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Preface

This paper presents a simple and economical test of the existence
m time series, or other data in which sequence of appearance is an
essential characteristic, of systematic tendencies related to sequence
or order. Although it has seemed desirable to express the derivation
of the test in mathematical terms, we have endeavored to, explain
the procedures in such a way that a reader to whom the mathematical
expressions as such carry little meaning will nevertheless be able to
grasp their general context. Use of the test involves no higher
mathematics whatever.

The test 1s a byproduct of studies of the cyclical behavior of pro-
duction carried out at the National Burcau in 1939-40 under Research
Associateships provided by the Carnegie Corporation of New York.
In the cyclical behavior of the production of major crops i the
United States, Great Britain, France, and Germany we found no
regular relation between business cycles and the specific cycles of
quantity harvested, acreage planted or harvested, and average yield
per acre. The striking contrast between this and our findings for
most other production series necessitated a close examination of crop
cycles. One plausible hypothesis is that crop production is domi-
nated by a complex of factors whose resultant is essentially ‘random’—
weather, insect depredations, plant diseases, etc. Investigation of
this hypothesis required a criterion of randomness of expansion and
contraction in time series. Since the eriterion which resulted is
adaptable to a range of time series problemns much wider than the
one we originally faced, it is published independently of the analysis
of the cyclical behavior of agricultural produection.

We are deeply indebted to Mitton Friedman for mvaluable counsel
and assistance on numerous aspects of this paper. Rollin F. Bennett,
Arthur F. Burns, Louis Guttman, John H. Smith, Abraham Wald,
Jacob Wolfowitz, and Holbrook Working have made especially care-
ful criticisms of the manuseript, and Martha Anderson, Harold
Barger, J. B. D. Derksen, Pavel Egoroff, Trygve Haavelmo, Roy W.
Jastram, Milton Lifshitz, Jakob Marschak, Horst Mendershausen,
Frederick (. Mills, Wesley C. Mitchell, Russell T. Nichols, Paul S.
Olmstead, Julius Shiskin, Frederick . Stephan, Vladimir P. Timo-
shenko, Gerhard Tintner, and C. Ashley Wright have also provided
helpful comments at one stage or another of its preparation.
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Milton Lifshitz caleulated the fourth moments of the distribution
of Section VII and made most of the computations for the sampling
distribution and the examples, exeept those connected with the
least squares polynomial, which we owe to Dorothy Karger Gott-
fried. The sampling distribution for twelve observations was com-
puted chiefly by John D. Mecelean, for whose services we are grateful
to the National Youth Administration at Stanford University.  The
charts are the work of H. Irving Forman.

A summary of this paper was read before the Nineteenth Annual
Conference of the Pacifie Coast Feonomie Association at Stanford
University on December 28, 19405 and appears in the Jowrnal of
the American Statistical Assoclation for September 1941 .99

Superkeript numerals refer throughout the paper to entry numbers
i the List of References.
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I Introduction

Analyses of time series would be greatly facilitated by simple signifi-
cance tests of general applicability. Smmplicity is essential if tests
are to be practieable, for time series usually contain many observa-
tious, and investigations using them often involve numerous series.
The standard error of estimate, to cite one example, is too expensive
a statistic for many investigations of time series, and is, besides, en-
cumbered by assumptions and restrictions that narrowly circumseribe
its applicability. Generality is especially desirable, for economie
data seldom justify assumptions of normality, homosecedastieity, in-
dependence, ete., nor do they provide a basis for selecting any specific
alternative to these assumptions. Furthermore, it is frequently ad-
vantageous to use significance tests with such devices as moving
averages or even free-hand curves, whose very nature 1s abhorrent
to modern tests of significance that have proved so potent with data
(including those of economics) free from the peculiarities of time
series.

A test of significance is, of course, a test of randomness, in that it
shows whether the discrepancies between a set of data (a ‘sample’)
and expectations based on some null hypothesis can reasonably be
ascribed to chance. The simple question ‘Can this sample be re-
garded as random?’ is not, however, sufficiently exact to admit of an
answer. IFor any sample either ‘yes’ or ‘no’ is justifiable if the statis-
tician 1s allowed to frame his own definitions of the ambiguous ele-
ments in the question. These elements upon whose specification the
answer usually hinges are of two types. First, the form of the popula-
tion the inquirer has in mind must be specified; he must ask: ‘Can
this be regarded as a random sample from such and such a popula-
tion?” Second, the characteristics with respect to which randomness
is to be judged must be specified; the question should be amended
still further to: “With respeet to this or that trait, can these data
reasonably be regarded as a random sample from such and such a
population?’

The charaeteristies with respect to which randomness is tested may
be simply the values of certain parameters. If a normal population
is assumed, for instance, the seventeentn or any pre-designated odd
moment about the mean should not differ significantly from zero; or
if a Poisson population is specified, the mean, variance, and third
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monient should not vary significantly from one another.  The char-
acteristic may also be a frequency distribution by certain stated
intervals; thus, if a uniform distribution is assumed, the frequencies
should be proportional to the lengths of the intervals.  Another type
of characteristic, particularly relevant to time series, and the subject
of this paper, is the order of appearance ‘of the observations in
sampling.

It is essential that both the form of the population and the charac-
teristie(s) by which randomness is to be judged be chosen entirely
without reference to the sample. For any sample it is possible to
find some population of which it can be regarded as a random repre-
sentation; and an ingenious statistician can not only find a popula-
tion, but can also justify theoretically its use with the subject matter
under investigation.  Shmilarly, it is always possible to select some
characteristic of a sample with respeet to which it does not appear
to be a random sample of a specified population.

The necessity of speaifying, independently of the data under analysts,
what characteristic of the sample will be the test eriterion and what
hypothesis will be tested is often overlooked. A great many spurious
findings n statistical investigations, especially m the field of correla-
tion and regression analysis, are attributable to neglect of this
fundamental tenet. Unless it is adhered to rigidly, the conelusions
reached are at best suggestive hypotheses, perhaps worthy of further
Inquiry but in no sense substantiated. It is, of course, permissible
to estimate parameters from the data, provided the form of the
population is clearly specified without reference to the particular
sample. This would be subject to the same limitations as 1s selecting
the form, were it not usually possible to make an exact mathematical
allowance for the extent to which the hypothesis is in this respect
simply (in Fisher’s felicitous phrase) a tautological reformulation of
the observations; 1.e., by deducting degrees of freedom.

In practice there 1s usually no difficulty m selecting the charac-
teristic by which randonmess is to be tested. Indeed, the decision is
usually imposed by the nature of the problem or data, by the avail-
ability of established methods and tables, by considerations of
economy in calculation, by the traditions of the particular field of
study, ete. (It is not intended by this statement to ignore the great
advaneces made in recent work, initiated and principally developed
by J. Neyman and E. 8. Pearson,* on the choice of test criteria. But
this work is not yet generally practicable, partly for the reasous just
suggested and partly because it usually presupposes specification of
the form of the population —in this regard, however, see the second
paragraph of the footnote at the end of Section VIII.)

On the other hand, the difficulties of specifying the population of
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which the data may be regarded as a random sample are, in the
social sciences at least, usually considerable and frequently insuper-
able. And even when it is possible to specify the form of the popula-
tion it may be difficult or impossible to obtain necessary estimates of
parameters. In regression analyses, for example, the usual hypothe-
sis is that the residuals are normally distributed about a mean of zero
with a variance to be estimated from the data. But when there is
only one observation for each value of the independent variate (which
with economie time series is virtually always) there is no satisfactory
way to cstimate what variance the observations would have if the
independent variate were constant, since the validity of the estimate
depends upon the adequacy of the fitted regression and the test of
its adequacy is the variance of the residuals (i.c., the standard error
of estimate).

For these reasons there has been a great deal of interest recently
in tests that are independent of the form of distribution.® A test
of this nature, especially relevant to certain problems of time series
analysis and to other problems involving ordered observations, is set
forth in this paper. It is based upon sequences in direction of move-
ment, that is, upon sequences of like sign in the differences between
suecessive observations.

* Sec references 20, 23, 25, 26, 28, 30, 31, 32, 40, 42, 45, 48, 49, 52, 53, 54.



Il General Method

Each point at which the series under analysis ceases to decline and
starts to rise or eceases to rise and starts to decline is noted; these
‘turning points’ are thus relative maxima or minima, for the first
differences change sign there. A turning point s a ‘peak’ when it 1s
a relative maximum and a ‘trough’ when it is & relative mmmmum.
The mmterval between consecutive turning points is a ‘phase’.  (The
interval between consecutive troughs or peaks might be referred to
as a ‘eyele’.)  When a phase starts from a trough and ends at a
peak it 1s an ‘expansion’; when it starts from a peak and ends at a
trough, a ‘contraction’. The ‘l=ngth’ or ‘duration’ of a phase is the
number of intervals (hereafter referred to as ‘vears’, though they
may represent any system of denoting sequence) between the intial
and terminal turning points of the phase.®

From these definitions several deductions may be drawn. The
turmng points in a series of N observations may be as few as zero or
as many as.N — 2: there will be none if the direction of movement 1s
the same throughout the series, and N — 21f 1t alternates regularly
throughout the series.  If the number of turning poinis is even. there
will be the same number of peaks as troughs but a difference of one
between the number of expansions and the number of contractions;
if 1t 1s odd, there will be a difference of one between the number of
peaks and the number of troughs but the same number of expansions
as of contractions. The shortest possible phase, occurrmg when two
consecutive observations are both turmng points, 1s one year. The
longest possible phase, occurning when the only turmng pomts are at
the second and penultimate observations, 18 N — 3 years. The sun
of the phase lengths is the number of years between the first and last
turming point; since neither the first nor last observation can be a
turnming pomt, it cannot exceed N - 3.

* The definition ¢f a phnse excludes the wovement preceding the initial turning poiet and that
following the final turning point in the series.  This exclusion conforms with the <definitions
used in the National Burea’s technique of measuring evelieal behavior;3 but for the present
purpose it would be preferable, especially in short series, to include them and record two
additionul plhases (albeit from a slightly different population).  The advantage of their inelu-
ston was not appreciated until most of our eomputations were complete, and then it did not
seer sufficiently important to justify the extensive recalenlations that would be required,
The incomplete phases are not entirely ignored by the test of significance developed in this
paper, for their duration affeets the number and durations of the complete phases.
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With these defimtions and their corollaries in mind, the expected
frequency distribution of phase lengths in a series of N observations
drawn at random from a stable population can be calculated. It 1s
apparent that, as such a series is being drawn, the greater the number
of consecutive rises the less is the probability of an additional nse;
for the higher the observation the smaller is the chance of drawing
one that exceeds it. Perhaps surprisingly, the rapidity with which
the basic distribution tapers off from its mode does not affect the ex-
pected frequency distribution of phase durations; in fact, it is shown
below that this expected frequency distribution of phase durations
is practically independent of the probability distribution of the origi-
nal data.

The only restriction on the original probability distribution is that
it be such (or else that the method of sampling be such) that the
probability of two consecutive observations being identical is infini-
tesimal. This condition is fulfilled by all distributions for which the
cumulative probability (i.e., the ogive) inereases continuously; all
continuous distributions, therefore, and hence virtually all metric
data, meet the restriction.

Without specifying anything further about the form of the basic
distribution, we may make & mathematical transformation of it that
leads to a known distribution but leaves unaltered the pattern of
rises and falls of the original observations. That is, if x represents
the original variate we replace it by a new variate z, which 1s a
mathematical function of x; the function we choose is such that 2" 1s
greater than, equal to, or less than z”” according as x” is greater than,
equal to, or less than x’’, where z’ and 2’" are the transformed values
of two observations z' and 2"’

A familiar transformation of this type is the rank transformation.
If each observation is replaced by its rank according to magnitude
within the entire series, the new variate has a simple and definite
distribution; that is, z may be any integer from 1 to .V (X" being the
number of observations in the sample) and the probability of each
value is 1/N. The ranks have exactly the same pattern of rises and
falls as the original observations. The distribution of phase dura-
tions expected in a random arrangement of the digits 1 to .\ is, there-
fore, that to be expected in a sample of N from any population;
that is to say, it is completely independent of assumptions about the
original distribution, hence comparable with the observed distribu-
tion of phase durations in any set of data.

Another familiar example of such a transformation, one more easily
handled analytically, is the probability transformation. Without
knowing the original probability distribution, we may imagine cach



value of x to be replaced by its cumulative probability, i.e.,
%= L lf(.’l‘) dr.

While this replacement cannot actually be performed, since we cannot
know the eumulative probability when we do not know the basic
distribution, it is obvious that whatever the original distribution,
f(x), may have been {provided, of course, that it meets the continuity
condition indieated above), the distribution of z will be uniferin—
a straight line of unit height and length over the interval 0 < z < 1.
Indecd, this simply amounts to the tautology that any observation
with a given probability is exactly as probable as any other observa-
tion with the same probability, for the probabilities are defined by
what is m effect the condition of uniformity in their distribution.
Whenever the original variate, x, increases, the transformed variate,
z, Inereases also, and similarly for deereases; so the pattern of phase
durations is precisely the same in the transformed values as in the
original observations.  We can, therefore, tabulate the actuali distri-
bution of phase lengths from the original observations and ealculate
the expected distribution of phase lengths for the transformed variate;
each operation can be carried out without knowing the fundamental
probability law and the results will be comparable in the strictest
sense.

A completely general deternnnation of the expected distribution of
phase lengths in a random series ean, then, be obtained by working
with a uniform distribution of unit height and length.
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I11 Derivaition of Distribution

A preliminary step that illustrates the method of solution is to calcu-
late the expected number of phases in a series of N observations.
Three observations are required to define a turning point. The
probability of any particular ordered set of three observations,
Zrzrzs, 18 d2i-dz-dz; . The sum of the probabilities of all possible
sets is the triple integral of this product over the entire possible

range of z,
1 ] 1
f f f dzydzydzs = 1,
¢ Jo Yo

It may be helpful to visualize this geometrically: z may be plotted
along the axis of abscissae, 2, along the axis of ordinates, and z; along
an axis perpendicular to the z-z plane at its origin. Then, since
each variate is uniformly distributed from zero to one, a eube of unit
edge represents all possible sets of three observations, and the points
within the cube are equally likely. To ask what the probability is
that a set of three observations constitute a turning point is to ask
in what portion of the volume of this cube z, is cither greater than or
less than both z, and z; .

If the turning point is a trough, z. is less than z, ; hence only that
part of the cube is acceptable which lies above the half of the z1-z,
base in which 2z, exceeds 2 ; i.c.. above the triangle formed by the
points (0, 0, 0), (1, 0, 0), and (1, 1, 0). And since z; must also be less
than 2, only that portion of the cube is acceptable which also lies
within a projection of the triangle on the z-z; face defined by the
points (0, 0, 0), (0, 1, 1), and (0, 0, 1). The square pyramid that
has the z-z; face as its base and the point (1, 1, 1) as its apex thus
represents all sequences zi-z-z; that produce a trough; the volume of
this portion of the cube 1s given by

1 23 1
f f f (121 ng (123,
l;wo 22==0 23=23

which may be evaluated as follows:

1
fd21=1—2'2
z2

f (1~ 2)dzg = 23 —
o

1 2
A) g
./0. <Za 5 ) d23 3

ol Ry



I'rom the symmetry of the function it is apparent that the proba-
bility of a peak is also 1/3.  The probability that any particular set
of three observations constitute a turning point is, therefore, 2/3.
Since in a series of N there are N — 2 sets of three consecutive items,
the expected number of turning points is

20N — 2

~ iy
D]

Since a phase is the uninterrupted expansion or contraction hetween
two turning points, there are one fewer phases than turning points,
and

2N =7

3

is the expeeted number of phases.  This is not absolutely accurate.
since there may be no turning points but ecannot be a negative number
of phases; when there are no turning peints, the number of phases
is zero, or equal to the number of turning points. The expression
obtained by subtracting one from the expected number of turning
points is therefore too small by one times the probability that there
will be no turning points. This occurs only if each item exceeds or
is exceeded by its predecessor, the probability of which 1s

1 pzy Erou 2 9
1) 2]; j; { .L daydzy -« - dzy = T

i.e., twice the reciprocal of the nuinber of permutations of N different
things. 'This amount should, therefore, be added to the expression
for the expected nummber of phases. It i1s. however, so minute—Iless
than 0.0000006 when N is only 10—and declines so rapidly as N in-
creases, as to be utterly negligible.

An expansion of exactly cne year is defined by four consecutive
observations in which neither the first nor the third is as small as the
second, and neither the second nor the fourth is as great as the third.
The probability of any particular ordered set of four, z-z,-z-z, is
dz-dz-dz;-dzs ; and its quadruple mtegral over all possible values
is again 1. The probability that the four define a one-year expan-
sion 1s the same integral over that portion of the four-dimensional
hyper-cube in which z, is between z and 1, z, between 0 and z, :z
between z, and 1, and 2z, between 0 and 1, 1.e.,

1 1 z3 1 5
lz1dzydzsdzy = ——.
j; 4’;44’; £2(21(22(23(Z4 51

Since the probability of a one-year contraction is exactly the same,
‘the probability of a one-year phase is 5/12. And since there are
N — 3 sets of four consecutive items in a sample of N,

S5(N —3)

=
is the expected number of phases of exactly one year's duration.
8
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Similarly, the probability that a set of five consecutive ohserva-
tions define a phase of exactly two years' duration is

1 1 £y 23 1
11
j; wh b dzy dzy dzs dzy dzy &5

Since there are N — 4 sets of 5 consecutive items in a series of N,
the expected number of two-year phases is
W - 4)
60 )
Proceeding in the same way, the expected number of phases of exactly
three years is
19(N — 5)

360 7

of exactly four years,
2520 7
of exactly five years,
4N = 7)
20160
and of exactly six years,
55(N — 8)
181440

These results are summarized in Table 1.

The general expression for the expected number of phases of exactly
d years’ duration is
2 20430+ DO —d - 2)

(d + 3)!

This may be derived inductively. It may also be obtained by start-
ing with the probability of a sequence of ¢ rises or declines, the
extremes of which may or may not be turning points. The proba-
bility of such a sequence, which represents a phase of d or more
years, is shown by formula 1 to be

(d+ 1Y
By substituting d 4- 1 for  and differencing, then placing d 4 1 for d
in the result and differencing again, and finally multiplying by
N — d - 2, expression 2 is obtained in the form

voa-o|(- 1 _ ,,,__L) - ( o ___l_)}

2 —-d-2) [((rl + D! (d+2) (d+2)! Wd+3) |
Substituting d + 1 for d and differencing amounts to closing one end
of the sequence by subtracting the probability of a rise or decline of
d + 1 or more from the probability of a rise or decline of d or more;
the process is performed twice to close both ends and thereby define

9
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aphase. N — d — 2is the number of sets of ¢ + 3 consecutive items
in a series of N, d + 3 being the number of points required to define
a phase of d.
Division of each expectation by the expected total number of

phases,

2N =17

5
gives the probability that a phase selected at random will have a
specified duration as

@) 6(d*+3d+ 1N -d — 2)'

| d+3)12N - 7)
It may not be apparent that this division is legitimate. Among the
N1 equally likely possible arrangements of the digits 1 to N (refer-
ring now to a rank transformation instead of to a probability trans-
formation) there are

N! (_2_1\;_1 + E)

3 N1

phases. Of these,
2NN —d — 2)(@* 4+ 3d+ 1)
@+ 3!
are of duration d. The proportion of phases that are of duration d
may therefore be obtained by dividing the second quantity by the
first; and, neglecting the term

2

N
this ratio is expression 3. Table 1 shows the values of expression 3
for d from 1 to 6, the numerical values of the probabilities for N =
10, 20, 40. and 70, and the limits approached by these probabilities
as the sample size increases. The probabilities approach their limit-
ing values rapidly; when V is as great as, say, 40, there is little ad-
vantage in allowing for the length of the series.

As noted in Section I1, the same expectations can be calculated
with a rank transformation. This brings out the fact that they are
exactly those obtained by considering all possible arrangements of the
actual observations in a particular sample, provided no two observa-
tions in the sample are equal. For example, the probability that
three different observations define a turning point may be found by
considering all permutations of three observations. Of the six permu-
tations two produce a peak; two a trough, and two produce no turning
point; hence the probability of a turning point is 2/3. Similarly,
formula 1 is immediately apparent from the fact that two of the A1
permutations of N different numbers produce an uninterrupted move-
ment; and from it the derivation of formula 2 proceeds as before.

11



Had the definition of a phase included the incomplete phase pre-
ceding the first turning point and that following the last turning point
(see the footnote to the first paragraph of Section II), formula 2
would have been increased by

4d + 1)
(d + 2)!
whend < N - 1 and by
2
Nt
whend = N — 1. The expected total number of phases would have
been
2N -1
-3
and formula 3 would have had a 1 in the denominator in place of the 7
and would have been greater by
12(d + 1)
(d+ 2)1@2N — 1)

12



IV  Mean and Variance of Distribution

The mean, or expected, duration of a phase is derived by multiplying
each duration by its probability and summing the products:

AZ“ 6(d° +3d + DN —d —2) _ 3N +7 — 40)

d=1 (d+3)1EN -7 2N —

Expeeted Duration =

(where ¢ is the natural logarithmic base, 2.7182818285). This sum-
mation is evaluated as follows: First place the factor

6
2N — 7’

which is common to all terms of the sun, outside the summation sign
and break the numerator of the remaining fraction into two terms:
(N = 2 + 3¢ + d) — (d + 3d® + &). The first contains a
factor N — 2 which may be placed outside the summation sign; the
remaining factor is then written as (d + 3)(d + 2)(d + 1)
3(d + 3)(d + 2) + 5(d + 3) — 3, to which it is equal. Upon
dividing this by the denominator we have

V—_‘31 N—-3 N—-3 1
dz;xm_gz(u 1)74r Z(d+2)‘ 321((1_+T)!'

These sums are easily evaluated from the fact that

51
= x!
approaches e so rapidly that unless » is very small the difference 1s
negligible; hence they are essentially ¢ — 1, ¢ — 2, ¢ — 24, and
e — 22, The second term into which the numerator was broken is
written as (d+3)(d+ 2)(d+ 1)d — 3(d + 3)(d + 2)(d + 1) + 8(d + 3)
(d +2) — 13(d + 3) + 9 and when this is divided by the denominator,
it yields sums similar to those above.
The precise expression for the expected duration, allowing not only
for the approximation involved in summing to infinity but also for
that referred to in expression 1, is

| ?:('_4;’ 1') Lo w-b

NT@2N — 6’
oN —7.4 8 NI( 7+
N1

13



which is exact for any value of N. When N = 6 it agrees with the
simpler form to two decimal places, when N = 7 there is a difference
of one in the third place, and when N = 8, there is a difference of
one in the fourth place.

The variance of the distribution is simply the sum of the produets
of the probabilities by 2, minus the square of the expeeted duration,
and may be found by a similar process of summation to be essentially

3[(8c — 21)N* + (4¢ — 17)N — (48¢° — 140 + 14)]
(8N - 7)?

_ 2.238764N° — 18.380618N + 35.654200
h 2N =7 '

Calculation of the varianee requires, after common factors are re-
moved from the summation, evaluation of

S+ 3 D - d - 2)

= (d + 3)!

The numerator breaks into two terms: (V — 2)(d* + 3d* + &*) -
(d5 + 3d* + d3). 'The first involves only a summation already evalu-
ated in connection with the mean duration; the second may be writ-
ten (d +3)(d +2)d + D)d{d — 1) —2(d + 3)(d + 2) (d + 1)d +
8(d + 3)d + 2)(d + 1) — 21(d + 3)(d + 2) + 35(d + 3) - 27,
which (since the ( —1)! may here be regarded as infinite) reduces to
summations of the form evaluated for the mean.

The variance has been evaluated for various values of N and en-
tered in Table 1.  As N increases, it rises toward a limiting value of
0.55969097. DBecause the phases in a single sample are not inde-
pendent of one another, as is pointed out in Section VI, and because
the number of phases is itself a stochastic variate related to the
distribution of phase durations, the variance cannot be used in the
usual way as a test of the observed mean duration (see Section VII).

14
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V  Empirical Verification

The foregoing mathematical deductions were checked by three em-
pirical tests. The first involved 260 random series of 25 items each,
the second, 300 random series of 50 items each, and the third, 200
random series of 75 items each. Each series was copied from a deck
of N playing cards bearing the integers 1 to N, shuffled ten or a
dozen times by the ‘fan’ method. Not all 700 series are completely
independent, although all series of a given length are. One hun-
dred of the series of fifty were gotten by omitting the integersabove 50
in the first 100 series of 75. All 200 of the series of 25 were taken
from the first 67 series of 75 by treating the integers 1-25, 26-50, and
51-75 as three independent series.

Deriving some series from longer ones does not involve as much
duplication as it may seem to at first glance. The longer series are
in no sense simple sums of their component series, for the manner in
which the components are intermingled is an important characteristic
of the full series. This becomes clear when we consider the problem
of combining three independent series of 25 into a single series of 75.
It would be necessary to determine by chanece for each of the 75 posi-
tions which of the three series should fill it, this determination being
such that each series would necessarily be selected exactly 25 times
out of 75. A possible procedure would be to place in a bowl 25 chips
of each of three colors, and draw these (without replacement) to
determine which series should fill each position. While the frequency
distribution of phase durations in the final series is not entirely un-
related to the distribudons for the component series, the redundancy
introduced by this economizing device was not deemed sufficient to
offset the advantages of the increased number of series.

The turning points in the 700 series were marked and the lengths
of the intervening phases tabulated. Table 2 gives the observed fre-
quency distributions, the theoretical distributions, and the values of
x? for goodness of fit with the corresponding probabilities. Since in
computing x* the expected frequencies are adjusted to the observed
in only one respeet, the value of N, only one degree of freedom is
lost. Had the expectations been calculated from column 3 of Table 1
instead of column 2, the total frequencies also would have been equal,
and two degrees of freedom would have been lost; but the value of x?
would also have been smaller.

15



TABLE 2
Frequency Distributions of Phase Durations in 200 Random
Series of 25 Items, 300 of 50 ltemns,
and 200 of 75 Ttems

DURATION FREQU?}NE}F’ L B N
OF PHASE Expeeted Observed Iixpeeted Observed Lxpeeted Observed
1\’ = '2:.) Y = A‘\’ = 75
1 1833.3333 1850 58750000 5895 6000.0000 6085
2 770.0000 776 2530.0000 2579 2603.3333 2624
3 2111111 199 712.5000 663 738.8889 757
4 13,7302 49 151.9048 146 158.8005 118
5 e aar 26.2351 35 27.6587 20
over 5 j $.4921 o 4.3601 2 1.6129 7
Total 2866.6667 2880 0300.0000 9320 9533.3333 9611
X2 2.2504 8. 8914 15.6165
n 4 5 5
Px5 .68 .11 .00
Pip) 65 .70 13

s Probability for total number of phases; see Sce. VII,

Although the fit is adequate for the series of 25 and of 50, it 1s
definitely bad for the series of 75, entirely because of a great defi-
ciency of four-year phases—two-thirds of the value of x* is contnb-
uted by this one class. The presumption that this result 1s fortui-
tous was confirmed by an additional 100 series of 75 integers gotten
by using 1n order all two digit entries in Fisher and Yates’ Table of
Random Numbers,* the digits to the right being regarded as decimal
places when two consecutive numbers were equal. A count of the
four-year phases showed 80, surprisingly close to the expectation
of 79.4.

For the significance test developed in this paper it is immaterial
whether the expected frequencies are correct for phases longer than
two years, provided the expected total number of such phases is
accurate; for in applymg the test to a single series, the expected fre-
quencies of phases longer than two years are usually so small that it
1s necessary to combine all into a single group in order to meet the
requirement that expected freuencies used in x* be not too small.
Most authorities state that the expected frequencies must be at least
five and preferably ten, though recent investigations of the effect of
small theoretical frequencies indicate that “‘except perhaps in the
case when m {the theoretical frequency] = 1, the theoretical distri-
bution of x? 1s sufficiently closely realized’ 2. +

The three-year phases cannot be made a separate group unless the
expected number of phases of four or more years is sufficient to stand
alone. The expression for this expectation is

5N — 31
360
16



which is almost exactly one when N = 78, two when N = 150, five
when N = 366, and ten when N = 726.  Since ihe expeeted number
of phases in excess of two years is not large—it is

4N — 21

60
which is approximately one when N = 20, two when N = 35, five
when N = 80, and ten when N = 155-—not a great deal of informa-
tion is lost by combining all into a single group. The test does not
neglect entirely the lengths of phases in the last class, because these
lengths influence the total number of phases and therefore the fre-
quencies in all three classes. A test of the mean duration (see Sec-
tion VII) salvages some of the information lost by grouping.

For each of the three empirical tests, therefore, x was recomputed
by combining all durations except the first two into a single group.
The resulting values of x2 are 0.5291, 3.6998, and 2.2112, which, being
based on two degrees of freedom each, indicate probabilities of .77,
.16, and .33, respectively.

17



VI The Test of Significance

After the frequeney distribution of phase durations has been obtained
from a time series, it may be compared with the expeeted distribution
by the usual procedure for testing goodness of fit; that is, by squaring
the differences between the observed and the expected frequencies,
dividing by the expected frequencies, and summing the ratios.?
This sum is essentially similar to x2, but since its sampling distribu-
tion is not quite that ordinarily associated with x? it is advisable to
distinguish it by the subseript p (denoting ‘phase’).

The reason x; is not distributed as x* is that the phases within a
single sample series drawn at random from a fixed population are not
entirely independent of one another.  When one long phase occurs,
another long one is more probable than it would otherwise have been.
A long rise, for example, tends to carry the series to unusually high
values, thereby increasing the probability that the decline will be
long. Short phases, on the other hand, tend to leave the series at
central values, from which short phases are likely. (This positive
serial correlation is offset to some extent by an inverse relation eaused
by the fact that a long phase reduces the number of observations
available for other phases, which reduces not only the number of the
other phases but also the relative frequency among them of long
phases; except for very long phases or very short series. however,
this counteracting effect is small.)  Since the resultant positive corre-
lation within samples makes very large and very small values of x3
a little more likely than if the phase lengths were independent, it is
to be expected that, except perhaps in short series, the variance of X
will somewhat exceed that of x*. In addition, since 3 is virtually
always based on two degrees of freedom, for which the x* distribution
is exceedingly skewed, this increased variance may be expected to
raise the mean value of x} above that of x*. TFor two degrees of
freedom, x2 has a mean of two and a variance of four.

In the preceding Section the x? test was applied in disregard of the
interdependence of phases within a series. In that Section, since
phases from many series were thrown into a single frequency distri-
bution, the independence of phases from different series tended to
submerge the interdependence of phases from the same series. For
a given number of series the importance of the interdependence in-
creases with the series length, and this may have something to do

18



with the series for NV = 25 appearing to fit better than those for
N = 75,

The problem of the exact sampling distribution of x2 for various
values of N is not unlike (and, apparently, not simpler than) the
similar problem for the rank correlation coefficient, for which no
general solution has yet been found. Both Olds® and Kendall,
Kendall and Smith» have devised what are essentially systematic
methods of building up the distribution of the rank correlation coeffi-
cient for any value of " from the distribution for N —- 1. They have
also provided excellent approximations to bridge the gap between the
point at which the patience necessary to cvaluate the exact distri-
butions is exhausted and that at which the limiting (normal) distri-
bution becomes applicable. But no precise formula giving the prob-
ability as a function of the coefficient and the sample size has been
discovered. Similarly, in tabulating the distribution of the rank
correlation ratio I'riedman> devised a method of building one exact
distribution from another—later explained in detail by Kendall and
Smith,*2 who added an approximating function to smooth the transi-
tion between exact and limiting distributions; but there is no general
analytic expression for the probability. We have not been able to
determine mathematically the sampling distribution of x , but have

found what seems a satisfactory working solution.
In the first place, we discovered a recursion formula for caleulating

the relative frequencies of the 2¥~' different arrangements of signs of
first differences that occur in the N! permutations of N different
numbers. This formula states the number of permutations of N
different numbers that produce the sequenee of signs of differences
shown in the r-th row of a matrix having 2~ rows and N — 1 columns
formed as follows: In the first column fill in alternately plus and
minus, starting with plus at the top of the column. In the second
column enter two pluses, then two minuses, and alternate groups of
two. In the third column enter four pluses, then four minuses, etc.
In general, the j-th column starts with pluses in the first 2~ rows,
then has minuses in the next 2, then another 2~ pluses, etc.,
alternating groups of 2™ to the bottom of the column. The last
column has simply 2"~ pluses followed by 2*~* minuses. Then, de-
noting by Fy () the number of permutations of A different integers
that produce the sequences of signs given in the r-th row of this
matriy,

(4) Fa(r) = Fepi(3) (i if 1) ~ Fy(j)

wherer = 2° 4+j (0 <i <N —-2,1 <j <2),ie,71is the largest
power to which 2 can be raised without equaling or exceeding r, j is
the difference between » and 2°;
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(-+1)

denotes the number of combinations of N things 7 + 1 at a time, 1.e.,
N! _
G+ DIV —7 -1V
and Fy(1) =1 for all N. Division of ,(r) by N! converts it from
an absolute frequency to a probability.

The durations of the phases represented by the r-th row in the
above rectangle may also be determined from the value of r: The
length of the preliminary incomplete phase is the largest value of p,
such that » = 0 or 1, modulus 2"; i.e., the largest value of p, such
that » divided by 2" leaves a remainder of 0 or 1. To find the
length of the first complete phase write r = £,-2" + 4 ;1e., let &,
by the largest integer by which 2" can be multiplied without ex-
ceeding 7, and let ¢, by the remainder of O or 1. Take v’ = &k, + 4
and determine the largest value of p, such that » = 0 or 1, mod 27;
p1 is then the length of the first complete phase. Similarly, the
length of the second complete phase is found by starting with an »’/
that has the same relation to r’, through a &, and a &, , that »” has to »
through &, and t,. The lengths of successive phases are found by
repeating the process until eventually the congruence 1 = 0 or 1,

mod 2°~, appears, whence p,, = =. This is to be replaced by
m-1
V—1-—2
i=0

as the length of the final incomplete phase.

This recursion expression enabled us to calculate the exact distri-
bution of x} for small values of N. The caleulation requires not
only a great many evaluations of the formula, but also computation
of the corresponding values of x3 and subsequent cumulation of fre-
quencies. Despite considerable shorteuts that can be introduced in
actual calculation with the formulas, the procedure is laborious and
has been carried only as far as .V = 12. Table 3 gives the exact
probability, P, of obtaining a x} as large as or larger than each
possible value, and also the mean and variance of x3, for N = 6
to 12, inclusive. These distributions are also shown in Chart 1, the
probability scale being logarithmic. The x2 distribution for two
degrees of freedom is a straight line on semi-logarithmic coordinates,
since x* = —2 log P when n = 2 (denoting by n the number of
degrees of freedom).

Because of the discontinuity of x} , the probability corresponding
with a given x; might properly be plotted at any abscissa from that
value of x; to the next lower value, and the value of x2 for a given P
at any probability from that value to the next higher. For sim-
plicity, the midpoints of both these intervals are plotted: at each
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TABLE 3

Exaet Distributions of xi, Six to Twelve Observations®

N=¢6 N=17 N=8 N=9 N=10
X, P X; P X, P Xt p X p
4667 1.0000 | 5515 1.0000 | .2837 1.0000 | .3576 1.0000 © .3281 1.0000
8667 .8604| 7333 7803 6837 .8432 | 1.1576 7978 ; 6139 .9410
1.1930 6750 | .7515 .7028 .8437 .6654 | 1.2667 .6308 | 7281 .9169
1.6667 .45281 .9333 .5361| .0200 .5897 : 1.6303 .6046 i 1.0554 .8129
2.3030 .3667 | 1.7333 .493311.3200 .5605 | 2.0667 .4803 | 1.3411 6927 :
2.8667 .2222{2.1515 .3702|1.4800 .5062 ; 2 4303 .4519 | 1.4190 6039
19.6667 0528 | 2.3333 3024 | 2.3637 4946 | 2.7576 3811 ' 1.5853 .6010
3.9333 .2774|2.6800 4708 | 3.1576 .3743 | 1.7048 .5937 :
5.6061 .1604 | 2.0347 3024 | 3.2667 .3208 ' 1.7717 5017
7.5045 .1171]3.0000 .2994 ; 3.6667 .2150 | 1.8138 .5262 .
$.9045 .0552]4.3746 2031 ' 4.0303 1637 | 1.8190 4186 :
4.4546 2346 4.0667 .1445 2.3126 4070
4.9346 1936 : 4.7576 .1102 | 2.5769 .3745 :
5.0000 .1332 : 5.6667 0783 | 2.6762 3274
5.8103 .0645  6.0067 0635 ; 2.7431 .3269
6.4546 .0332 | 7.4848 .0197 | 2.8626 .2739
15.6667 0049 ' 2.9048 .2420
2.9769 .2200 |
3.2424 1811
3.8341 1794
3.9697 .1650
4.3333 1583
4.4003 .1580
$.6762 1391
4.8580 1074
5.1276 .0724 .
5.4912  .0590
6.5152 0336
7.1333 .0420 '
11.3076 .0141
12.9648 0062

* Calculated from three frequency classes by combining all phases of more
than two years into a single class and disregarding the correction of for-
mula 1, which would affect slightly the frequency expected for this class.

Mean 2.5078 2.4364 2.3802 2.3629 2.3544
Vari- 17.0757 6.3017 3.7465 3.7080 3.8358
ance

N=1

x> r

. 4792 1.0000
_57G2  .9800
8169 .9335
9169 8436 -
9792 7300 |
1.0879 7232
1.2792 6554
1.3169 .5763 .
1.5879 5368
1.7000 4728
1.8000 4716 .
2.0792 4684
2.2000 .4666 °
2.3087 4662
2.4087 4399
2.4160 1028 !
2.5000 3916
2.5792 3842 |
2.6879 3044 .
2.8087 2742
3.0256 2608
3.1087 2302
3.2130 2006
3.3000 1472
3.7792 1471
3.8000 1468
3.9087 .1327
1.1160 1278
4.3130 1259
1.3879 0991
4.7256  .0909
5.0000 .0772
5.6087 0772 ¢
5.7000 0755 -
$.0130 .0552
8.2000 0498
$.6318 0320
94675 0225 -
9.7348 0183
10.2140 .0086
11.4348 0045 -

2.3497

3.9657

N=12
x; r
.6152 1.0000
6606 .9843
7485 8962
7939 8907
.8374 8500
L0707 7862
1.0152 7204
1.0606 .6851
1.4152 5846
1.4606 .5830
1.6374 .5695
1.6828 .5332
1.0333 . 4870
1.9485 . 1863
C2.0667 4277
2.1556 4275
2.2030 . 4069
2.2880 3442
2.3333 3334
2.5556 .3313
2.6152 .3031
2.6606 .3028
2.7333 .2096
2.8374 2995
| 2.8607 2867
2.8828 2462
2.9556 .2158
3.2667 .2112
3.4152 .2
3.4880 .1486
3.0333 .1266
" 4.0607 .1266
41356 .1143
4.3485 .1128
4.3939 1128
4.5707 1123
4.6162 .1094
4.7333 .1013
5.6667 .0924
- 5.8030 .0924
5.8889 (0905
6.0253 .0900
6.7333 .0849
6.8424 .0720
6.9556 .0597
7.5040 (499
7.6222 0408
8.5758 .0293
8.8222 .0260
9.2374 .0193
9.2667 .0141
10.5556 .0028
19.6667 0004
2.3478
14135
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TABLE 4

Distributions of xi from 200 Random Serics of 25 Ttems,

025
15
215
.395
.455
.585
.635
.780
985
1.145
1.310
1.590
1.845
2.035
2.215
2.440
2.595
2.835
3.195
3.605
4.195
4.755
5.895
7.510
13.975

Total

and P(x*) = 4l1.

200
Since n = 46, P(x?) is less than .0000000001.

N =50

15

7

10

8

12

24

19

11

11

14

11

11

24

11

16

11

11

14

13

300

N=175

-3

15

12

13

10

w

200

300 of 50 Items, and 200 of 75 Items;
and Test of Homogeneity

Total

29

27

31

33

32

36

30

2%

27

30

30

31

29

3

700

Contribution

to x*
€.9310
3.1605
5.9946
5.9950
§.2500
9.1111
7.9914
0.7083
4.7160
7.5218
0.1778
1.5914
1. 1494

15.1774
5.1049
33.8391
2.5333
4.56833
0.3086
0.3086
3.3333
3.2083
0.8333

0.2874

x* = 129.8252

Using unit class intervals, x* = 18.604 for n = 18,
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value of xj there is a point halfway logarithmically between the two
bounding probabilities, and at each value of P a point midway be-
tween the two bounding values of x2. These midpoints are con-
nected by the lines that appear in the chart. The same procedure
is followed later in Charts 2, 3, and 6.

As a second step toward determining the sampling distribution,
empirical distributions of x% were determined from the 700 series
described in the preceding section; that is, 200 values of x? were com-
puted for N = 25 300 for N = 50, and 200 for N = 75, all from
three frequency classes. The observed distributions are given in
Table 4, the class intervals being so chosen as to make the sum of the
frequencies in each elass as near 30 as possible without taking aceount
of more than two decimal places (though the values of x3 were calcu-
lated to four places). Chart 2 shows the three distributions (in
cumulative form on semi-logarithmic coordinates, as in Chart 1). each
value of x} being plotted individually. Chart 3 shows the same
thing for each of seven sets of 100 values, the division into sets
according with the order of drawing the samples.

A x? test of homogeneity was applied to the three distributions, and
the last column of Table 4 shows the contribution to x2 from each
frequency class. Since the total x: is 129.82 for n — 46, there can he
no doubt that the three distributions differ significantly. They do
not differ, however, in respects important for the present test. In
the first place, the differences among the tails—approximately the
highest 30 per cent of the observed values of x> —are not significant,
even statistically: for the range beyond % = 2.6, the sum of the
contributions to x? is 15.3963, indicating a probability of about .4.
Charts 2 and 3 perhaps create an impression of divergence at the
tails. This is because the curves necessarily converge at P = 1.00
for x3 = 0, and the high serial correlation resulting from cumulation
tends to keep them together in that neighborhood. Furthermore,
discrepancies are minimized at high and magnified at low probabilities
by the logarithmic scale—which was chosen partly for this very
reason (the low probabilities for a test of significance requiring the
closest scrutiny) and partly because the relative rather than the abso-
lute magnitude of errors is relevant to probability measurements.
The similarity of the tails is better shown by Chart 4, depicting the
three distributions of Chart 2 as histograms.

In the second place, the discrepancies in the lower range of x?
largely reflect marked irregularities of the separate distributions.
These irregularities are highlighted by the fineness of the class inter-
vals in that range, and tend to disappear if the intervals are broad-
ened. Thus, class intervals by units of Xy, 1.e.,, under 1, 1 to 2,
2 to 3, etc., with over 9 as the last class, result in a x? of 18.604 based
on 18 degrees of freedom, corresponding with a probability of .41.
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The illustration in the penultimate paragraph of Section VIIT further
confirms this evidence that the non-homogeneity is a matter of erratic
shifts in the numerous minor peaks of the distributions rather than
of divergencies in fundamental form.

In any case, the tails of the distribution are of chief concern for a
test of significance. When N is as large as 25 (and, as indicated by
the exact distribution for N = 12, even when it is somewhat less)
the distribution of x} apparently is sufficiently near its limiting form
for a single sampling distribution to be adequate.

The mean of the 700 values of x2 is 2.3049 and the variance is
5.0458. As an approach to the distribution of x% , it may simply be
reduced by approximately one-scventh of its magnitude (more pre-
cisely by .3049/2.3049, but since these figures are merely estimates,
and the ratio differs little from one-seventh, it seems sensible to use
the more convenient figure) and compared with the x? distribution
for n = 2, which has a mean of two and tables for which are readily
available. Such a comparison is shown in non-cumulative form in

Qeiati.e frequency
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Chart 5, and in cumulative form in Chart 6; instead of reducing the
values of x} one-seventh, which would usually be the most convenient
procedure, the values of x* were increased one-sixth. In both charts
the agreement between the line representing $x* and that representing
the 700 observed values of x5 1s quite good.

The fact that the variance of the observed values is less than that
of x* for n = 2 suggests, however, that a more satisfactory fit at the
tails can be attained by using a x2 distribution having a variance of 5,
eg., x* for n = 2.5, The values for x2 for n = 2.5 were obtained
from the Tables of the I ncomplete T-Function,* taking p = .25 and
u = x*/V'5. Interpolations with respect to p were made linearly,
and with respect to «, according to the logarithms of the probability
(ie., the logarithms of 1 — P in the notation of the Tables or of P
in the present notation). This distribution is depicted by the dash
line in Charts 1 to 6; its agreement with the observations at the tails—
for x% above about 5.5 and P below about .10—is very satisfactory
indeed. In the main body of the distribution the curve whose mean
value is equated to the sample mean gives a somewhat better fit.

It may occur to the reader that the mean values might have been
equated by using x2forn = 2.3. TIn the main body of the distribution
this curve differs only slightly from I of that for n = 2, and at the
tails it lies as much below the observations as Ix? for n = 2 lies ahove
them. Hence the ready availability of tabulations for n = 2 Is a
decisive argument in its favor. Similarly, equating the variance by

Refative frequency
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multiplication of the curve for n = 2 gives a result definitely poorer
than that for n = 2.5. However, the usc of x? for n = 2.5 is based
on only about 65 or 70 observations, the highest 10 per cent, of the
sample values of x% | and these, as pointed out in Section V, are not
entirely independent.

If a curve of the x2 form is to be fitted to empirical observations,
the maximum likelihood estimate of n proves to be the value that

equates the digamma. function:s + of '}5—2 to the natural logarithm

of one-half the geometric mean of the sample. For the 700 observa-
tions used here, the maximum likelihood estimaie of n is 2.24. The
values for N = 25, 50, and 75 are 2.24, 2.22, and 2.24, respectively.
If both » and a coefficient of X5 are to be estimated by the criterion
of maximum likelihood, » is the value that equates digamma of "L;E
to the natural logarithm of 1/2 times the ratio of the geometric mean
to the arithmetie mean, and the coeflicient is » divided by the arith-

TABLE §
Thail of x2 Distribution for 23 Degrees of Freedome for
Use as Approximate Distribution of x»when N > 12

x? P X2 P x? P
5.448 .10 8.00 .0301 11.50 .0057
5.50 L0976 8.009 .03 11.75 .0050
5.674 .09 8.25 .0268 11.756 .005
5.75 .0869 8.50 .0238 12.00 L0044
5.927 .08 8.75 0211 12.25 .0039
6.00 0773 8.836 .02 12.50 .0035
6.163 .07 9.00 L0187 12.75 L0031
6.25 .0687 9.25 L0166 13.00 L0027
6.50 L0612 Y.50 L0148 13.25 L0024
6.641 .06 9.75 013! 13.50 .0022
6.75 L0513 10.00 L0116 13.75 L0019
6.898 .05 10.25 .0103 14.00 L0017
7.00 0483 10.312 .01 14.25 L0015
7.25 L0429 10.50 L0091 14.50 L0013
7.401 .04 10.75 L0081 14.75 L0012
7.50 .0382 11.00 L0072 15.00 L0010
7.75 .0339 11.25 0064 15.085 .001

* Caleulated from Tables of the Incomplete T-Function 3
b P denotes the probability that »2 will equal or exeeed the specified value. Interpclations
may be made linearly with respeet to log P, For values of x5 less than 6.3, £x} should be

referred to the usual tables of x? for two degrees of freedom; or P may be ecaleulated as the

reciproeal of the natural antilogarithm of x¢ (or the reeiprocal of the common antilogarithm

of J186126x2). When N < 12, see Table 3.

metic mean; for these data, » is 2.12 and the coeflicient, .92. 1If n is
fixed arbitrarily and a coeflicient estimated by maximum Jikelihood,
the estimate is the ratio of n to the arithmetic mean of the sample,
in this case 2/2.3049 or approximately 6/7.

In practice, then, the procedure for interpreting x* | assumed al-
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ways to be calculated from three frequency classes, is as follows:
If x5 1s less than 6.3 (the point of interseetion between the ogives of
ix*for n = 2 and x2 for n = 2.5), reduce it one-seventh and refer to
the usual x2 tables for two degrees of freedom. This procedure is
satisfactory for all values of x%, but for values above 6.3 somewhat
more accurate probabilities are apparently obtained by referring the
whole value of x% to Table 5, which gives the distribution of x? for
n = 2.5. The curve, composed of two segments, corresponding with
this procedure has been added to Charts 1-6. When ¥ < 12 the
exact distributions of Table 3 should, of course, be used.

A thorough mathematical investigation of the proper sampling dis-
tribution is much to be desired. It should determine the distribution
of x} not merely for three frequency classes but also for more. More
importaut, it should analyze the broader question of what form of
test is most appropriate to phase durations.
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VII An Auxiliary Test

A test of the mean phase duration would, as was mentioned in Sec-
tion V, retrieve some of the information lost by throwing all phases
of more than two years into a single frequency class; but the variance
of the expected distribution of phase durations, it was pointed out in
Section IV, cannot be used as a test of the observed mean duration.
It is quite simple, however, {0 test the total number of phases; and,
except for an unimportant diserepaney oceasioned by excluding from
the definition of g phase the meomplete phase before the first turning
point and that after the last turning point, this js equivalent to g
test of the mean duration. The mean phase duration is merely the
total duration of aJ] phases divided by the number of phases, and the
total duration of aj] bhases, plus the durations of the two Imcomplete
phases, is a constant, \' — 1. The mean duration, therefore, depends
only upon the number of phases and the lengths of the two Imcomplete
bhases. The number of phases is simply the number of turning
points reduced by one (except for the negligible qualification that the
two are equal when there are no turning points).

Now the expected number of turning points is shown in Section I11]

2N - 2)

3 ’
the variance of the number of turning points is

16N — 29
9() b
the third moment about the mean 18

_6(V + 1)
945

and the fourth moment about the mean 15

H8N® — 1976N + 2301
4795 h

ing the exact probabilities for a]] possible numbers of turning points,
which are explained later in this Section. When V > 3, the second
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differences of this series have the constant value 8/9; since for N’ = 4
the value is 13/6 and the first difference is 1275, the general ex-
pression for the second moment about the origin is
HON* — 144N + 131
) 90

Deducting the square of the expected number of turning points leaves
the required variance. A series of values of the third moment about
the origin shows, when N > 7, constant third differences of 16/9;
since for N = 8 the value is 1618/21, the first difference is 2665 /63,
and the second difference 592 /45, the general expression for the third
inoment about the origin is

280N° — 1344N* 4+ 2063N — 1038
945 '

From this the third moment about the mean is easily computed by
familiar formulas.»> The fourth differences of a series of fourth mo-
ments about the origin are constantly 128/27 when N > 7; when
N = 8 the fourth moment is 12683/35, the first difference is
52940 /189, the second difference 23928 /175, and the third difference
192/5. The fourth moment about the origin is, therefore,

2800N* — 15680N° + 28844N° — 19288N + 4263
14175 ’
whence the fourth moment about the mean may be derived.

As N increases, the skewness, measured by the ratio of the squared
third moment about the mean to the cubed vanance, approaches
zero, and the kurtosis, measured by the ratio of the fourth moment
about the mean to the squared variance, approaches three. That
the skewness and kurtosis approach their values for a normal distri-
bution suggests that the distribution of the number of turning points
approaches normality as the length of series increases. Iurther-
more, empirical comparisons indicate that normality is approached
with such rapidity that the discrepancy can be ignored when v > i2.
Hence the number of turning points can be regarded as normally
distributed about

2(N —2)
S

or the number of phases as normally distributed about

either with variance of
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In using the normal distribution, the discrepancy between the gb-
served and expeceted numbers of turning points or of phases should
be reduced in absolute value by one-half unit to allow for discon-
tinuity, and the distribution should be truncated-—i.e., the proba-
bility of values above ' — 2 or below 0 deducted and the remaining
probabilities raised proportionately. (With a single tail of the distri-
bution, truncation is unimportant ; with the two tails combined, as in
Table 6, its chief effect is when the departure from expectation is
negative and greater absolutely than is possible in the positive direc-
tion.) For the sake of comparison the approximate probabilities es-
timated fromn a truncated normal curve are given for N - 12 in
Table 6, which shows for N’ — 6 to 12 the exact probability of obtain-
Ing a discrepancy from expeetation as great as or greater (in absolute
value) than that represented by each number of turning points.

The exact probabilities were caleulated from o vecursion formula
derived inductively. Letting fy(¢) be the number of permutations of
N different numbers that have exactly ¢ turning points, fy(f) be the
first cumulation of Sx(0), and f¥(t) be the second cumulation—i.e.,

]

SO = T, wd ) - ;gf;(j)
the formula is

(5) SO =+ D0 + (V- — fwalt ~ 2)
where

O =0 <0 ad AN —9) - @C$Q!_
Values of fy(f) are obtained by differencing the series of f¥(¢), and
values of fy(f) by differencing fv(@). (For a simpler recursion for-

g

mula see Section IX.) An expression for fy(¢) directly in terms of N

and ¢ is
Coptot
", . 1 * <t . o
(8a} Ivitr = ot ,;>_, (=D% — 2k + D¥4w)
=0
where
or i1
Ak) = E @5 by
=0
e e e ).
JN =t -4
(2N - ¢ — 5)1

PTREN ST ==y
The test of the number of turning points or phases, referred to
briefly as the p-test, 1s, of course, related to the X2 test. A frequency
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TABLE 6

Exact Probability that the Diserepancy hetween Observed and Expected Numbers
of Turning Points will Liqual or Exceed (3n absolute value) the Discrepancy
corresponding with any Observed Number of Turning Points,

Six to Twelve Observations; and Normal Approx-
imation for Twelve Observations

N=12
Approxi-
Is N=6 N = N=8 N=19 N=10 N=11 Exact mate
0 .0028 L0004 .0000 .0000 . 0000 . G000 .0000 .0000
1 .0861 L0250 0063 L0014 L0003 L0001 L0000 0000
2 .5833 . 2988 .1436 0257 .0079 .0022 L0005  .0010
3 1.0000 1.0000 .6374 1937 .0911 .0416 L0082  .0093
4 .2556 .6325 1.0000 .6694 .4098 .2373 .0642 .0693
5 1329 6374 1.0000 1.0000 .6978 .2739  .2780
6 1436 . 3847 .6950 1.0000 L7178 7180
7 L0604 .2304 6978 1.0000 1.0000
8 0357 .2373 4638 4597
9 L0416 1350 .1384
10 L0195  .0248

* { represents the number of turning points.  ‘Phases’ may be read for ‘turning points’ if the

‘entries of the first colomn are deereased by one and the first line is ignored.

U—2N+4[-15
For larger values of N, = l»»~»——----~_—_-1-—_—.:lf—-9 may be regarded as a2 normal deviate. If ¢
V16N —2.9
in this expression represents the number of phases, instead of the number of turning points,
the 4 must be ehanged to 7.

distribution of phase durations may be thought of as compounded of
two elements: first, the total number of phases oceurring; and second,
their proportionate distribution by duration. The p test is sensitive
only to the first element, whereas the x; test is sensitive chiefly
(though by no means exelusively) to the seccond. x? would be sensi-
tive only to the second component if it were based on the relative
frequencies of phase lengths expected with a specified total number of
phases. It would, therefore, be independent of the p-test, and the
two tests could be compounded by Fisher’s method.>> The relative
frequencies expected with a specified total, however, are not those
given by forinula 3, which is valid only when the total number of
phases is unrestricted; so until the proper expected relative frequen-
cies and the sampling distribution of this kind of x; are determined,
such a combination cannot be made. Although the illustrations in
the next section are concerned with the x? test, the probabilities
resulting from the p test have been recorded in the tables as P(p).

By using only one tail of its distribution, the p test can be made to
discriminate between series having too many (i.e., too short) cycles
and those having too few (i.e., too long).
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VIII Applications

To illustrate the application of the foregoing technique to an economic
problem, we analyze sweetpotato production, yield per acre, and
acreage harvested in the United States, 1868-19375 (Table 7 and
Chart 7). This crop, selected from a number of crops to which we
have applied the method in connection with the National Bureau's
Studies in Cyclical Beharior, is presented here simply for its illustra-
tive advantages: it is, however, fairly typical of the group in its
cyclical behavior as judged by the present tests. The turning points
are indicated by asterisks in Table 7.

Oceasionally, as in this illustration, metric data include equal ob-
servations, presumably because of limitations on the accuracy of
measurements. Only when these equal values are adjacent is there ‘
a point that neither continues nor reverses the direction of movement.
In these instances perhaps the hest proeedure is to regard the ties
not as truly equal but as a random sequence of unequal observations,
tabulate the distribution of phase lengths for each possible arrange-
ment of plus and minus signs between the ties, and average the re-
sulting distributions, each weighted by the probability of the par-
ticular set of signs it represents. as computed by formula 4 (Section
VI), using as N the number of observations in the tied sequence.
This procedure, of ctourse, may result in an observed distribution con-
taining fractional frequencies. Thus, the sequence 0, 1, I, 1, 2,
(when the 0 and the 2 are known, in view of the preceding and sue-
ceeding values, to he turning points) represents four possibilities,
which may be denoted by the signs of the first differences as + 4 4 +,
Tot+ 4+ —+.and + - — & The first possibility corresponds
with one four year phase and each of the other three with two one-
year and one two-year phases. Since the probabilities of the four
casesare lg, 14 14 and 14, respectively, the set of points represents 2%
phases, of which 13 are of one year, > of two years, and Y4 of four
years. It would perhaps be preferable to carry the calculation through
to the ultimate probability value for each possible frequency distribu-
tion and then obtain the weighted average of these probabilities, but
ordinarily this result will not differ sufficiently from that based on
the weighted average of the frequency distributions to justify the
extra trouble. The assumption of randomness at. the hasis of this
procedure is in conformity with the null hypothesis, so differences
from the null hypothesis cannot be attributed to ties: but ties do
reduce the sensitivity of the test to departures from randomness,
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TABLE 7

Sweetpotato Production, Yield per Acre, and Acreage Harvested
United States, 1868-19375

PRODUCTION YIELD PER ACRE ACREAGE HARVESTED (thousands)
6-yr. moving
(thousands average
of bushels) (bushels) Actual centered Residual
1868 28,557 87.9 325
1869 22,713* 64.7* 351
1870 30,911+ 87.8* 352
1871 28,093 74.9 375 369 6
1872 27, 148*% 71.6* 379 382 —3
1878 33,266* 84 9* 392 397 -5
1874 30, 150* 74.3* 406 413 —-7*
1875 32,518 76.5 125 128 ~3
1878 38,214 83.1* 160* 441 19%
1877 35,196* 77.5% 1534* 451 3*
1878 38,703* 80.8* 474* 168 21*
1879 33,851* 75.1* 151* 460 —9*
1880 40,128+ 85.6* 469* 462 7*
1881 24,830* 56.3* 441* 463 —22*
1882 41,742% 89.0* 469 165 4*
1883 31, 006* 66.2* 170 168 2+
188 32,376 68.0 476* 473 3*
1885 40,111* 84 .6* 174* 481 -7
1886 39,061 81.2 181 489 —8*
1887 38.528* 78.0* 194 498 —4
1888 44,838* 87.1* 515 508 7
1889 44,779* 85.9 521 318 3*
1890 44,963 84.7* 331 528 3*1
1891 45,773 85.2* 337 335 2
1892 46,364* 85. 2‘*T 544 540 4%
1893 15,615* 83.7* 545 544 1*
1894 49.676* 90.6* 548* 516 2*
1895 44,886 2.4 2i5* 545 o*
189¢ 42,001 75.4* 357* 544 13*
1897 41, 587* 78.3 a3l a3 —12*
1898 o0, 743* 92.8* 7+ 543 4*
1899 42, 245* 79.6* 531* 544 —13*
1800 45,684 84.3 542 547 -5
1901 18,156 86.3 558+ + 552 6>
1992 48,975 87.8 558%° 558 0*
1903 52,871 93.6 565 565 0*1
1904 55,515 97.4 570 572 -2
1905 58,560* 102.0* 574 580 —6*
1906 57,750 98.7 385 591 ~6*lr
1907 57,332+ 96.2* 596 603 —~7*
1908 62,299* 100, 3* 621 611 10
1909 58,994* 92.3* 630* 613 26+
1910 60,310* 95.1* 634 613 21
1911 55,285* 91.7* 603 609 —6
1912 56,644 96.7* 586* 604 —18*

* Turning point.
t Ties. For method of handling see Sec. VI, seeond paragraph,
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TABLE 7— Concluded

PRODUCTION YIELD PER ACRE ACRBAGE HARVESTED (thousands)
6-yr. moving

(thousands average

of bushels) (bushels) Actual centered Residual
1913 55,998 94.0* 596* 605 —9*
1914 54,145 94.7 572* 617 —45%
1916 63,241* 100.9* 627 640 ~13
1916 61,546 93.5% 658 669 —11
1917 72,767 100.4* 725 701 4*
1918 68,581* 92.9* 738 734 4*
1919 78,272* 99.0 791* 763 28
1920 76,998 100.4* 767 772 —5*
1921 73,708* 90.2* 817+ 753 64
1922 7%, 365*% 95.9* 817tt 725 a2*
1923 63,871 94.8 674 702 —28
1924 44 884+ 79.6 564* 684 —120*
1925 50,139 78.8* 636 662 —26
1926 63,300 98.1* 645 644 1
1987 70,897* 97.9 724 651 73*
1928 59,178* 93.0* 636* 677 —41
1929 64,963* 100.6* 646 729 —83
1930 54,415 81.3 669 779 —110*
1981 66, 849 78.6* 350 821 29
1932 86, 436* 81.9 1,056 875 181*
1938 75,248* §2.9* 908* 914 —6*
1984 77,482 80.9* 958 926 32
1935 83,128* 35.8* 969*
1986 64,144* 78.0* 822*
1987 75,053 89.3 840

* Turning point.
t Ties. For method of handling see Sec. VIII, second paragraph.

The phase durations for the sweetpotato series are tabulated in
Table 8, together with the expected frequencies on the hypothesis
that the observations are random and independent. From the values
of x? and their corresponding probabilities (Table 8), it appears that
the fluctuations in production conform well with chance; of the two
components of total production. yield per acre conforms well and
acreage harvested not at all, suggesting that fluctuations in produc-
tion depend more upon fluctuations in yield than upon fluctuations
in acreage.

It 1s, of course, apparent even from casual inspection of Table 7 or
Chart 7 that total production does not constitute a random series,
but has a marked upward trend. In general, the method here pre-
sented 1s not very sensitive to a primary trend. By ‘primary’ trend
we mean an elementary function whose first and second derivatives
have few, if any, changes in sign and only gradual changes in magni-
tude. It corresponds with the basic secular trend, as contrasted with
long waves, trend-cycles, business cycles, seasonal variations, etc.
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“A line of primary trend will trace out synoptically and elegantly the
general secular movement without giving much heed to the details of
the movement.” s The removal or introduetion of a trend can alter
the order of magnitude between adjacent items (ie.. change the sign
of their difference) only if the trend factor for g single year is greater
than the difference between successive trend-adjusted items. Con-
sider, for example, a set of observations 1.2, 1,2, 1, in which there
1sno trend. If ap upward trend having a rate of rise of less than one
unit per year is introduced, there will be no alteration in the pattern
of expansions and contractions; for since none of the differences is
less than one in absolute value it cannot have its sign changed by
adding a quantity less than one. '
Ordinarily, of course, there is no minimum (o the absolute value of
the random factor. When the difference between consecutive resid-
uals from trend is less absolutely than the change due to trend
between the two points, the sign of a difference may depend upon
whether trend s included or eliminated. If, ag frequently happens
in economic time series, the sequence of residuals is such that differ-

TABLE 8

Frequency Distributions of Phage Durations in
Sweetpotato Production, Acreage Harvested, and Yield per Acre
United States, 1868-1937

DURATION EXPECTED OBSERVED FREQUENCY
OF PHASE FREQUENCYH J A et e T e
PRODUCTION YIELD

ACREAGEY
Expan- Coutrae- Expan- Contrac- !
(years) Total  sion tion Total  sion tion Total
1 27.0917 32 16 16 18 5.5 12.5 30
2 12.100 10 + 6 2.5 2 0.5 14
3 3.431 3 2 1 3.5 2 1.5 1
4 0.737 0 0 0 1 1 0 0
a 0.128 0 0 1} 1 1 a
6 0.019 1 1 0 0 0 0 1
7 0.002 0 0 0 0.5 0.5 0
8 0. 000 0 0 0 0 0 0 0
9 0. 000 0 0 1 1 0
1G 0. 000 0 0 0 0.5 0.5 G 0
Tatal 44.333 16 23 23 28 13.5 14.5 16
x,f"' 1.363  1.323 0.920 13487 14.676 3.444 1.696
P(xp) .56 57T 67 002 01 Ly A48
\__—V_._/ \ﬁ/‘—’
Compound probabilityz: 75 .001
P(p)d 73 -000 .73

* Expected frequencies for expansions or contractions aye one-half those in this eoiumn,
b For explanation of fractional frequencies see Sec. VI, second paragraph.

© Computed by combining all durations in ~xcess of 2,

4 Probability for total number of phases; see See, V11,
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ences as small as the trend factor for a single year are rare, the distri-
bution of phase lengths will not be much affected by the presence or
absence of trend.

Still another factor mimimizing the effect of a primary trend on the
test 1s that a positive trend tends to lengthen expansions but to
shorten contractions. [n general it tends to make one-year contrac-
tions more numerous than one-year expansions, and expansions of
more than one year more numerous than contractions of more than
one year, without altering greatly the total number of phases of a
given duration. Opposite effects are produced by negative trends.
In such cases the existence of trend may be concealed by the fre-
quency distribution of all phases, but be revealed by separate distri-
butions of expansions and contractions.

Neparate distributions of expansions and contractions are shown
(Table 8) for production and acreage, but not for yield. which has
little or no apparent trend.  For production, hoth distributions con-
form well to the expected distribution and to each other. A test of
hemogeneity shows x* = 1.4, whieh, for n = 2, sigimfies a probability
of .5. There is, therefore, no mdication that the distribution of
phases has been affected by the primary trend.  I'or acreage the two
distributions differ markedly in a mammer attributable to trend, and
the probability resulting from application of the x* test for homo-
gencity is only .02. The non-randomness evidenced in the acreage
series may, therefore. be at least partly attributable to a primary
trend rather than to secondary movements.

In interpreting tests of the homogeneity of contractions and expan-
sions, 1t should be remembered that the positive serial correlation in
phase lengths pointed out in the second paragraph of Seetion VI has
a tendency to produce homogeneity between the distributions of ex-
pansions and contractions. This affects also the probability com-
pounded frem the probabilities of the x2-s for expansions and con-
tractions (Tables 8 and 10), since it means that the two probabilities
are not entirely independent.

Lack of sensitivity to primary trend 1s a limitation of the technique
from the viewpoint of detecting its existence. On the other hand, it
is not difficult to determine by other methods whether a primary
trend exists—the rank correlation hetween the variate and the date
often affords a satisfactory test. And for determining whether the
systematic variation contains secondary components, e.g., cyclical
or seasonal variations, it is a decided advantage of the present method
that it frequently—perhaps usually with economic data—gives satis-
factory results regardless of the presence of trend, thus avoiding the
complexities of trend elimination. It is, of course, possible for sec-
ondary components also to be concealed if their year to year changes
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are definitely smaller than the year to year random changes; this is
not so likely as in the ease of the primary trend, hut it is a real
possibility in the case of gradual movements, e.g., long waves.

A second example illustrates the usefulness of the technique as a
criterion of the fit of moving averages and for selecting the proper
period for a moving average. If a moving average or any other curve
describes adequately the systematic variation in a series, the residuals
should constitute a random series. If the period is too long, waves
or eycles may appear in the residuals; if it is too short, the residuals
will cluster too closely about the line.

To illustrate this application. ten moving averages having spans of
from 2 to 11 years were fitted to the data on sweetpotato acreage and
the residuals tested for randomness, Fach moving average uses equal
weights.  Averages based on an even number of points, however, are
centered half-way between observations so must be interpolated to
find the smoothed value corvesponding with a given observation, and
this amounts to using a moving average hased on one more vear with
the extremes receiving only half the weight of the intervening years.
What is designated a sIX-year moving average with equal weights is
thus really a seven-year moving average with equal weights for the
central five years and weights of one-half for the first and seventh
years. The moving averages were rounded to the number of figures
appearing in the data.

Table 9 shows the values of X»» together with the corresponding
probabilities, obtained by testing the residuals for randomness. Its
chief feature is that the moving averages hased on even numbers of
years give better results than the corresponding averages hased on
odd numbers; the implicit tapering of the weight diagram involved
in interpolating seems to improve the fit markedly. A second strik-
ing feature is that the probabilities first rise, then decline. Thus, the
prebabilities for the odd numbered moving averages reach a maxi-
mum of .24 at seven years while the even numbered give the best
fit at six years, when the probahility is 81, Had other weight di-
agrams been tested, they might have resutted in still better fits,

A ‘better’ fit, in the present sense, does not necessarily give a closer
approximation to the data. It is one for which the residuals hehave
more like a series of independent, random observations, as judged by
the sequences in the signs of the first differences. The closest fits to
the original observations are given by the shortest moving averages;
but these describe not only the systematic variation but also a portion
of the random fluctuations. If the moving average is either too short
or too long, x? will be significantly large; but the source of 1ts magni-
tude is not the same in the two cases. If the moving average is too
short, there are too many short phases and too few long ones; if too
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TABLE O
Frequency Distributions of Phase Durations in
Residuals from Moving Averages fitted to
Sweetpotato Aereage Harvested
United States, 1868-1937

PERIOD ) llibf)L}\_{\ OF PHASES

s o s Vs oo % P00
2 ; :)l‘i(‘l‘:fg _12(7;'“‘\’ ';"3" ]’g ‘j 16,825 0004
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a Probability for total number of phases; see See. VIL.
b For explanation of fractional frequencies see Sec. VIIT, second paragraph.

.31

.96

.33

long, there are too few short phases and too many long ones. This
effect appears in the actual frequency distributions of residuals from

the ten curves (Table 9).

If a series is conceived to have residuals that are in some sense
random but not independent of one another, a moving average se-
lected according to the present criterion will tend to include the part
of the random element that is serially correlated with the preceding
items. As is well known, serial correlation will produce ‘cycles’ in an

otherwise random series.

Further examination of the residuals from the six-year moving av-
erage reveals that separate distributions for expansions and contrac-
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tions do not differ significantly from expectation or from one another
(Table 10). A test of homogeneity yields a x2 of 2.247 based on two
degrees of freedom, which corresponds with a probability of .33 and
therefore indicates no significant. difference. According to the cri-
terion of sequences in the direction of movement of the residuals,
therefore, the six-year moving average seems to give a satisfactory
fit. The values of this moving average and of the residuals from it
(Table 7 and Chart 7) sugzest that until about 1907 the systematic
variation in sweetpotato acreage consisted principally of a simple
trend and mild undulations of about 15 years, but that the undulatory
movements became marked thereafter.

Were we presenting a detailed analysis of the sweetpotato data.
mstead of using them merely to illustrate a technique, it might be
desirable to treat the two portions of the series separately, perhaps
using different moving averages.  [f separate frequency distributions
of phase durations in the residuals are made for the periods before
and after 1907, there scems to be an excess of short phases m the
earlier period and an excess of long phases in the later period, though
n neither are the differences from expectation statistically significant.
The values of x2 are 2.911 and 6.388, respectively, corresponding
with probabilities of .29 and .06. Probably a longer IMoVINg average
would be more satisfactory for the earlier period and a shorter one
for the later period. A possible explanation (which we have not vet
investigated) lies in the assertion of the U. S, Department of Agri-
cultures® that “in 1909 there appears a marked concentration of pro-
duction in certain states’. Concomitant with the increase in spe-
cialization there may have heen greater sensitivity of producers to
price and cost factors. Inverse relationships between the price of

TABLE 10
Frequency Distributions of Durations of Expansions and
Contractions in Residuals from Six-Year Moving Average of
Sweetpotato Acreage Harvested
United States, 1868-1937

DURATION OF PHASE EXPECTED OBSERVED FREQUENCY®
FREQUENCY T T e
{yenrs) Expansions Contractions
1 12,708 1.5 14
2 5.500 [} 225
3 1.557 2 2.5
4 0.333 0 0.5
5 0.058 4] 0
6 (3.008 0 0.25
Total 20.167 19.5 19.5
L 0.161 2,003
P(x3) 93 .29
Compound probability2: 62

* For explanation of fractionsl frequencies see See, VIH, second paragraph,
" Computed by combining all durations in exeess of 2,
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cotton and the acreage of sweetpotatoes harvested the following year,
and between cotton acrcage and sweetpotato acreage harvested the
same year, are noticeable from the time of the 1914-18 War. The
inereased amplitude of fluctuations in sweetpotato acreage from the
time of that War coincides with increased amplitudes in cotton prices
and acreage.

In order to compare this new test with a more elaborate procedure
frequently used in time series analysis, a power series y =
a + bx 4 car £ ded 4+ ... was fitted by the method of least squares
to the series on sweetpotato acreage harvested. The caleulations
were carried as far as the ninth degree term, using the techmque of
orthogonal polynomials,” hut none beyond the third reduced the
residual variance significantly. According to the usual criterion,
therefore, a third degree curve would he regarded as giving an ade-
quate fit (Chart 7). The residuals from the third degree curve were
then subjected to the present test. There were 24 phases of one
year, 3 of two years, and 9 of more than two years, producing a x;
of 12,47 and a probability of .004, from which it is clear that the fit
of the third degree power series is quite inadequate. (The normal
deviate for the total number of phases—see Section VII—is 2.26,
indicating a probability of .02.). The power series required very much
more time and labor for fitting and testing than did the moving
averages; but the result seems considerably worse and the variance
test completely misleading.  The power series does give a good repre-
sentation of the primary trend, but since in this particular case it is
good only in a descriptive sense—even a fairly short projeetion heing
obviously absurd hecause the curve rises with increasing accelera-
tion—it has little advantage over methods that avowedly produce
mere descriptions.  The shortcomings, of course, lie not in the method
of least squares but in the fallacy of inferring that a third degree power
series gives a thorough fit hecause no other power series effcets a
sigmficant reduction in the standard error. It is doubtful that eco-
nomice time series generally can be adequately represented by power
senies fitted in this way, though sueh functions may bhe useful for
deseribing certain portions of the systematic variation {a use in which
the present test is mappropriate).

Au obvious limitation of the present test is that it by no means
utilizes all the information in the data. This shortcoming, in fact,
partly accounts for the usefulness of the technique; it can be apphed
to any distinbution because it ignorves characteristics not common to
all distributions.

For particular problems additional tests, perhaps as general as this
one, can usually be devised. (In applying them the caveats of Sec-
tion I must be kept firmly m mind and ‘eruel and unusual’ tests
avouded, for sufficient multiplication of tests is bound sooner or later
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to produce a ‘significant’ result.) Tt would he futile l({ attempt a
detailed discussion of supplementary tests except in relation to some
speeifie problem and body of data, but two suggestions will indicate
the nature of the possibilities.

First, the magnitudes of the differences between suceessive observa-
tions may bhe taken into aceount, without introducing assumptions
about the population forni, by comparing the variance of the differ-
ences wiiii the variance of the .V observations. regarded as a finite
bopulation. If this is done in rank form, 1t is very nearly equivalent
to testing the serial rank correlation coeflicient, for none of the N7 - |
differences that determine the vanance of the differences can differ by
more than one from the ' — | differences by which the serial rank
correlation is determined. (If the original data are used, rather than
ranks, it is equivalent to testing a serial correlation coefficient from
a finite population.; In the case of sweetpotato production. the
serial rank correlation coefficient is +.91. a highly significant value.
That the rank correlation coefficient suggests non-randomness
whereas x? suggests randommess is due to its greater sensitivity to
the kind of trend present in these data: whether this is an advantage
or disadvantage depends upon the problem (or, to express 1t differ-
ently, upon the nature of the alternative hypotheses).

Second, the signs of the observations (instead of the signs of their
first differences, which enter the x; test) can be tested for non-random
sequences.  When testing the six-year moving average, for example,
we might determine whether there are non-random sequences in the
signs of the residuals. If it is assumied that each residual is equally
likely to be positive or negative, the expected number of completed
sequences of like sign d years in duration 18

N—-d-1
odF

the expected total number of completed sequences js

and the probability that g sequence selected at random will be of d
Years duration is

1\_’;— d—1

2N -2)°
These results are easily obtained. A “equence terminal point (initial
or final) oceurs when 1 pair of signs is + = or — 4. and the proba-
bility of this is 1/2. Since there are \" — pairs of consccutive
signs in a series of .\

N -1

2
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is the expected number of terminal peints. Since there are one fewer
sequences than terminal points (note, hawever, an exception similar
to that measured by expression 1, which in this case has a probability
of 2'7%) the expected number of sequences is

N-1_ | _N=-3

2 2
A completed sequence of d involves d signs of one kind enclosed be-
tween two signs of the opposite kind, and the probability of this is

2(%)1}%2 — (%)(H-l;
multiplication by N — ¢ -- 1, the number of sequencesof d + 21in a
series of -N, yields the expected number of completed sequences of
exactly d years. Such a test lacks generality because there is no
reason to assume, in the absence of definite information, that positive
and negative residuals are equally likely, even if the curve fits ade-
quately; if the probabilities of positive and negative deviations are p
and ¢, where p + ¢ = 1, the expected number of completed sequences
of d in the signs is p22(pi—=  ¢2)(N — d — 1) and the expected
total number of completed sequences is 2pg(N' —~ 1) — 1.

TABLE 11
Frequency Distribution of Sequences of Like Sign in
Residuals from Six-Year Moving Average of

Sweetpotato Acreage Harvested
United States, 1868-1937

DURATION FREQUENCY CONTRIBUTION
OP SEGUENC - = 2
P SEQUENCE Lixpected Observed T0Xx
(years) (N = 64)
1 15.5000 7 1.6613
2 7.6250 kY 1.7234
3 3.7500 8 1.8167
4 1.8438 2 0.0132
over 4 1.7812 2 G.0269
Total 30.5000 23
»* 11.241
P(x?) .02

Table 11 shows the observed distribution of sequences in sign for
the residuals from the six-year moving average of acreage harvested,
and that expected if positive and negative deviations are equally
probable, a reasonable assumption in this case. Sinee y? is 11.241,
based on 4 degrees of freedom, the prchability of so great a divergence
from expectation, were chance alone operating, is only .02. It is,
of course, a well known characteristic of moving averages, particularly
when the weighting is uniform or nearly so, that they tend to lie
below the observations during certain types of movement and above
during others. This condition can be improved by alterations in the
weight diagram.
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Still another consideration to bear in mind when interpreting the
test is that a set of phase durations that appears random when viewed
only as a frequency distribution may not have occurred in a random
sequence.  To test this, the theory of runsss could he applied to the
series of phase durations, regarded as a series composed of three kinds
of elements (though the serial correlation among phases may be
sufficient to vitiate such a test).

An additional point, obvious yet none the less worthy of mention,
is that the time unit may affect conclusions derived from the x? test.
For example, year to year movements in pig iron production, 1877
1936, show a x? of 3.60, corresponding with a probability of 2,
whereas month to month movements show a x; of 372.11, correspond-
ing with an extraordinarily minute probability (Table 12). To put
the point more generally: for certain types of continuous function
whether the ordinates are correlated serially over a given interval
depends upon the frequency with which they are recorded over that
interval.  Ordinates recorded frequently may he highly correlated
serially, while those recorded mfrequently may be entirely uncor-
related; but clearly many other types of result are possible.

TABLE 12
Frequency Distributions of Phase Durations in
Pig Iron Production, Annually and Monthly
United States, 1877-19369%

DTURATION ANNUALLY MONTHLY
OF PHASE - -

Expected  Ohserved Expeeted Observed
Frequeney Frequeney Prequency Frequency
] 23.750000 16 298. 750000 43
2 10.266667 7 131.266667 38
3 2.902778 2 37.736111 29
4 0.621429 0 8.216667 25
5 0.107788 0 1.450050 19
6 0.015763 1 0.215829 15
7 0.00199% 1 0.027822 1
8 0.000223 0 0.003166 9
9 0.000022 0 0.000323 b
11 0. 000000 1] 0.000003 3
12 0. 00000 1] 0. 000000 2
18 0. 000000 0 0.000000 i
Total 37666667 R 177 666667 103
2 3.6019 372.1092
P(x2) .21 L0000
Pip)e 002 L0000

2 The annual figures are calendar year totals of the monthly figures.
b Computed by combining all durations in excess of 2,
< Probability for total number of phases; see Sce. VILL

An entirely different use for the x5 test, not pertaining especially
to time series, may be illustrated by the homogencity test of Table 4.
If the three distributions are really homogeneous, the total value of
x? should be apportioned among the rows at random. Whether it is
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may be tested by determining whether the 24 contributions to x?
constitute a random series. x; 18 found to be 1.0355, corresponding
with a probability of .61 (Table 13}, This test is entirely independent
of the homogeneity test, since that test would be unaffected by any
rearrangement of the rows while this one depends only on the ar-
rangement of the rows. It therefore salvages information on order
neglected in a x* test of homogeneity or goodness of fit.  The result
of the x; test could be fused with the result of the x2 test by R. A.
Tisher’s method? to obtain a single probability based upon both types
of information, but there is no point in doing so in this particular
case, since the homogeneity test of the 24 elasses shows a probability
so low that no other single test based on the same classes, however
high its probability, could alter the inference of non-homogeneity:.
A test based on sequenees of like sign in the differences from the mean
contribution, similar to that shown in Table 11. 1s an alternative
device for salvaging the order information that the x* test disregards,
provided the expectations are large enough to climinate skewness.

TARLE 13
Frequeney Distribution of Phase Durations in the
Series of 24 Contributions for the x* Test
of Homogeneity in Table 4

DURATION OF PHASE FREQUENCY
Fxpeeted Observed
1 8.7500 6
2 3.6667 3
over 2 1.2500 1
Total 13.6667 10
x5 1.0335
P(x}) .64
P{p)» 11

= Probability for total number of phases; see See, VI,

x2 can also be used to test the independence of two variates, and
in some circumstances is superior for this purpose to the rank cor-
relation coefficient. The procedure 1s to arrange the pairs according
to the order of magnitude of one variate and tabulate the distribution
of phase durations in the other variate. If the two series are -
dependent, the resulting value of x; will not be significant.  This test
is likely to be more sensitive than the rank correlation coefficient
when the relation between the two variates is not monotonic. Sup-
pose, e.g., that arrangement of 15 pairs in ascending order according
to one variate produces the following sequence in the second:
1,3,4,8,10,11,13,15,14,12,9,7,6, 5, 2. The value of x; is 7.6667
(since there are no completed phases, it equals the expected total
number of phases), indicating a significant relation between the two
variates (Table 5). The rank correlation coefficient, on the other
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hand, is only .089, definitely not significant. A difficulty with the
x5 test in this use, however, i that the conclusion occastonally de-
pends upon which variate is chosen for arranging in order and which
for counting the phase durations. If the numbers given above are
arranged in order, and a tabulation made of the phase durations in
the numbers of their positions as now listed, x; is found to be only
0.1886, an unusually low value. While the two values of x5 that can
be obtained from a single set of paired variates are not independent,
a little experimentation will show that almost any pair of values is
possible simultaneously. If the two variates are really independent,
of course, neither value of x5 should be significant, but their inter-
dependence makes it difficult to use both validly.*
* Jacob Wolfuwitz points ont that this ambiguity can be avoided by basing a test on sequences
of consecutive ranks instead of on sequences in direction of movement. In the illustration
above, for example, ihere are three ruus of two consecutive numbers (3, 4; 10, 11; and 15, 14)
and one run of three (7, 6, 3); this is also true when the listed numbers are arranged in order
and the runs counted in the numbers indicating the positions as now listed (the runs then are
2,8;5,6;9,8; and 14, 13, 12).

Mr. Wolfowitz derived this test of the independence of two series from a new criterion,
somewhat analogous to the likelihood ratio, which he has devised for the choice of tests of
significance when nothing is kuown about the form of the population. It is to be hoped that

this important work will reach an early fraition and become generally available. In this
connection, see the third from last paragraph of Sec. 1.
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IX Historical Note

Investigations of the topic treated in this paper started at least as
early as 1874. A brief mention of them may be of interest, since
they have appeared in places not generally familiar to economic
statisticians. Most of the writers seem to have been aware of few
of their predecessors, and the present authors. unfortunately, were
aware of none until their own work was in final form. They have
no reason to suppose that the following account is complete—indeed,
it would be surprising if the classical probability writers had entirely
overlooked the problem.

Three statistical papers have suggested basing a test of significance
on the frequency distribution of phase durations. The first was pub-
lished by Louis Besson in 1920, the second by R. A. Fisher in 1926,
and the third by W. O. Kermack and A. (i. McKendrick in 1937.3
Only the last seriously investigated the suggestion.

Besson is the only writer to obtain formula 2 (Section 1II), giving
the distribution of phase durations as a function of N. He derived
it for two special cases: (1) a discontinuous rectangular distribution
in which the number of possible values is much larger than the num-
ber of items in the sample, and (2) a normal distribution; and he
implied that the same formula had appeared in other instances. He
did not, however, realize that it represents a completely general solu-
tion, although he apparently suspected as much. “Our formulae are
exact,”’” he writes, “in both the very different cases where all values
are equally probable and where they follow the law of Gauss, as well
as in still different cases. Hence it cannot be doubted that they
possess a very great degree of generality, and no matter what law
which the quantities occurring in meteorological applications might
follow, the application of these formulae would not lead us into
serious error; as a matter of fact such quantities usually follow the
law of Gaiiss quite closely.”” Besson did not discuss the problem of
determining whether differences between observed and expected fre-
quencies are statistically significant. ~Although two papers® ** have
referred to Besson’s formula, no use has been made of it, as far as
we know. |

R. A. Fisherz gave the limiting form of expression 3 (Section IIT)
for large values of N in the form

1 2 1
i@t i)
and also the limiting value of the mean duration, variance, and third
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moment about the mean (Section IV).  Sinee Fisher’s objeet was to
express the probability of a rise or fall at a given point as a function
of its distance from the preceding turning point, he was interested
only in infinite series and did not take account of the effect of V.
Apparently he realized the generality of the formula, however. and
he suggested basing a test of significance uponit: “The extreme rarity
of runs of 5, 6, or 7 differences is of value in the use of such runs as
evidence that a sequence is in parts not of a random character: such
a test may be refined by counting all the runs of all lengths and com-
paring the frequency of each elass observed with that predicted by
the above distribution.” e did not indicate how such a comparison
might be made.  Fisher's results seem to have heen unnoticed. exceept
for a single citation.** His contribution was elicited by a note by
Bilham® showing the probability of three observations’ defining a
turning point to he 2/3.

The most important of the three statistical contributions is that of
Kermack and MeKendrick.®  They derived formula 3 (Seetion IT1),
but only in the limiting form
3(d* 4+ 3d + 1)

C(d + 3)!

and also the expected mean duration of a phase. In comparing the
observed with the expected distributions, however. they ignored the
interrelation among the phases in a single series and assumed that
x; is distributed as x2. They also gave the mean and variance of the
total number of phases as functions of N.  There are several striking
similarities between their paper and ours: they pointed out the insensi-
tivity to trend or slow periodie movements (they added a suggestion
that testing a sequence made up of every A-th observation will in-
crease the sensitivity in this respect); they wrote, “One obvious
limitation of these criteria is that as they make use only of qualita-
tive relationships and do not take into account the exact magnitude
of the observations, they do not make full use of all the available
information. It is to be noticed, however. that there is the com-
pensating advaintage that the criteria make no assumption whatever
about the law of distribution of the observations. apart from the very
gencral one that they are unequal”; and, as a final coineidence, their
paper was partly financed by Carnegic funds.  Their method of han-
dling ties is one that we have recommended elsewheres heeause of its
stmplicity, but since it assumes the true differences between tied
observations (instead of the true values of the observations them-
selves) to be a random sequence, it is not as strictly correct as the one
deseribed in the seeond paragraph of Seetion VIIT: the two procedures
are 1dentical, however, in the most common case, that where only two
adjacent observations are equal, and they differ little unloss there are
many sequences of more than two ties or a few unusually long
sequences.
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There are also three principal mathematical treatments of ihe
topic: a long paper by Kermack and MeKendrick published in 1937
and two i treatises on eombinatory analysis. Macmalion’s of 1916+
and Netto's of 1901.#

Kermack and MeKendrick demonstrated the formulas utilized in
their =tatistical paper,» and extended these in several directions not
especially related to the present paper. At one point they used, in
effect, the probability transformation which we explain in Section 11.
They simply stated that the observations can be regarded as all
between 0 and 1 because the distribution of phase durations remains
invariant under any one to one transformation; they did not, however,
explicitly introduce a transformation to a uniform distribution. though
this s inplieit iu the integrations they make.

Macemahon® does not consider phases in our sense. but he parti-
tions a series into groups which are, as he points out, equivalent.  He
divides the observations in such a way that each group contains an
ascending sequence. All observations in what we call an expansion
of d, including both bounding turning points, thus coustitute a single
group of d + 1; each observation in what we call a contraction, ex-
cluding the bounding turning points. constitutes a group of 1. For
example, he divides the sequence 8, 6. 7, 2,9, 5, 4,1, 3 as follows:
8:6,7:2,9;5;4; 1,3 and treats it as a sequence of groups of 1,2, 2,
1, 1, 2, in that order. (Given a sequence of groups as defined by
Maemahon, it is"casy to deduce the sequence of phase durations
according to our definition.) Letting a, b, ¢, - -+ represent the group
sizes in the order of their appearance, where ¢ +b + ¢ + --- = N,
Macmahon shows that the proportion of the permutations of N
different observations which produce the sequence of groups «, b,

¢, - - - 1s given by the determinant
1 DL
al a4+ (a+ b+ 0!
1 ! L
X b 4o
0 1 l
- ; ¢!

He gives several theorems useful in manipulating this expression.
(Compare equation 4, Section VI.)

Nettos? summarizes a paper by Bienaymé and a long series by
André published between 1879 and 1896.- Bienaym¢ in 1874
stated that the number of phases, complete and incomplete, is nor-
mally distributed about a mean of

2N — 1
3

(1]
(V]



with variance of
16N — 20

90

His paper actually reads: “le nombre des maxima et des minima
sera probablement, égal

N — 1 /16N — 29
BT Vi 45

a probabilité correspondant 4 ¢ etant donnée approximativement par
Pintegrale bien connue

2 fl 2 LAl

—_— e—l (1.1‘.

Vi
A later paperts describes

2N — 1
3

as “le nombre des maxima et des minima, ou des séquences,"”’ leaning
by a sequence what we call a phase, ineluding incomplete phases;
and in the second sense it is correct. The appearance of 45 instead
by 90 is explained by the form in which Bienaymé writes the normal
distribution. André’s chief contribution was a recursion formula
for the number of phases (including the incomplete phases hefore the
first and after the last turning points)

Ix(p) = pfeli(p) + valp — 1) + (N — Plva(p — 2)

where fy(p) represents the number of the permutations of N different
numbers producing p phases. (Compare equations 5 and 5a, Nec-
tion VII.)

None of the works we have seen has investigated the centraj prob-
lem of how to test the significance of the difference between the
observed and expected distributions. Jones 2 i referring to Bes-
son’s work, ecautions “against the use of the X* test for testing the
significance of these distributions since the lotal frequency of the of-
served and expeeted number of runs is not hecessarily the saine,”
but we are unable to see the point to thig warning; the fact that the
totals are free to vary seems simply to remove one linear constraint
and so to allow one more degree of freedom for sampling fluctuations,
though the 2 distribution is inapplicable for other reasons (see See-
tion VI). Some of the investigations, particularly those by Mae-
mahon3 and by Kermack and McKendl'ick,-34 may prove valuable to g
future researcher who carries out our suggestion of g, thorough mathe-
matical investigation into the question. None of the writers has
considered any except, direct applications of the technique to original
data; that is, they have not considered its use with derived series
which should be random according to the assumptions of the method
of derivation.
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X Summary

A simple and economical test of significance for time series (and other
data in which the order of appearance is essential), which makes no
assumption about the fundamental probability distribution, may be
based on the frequency distribution of sequences of like sign in the
first differences.

In a series of N independent random observations the expected
number of completed runs of d in the signs of the first differences is

AL +3d+ DN —d - 2)
@+ 3)!
As the size of the sample increases, the proportion of runs of one
approaches 5/8, the proportion of runs of two approaches 11,40, the
proportion of runs longer than two approaches 1/10; and the average
length of run approaches 1.5.
The expected number of runs of one is, then,

of runs of two,
(N — 4)
60 '
and of runs longer than two,
4N — 21
60
These three expectations may be compared with the observed fre-
quencies by the usual method of summing the ratios of the squared
deviations to the expectations. The sum is essentially similar to x2
for two degrees of freedom, but is denoted by x?2 because its sampling
distribution differs somewhat from that of x2. The tail of the distri-
bution of x2, i.e., xZ above about 6.3 or P below about 1/15, is well
described by the x? distribution for 2} degrees of freedom, the .05
level of which falls at x; = 6.898 (Table 5); the main body of the
distribution is covered by referring $x2 to the usual x? tables for
2 degrees of freedom. Although these empirical distributions seem
adequate for practical work, a rigorous derivation of the true sampling
distribution is much to be desired.
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Ninee this test is. in general, not sensitive to the existence of 3
primary trend, it is especially useful in determining the presence
of secondary components of the svstematic variation, especially
‘cyclical’ fluetuations. It is useful also as an objective test of good-
ness of fit of smooth curves, particulaxly for curves that have not
been fitted by mathematically efficient methods, e.g.. frechand curves
or moving averages. 1t also provides a eriterion of the number of
terms to be used in smoothing by moving averages.  Still other uses,
not pertaining especially to time series, are in salvaging the order
information neglected in a x? test of homogeneity and in detecting the
existence of correlation.

A simpler test of the same nature may be based on the total number
of completed runs in the signs of the first differences, since this is
normally distributed with mean of

2N — 7

and variance of

1_ 6N — 29
90 )



References

The following references (except the twelfth) are cited by number in superseripts
to the text, footnotes, or tables.  We have not heen able to examine the eleventh
entry. Weare indebted to Herbert E. Jones for lending us the complete manuseript
of the theoretical portions of his paper;® to Walter A. Shewhart for giving us a
copy of his manuseript,* through which we learned of the work of Kermack and
McKendrick®# (and through that of the work of André, >0 Maemahon,* and
Netto*); and to Frederick F. Stephan for directing our attention to Fisher’s paper 2!

1 André, Desiré, ‘Développements de sée z et de tang x’, Comples Rendus de
UAcadémic des Seiences (Paris), 88 (1879), pp. 9655-7

2 —— ‘Sur les permutations alternées’, Journal de Mathématiques pures et
appliquées, Series 3, 7 (1881), pp. 167-84

3 ——— ‘Surle nombre des permutations de n éléments qui présentent s séquences’,
Comptes Rendus de U Académie des Sciences (Paris), 97 (1883), pp. 1356-8

4 ——— ‘Probabilité pour qu’une permutation dormée de n lettres soit une permuta-
tion alternée’, Comples Rendus de I' Académie des Sciences (Paris), 97 (1883),
pp. 9834

5 - — ‘Litude sur les maxima, minima et séquences des permutations’, Annales
scientifiques de I Ecole Normale supéricure (Paris), Serics 3, 1 (1884),
pp. 121-34

6 —— ‘Sur le partage en quatre groupes des permutations des n preniiers
nombres’, Comptes Rendus de U Académic des Sciences (Paris), 115 (1892),
pp. 8724

7 —— ‘Note’, Bulletin de la Societé Mathématique de France, 21 (1893), p. 131

8 —— ‘Bur le triangle des séquences’, Comptes Rendus de I Académie des Sciences
(Paris), 118 (1894), pp. 575-8, 726, 1£26-8

9 -——— ‘Sur les permutations quasi alternées’, Comptes Rendus de U Académie des
Sciences {Paris), 119 (1894), pp. 947-9

10 —— ‘Sur les permutations quasi-alternées’, Journal de Mathématiques pures et
appliquées, Series 5, 1 (1895), pp. 315-50

11 —— in Bulletin de la Soctété Philomathique de Paris, Serics 8, 5 ( 1893), p. 33,

and 8 (1896), p. 5

12 Bertrand, J., ‘Note relative au théordme de M. Bienuymé', Comples Rendus do
U Académie des Sciences (Paris), 81 (1875), pp. 458, 491-2

13 Besson, Louis, (translated and abridged by Edgar W. Woolard), ‘On the Con-
parison of Meteorological Data with Chance Results’, Monthly Weather
Review, 48 (1920), pp. 89-94

14 Bienaymé, J., ‘Sur une question de probabilités’, Bulletin de la Société Mathé-
matique de France, 2 (1874), pp. 1534

15 —— ‘Application d’un théortme nouveau du Caleul des probabilités’, Comptes
Rendus de U Académie des Sciences (Paris), 81 (1875), pp. 417-23

16 Bilham, E. G., ‘Correlation Coefficients’, Quarterly Journal of the Royal Meteor-
ological Saciety, 52 (1926), p. 172

17 British Association for the Advancement of Seicnce, Mathematical Tables
(London, 1931), I, Table XI, pp. 42-6

57



18 Burns, Arthur ¥., Production Trends in the United States since 1870 (National
Burcau of Economic Research, 1934), pp. 44-5
19 Cowles, Alfred and Jones, Herbert E., ‘Some a Posteriori Probabilitics in Stock
Market Action’, Feonometrice, 5 (1937), pp. 280-94
20 Dixon, W. J., ‘A Criterion for Testing the Hypothesis that Two Samples are
from the Same Population’, Annals of Mathematical Statistics, 11 (1940),
bp. 199-204
21 Fisher, R. A., ‘On the Random Sequence’, Quarterly Jowrnal of the Royal Meteor-
ological Society, 52 (1926), p. 250
22 — Statistical Methods for Rescarch Workers (Edinburgh and London,
1925-38), Sec. 14, 16, 18, 20, 21.]
23 —— The Design of Experiments (Edinburgh and London, 1935, 1937), Sec. 21
24 —— and Yates, F., Statistical Tables Jor Biological, Agricultural, and Medical
Research (Edinburgh and London, 1938), Table XXXIII, pp. 82-7
25 Friedman, Milton, “The Use of Ranks to Avoid the Assumption of N ormality
Implicit in the Analysis of Varianee’, Journal of the American Statistical
Association, 32 (1937), pp. 675-701
26— A Comparison of Alternative Tests of Significance for the Problem of
m Rankings’, Annals of Mathematical Statistics, 11 (1940), pp. 86-92
Hoel, Paul G, ‘On the Chi-square Distribution for Small Samples’, Annals of
Mathematical Statistics, 9 (1938), pp. 158-65
Hotelling, Harold and Pabst, Margaret Richards, ‘Rank Correlation and Tests
of Significance involving no Assumption of Normality’, Annals of dlathe-
matical Statistics, 7 (1936), pp. 29-43
29 Jones, Herbert E., “The Theory of Runs as Applied to Time Series’, summarized
in Report of the Third Annual Research Conference on Economics and
Statistics, (Cowles Commission for Researeh in Economics, 1937) pp. 33-6
30 Kendall, M. G., ‘A New Measure of Rank Correlation’, Biometrika, 3¢ (1938),
pp. 81-93
31 — Kendall, Sheila F. H., and Smith, B. Babington, “The Distribution of
Spearman’s Coefficient, of Rank Correlation in a Umverse in which all
Rankings Occur an Equal Number of Times’, Biometrika, 30 ( 1939), pp.
251-73
32 —— and Smith, B. Babington, “T'he Problem of m Rankings’, Annats of Mathe-
matical Statistics, 10 (1939), pp. 275-87
33 Kermack, W. 0., and MeKendrick, A. G., ‘Tests for Randomness in a Series of
Observations’, Proceedings of the Royal Society of Edinburgh;, 57 (1937),
pp. 22840
34— ‘Some Distributions associated with a Randomly Arranged Set of Nun.-
bers’, Proceedings of the Royal Society of Edinburgh, 57 (1937), pp. 332-76
35 Macaulay, Frederick R., The Movements of Imterest Rates, Bond Yields and
Stock Prices in the United States since 1856 (National Bureau of Eronomie
Research, 1938), Tahle 27, col. 4
36 Maemahon, Perecy A., Combinatory Analysis, (Cambridge, England, 1915), 1,
187-216
37 Mitchell, Wesley C., and Burns, Arthur F., “The National Bureay’s Measures
of Cyclical Behavior’, National Bureau of Economice Research Bulletin &7
(July 1, 1935)
38 Mood, A. M., “The Distribution Theory of Runs’, Annals of Mathematical
Statistics, 11 (1940), pp. 367-92
39 Netto, Fugen, Lehrbuch der Combinatorik, (Leipzig, 1901), pp. 106-14

58

97

-

2

oo

<




40 Neyman, J., ‘On Statistics the Distribution of which is Independent of the
Parameters Involved in the Original Probability Law of the Variables’,
Statistical Research Memoirs, 2 (1938), pp. 58-9

41 —— and Pearson, E. S., ‘On the Problem of the Most Efficient Tests of Sta-
tistical Hypothesis’, Philosophical Transactions of the Royal Society of
London, Series A, 231 (1933), pp. 289-337

42 Olds, E. G., ‘Distributions of Sums of Squares of Rank Differences for Sinall
Numbers of Individuals’, Annals of Maihematical Statistics, 9 (1938),
pp. 133-48

43 Pairman, Eleanor, “Tables of the Digamma and T rigninma IMnctions’, Tracts
Jor Computers, (Cambridge, England, 1919)

44 Pearson, Karl, ed., Tables of the Incomplete I-Function (London, 1922), Table 1

45 Pitman, E. J. G., ‘Significance Tests which may be Applied to Samples from
any Population’, Supplement to the Journal of the Royal Statistical Socicty
4 (1937), pp. 119-30, 225-32, and Biometrika, 29 (1937), pp. 322-35

46 Shewhart, Walter A., ‘Contribution of Statistics to the Science of Engincering’,
Proceedings of the Bicentennial Celebration of the University of Pennsylvania
(Philadelphia, in press).

47 Sukhatme, P. V., ‘On the Distribution of x2 in Samples of the Poisson Series’,
Supplement to the Journal of the Royal Statistical Society, 5 (1938), pp. 75-9

48 Thompson, William R., ‘On Confidence Ranges for the Median and Other

Expectation Distributions from Populations of Unknown Distribution

Form’, Annals of Mathematical Statistics, 7 (1936), pp. 122-8

‘Biological Applications of Normal Range and Associated Significanee

Tests in Ignorance of Original Distribution Forms’, Annals of 3athematical

Statistics, 9 (1938), pp. 281-7

50 U. 8. Department of Agriculture, Agricultural Yearbook, 1925 (Washington,
1926), p. 365

51 Agricultural Statistics, 1939 (Washington, 1939), p. 243

52 Wald, A., and Wolfowitz, J., ‘Confidence Limits for Continuous Distribution
Funetions’, Annals of Mathematical Statistics, 10 (1939), pp. 105-18

53 ———— ‘On a Test Whether Two Samples are from the Same Population’,
Annals of Mathematical Stotistics, 11 (1940), pp. 112, 117-62

54 Walhs, W. Allen, ‘The Correlation Ratio for Ranked Data’, Journal of the
American Statistical Association, 34 (1939), pp. 533-38

55 —— and Moore, Geoffrey H., ‘A Test of Significance for Time Series Analysis’,
Proceedings of the Nineleenth Annual Conference of the Pacific Coast Eco-
nomzic Associatton (1940), pp. 97-98

‘A Signmficance Test for Time Series Analysis’, Journal of the American

Statistical Assocration, 36 (1941), pp. 401-9

49

56 —

59



