical distributions, and the values of

for goodness of fit with the corresponding probabilities. Since in
computing the expected frequencies are adjusted to the observed
in only one respect, the value of N, only one degree of freedom is
lost.. Had the expectations been calculated froiri colunm 3 of Table 1
instead of column 2, the total frequencies also would have been equal,
and two degrees of freedom would have been lost; but the value of x
would also have been smaller.

15
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16

'i'A6LE 2
Fiequenev 1)istributions of Phase I )uiatiom in 200 Random

Sei-ies of 25 Items, 300 of 50 Items,
and 200 of 75 Items

.68 .11 .008

.65 .70 .13

ProI,ability for total number of phases; see Sec. \' 11.

Although the fit is adequate for the series of 25 and of 50, it is
definitely bad for the series of 75, entirely because of a great deft-
ciency of four-year phases---two-thirds of the value of x2 is contrib-
uted by this one class. The presumption that this result is fortui-
tous was confirmed by au additional 100 series of 75 integers gotten
by using iii order all two digit entries in Fisher and Yates' Table of
Random Numbers, the digits to the right being regar(led as decimal
places when two consecutive numbers were equal. A count of the
four-year phases showed 80, surprisingly close to the expectation
of 79.4.

For the significance test developed in this paper it is immaterial
whether the expected frequencies are correct for phases longer than
two years, provided the expected total number of such phases is
accurate; for in applying the test t.o a single series, the expected fre-
quencies of phases longer than two years are usually so small that it
is necessary to combine all into a single group in order to meet. the
requirement that expected freueneies used i x2 be not too small.
Most authorities state that the expected frequencies must be at least
five and preferably ten, though recent investigations of the effect of
small theoretical frequencies indicate that ''except. perhaps in the
case when m [the theoretical frequency] = 1, the theoretical distri-
bution of x2 is sufficiently closely realized".- 47

The three-year phases cannot he made a separate group unless the
expected number of phases of four or more years is sufficient. to stand
alone. The expression for this expectation is

5N - 31
360

I)IJAT1ON
OF PHASE 1't Observed

N=25

FREQUE?CY

Observed 1X1)eCtC(l Observed
N=75

Expee ted
N=5O

1833.3333 1850 5875.00(10 5895 6000.0000 6085

2 770.0000 776 2530.0000 2579 2603.3333 2624

3 211.1111 199 712.5000 663 738.8889 757

-I 43.7302 .19 151.90-18 116 158.8095 118

5
4921

) .

6
26.2351
4.3601

35
1

27.6587
4.6429

20

7

total 2866.6667 2880 93(10.0000 9320 9533.3333 9611

x2 2.2594 8.8914 15.6165

U 4 5 5



I

wrhich is almost exactly one when N = 78, two when V = 150, five
when N = 366, and ten when N = 726. Since the expected nuiiibei
of phases in excess of two years is not largeit is

4N - 21
60

which is approximately one when N = 20, two when N = 35, five
when N = 80, and ten when N = 155--not. a great cleat of informa-
tion is lost by comhiniiig all into a single group. The test does not
neglect entirely the lengths of phases in the last class, because these
lengths influence the total number of phases and therefore the fre-
quencies in all three classes. A test of the mean duration (see Sec-
tion VII) salvages some of the information lost by grouping.

For each of the three empirical tests, therefore, was recomputed
by combining all durations except the first two into a single group.
The resulting values of x are 0.5291, 3.6998, and 2.2112, which, being
based on two degrees of freedom each, indicate probabilities of .77,
.16, and .33, respectively.

17



VI The Test of Significance

After the frequency distribution of phase durations has been obtained
from a. time series, it may be compared with the expected distribution
by the usual procedure for testing goodness of fit; that is, by squaring
the differences between the observed and the expected frequencies,
dividing by the expected frequencies, and summing the ratios.'
This sum is essentially similar to x2, but since its Salfll)ling distribu-
tion is not quite that ordinarily associated with x2 it is advisable to
distinguish it by the subscript p (denoting 'phase').

The reason is not distributed as X' is that the phases within a
single sample series drawn at random from a fixed population are not
entirely independent of one another. When one long phase occurs,
another long one is more probable than it would otherwise have been.
A long rise, for example, tends to carry the series to unusually high
values, thereby increasing the probability that the decline will be
long. Short phases, on the other hand, tend to leave the series at
central values, from which short phases are likely. (This positive
serial correlation is offset to some extent. by an inverse relation caused
by the fact that a. long phase reduces the number of observations
available for other phases, which reduces not. only the number of the
other phases but also the relative frequency among them of long
phases; except. for very long phases or very short series, however,
this counteracting effect is small.) Since the resultant positive corre-
lation within samples makes very large and very small values of x
a little more likely thaii if the phase lengths were independent, it is
to be expected that, except perhaps in short series, the variance of x
will somewhat exceed that of x2. In addition, since x is virtually
always based on two degrees of freedom, for which the x2 distribution
is exceedingly skewed, this increased variance may be expected to
raise the mean value of x above that of x. For two degrees of
freedom, x2 has a mean of two aiid a variance of four.

In the preceding Section the x2 test was applied in disregard of the
interdependence of phases within a series. In that Section, since
phases from many series were thrown into a single frequency distri-
bution, the independence of l)llases from different series tended to
submerge the interdependence of Phases from the same series. For
a given number of series the importance of the interdependence in-
creases with the series length, and this may have something to do
18



with the series for N = 25 appealing to fit better than those for
N = 75.

The problem of the exact sampling distribution of x for various
values of N is not unlike (and, apparently, not simpler than) the
similar problem for the rank correlation coefficient, for which no
general solution has yet been found. Both 01ds42 and Kendall,
Kendall and Smith" have devised what are essentially systematic
methods of building up the distribution of the rank correlation coeffi-
cient for any value of N from the distribution for N -- 1. They have
also provided excellent approximations to bridge the gap between the
point at which the patience necessary to evaluate the exact distri-
butions is exhausted and that at which the limiting (normal) distri-
bution becomes applicable. But no iecise formula giving the prob-
ability as a function of the coefficient and the sample size has been
discovered. Similarly, in tabulating the distribution of the rank
correlation ratio Friedman devised a method of building one exact
distribution from anotherlater explained in detail by Kendall and
Smith,32 who added an approximating function to smooth the transi-
tion between exact and limiting distributions; but there is no general
analytic expression for the piohability. We have not been able to
determine mathematically the sampling distribution of x , but have
found what seems a satisfactory working solution.

In the first place, we discovered a recursion formula for calculating
the relative frequencies of the 2N_1 different arrangements of signs of
first differences that occur in the N! permutations of \T different
numbers. This formula states the number of peimutations of N
different numbers that produce the sequeiice of signs of diffei'ences
shown in the r-th row of a matrix having 2' rows and N - 1 columns
formed as follows: In the first column fill in alternately plus and
minus, starting with plus at the to!) of the column. In the second
column enter two pluses, then two minuses, and alternate groups of
two. In the third column enter four pluses, then four minuses, etc.
In general, the j-th column starts with pluses in the first 2-'-' rows,
then has minuses in the next 2'', then another 2'' pluses, etc.,
alternating groups of 2' to the bottom of t.he column. The last
column has simply 2_2 pluses followed by 2N-2 minuses. Then, de-
noting by uN (r) the number of permutations of N different integers
that produce the sequences of signs given in the r-th row of this
matrix,

(4) F-(r) = F,(j) ( i) - FN(j)

wherer 2 +j (0 2,1 <j 2), i.e., us the largest
power to which 2 can be raised without equaling or exceeding r, j is
the difference between r and 2';

19
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/ N
'\ + 1

denotes the number of combmations of N things i + I at a time, i.e.,
N!

(i + 1)!(N - i - 1)!'
and hN (1) 1 for all N. Division of FN (r) by N! converts it from
an absolute frequency to a probability.

The durations of the phases represented by the r-th row in the
above rectangle may also be determined from the value of r: The
length of the preliminary incomplete phase is the largest value of Po
such that r () or 1, modulus 210; i.e.., the largest value of o such
that r divided by 2'o leaves a remainder of 0 or 1. To find the
length of the first complete phase write r = k1 .210 + t1 ; i.e., let k1
by the largest integer by which 2"° can he multiplied without ex-
ceeding r, and let 11 by the remainder of 0 or 1. Ta.ke r' = k1 -- t1

and determine the largest value of i such that r' 0 or 1, mod 2k';
p is then the length of the first complete phase. Similarly, the
length of the second complete phase is found by starting with an
that has the same relation to r',through a I and a I , that r' has to r
through k1 and 1 . The lengths of successive phases are found by
repeating the FOCCSS until eventually the congruence 1 0 or 1,
mod 2", appears, whence p,. . This is to he replaced by

- 1 -

as the length of the final incomplete phase.
This recursion expression enabled us to calculate the exact distri-

bution of , for small values of N. The calculation requires not
only a great mamly evaluations of the formula, but also computation
of the corresponding values of x and sltl)sequeflt cumulation of fre-
quencies. Despite considerable shortcuts that can he introduced in
actual calculation with the formulas, the procedure is laborious and
has been carried only as far as N = 12. Table 3 gives the exact
probability, P, of obtaining a x as large as or larger than each
possible value, and also the mean and variance of x for N 6
to 12, inclusive. These distributions are also shown in ('hart 1. the
probability scale being logarithmic. The x2 distribution for two
degrees of freedom is a straight line on semi-logarithmic coordinates,
since 2 = 2 log P when n = 2 (denoting by n the number of
degrees of freedom).

Because of the discontinuity of x , the Probability corresponding
with a given x might Properly be plotted at any abscissa from that
value of x to the next lower value, and the value of x for a given P
at any probability from that value to the next higher. For sim-
plicity, the midpoints of both these intervals are plotted: at each
20



N=6 N=7 N=8
P P x P

.4667 1.0000 .5515 1.0000 .2837 1.0000
.8667 .8694 .7333 .7893 .6837 .8432

1.1939 .6750 .7515 .7028 .8437 .6654
1.6667 .4528 .9333 .5361 .9200 .5897
2.3939 .3661 1.7333 .4933 1.3200 .5605
2.8667 .2222 2.1515 .3702 1.4800 .5062

19.6667 .0528 2.3333 .3024 2.3637 .4946
3.9333 .2774 2.6800 .4708
5.6061 .1694 2.9347 .3924
7.5045 .1171 3.0000 .2994
8.9045 .6552 4.3746 .2931

4.4546 .2346
4.9346 .1936
5.0000 .1332
5.8193 .0645
64546 .0332

TABLE 3

Exact. Distributions of x, Six to Twelve Obse.rvations

Calculated from three frequency classes by combining all phases of more
than two years into a single class and disregarding the correction of for-
mula 1, which would affect slightly the frequency expected for this class.

N=9 N=10
p p

.3576 1.0000 .3281 1.0000
1.1576 .7978 .6139 .9410
1.2667 .6308 .7281 .9169
1.6303 .6046 1.0554 .8129
2.0667 .4893 1.3411 .6027
2 4303 .4519 1.4118) .6059
2.7576 .3811 1.5853 .6010
3.1576 .3713 1.7048 .5937
3.2667 .3208 1.7717 .5917
3.6667 .2150 1.8138 .5262
4.0303 .1637 1.8199 .4186

4.0667 .1445 2.3126 .4070
4.7576 .1102 2.5769 .3745
5.6667 .0783 2.6762 .3274
6.0667 .0635 2.7431 .3269
7.4848 .0197 2.8626 .2739

15.6667 .0049 2.9048 .2420
2.9769 .2200
3.2424 .1811
3.8341 .1794
3.9697 .1650
4.3333 .1583
4.4003 .1580
4.6762 .1391

4.8580 .1074
5.1276 .0724
5.4912 .0594)

6.5152 .05.36

7.1333 .0420
11.3076 .0141

12.9648 .0062

N=11
xiz P

N=12
X P

.4792 1.0000 .6152 1.0000

.5792 .9800 6606 .0843

.8169 .9335 .7485 .8962

.9169 .8436 .7939 .8907

.9792 .7300
:

.8374 .8500
1.0879 .7232 .9707 .7862
1.2792 .6551 1.0152 .7204
1.3169 .5763 1.0606 .6851
1.5879 .5368 1.4152 .5846
1.7000 .4728 1.4606 .5830
1.8000 .4716 1.6374 .5695
2.0792 .4684 1.6828 .5332
2.2000 .4666 1.9333 .4870
2.3087 .4662 1.9485 .1863
2.4087 .4399 2.0667 .4277
2.4169 .4028 2.1556 .4275
2.5000 .3916 2.2030 .4069
2.5792 .3842 2.2889 .3442
2.6879 3044 2.3333 .3334
2.8087 .2742 2.5556 .3313
3.0256 .2608 2.6152 .3031
3.1087 .2302 2.6606 .3028
3.2130 .2006 2.7333 .2996
3.3000 .1472 2.8374 .2995
3.7792 .1471 2.8697 .2867
3.8000 .1468 2.8828 .2462
3.1)087 .1327 2.9556 .2158
4.1169 .1278 3.2667 .2112
4.3130 .1250 3.4152 .2065
1.3879 .099! 3.4889 .1486
4.7256 .0900 3.9333 .1266
5.0000 .0772 4.0697 .1266
5.6087 .0772 4.1556 .1143
5.7000 .0755 4.3485 .1128
6.0130 .0552 -1.3930 .1128
8.2000 .0498 1.5707 .1123

8.6348 .0320 4.6162 .1094
9.4675 .0225 4.7333 .1013
9.7348 .0183 5.6667 .0924

10.2140 .0086 5.8030 .0924
11.4348 .0045 5.8889 .0905

6.0253 .0900
6.7333 .0849
6.8424 .0720
6.9556 .0597
7.5040 .0499
7.6222 .0408
8.5758 .0293
8.8222 .0261)

9.2374 .0193
9.2667 .0141

10.5556 .0028
19.6667 .0004

2.3497 2.3478
3.9657 1.4135

21

2.3629 2.3544
3.7080 3.8358

2. 38{Y2

3.7465
Mean 2.5078 2.4364
rarj 17.0757 6.3017

anee
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TABLE 4

Since n 46, P(5) is less than .0000000001. Using unit class intervals, x2 = 18.604 for a = 18,
and P(2) = .41.

23

Distributions of from 200 Random Series of 25 Items,
300 of 50 Items, and 200 of 75 Items;

and Test of Homogeneity
2 Contribution

x N = 25 N = 50 A = 75 lotal to 2

025
7 15 7 29 0.9310

.115
10 7 10 27 3.1605

215
6 10 15 31 5.9946

395
15 8 10 :13 5.9950

.455
16 12 4 32 8.2500

585
8 24 4 36 9.1111

.635
2 19 9 30 7.9914

.780
10 11 7 28 0.7083

.955
4 17 6 27 4.7160

1.145
4 11 15 30 7.5278

1.310
8 14 8 30 0.1778

1.590
8 11 12 31 1.5914

1.845
13 11 5 29 11494

2.035
3 24 4 31 15.1771

2.215
6 8 13 27 5.1049

2.440
22 1 6 29 33.8391

2.595
4 11 10 25 2.5333

2.835
0 16 3 28 4.5833

3.195
9 11 7 27 0.3086

3.605
9 ii 7 27 0.3086

4.195
8 8 12 28 3.3333

4.755
1 13 11 28 3.2083

5.895
8 14 6 28 0.8333

7.510
7 13 9 29 0.2874

13.975

Total 200 300 200 700 x' = 129.8252



value of x there is a point halfway logarithmically between the two
bounding probabilities, and at each value of P a. point midway be-
tween the two hounding values of x . These midpoints are COil-
nected by the lines that appear in the chart. The same procedure
is followed later in Charts 2, 3, and 6.

As a second step toward determining the sampling distribution,
empirical distributions of x were determined from the 700 series
described in the preceding section that is, 20() values of x were com-
puted for N 25, 300 for N = 50, and 20() for N = 75, all from
three frequency classes. The observed distributions are given in
Table 4, the class intervals being so chosen as to iiiake the sum of the
frequencies in each class as near 30 as possible without taking a(COUIIt
of more than two decimal places (though the values of x were ca.lcu-
latecl to four places). Chart 2 shows the three dist.ributioiis (in
cumulative form on semi-logarithmic coordinates, as in Chart 1). each
value of , being plotted individually. Chart 3 shows the same
thing for each of seven sets of 100 values, the division into sets
according with the order of drawing the samples.

A x test of homogeneity was applied to the three distributions, and
the last. column of Table 4 shows the contribution to x2 from each
frequency class. Since the total x' is 129.83 for ii = 46, there can he
no doubt that the three distributions differ significantly. They do
not differ, however, in respects important for the present test. In
the first place, the differences among the tailsapproximately the
highest 30 per cent of the observed values of x----are not significant.,
even statistically: for the range beyond x = 2.6, the sum of the
contributions to is 15.3963, indicating a probability of about .4.
Charts 2 and 3 Perhaps create an impression of divergence at the
tails. This is because the curves necessarily converge at P = 1.00
for = 0, and the high serial correlation resulting from cumulation
tends to keel) them together in that neighborhood. Furthermore,
discrepancies are minimized at high and magnified at low probabilities
by the logarithmic scale--which was chosen partly for this very
reason (the low probabilities for a test. of significance requiring the
closest scrutiny) and l)artly because the relative rather than the abso-
lute magnitude of errors is relevant to probability measurements.
Thc similarity of the tails is bettr showii by Chart. 4, depicting the
three cistributions of Chart 2 as histograms.

In the second place, the discrepancies in the lower range of x
largely reflect marked irregularities of the separate distributions.
These irregularities are highlighted by the fineness of the class inter-
vals in that range, and tend to disappear if the intervals are broad-
ened. Thus, class intervals by units of x , i.e., under 1, 1 to 2,
2 to 3, etc., with over 9 as the last class, result. in a x of 18.604 based
on 18 degrees of freedom, corresponding with a probability of .41.
24
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The illustration in the penultimate paragraph of Section V111 further
confirms this evidence that the non-homogeneity is a matter of erratic
shifts in the numerous minor peaks of the distributions rather thaii
of divergencies in fundamental form.

In any case, th tails of the distribution are of chief concern for a
test of significance. When N is as large as 25 (and, as indicated by
the exact distribution for N = 12, even when it is somewhat less)
the distribution of , apparently is sufficiently near its limiting form
for a single sampling distribution to he adequate.

The mean of the 700 values of x is 2.3049 and the variance is
5.0458. As an approach to the distribution of x , it may simply I)e
reduced by approximately one-seventh of its magiiitucle (more pre-
cisely by .3049/2.3049, but since these figures are merely estimates,
and the ratio (liii ers little from one-seventh, it seems sensible to use
the more convenient figure) and compared with the x2 distribution
for n = 2, which has a mean of two and tables for which arc readily
available. ueh a comparison is sliowii in non-cumulative form in

eio.e eqerCy
:er flf C
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Non-CurmjIciive DistrLbutior'.s of v2 from 200 Random
I..- p

Sertes of 25 Items, 300 of .50 Items, and 200 of

75 hems; and Approximate Dsfribution of

for 2 ogrees

freedrr

fcr 2 egres

of fredo

27



Chart 5, and in cumulative form in Chart 6; instead of reducing the
values of , one-seveijtli, which would usually be the most convenient
procedure, the values of y° were increased one-sixth. In both charts
the agreement between the line representing x2 and that representing
the 700 observed values of x is quite good.

The fact that the variance of the observed values is less than that
of 2 for n = 2 suggests, however, that a more satisfactory fit at the
tails can be attained by using a x2 distribution having a variance of 5,
e.g., x2 for i = 2.5, The values for x2 for n = 2.5 were obtained
from the Tables of the Incomplete F-Function, taking p = .25 andu = x2/V5. Interpolations with respect to p were made linearly,
and with respect to n, according to the logarithms of the probability
(i.e., the logarithms of 1 - P in the notation of the Tables or of P
in the present notation). This distribution is depicted by the dash
line in Charts 1 to 6; its agreement with the observations at the tails--
for x above about .5.5 and P below about .10--is very satisfactory
indeed. In the main body of the distribution the curve whose mean
value is equated to the sample mean gives a somewhat better fit.

It may occur to the reader that the mean values might have been
equated by using x2 for n 2.3. In the main body of the distribution
this curve differs only slightly from of that for n = 2, and at the
tails it lies as much below the observations as for n 2 lies abovethem. Hence the ready availability of tabulations for ii = 2 is a
decisive argument in its favor. Similarly, equating the variance by

P.efutLee treçuency
per unit of
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30

multiplication of the curve for it = 2 gives a result definitely poorer
than that for n = 2.5. However, the usc of x for n 2.5 is based
on only about 65 or 70 observations, the highest 10 per cent of the
sample values of x , and these, as painted out in Section V, are not
entirely independent.

If a curve of the x2 form is to be fitted to empirical observations,
the maximum likelihood estimate of n proves to be the value that
equates the digamma function 1. of - 2 to the natural logarithm
of one-half the geometric mean of the sample. For the 700 observa-
tions used here, the maximum likelihood estimae of t is 2.24. Thevalues for N = 25, 50, and 75 are 2.24, 2.22, and 2.24, respectively.If both n and a coefficient of x. are to be estimated by the criterion
of maxilnuni likelihood, it is the value that equates diga.mma of
to the natural logarithimi of n/2 times the ratio of the geometric meanto the arithmetic mean, and the coefficient is it divided by the arith-

TABLE 5
Tail of x2 Distribution for 21 Degrees of Freedorna for
Use as Approximate Distribution of x when N > 12'

Calculated from Tables of the Incomplete F-Fund ion "
b P denotes the probability that x vilI equal or exceed the specified value. Interpelatjo,ismay be made linearly with respect to log P. For values of less than 6.3, should bereferred to the usual tables of x2 for two degrees of freedom; or P may be calculateul as thereciprocal of t.he natural antilogarithm of (or the reciprocal of the common antilogarithmof .1S6i2Ox). When N 12, sec Table 3.

metic mean; for these data, ii is 2.12 amid tile coefficient, .92. If n isfixed arbitrarily and a coefficient estimated by maximum Jikelihood,the estimate is the ratio of it to the arithmetic mean of the sample,in this case 2/2.3049 or approximately 6/7.
In practice, then, tile l)l'oCedure for interpreting x , assumed a!-

x2 1' x2 P P
5.448
5.50

.10 8.00 .0301 11.50 .0057.0976 8.009 .03 11.75 00505.674
5.75

.09 8.25 .0265 11.755 .005

5.927
.0869 8.50 .0238 12.00 .0044

6.00
OS 8.75 .0211 12.25 .0039

6.163
.0773 8.836 .02 12 50 .0035

6.25
.07 9.00 .0187 12.75 .0031

6.50
.0687 9.25 .0166 13.00 .0027

0.541
.0612 9.50 .0148 13.25 .0024

6.75
.06 9.75 .0131 13.50 .0022

6.898
.0513 10.00 .0116 13.75 .0019

7.00
.05 10.25 .0103 14.00 .0017

7.25
.0483 /0 .312 .01 14 25 .0015.0429 10.50 .0091 11.50 .00137.401

7.50
.04 10.75 .0081 14.75 .0012

7.75
.0382 11.00 .0072 15,00 .0010.0339 11.25 .0064 15.085 .001



ways to be calculated from three frequency classes, is as follows:
If x is less than 6.3 (the point of intersection between the ogives of

for n = 2 and x2 for n = 2.5), reduce it one-seventh and refer to
the usual x2 tables for two degrees of freedom. This procedure is
satisfactory for all values of x, but for values above 6.3 somewhat
more accurate probabilities are apparently obtained by referring the
whole 'value of x. to Table 5, which gives the distribution of x2 for
n. = 2.5. The curve, composed of two segments, corresponding with
this procedure has been added to Charts 1-6. When N 12 the
exact distributions of Table 3 should, of course, be used.

A thorough mathematical investigation of the proper sarn)Iing (us-
tribution is much to be desired. It should determine the distribution
of x not merely for three frequency classes but also for more. More
important, it should analyze the broader question of what form of
test is most appropriate to phase durations.
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VII An Auxiliary Test
A test of the meaii phase duration would, as was mentioned in Sec-tion V, retrieve some of the infol'rnatjo,i lost by throwing all phasesof more than two yeats into a single frequency class; but. the varianceof the expec'tecj distribution of phase durations it. was pointed out inSection TV, cannot be used as a test of the observed mean duration.It is quite simple, howevet, to test the total number of phases; and,except for an UfliIflhJoJtanf discrepancy occasioned by excluding fromthe deflnitjo11 of a phase the inconiplete phase before the first turningpoint and that after the last turning point, this is equivalent to atest of the niean duratjoj The mean phase duration is merely thetotal duration of all phases divided by the number of phases, and thetotal duratjii of all l)hases, plus the durations of the two incompletephases, is a constant,, N - 1. The mean duration, therefore, dependsonly upon the number of phases and the lengths of the two incompletephases. The number of phases is simply the number of turningpoints reduced by one (except for the negligible qualification that thetwo are equal when there are no turning Points).Now the expected number of turning points is shown in Section IIIto be

2(N-2)
a

the variance of the number of turning points is
16N - 29

90
the third moment about the mean is

16(N+ 1)
945

and the fourth moment. about the mean is

448N' - 1976N + 2301
4725

The variance may be found inductiyejy by computing for a series ofvalues of N the values of the second moment about the origin, utiliz-ing the exact probabilities for all Possible numbers of turning points,which are expIajne later in this Section Whefl N > 3, the second32
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differences of this series have the constant value 8/9; since for N = 4
the value is 13/6 and the first difference is 12 /5, the general cx-
pressioli for the second moment about the origin is

40N - 144N + 131
90

Deducting the square of the expected number of turning points leaves
the required variance. A series of values of the third inomen about
the origin shows, when N > 7, constant third differences of 16/9;
since for N = S the value is 1618/21, the first difference is 2665/63,
and the second difference 592/45, the general expression for the third
moment about the origin is

280N - 1344N + 2063N - 1038
915

From this the third moment about the mean is easily computed by
familiar formulas." The fourth differences of a series of fourth mo-
ments about the origin are constantly 128/27 when V > 7; when
N = 8 the fourth moment is 12683/35, the first difference is
52940/189, the second difference 23928/175, and the third difference
192/5. The fourth moment about the origin is, therefore,

2800N4 -- 15680N' + 28844N2 - 10288K + 4263
14175

whence the fourth moment about the mean may be derived.
As N increases, the skewness, measured by the ratio of the squared

third moment about the mean to the cubed variance, approaches
zero, and the kurtosis, measured by the ratio of the fourth moment
about the mean to the squared variance, approaches three. That
the skewness and kurtosis approach their values for a normal distri-
bution suggests that the distribution of the number of turning points
approaches normality as the length of series increases. Further-
more, empirical comparisons indicate that normality is approached
with such rapidity that the discrepaticy can ije ignorcu when N > 12.
Hence the number of turning points can be regarded as normally
distributed about

2(N - 2)
3

or the number of phases as normally distributed about

2K - 73,
either with variance of

ION - 29
90
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Iii using the normal distributioti, the discrepancy between the ob-served and expected numbers of turning points or of phases should
he reduced in absolute va1ut by one-half unit. to allow for discon-tinuity, and the distribution should be truncatedi.e., the Proba-bility of values above V - 2 or below 0 deducted and the remaining
probabilities raised Proportionate!. (With a single tail of the distri-bution, truncation is unimportant; with the two tails combined, as inTable 6, its chief effect is when the departure from expectation isnegative and greater absolutely thaii is possible in the positive direc-tion.) For the sake of comparison the approximate probabilities es-timated from a. truncated normal curve are given for V = 12 inTable 6, which shows for V = 6 to 12 the exact Probability of obtain-ing a discrepancy from expect,atjoii as great as or greater (n absolutevalue) than that represented by each number of turning points.The exact pro})ahjljties were calculated from a recursion formuladerived inductively. Letting/(j) be the number of Permutations of.N different numbers that. have exactly t turning points, f(t) be thefirst cun-mula.tioii of /(1), and f(f) be the second c.uInulatjon_j.e

the formula is

(5)

where

f(i) = 0

f(t) = and F, .- ,
fN(I)

j=o

f(1) = (t+ 1)f(t) + :N - I - 3)f(i - 2)

if 1<0 and fV-2)= (iV-f 1)!

Values of f(t) are obtained by differencing the series of f(t), andvalues of fN(t) by differencing /(t). (For a simpler recursion for-mnula see Section IX.) An expression forJ(i) directly in terms of Nand t is
t t-1,or

2' (-1)(t - 2k + 1)l(k)
%\There

k _i
2 °

A(k)
=

(Ni 4 +j)!
j!(N - t - 4)!

= (2N -- I - 5)!
h!(2N - t-5

The test of the number of turning points or phases, referred tobriefly as the p-test, is, of course, related to the x test. A frequency
34



TABLE 6

Exact Probability that the Discrepancy between Observed and Expected Numbers
of Turning Points will Equal ui Exceed (in absolute value) the Discrepancy

corresponding with any Observed Number of Turning Points.
Six to Twelve Observations; and Normal Approx-

iination for Twelve Observations

represents the iiumber of turning points. 'Phases' may be read for 'turning points' if the
entries of the first column are decreased by one and the first line is ignored.

For larger values of ± may be regarded as a normal deviate, lit
in this e':pression represents the iiumber of phases, instead of the numher of turning points,
the 4 must be changed to 7.

distribution of phase durations may be thought of as compounded of
two elements: first, the total number of ihases occurring; and second,
their proportionate distribution by duration. The p test is sensitive
only to the first element, whereas the x test is sensitive chiefly
(though by no means exclusively) to the second. x would be sensi-
tive only to the second component if it were based on the relative
frequencies of 1)haSe lengths expected with a specified total number of
phases. It would, therefore, he independent of the p-test, and the
two tests could be compounded by Fisher's method. The relative
frequencies expected with a specified total, however, are not those
given by formula 3, which is valid only when the total number of
phases is unrestricted; so until the proper expected relative frequen-
cies and the samphng distribution of this kind of x are determined,
such a combination cannot be made. Although the illustrations i
the next section are concerned with the x test, the probabilities
resulting from the p test have been recorded in the tables as P(p).

By using only one tail of its distribution, the p test. can be made to
discriminate between series having too many (i.e., too short) cycles
and those having too few (i.e., too long).

35

i N=6 N=7 N=8 N=9 N=10 N=11

N = 12

Approxi-
Exact mate

0 .0028 .0004 .0000 .0000 .0000 0000 .0000 .0000
1 .0861 .0250 0063 0014 .0003 .0001 .0000 .0000
2 .5833 .2988 .1436 .0257 .0079 .0022 .0005 .0010
3 1.0000 1.0000 .6374 .1937 .091' .0416 .0082 .0093
4 .2556 .6325 1 .0000 .6694 .4098 .2373 .0642 .0603
5 .1329 .6374 1.0000 1.0000 .6978 .2739 .2780
6 1436 .3847 .6950 1.0000 .7173 .7180
7 .0694 .2304 .6978 1.0000 1.0000
8 .0357 .2373 .4638 .4597
9 .0416 .1350 .1384

10 .0195 .0248



VIII Applications
To illustrate the application of the foregoing technique to an eCOIIOflhiC
problem, we analyze sweetpotato production, yield per acre, and
acreage harvested in the United States, 1868-l937' (Table 7 andChart 7). This crop, selected from a number of crops to wiuch wehave applied the method in connection with the National Bureau'sStudie ii ('yelirul Be/iw'wr, is presented here simply for its illustra-
tive advantages; it is, however, fairly typical of the group in itscyclical behavior as judged by the present tests. The turning points
are indicated by asterisks in Table 7.

Occasionally, as in this illustration, metric data include equal ob-
servations, presunia.bl because of limitations on the accuracy of
measurements Only when these equal values are adjacent is therea point that neither continues', nor reverses the direction of movement.In these instances perhaps the best. procedure is to regard the tiesnot as truly equal but as a random sequence of unequal observations,tabulate the distribijtioi1 of phase lengths for each Possible arrange-ment of plus and minus signs between the ties, and average the re-sulting distributions, each weighted by the probability of the par-ticular set. of signs it represents, as computed by formula 4 (SectionVI), using as V the number of observations in the tied sequence.This procedure, of course, max' result in an observed distribution coii-taming fractional frequencies. Thus, the sequence 0, 1. 1, 1, 2,(when the 0 and the 2 are known, in view of the preceding and suc-ceeding values, to be turning points) represents four possibiJitis,

which may be denoted by the signs of the first differences as + ,+.-++, + + - +, and + - - +. The first Possibility correspondswith one four year phase and eaeli of the other three with two one-year and one two-yea.r phases. Since the 1)robahilities of the fourcases are , , and 1/i, respectively, the set of points represents 2l)hases, of which l are of one year, of two ears, and 3 of fouiyears. It would perhaps be Preferable to carry the calculation throughto the ultimate probability value for each possible frequency distribu-tion and then obtain the weighted average of these probabilitie5, bitordinarily this result viIl not. differ sufficiently from that based onthe weighted average of the frequency distributions to justify theextra. trouble. The assurnpfior) of randoniness at the l)asis of thisl)i'ocedure is in conformity with) the null hypothesis so differences,from the null hypothesis cannot he attributed to ties; but ties doreduce the sensitivity of the test to departures from randomness,
36



CHART 7

Sweelpotofo Production, Yield per Acre, and Acreage Hcirvested

United States, 1868-1937

V
Residuals of acreage from
third degree pce' series

L--i 1_j:[_II:l- I

670 1880 890 1900 1910 920 1930 1910

-

37

90

80

10

60

50

40

3D

20

1000

900

800

700

600

500

400

300

200

lOG

1870 18103 890 910 010 920 030 1940

100

80

60

200

0

-100

T1

I-

I' rT_fsr1r_rr_r-r1I1n1rrYr

Pr adic t Ia

-

-

Ihvd aegree paer uerLec
- ,

Acreage

Sri-year nauvirag aer3ge

H

Fes duals o ac rasge 1rOr

sx -year rrcuflg average



'rABLE 7
Sweetpotatc Production Yield per Acre, and Acreage Harvested

United States, I868-1937'

f Ties. For method of handling see See. VIII, second paragraph
38

YIELD PER ACRE ACRE.&(IE HARVESTED (thousands)

1868
1869

(thousands
of bullielS)

28,557
(bushe1)

87.9
Actual

325

6-yr. moving
average
centered Residual

1870
22,713' j 7' 351

1871
30,911' 87.8* 352

1872
28,093
27,148*

74.9
71.6*

375
379

G9 6
382 -

1878
1874

33,266* 84 9' 392 397
1875

1876

30,150'
32,518
38,214'

3'
76.5

106

425
413 7*
-128

1877 35,196'
83 1*
775*

460*

454'
141 J9*
151 3*

1878
1879

1880
1881
1882

38 703*
33 851*
40 128'
24 830'
41,742'

30.8'
75.1'
85.6'
56.3'
89.0'

47(1*

451'
469'
-141'
469

-158 21'
460
462 7*

463

-165 4*
1883
1884

1885

31,096'
32,376

66.2'
68.0

470
476'

468 2*

1886
1887

40,111'
39,061
3S.528'

84.6'
81.2
78.0'

74'
481

494

3*

481

489 8'
498

1888
1889
1890
1891

44,838'
44,779*

44,963
45,773

87.1*
85.9
84.7'

521

531

508 7*
518 3*

528 3*
1892 46,364*

85.2',
85.2*i

537
5-14

535 2'
540

1893

1894
45,615'
-19,676'

83.7' 5-15 1*
1895 -14,886

90.6' 518* 546 2*
1896
1897

42,001
41,587'

82.4
754'
78.3

545*
557*

531*

0'
13'

5-13 12'
(898
1899

50,743k
42,245'

92.8'
543 4*

1900

/901
1902

45,684
48,156
48,975

79.6'

86.3
87.8

531'
542
o58
5,'

13'5
552 6'
553

/903
1904

1905
1906
/907

52,871
55,515
58,560'
57,7,50
57,332'

93.6

102.0'

96.2'

505
570
574
585
596

55 0'
572 2
580 6'
591

_7*
1908
1909
1910
191/
19(2

* Turning point.

62,299'
58,994'
60,310*
55,285'
56,644'

100.3'
92.3'
95.1*
91.7'
96.7'

621

639'
634
603

586'

611 10
613 26'
613 21
609 6
604 18'



TA B L E 7-- Concluded
PRODuCTION YIET,D PER ACRE ArRNA(4*1 (thousands)HARVESTED

* Turning point.
1 Ties. For method of handling see Sec. VIII, second aragraili.

The phase durations for the sweetpotato series are tabulated in
Table 8, together with the expected frequencies on the hypothesis
that the observations are random and independent. From the values
of x and their corresponding probabilities (Table 8), it appears that
the fluctuations in production conform well with chance; of the two
components of total production. yield per acre conforms well and
acreage harvested not at all, suggesting that fluctuations in produc-
tion depend more upon fluctuations in yield than upon fluctuations
in acreage.

It is, of course, apparent even from casual inspection of Table 7 or
Chart 7 tha.t total production does not constitute a random series,
but has a marked upward trend. In general, the method here pre-
sented is not very sensitive to a primary trend. By 'primary' trend
we mean an elementary function whose first and second derivatives
have few, if any, changes in sign and only gradual changes in magni-
tude. It corresponds with tile basic secular trend, as contrasted with
long waves, trend-cycles, business cycles, seasonal variations, etc.
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(thousands
of bushels) (bushels) Actual

6-Yr. moving
average
centered Residual

1913 55,998 94.0* 596' Ø5
1914 54,145* 94.7 572* 617 45'
1915 63,241* 100.9* 627 640 13
1916' 61,546* 935' 658 669
1917 72,767' 100.4' 725 701 24'

1918 68,581' 92.9' 738 734 4*
1919 78,272' 99.0 791' 763 28
1920 76 999 100.4' 767* 772
1921 73 763* 90.2' 817' 753 64
1922 78,365* 959* Si7 725 92'

1923 63,871 94.8 674 702 28
1924 44,884* 79.6 564* 684 120'
1925 50,139 78.8' 630 662 --26
1926 63,300 98.1' 645 644 1

19537 70,897' 97.9 724 651 73'

1928 59,178' 93.0' 636' 677 41
1929 64,963' 100.6* 646 729 83
1930 54,415' 81.3 669 779 _110*
1981 66,849 78.6' 850 821 29
1932 86,436' 81.9 1,050' 875 181'

1933 75,248' 82.9' 908' 914 6'
1934 77,482 80.9' 958 926 32
1935 83 128' 85.8* 969'
1936 64,144' 78.0' 82'2'
1987 75,053 89.3 840



"A line of primary trend will trace out Synoptically and elegantly thegeneral secular moveneiit without giving much heed t.o the details ofthe tlIOVCfle11t"IS The ren1ovJ or introduction of a trend can alterthe Order of magnitude betwceii adjacent, items (i.e., change the signof their difference) only if the trend factor for a single year is greaterthan the difference between SUCCC5Sj' tlefld-adjusfetl items. ('oil-sider. for example, a setS of observatiojis 1, 2, 1, 2, 1, in which thereis no trend. If a.n upward trend having a rate of rise of less than oneunit per year is introduced there will be no alteration in the patternof expansions and contractioiis; for since none of the differences isless than one in absolute value it cannot have its sign changed byadding a quantity less than one.
Ordinarily, of course, there is no minimum to the absolute value ofthe randon4 factor. When the diffei'eiicc between conseciitje resid-uals from trend is less absolutely thaii the change due to trendbetween the two points, the sign of a difference may depend ulJonwhether trend is included or eliminated If, a frequently happensin econoffl( time series, the sequence of residuals is such that differ-

TABLE S

Frequency Distjihiiti011s of Phase Durations inSweetpot.ato Proc tetion Acreage Harvested, and Yield per Act
tlllite(j States, 1868-1937

Lxpected urequeneje.s for exJ nsiolis or contract ions arc 4JI1e-hi1f tlto in this cohinmFor ex1)1anatii of fractional frequencies see See. VIII, secrj(I paraglapliCOIflPUtC(1 by combining all (lurations in -xces. of 2.Probability for total Ilunil,er of phases; see Sec. VII
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DURATION EXI'CTED
OF PHASE FREQUE.CY. ORsEIVE,) rREQj1N(.y-------

PRODUCTION
ACREAGE YIELD

(years)

27.917

Lxpan_ Coiitrac_
Trnal sion tion

32 16
Total Expan- Coiitrac_

sion (ion Total
2 12.100
3 3.131
4 0.737
a 0.128

10

3
0

16

4 (1

2 i
0 0

2.5
3.5

5.5
2

2
1

12.5
0.5
1.5
0

30

6 0019
0 0 0

1

7 0.002
1

0 0 0
0

0.000
0 0 0.5 0.5 0

9 0.000
0

0
0
0 0

0
1

0 0
0

0

00 0.5 0.5 0 0
I'(Ital 4333 16 23 23 28 13.5 14.5 16

1.363

.56
1.323 0.920 13.457 14.67(1 5.444 1.696.57 .67 .002 .001 .10

Cornpourl(l probal)jlifv22
P(p)d

.73
.75

.001
.000

.73



enees as small as the trend factor for a single year are rare, the distri-
bution of phase lengths will not he much aflected by the presence or
absence of trend.

Still another factor minimizing the effect of a primary trend on the
test is that a positive trend tends to lengthen expansions but to
shorten contractions. In general it tends to make one-year contrac-
tions more numerous thaii one-year expansions, and expansions of
more than one year more numerous than contractions of more than
one year, without altering greatl the total number of phases of a
given (luration. Opposite effects are produced by negative trends.
In such cases the existence of trend may he conCeale(l by the fre-
quency distribution of all phases, but be revealed b separate distri-
butions of expansions and contractions.

Separate distributions of cxpansioiis afl(l contractions are shovii
(Table 8) for production and acreage, but not for yield, which has
little or no al)})al'eflt trend. iloi pro(luCtion, both distiibutions con-
form well to the expected distribution and to each other. A test of
honiogeneity shows x2 = 1.4, which, for n = 2, signifies a probability
of .5. There is, therefore, no indication that the distribution of
phases has been affected b the primary trend. For acreage the two
distributions differ markedly in a manner attributable to trend, and
the probability resulting from application of the x2 test for homo-
geneity is only .02. The iion-randomness evidenced in the acreage
series may, therefore, he at least pai'tly attributable to a primary
t rend rather than to secondary movements.

In interpreting tests of the homogeneity of contractions audi expan-
sions, it should be remembered that the positive serial (Orrela.tiOII in
phase lengths pomted out in the second paragraph of Section VI has
a tendency to produce homogeneity between the distributions of cx-
pansions a:iid contractions. This affects also the probability coin-
1)oundled from the probabilities of the x-s for expansions and con-
tractions (Tables 8 and 10), since it means that the two j)robabilities
are not entirely indepeiiden t.

Lack of sensitivity to primary trend is a limitation of the technique
from the viewpoint of detecting its existence. On the other hand, it
is not difficult to determine by other methods whether a primary
trend existsthe rank correlation between the variate and the date
often affords a satisfactory test. And for determining whether the
systematic variation contains secondary components, e.g., cyclical
or seasonal variations, it is a decided advantage of the present method
that it frequently perhaps usually with economic data gives satis-
factory results regardless of the presence of trend, thus avoiding the
complexities of trend elimination. It is, of course, possible for sec-
ondary components also to he concealed if their year to year changes
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are definitely smaller than the yeat to year rtuidoni chaniges; this is
not, o likely as in the case of the primary trend, hut it is a real
possibility in the case of gradual movements, e.g., long waves.

A Second example illustrates the usefiihness of the technique as a
criterion of the fit. of moving averages and for seleetitig the proper
period for a moving average. If a moving average or any other ettrve
describes adequately the systematic variation in a series. the residuals
should constitute a random series. If the period is too long, waves
or cycles may appear in the tesicluals; if it is too short, the residualswill cluster too closely about the line.

To illustrate this applicafjoii. ten moving averages having spans offrom 2 to 11 years were fitted to the data on sweetj)otat() acreage and
the residuals tested for randomness Each moving average uses equal
weights. Averages based 011 au even number 0! pOints, lIowever, are
centered half-way between observations so urnist be interpolated toIiiid the smoothed value corresponding with a given observation, and
this amounts to 'using a. moving average based on one more %rear with
the extremes receiving only half the weight. of the intervening years.What is designated a six-year moving average with equal weights isthus really a seven-year moving average with equal weights for the
central five years and weights of one-half for the fIrst and seventhyears. The moving averages were rounded to the number of figures
appearing in the da.ta.

Table 9 shows the values of x, together with the corresponding
probabilities, obtained by testing the residuals for randomness Itschief feature is that the moving averages based on even uumbevs of
years give better results than tine corresponding averages based onodd numbers; the implicit tapering of the weight oiagram involvedin interpolating seems to improve the fit. markedly A second strik-ing feature is that the Probabilities first rise, then decline. Thus, theprobabilities for the odd numbered moving averages reach a niaxi-mum of .24 at seven years while the even numbered give the bestfit at six years. when the probability is .61. Ilad other weight di-agrams been tested, they might have resulted in still better fits.

A 'better' fit, in the l)resent sense, does not necessarily give a closerapproximation to the data. It is one for which the residuals behavemore like a series of independent, random observations, as judged bythe sequences in the signs of the first differences. The closest fits tothe original observations are given by the shortest moving averages;but these describe not only the systematic variation but. also a portionof the random fluctuations. If the moving average is either too short
or too long, x will be significantly large; but the source of its magni-tude is riot the same in the two eases. If the moving average is tooshort, there are too many short phases and too few long ones; if too
42



TABLE 9

Frequency 1)istributions of Phase I)uiations in
Residuals from Moving Averages fitted to

Sveetpotato Aercage I-IarvCste(1
United States, 1868-1937

Probability for total niiniber of see Sec. VII,
For explanation of fractional frequencies see Sec - VIII, second paragraph.

long, there are too few short phases and too many long ones. This
effect appears in the actual frequency distributions of residuals from
the ten curves (Table 9).

If a series is conceived to have residuals that are in some sense
random but not independent of one another, a moving average se-
lected according to the present criterion will tend to include the part
of the random element that is serially correlated with the preceding
items. As is well known, serial correlation will produce 'cycles' in an
otherwise random series.

Further examination of the residuals from the six-year moving av-
erage reveals that separate distributions for expansions and contrac-
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PERIOD FREQIjENCY OF IIIASES

OF' Over
MOVING One Two two

AVERAGE Year Years Years Total P(x) J)(p)
(years)

2
I.xpccted
Observed

27.083
-16

11.733 1.S3
S 1

43
55

16.823 .0004 .000S

<[Expected
Ol,servcd

27.083
-16

11.733
S

1. 183

I
16.823 .000-1 (1008

i;t1 26.25 11.367 -1.05 -11.667

Ohset-ced' :31.25 525 l 357 .45 59

a
jExpected
'Observed'

26.25
19.417

11.367
9.917

1.05
7.333

11.667
36.667

4.626 .14 .31

,
)ExpeCtCd
'Obseived'

[Expected

25.4 17
25.5

25.417

II
8.25

II

3.917
5.25

3.917

40.383
39

-10.333

1 111 .61 SO

.96
'ft)bserved' 28.5 6 5.5 40

3 287 24

S
Expected
Ohserved

24.583
25

[0.633
7

3.783
6

39
38

2.547 .34 .88

9
(Ixpected
Olwervcdh

24.583
IS.75

10.633
7.5

3.783
6.75

311

33
4634 .14 .09

10
JExpecteci
lObserved"

23.75
28

10.267
5.5

3.65
5.5

37.667
31

3.175 .26 .33

ii jExpeeted
Observed

23.75
22

10.267
2

3.65
7

37.667 9.861 .01 .05
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tions (10 not differ significantly from expectation or from üne another
(Table 10). A test of homogeneity yields a x of 2.247 based on two
degrees of freedom, which corresponds with a l)1Ohalflhitv of .33 and
therefore indicates no significant. difierenee. According to the cr1-
tenon of sequences in the direction of movement, of the residuals.
therefore, the six-yeai' moving average seems to give a satisfactory
fit.. The values of this moving average and of the residuals from it.
(Table 7 and ('hart 7) suggest that until about. 1907 the systematic
variation in sweetpotato acreage consisted l)riileipally of a simple
trend and mild undulatioiis of about I ) ears, l)Iit. that the undulatory
movements became marked thereafter.

Were we 1)iesenting a detailed analysis of the sweetl)otato data.
instead of using them merely to illustrate a technique, it might be
desirable to treat the two portions of the series separately, Perhaps
Using different, moving averages. If separate frequency (list fil)Litiofls
of phase (lurations in the residuals are made for the j)eriocl.s before
and after 1907, there seems to be an excess of short phases in the
earlier period and an excess of long phases in the later period, though
in neither are the differences from expectation statistically significant.The values of x, are 2.911 and 6.388, respectively, corresponding
with probabiJ,jt ics of .29 and .06. Probably a longer moving average
would he more satisfactory for the earlier period and a shorter onefor the later period. A J)0SSil)ie explanation (which we have not yet
investigated) lies in the assertion of the C. 8. Department of Agri-
culture° that "in 1909 there appears a marked concentration of pro-duction in certain states". Concomitant. with the increase in spe-cialization there may have been greater sensitivity of producers toprice and cost. factors. Inverse relationships between the l)rice of

T.BLE 10
FFe(Ieflev l)istli!)utjous of I)tiiations of Expansions am!

('out i etions in Residuals frotii Six-Yeai Moving .StvIrage of
SWc'et1)ol at o .c1eage I laivest ed

fnifed States, 937

For cxp1anatio of fracIioi freqinnejes see '..e. Viii, seeo,,l p:IldgrIJ)l).
('omputed by combining all dtwat ions iii i,e&ss of 7.

I,TRATION OF I'}I.sE

(years)
}XL('j'EJ)

F'REQTJF'.N('y
OBSERVED }HEQTJEN(y'

- ...................-- ....-l.Xpan.slons Corractions
1

2
12.708 11.5 11

3
5500 6 225

4
1.557 2 25

5
1)333
0.058

0.5
06 (1.008 0 0.25

l'othl

P(x)
(onipoinid )>rl,1)iijt2

20.167 19.5

((.161
93

62

i9.ö

2.903
29



cotton and the acreage of sweetpotatoes harvested the following year,
and between cotton acreage and sweetpotato acreage harvested the
same year, are noticeable from the time of the 1914--18 War. The
increased amplitude of fluctuations in sweetl)otato acreage from the
time of that War coincides with increased amplitudes in eottoii j)riees
and acreage.

In order to compare this new test with a more elaborate procedure
frequently used in time series analysis, a power series y =
a + hx + cx2 + dx - - - was fitted by the method of least squares
to the series on sweetpotato acreage harvested. The calculations
were carried as far as the ninth degree term, using the technique of
orthogonal 1)olynomials,!2 but none beyond the third reduced the
residual variance significantly. According to the usual criterion,
therefore, a third degree curve would be regarded as giving an ade-
quate fit (Chart 7). The residuals from the third degree curve were
then subjected to the I)Iesent test. rIhe1.e were 24 phases of one
year, 3 of two years, and 9 of more than two years, producing a. x
of 12.47 and a probability of .004, from which it is clear that the fit
of the third degree power series is quite inadequate. (The normal
deviate for the total number of phases-----see Section Vuis 2.26,
indicating a probability of .02.). The power series required very much
more time and labor for fitting and testing than did the moving
averages; hut the result seems considerably worse and the variance
test completely misleading. The power series does give a good repre-
sentation of the primary trend, but since in this particular case it is
good only in a descriptive senseeven a fairly short projection being
obviously absurd because the curve rises with increasing accelera-
tion----it has little advantage over methods that avowedly produce
mere descriptions. f

shortcomings, of course, lie not in the method
of least squares but in the fallacy of inferring that a third degree power
series gives a thorough fit because no other power series effects a
significant reduction in the standard error. It is doubtful that eco-
nomic time series generally can be adequately represented by power
series fitted in this way, though such functions may be useful for
describing certain portions of the systematic variation (a use in which
the present test is inappropriate).

An obvious limitation of the resent test is that it by no means
utilizes all the information in the data. This shortcoming, in fact,
partly accounts for the usefulness of the technique; it can be applied
to any distribution because it ignores characteristics not common to
all distributions.

For particular problems a(lditional tests, perhaps as general as this
one, can usually be devised. (In applying them the caveats of Sec-
tion 1 must be kept firmly ill mind and cruel and unusual' tests
avoided, for sufficient multiplication of tests is l)ound sooiier or later
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to produce a 'significant' result.) It \VOUI(1 he futile to attempt a
detailed discussion of SUI)l)leu)eIltai'y tcts except Hi iclation tO some
peeifie problem and body (If data, hut two siggetion, will indicatethe nature of the possibilities.
First, the magnjtu(les of the differences het weeii sLlccessive observa-

tions may be taken into account, without iitrodticing assumptionsabout the populatjcm form, by coiriparing the variance of t lie (liIkr-ences ih the variatice of the N ohsrvatjotis, regarded as a finite
Population. If this is done in rank form, it is very nearly equivalejitto testing the serial rank corretatioit coefficient, for iione of the N 1differences that detepijne the variance of the diflerences can (lifier by
more than one from the N - 1 differences by which the serial rank
correlation is determined

- (If the original data are used, rather than
ranks, it. is equivalent to testing a Serial correlation coefficient froma finite population.) In the case of sweetpotato production, theserial rank coi'relatjoii coefficient is + .91. a highly significant value.That the rank correlation coefficjeiit suggests non-randomnesswhereas suggests randomJ1(ss is due to its greater sensitivify tothe kind of trend present in these data; whether this is an advantage

or disadvantage depends upon the problem (or, to express it differ-ently, upon the nature of the alternative hypotheses).
Second, the signs of the observatjois (instead o.f the signs of theirfirst difierences, which enter the x test) can be tested for non-randomsequences. When testing the six-year moving average, for example,we might determine whether there are non-random sequences in thesigns of the residuals. If it is assumed that. each residual is equallylikely to be positive or negative, the expected number of completedsequences of like sign d years in duration is

Nd 1
2+1

the expected total ritimber of completed sequences is
- 32'

and the probability that a sequence selected at random will be of dyears duration is

N - -
2d(N - 2)

These results are easily obtained. A sequence terminal point (initialor final) occurs when a pair of signs is + or -i-, and the proba-bility of this is 1/2. Since there are V - 1 Pairs of consecutivesigns in a series of N.

-
2
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is the expected number of terminal points. Since there are one fewer
sequences thati terminal points (note, hnweyer, an exception similar
to that measured by expression 1, which in this ease has a probability
of 21_N) the expected number of sequences s

2 2
A completed sequence of d involves d signs of one kind enclosed be-
tween two signs of the opposite kind, and the probability of this is

(1\d±1'2) - '2i
multiplicadon by N 4 -- 1, the number of sequences of d + 2 in a
series of N, yields the expected number of completed sequences of
exactly d years. Such a test lacks generality because there is no
reason to assume, in the absence of definite information, that positive
and negative residuals are equally likely, even if the curve fits ade-
quately; if the probabilities of positive and negative deviations are p
arid q, where p -f q = 1, the expected number of completed sequences
of d in the signs is p2q2(pd-2 + q-2)(N - 4 - 1) and the expected
total number of completed sequences is 2pq(V - 1) - 1.

TAULE 11
Frequency Distribution of Sequences of Like Sign in

Residuals from Six-Year Moving Average of
Sweetpotato Acreage Harvested

United States, 1868--1937

Table 11 shows the observed distrihut.ioii of sequences in sign for
the residuals from the six-year moving average of acreage harvested,
and that expected if positive and negative deviations are equally
probable, a reasonable assumption in this case. Since x2 is 11.241,
based on 4 degrees of freedom, the prc'ability of so great a divergence
from expectation, were chance alone operating. is only .02. It is,
of course, a well known characteristic of moving averages, particularly
when the weighting is uniform or nearly so, that they tend to lie
below the observations during certain types of movement and above
during others. This condition carl be improved by alterations in the
weight diagram.
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DURATION FREQUENCY
--------------

CONTRIBUTION
OF SEQUENCE TO X21xpectcd Observed

(years) (N = 64)
1 15.5000 7 4.6613
2 7.6250 4 1.7234
3 3.7500 S 4.8167
4 1.8438 2 0.0132

over4 1.7812 2 (1.0269

'l'otaj 30.5000 23

xl 11.241
P(X') .02



tilI another consideration to hear in mind when interpreting the
test is that. a set of phase durations that appears random when viewed
only as a. frequency distribution 'nay tiut. have occurred in a random
sequence. To test. this, the theory of runs38 could he applied to the
series of phase clurat ions, regarded as a series composed of three kinds
of elements (though the serial correlation among phases may he
sufficient to vitiate such a test).

An additional POint, obvious yet none the less worthy of mention,
is that the time unit may affect conclusions derived from the x test.For example, year to year movements in pig iron production, 1S77-
1936, show a of 3.60, corresponding with a I)rohability of .2,
whereas month to month movements show a x of 372.11, correspond-
ilig with an extraordinarily minute l)rnbahility (Table 12). To Pittthe point, more generally: for certain types of continuons function
whether the ordinates are correlated serially over a. given interval
depends upon the frequency with which they are recorded over thatinterval. Ordinates recorded frequently may he highly correlated
serially, while those recorded infrequently may he entirely uncoi'-
related; but clearly many other types of result are possible.

TABlE 12
I'IeIlIIeflev 1)istributlo05 of Phase Dwat.joiis in
Pig Iron Production, Annually and Monthlv

1.flite(l States, l877-193G

The annual figures are calendar ear totals of the mont lily figures,
b Computed by combining all durations in excess of 2.

Probability for total number of Phases; see Sec. VII.

An entirely different use for the test, not Pertaining especiallyto time series, may he illustrated by the homogeneity test of Table 4.If the three distributions are really homogeneous, the total value ofx2 should he apportioned among the rows at random. \Vhethei it is
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!JtRATJON
OF PHASE

ANNUALLY
-- .........--.-----

..-Lxpec ted Observed
Frequency Freqitete-v

MONTHLy
---------

Expected Observei
Frequency l"requenev

2
23.7500tyJ 16 298750000 -13

3
10.266667 7 131.266667 3S

-1

2.902775 2 37.736111 29

5
0.621-129 0 8.216667 25

6
0.107785 0 1 450050 19

7
0.015763 1 0.215829 15

8
0.001996 1 0 027822 1

O

0.000223 0 0.003166
0.000022 0 0 000323 5

11

12
0.000000 0.0000o3 :m

18
0.000000 0 0 00000() 20.000000 0 0.000000 1

'l'ota 37.666667 27 177.66(1667 193

P(x)
3.6019 372.1092

.21
.0000

.002
.0000



may be tested 1) (Ieterlliining whether the 24 eoiitributions to x2
(Olistit ute a random series. x is found to be 1.1)355, (Orres)o11dillg
with a probal)jljty of .01 Table 13). This test is entirely independeiit
of the homogeneity test, since that test. would be unaffected by any
rearrangement of the rows while tins one depends only on the ar-
rangeinent of the rows. It therefore salvages information on order
negleete(I in a 2 test of homogeneity or goodness of fit. The result
of the x test could be fused with the result. ol the x2 test by H. A.
Fisher's method to obtain a single probabilit. based upoiì 1)0th t'l)eS
of information, but there is no point in doing so in this particular
case, since the homogeneity test. of the 24 classes shows a pIo1)ai)ility
so low that no other single test based on the same classes, however
high its probability, could alter the inference of iioii-hoinogeiieity.
A test iJased on sequences of like sign in the differences from the mean
contribution, similar to that shown in Table 11 is au alternative
device for salvaging the order information that the x test disregards,
provided the expectations are large enough to eliminate skewness.

FABLE 13
Frequency 1)istiibutioii of Phase 1)urations in liii'

Series of 24 Contributions for the x Test
of iloinogeiteity iii Table 4

Iro1)ahiIttv 6)i Iota! nlirnl)er pkiss; SCU See. VII.

can also be used to test the independence of two variates, and
in some circumstances is superior for this purpose to the rank cor-
relation coefficient. The procedure is to arrange the pairs according
to the order of magnitude of one variate and tabulate the distribution
of phase durations in the other variate. 1f the two series are in-
dependent, the resulting value of x will not he significafit. This test
is likely to be more sensitive than the rank correlation coefficient
when the relation between the two variates is not monotonic. Sup-
pose, e.g., that arrangement of 15 pairs in ascending order according
to one variate produces the following sequence in the second:
1,3,4,8, 10,11, 13, 15, 14,12,9,7,6,5,2. The value of is 7.6667
(since there are no completed phases, it equals the expected total
number of phases), indicating a significant relation between tile two
variates (Table 5). The rank correlation coefficient, on the other
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DUHATION OF PHASE FREQUENCY

Ixpected Observed
5.7500 6

2 3.66(37 3

(J 2 1.2500

Total 13.6667 10

1.0355

1,(,rj) .64

F(p) .11
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hand, is only .089, deuinitelv tiot sigiiihcant A difficulty with the
x test in this use, however, i that the 'on(lusiOn occasionally (le-
pends upon which 'aria te i chosen for arranging in order and which
for counting the phase durations. If the numbers given above are
arranged in order, and a tabulation made of tlìe phase durations in
the numbers of their positions a now listed, X is found to be only
0.1886, an unusually low value. Whik the two values of x that can
be obtained from a single set of paired variates are not independent,
a little experimentatiot will show that ahniost any pair of values is
possible simu1taneous1' If the two variates are really independent,
of course, neither value of x should be significant, but their inter-
dependence makes it difficult, to use 1)0th va,hidly.*
* Jacob \Volfosyitz I)OirtS out that this ambiguity can he avoided by basing a test on sequences
of consecutive rank-s instead of on sequences in direction of movement. In the illustration
above, for example, there are three runs of two consecutive niwubers (3, 4; 10, 11; and 15, 14)
and one run of three (7, 6. 5); this is aiso true when the listed numbers are arranged in order
and the runs counted in th', numbers indicating the positions as now listed (the runs then are2, 3; 5,6; 9,8; and 14, 13, 12).

Mr. Wolfowjt derived this test of the independence of two series from a new criterion,
somewhat analogous to the likelihood ratio, which lie has devised for the choice of tests of
8ignifieance when nothing is known about the form of the population. It. is to be hoped thatthis important work will reach an earls- fruition and become geiierahlv available. In thisconnection, see the third from last paragraph of Sec. I.



IX Historical Note

Investigations of the topic treated in this paper started at least as
early as 1874. A brief mention of them may be of interest, since
they have appeared in places not generally familiar to economic
statisticians. Most of the writers seem to have been aware of few
of their predecessors, and the present authors, imfort.unately, were
aware of none until their own work was in final form. They have
110 reason to suppose that the following account is completeindeed,
it would be surprising if the classical probability writers had entirely
overlooked the problem.

Three statistical papers have suggested basing a t.est of significance
on the frequency distribution of phase durations. The first was pub-
lished by Louis Besson in 1920," the second by R. A. Fisher in 1926,21
and the third by W. 0. Kermack and A. (. MeKendriek in i937.'
Only the last seriously investigated the suggestion.

Besson is the only writer to obtain formula 2 (Section III), giving
the distribution of phase durations as a function of N. lie derived
it for two special cases: (1) a discontinuous rectangular distribution
in which the number of possible values is much larger than the num-
ber of items in the sample, and (2) a normal distribution; and he
implied that the same formula had appeared in other instances. He
did not, however, realize that it represents a completely general solu-
tion, although he apparently suspected as much. "Our formulae are
exact," he writes, "in both the very different cases where all values
are equally probable and where they follow the law of Gauss, as well
as in still different cases. Hence it cannot be doubted that they
possess a very great degree of generality, and no matter what law
which the quantities occurring in meteorological applications might
follow, the application of these formulae would not. lead us into
serious error; as a matter of fact such quantities usually follow the
law of Gauss quite closely." Besson did riot discuss the problem of
determining whether differences between observed and expected fre-
quencies are statistically significant. Although two papers'9 29 have
referred to Besson's formula, no use has been made of it, as far as
we know.

R. A. Fisher" gave the limiting form of expression 3 (Section III)
for large values of N in the form

[1 2 13[
+ 1)! (d + 2)! + + 3)!

and also the limiting value of the mean duration, variance, and third
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inoIirent. about the nican (Section IV). Since Fishei"s object was to
express the probabilit of a rise or fall at a given point a a function
of its distance from the preceding turning point, he was interested
only in infinite series and did tiot take a('coLlnt of the effect of N.
Apparenti he realized the generality of the formula, however, and
lie suggested basinga test. of significance upon it: ''The extreme rarity
of runs of 5, 6, or 7 differences is of value Iii the use of such runs as
evidence that a sequence is in parts not. of a random character; such
a test may be refined by counting all the runs of all lengths and coin-
paring the frequency of each class observed with that predicted by
the above distribiitjoii.'' lie did not. iiidicate how such a. comparison
might be made. Fisher's results seeni to have been uiinotieed, except
for a single citation. I-us contribution was elicited by a note by
Bilhani showing the probability of three observations' defining a
turning point to be 2/3.

The most importaiit of the three statistical contributions is t hat of
Kermack and McRen(jnck. They derived formula 3 (Section III),
but only in the limiting form

3(d2+ 3d-i- I)
(d + 3)!

and also the expected ineaii duration of a phase. Iii comparing the
observed with the expected distributions, however, they ignored the
interrelation among the phases in a single series and assumed that
x is distributed as x. They also gave the mean and variance of the
total number of phases as functions of N. There are several striking
similarities between their paper arid ours: they pointed out the insensi-
tivity to trend or slow periodic movements (they added a suggestion
tha.t testing a. sequence made up of every k-tb observation will in-
crease the sensitivity in this respect) ; they wrote, ''One obvious
limitation of these criteria is that as they make use only of qualita-
tive relationships and do not take into account the exact magnitude
of the observations, they do not. make full use of all the available
information. It is to be noticed, however, that. there is the corn-
pensattug advantage tha.t tue criteria make no assumption whatever
about the law of distribution of the observations, apart from the very
general one that they are unequal''; and, as a final coincidejjce, their
paper was partly financed by Carnegie funds. r[hieiI. method of han-
(11mg ties is one that we have recommended elsewhere because of its
simplicity, hut since it assumes the true differences between tied
observations (instead of the true values of the observations them-
selves) to l)e a random sequence, it is not as strictly correct. as the one
described in the second paragraph of Section VIII ; the two l)rocedurIs
are identical, however, in the most common ease, tha.t where only two
adjacent observations are equal, and they differ little unless there are
many sequences of more than two ties 01' a few unusually long
sequences.

52



There are also three )r1flcjpal mathematical treatineilts of the
topic: a long paper by Kerrnack and Meixendriek ptil)lisheCl in 1937
an(l two iii treatises on coinhinatory analysis. Ma(HIahOiI's of I 9i6
and Netto's of 1JUl.'

Kermack and \IcKcndiiek demonstrated the formulas utilized in
their tat.istica1 paper,' and extended these iii several directions not
especially I'elate(l to the I)reseilt paper. At one l)Omt they used, in
effect, the probability transformation which we explain in ectioii II.
They simply stated that the observations can be l'egarde(l as all
between 0 and I because the distribution of phase (lurations remains
invariant under any one to one transformation; they (li(l iiot, however,
explicitly introduce a transformation to a IinifOiTfl distribution. tl)OIlgll
this is implicit. iii the integrations they make.

Macmahon does not consider l)lnLSCs ill Our seiise, but he j)arti-
tions a series into groups which are, as he points out, equivalent. I-Ic

divides the ol)servatiofls in such a way that each group contains an
ascending sequence. All observations in what. we call an expansion
of d, iiiclucling both bounding turning points, thus constitute a single
group of d ± 1 each observation in what we call a contra.ctioii, ex-
cluding the bounding turning points, constitutes a. group of 1. For
example, he divides the sequence 8, 6. 7, 2, 9. 5, 4, 1, 3 as follows:

8; 6, 7; 2,9; 5; 4; 1, 3 and treats it as a sequence of grOul)s of 1, 2, 2,

1, 1, 2, in that order. (Given a sequence of groups as defined by
Macmahon, it. is 'easy to deduce the sequence of phase durations
according to our definition.) Letting a, b, c, .....epresent the group
sizes in the order of their appearance, where ft + b + c + = N,
Macmahoii shows that. the proportion of the l)erIiutations of N
different observations which produce the sequence of groups a, b,

is given by tlie determinant

:1 1 1

(I! (a -f- (i)! (a -f- 1) -F c)!

1

1

l) -I-- c)!

±
- c!

He gives several theorems useful in manipulating this expression.
(Compare equation 4, Section VI.)

Netto summarizes a papei by Bienayrnéti afl(l a long series by
André published between 1879 and 1896.'-" Bienayiné in 1874
stated that the number of phases, complete and incomplete, is nor-
mally distributed about a mean of

2N - 1
3
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with variance of

ltiN - 29
90

His paper actually reads: "le nombre des maxima ct des minimasera probablement egal a

2N-1 ± /16N - 29
3 4' 45

a probabilité correspondant a t etant donnée approximativement parl'integrale bien connue

,,2 1 2- I C (1X.x/ °
A later paper describes

2N - 1
3

as "le nombre des maxima et des minima, ou des séqitelices,'' meaningby a sequence what we call a. phase, including incomplete phases;and in the second sense it is correct. The appearance of 43 insteadby 90 is explained by the form in which Bienaymé writes the normaldistribution. André's chief contribution was a recursion formulafor the number of phases (including the incomplete phases before thefirst and after the last turning points):
JN(p) = pf.v-i(p) + 2f1(p - 1) + (N - p)fi('p 2)

where J'(p) represents the tiumber of the perniutations of N differentnumbers producing p phases. (Compare equations 5 and 5a, Sec-tion VII.)
None of the works we have seen has mvestigate(l the central prob-lem of how to test the significance of the difference between theobserved and expected distributions. Jones," in referring to Bes-son's vork,' cautions "against the use of the test for testing thesignificance of these distributions since the total frequency of the ob-served and expected number of runs is not necessarily the same,"but we are unable to see the point to this warning; the fact that thetotals are free to vary seenis simply to remove one linear constraintand so to allow one more degree of freedom for sampling fluctuations,though the distribution is inapplicable for other reasons (see Sec-tion VI). Some of the investigations, particularly those by Mac-mahona6 and by Kermack and McKendrick, may prove valuable to afuture researcher who carries out our suggestion of a thorough mathe-matical investigation into the question. None of the writers hasconsidered any except direct applications of the technique to originaldata; that is, they have not considered its use with derived serieswhich should be random according to the assumptions of the methodof derivation.
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X Summary
A simple and economical test of significance for time series (and other
data in which the order of appearance is essential), which makes no
assuiription about the fundamental probability distribution, may be
based on the frequency distribution of sequences of like sign in the
first differences.

In a series of N independent random observations the expected
number of completed runs of d iii the signs of the first differences is

2(d2 + 3d + 1)(N - d - 2)
(d+3)!

As the size. of the sample increases, the 1)roportion of runs of one
approaches 5/8, the l)roportion of runs of two approaches 11/40, the
proportion of runs longer than two approaches 1/10; and. the average
length of run approaches 1.5.

The expected number of runs of one is, then,

5(N - 3)
12

of runs of two,

11(N-4)
60 -

and of runs longer than two,

4V - 21
60

These three expectations may be compared with the observed fre-
quencies by the usual iiiethod of summing the ratios of the squared
deviations to the expectations. The sum is essentially similar to x2
for two degrees of freedom, but is denoted by x because its sampling
distribution differs somewhat from that of x The tail of the distri-
bution of x, i.e., x above about 6.3 or P below about 1/15, is well
described by the x' distribution for 2 degrees of freedom, the .05
level of which falls at x = 6.898 (Table 5); the main body of the
distribution is covered by referring to the usual x2 tables for
2 degrees of freedom. Although these empirical distributions seeni
adequate for practical work, a rigorous derivation of the true sampling
distribution is much to be desired.
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Since this test is. in general, not sensitive to the existence )t a
h)rinarv t ieil(l, it IS ('sl)eejai lv use! iii ill (letermflining the i )r('S('Ii cc
of secondary (Omfll)Ofldflts of the svstciufflti( variation, e9)e(ial1v
(ychical' Ihietuations. It is usef iii also as an object JV( test of good-

ness (if lit of smooth curves, particularly for curves that have hot
beeii fitted by niatheniatically efficient metho(ls, e.g.. heeliand cuives
or moving averages, it also provi(les a criterion of the number of
terms to be used in smoothing by moving averages. Still other uses,
not pertaining especially to time series, are in salvaging the order
information neglected in a x test of homogeneity and in detecting the
existence of correlation.

A simpler test. of the same nature may be l)ased on the total number
of completed Fulls in the signs of the first difleremices, since this is
normally distributed with mean of

2N - 7
3

and variance of

16N - 29
90
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