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Annals of Econamic and Social Measurement. 31,1974

A PRACTICAL METHOD FOR CONTROLLING A LARGE
NONLINEAR STOCHASTIC SYSTEM

BY ROBERT S. HOLBROOK*

The paper reviews a practical technique for optimizing a quadratic objective function under the constraint
of a lurge nonlineur econometric model. and extends that technique to the stochastic case. Several of the
difficulties which will accompany any attempt to control a large model are discussed. umi the optimization
technique ( for the deterministic case} is illustrated with an application to the Michigar Model of the U.S.
economy.

1

Economic applications of optimal control theory. first in its deterministic and now
in its stochastic form, are attracting great attention in the professional literature,
and even in the press. In no area of economics is the anticipated payoff from this
activity greater than in that of macroeconomic policy making.

Developments in macro-model building during the last decade would almost
appear to have been designed with the aim of facilitating the use of control theoretic
techniques. Except for some relatively simple cases, however, model builders did
not utilize the techniques necessary to enable them to select an “optimal™ policy.
The array of forecasts, simuiations, multipliers, and model evaluations they
presented were certainly of great relevance to the needs of policy-making. But a
policy-maker typically is concerned with a multidimensional policy decision which
takes into account both current and future goals, a decision requiring some form
of optimal control technique rather than the standard fare of simulation results
commonly provided. Thus, it is not surprising that many economists are devoting
their attention to these problems, and that some excelient papers dealing with
them have appeared in the past few years (and thisconference is the occasion for the
appearance of several more).

My own interest in this area arose as a result of my attempt to devise optimal
“rules of thumb” using RDX2, the Bank of Canada’s model of the Canadian
economy' (ultimately I found it easier simply to control the model in an optimal
fashion than to develop such rules of thumb). Thus, my approach was—and i1s—
from the point of view of a real world policy-maker, and not that of a control
theoretician, as I'm sure will be evident in the course of this paper.

I was searching for a practical, simple, and cheap means of selecting an
optimal path for a large nonlinear model. I believe that the method 1 developed
while at the Bank of Canada satisfies these criteria.? The original report [5] dealt
only with a deterministic version of the optimizing method. This paper extends it
to the stochastic case.

' The model is described by Helliwell, e: «l. [4]. and my experiments with it are reported in 5]
and [6).

*1 would like to thank Gregory Chow and my colleagues Saul Hymans and Harold Shapiro for
their helpful comments. | also wish to thank Lockwood Lyon for his valuable programming assistance.
and Ms. Kris Maki for her speedy and expert typing. Part of this research was supported by the NSF
under grant GS-36932X.
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In Section 11 1 deseribe some of the difficulties confronting anyone who
attempts to nse a nonlinear model for policy making. 1 describe my optimizing
procedure in its deterministic version briefly in Scction 111, and cite some new
results from its use with the Michigan Model [8]in Section IV. Section V contains a
theoretical extension to the stochastic case, but there is as yet no empirical evidence
as to the method’s success under those conditions. Section VI concludes the paper.

11

Many difficulties are presented by the problem of sclecting an optimal
macroeconomic policy for an actual cconomy. First, the selection of the objective
function is usually subjective and often guite arbitrary. Although I doubt if any
policy-maker could describe the function controlling his policy decisions. such a
function is absolutely necessiry before we can speak of or hope to derive an
“optimal™ policy. I have described elsewhere an approach which could be used in
an attempt to decipher the policy-maker’s views, and to capture them in functional
form.* but at best the function finally chosen will be only a rough approximation
to the truth. Since we are doomed to great uncertainty regarding the appropriate
form. variables. and parameter values for this function. I belicve that the many
computational advantages of the quadratic form make it the obvious choice.
Though its faults are well known, its advantages are so great as to o utweigh them,
in the absence of substantial evidence that some other form is more aearly correct.

Sccond, the actual economy for which policy is to be chosen is highly complex
and is only imperfectly represented by even the largest of our macroeconomic
rmodels. This conference is concerned with one aspect of this imperfection, namely
that the models are deterministic representations of a stochastic system. But there
are other difficulties. due not to stochastic but to systematic errors in the models.
When the model is used to simulate much beyond the fitting period, it usually will
get off track rather quickly. Various adjustments, dummy variables, etc.. may be
used for repair purposes, but this can be done only after the actual data become
available. Our primary interes is in planning policy for the future, however, and in
this context no such corrections are possible until it is too late. For this reason (as
well as others perhaps less well founded) no policy-maker is likcly cver to base his
actual decisions solely upon an optimal control calculation using a model of the
cconomy. Instead he is likely to use the optimal control results as signals. noting
their sign and order of magnitude, but ignoring everything beyond the first couple
of significantdigits. I this is true, it suggests that practical economic policy making
does not require that the controi problem be solved exactly. A cheaply and easily

2 [ was not surprised when [ was informed by olhers more familiar with the control literature that
the method I had developed was. in fact, agradient method related to but not identical with the Newton-
Raphson method as described by Polak {10].

*1In [5] I suggested simply that the staff economist explore the policy-maker’s preference map by
means of a series of questions comparing hypothetical situations. Ann Friedlaender {21 has shown how.
under certain assumptions. one can infer from historical data the coeflicients of the policy-maker’s
objective function. Uniortunately, one of the assumnplions required is that policv-makers aim for what
they get. This may be appropriate for historical analysis (the use to which Friedlaender puts ith but it is
not likely to be very useful in an actuat policy-making contexi.
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obtainable exact solution would be best, of course, but lacking that, a close approxi-
mation to the exact solution will probably be entirely adequatc.

Third. leaving aside the question of how well the model represents the real
world, there is an additional problem within the model itself. With few exceptions,
most of the important models in use today consist in part of a sct of simultancous,
nonlinear. equations. The solution of this system of equatiens is usually carried
out by a computer program n an iterative fashion. continuing until some presct
convergence criteria are met. This is not an exact solution.and a given set of values
for the exogenous and lagged endogenous variables can give rise to an indefiritcly
large number of different solutions, depending on the initial values from which the
iterative procedure begins. Much of this imprecision is hidden from view, as only a
few significant digits are usually printed on the computer output, but this degree of
inaccuracy in the solution of the model equations timits the degree of accuracy of
the control calculations. Although onc can tighten the convergence criteria uscd
in the model solution program, this is costly in terms of increascd solution time,
and it will probably result i the inference of a degree of accuracy which is entirely
spurious. If the model builders believe their results to three decimals and choose
the convergence criteria accordingly, tightening these criteria will apparently
yield more exact answers. but these answers can contain no more information than
before.

With these cautionary comments as preface. I turn to the problem of actually
selecting an optimal path for a set of macroeconomic policy variables with the aid
of 2 nonlincar model. Among a variety of approaches that could be taken, perhaps
the most aesthetically pleasing would be simply to treat the problem in a straight-
forward control theory manner: set up the Hamiltonian, solve the necessary
conditions, and obtain an exact analytic solution. This would be enormously
difficult to carry out for most of the macro models now in use, however, and 1t also
has the major disadvantage that the entire process would have to be carried out
separately for each model: there would be no standardized procedure which could
be applied casily to all models.* '

A dynamic programming framework also suggests itself, but in any realistic
context. with several instruments to be used to control several targets over several
time periods. the “curse of dimensionality™ is likely to result in too massive a
demand for computer storage space.

In response to these problems. the tendency has been to utilize some kind of
linear approximation rather than the truc model, and thus to avoid the difficulties
associated with nontinearity. This is the approach which | have taken, and which |
will describe in the next part of the paper.

111

The optimization procedure I will describe has several advantages, not the
least of which is that it is relatively inexpensive to usc with any model already
prepared for computerized simulation experiments. With the exception of one
series of matrix manipulations, all necessary calculations can be performed by the

s An additional drawback is that ar apparently minor change in the structure of the model could
require that the entire problem be re-analyzed.
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existing solution program. Another advantage is that the extra storage requirement
for the optimization procedure depends ouly on the number of variables in the
objective function. and not on the size of the model. And finally. although the trye
modelisapproximated by a sct of lincar relations. this is nota once-for-all linearizy.-
tion. but is repeated at each step in the iterative process.

At this stage all problems associated with uncertainty and the presence of
stochastic elements will be ignored. I assume the existence of a known loss function
which is quadratic in certain target and instrument variables. and of 4 known.
nonstochastic (and in general. nonlinear) relationship between the mstruments and
the targets. These assumptions will now be spelled ont in greaier detail.

Targets will ordinarily be refated (o concepts such as unemployment. inflation,
growth, balance of payments. ctc. For example. the unemployment target might be
defined as the unemployment rate. or as the number of unemployed workers. and
it could be defined in terms of the entire work force or of some sub-category (or
several unemployment concepts might be used as separate targets). Any of these
alternatives can easily be handled, previded only that two requirements are met.
The first is that the target variables so defined (or functions of them) nnist be
appropriate for inclusion in a quadratic loss function. and the second is that their
values must be generated by the model.

The second of these requirements is trivial since the presence in the loss
function of a variable which is not at the same time in the model would have no
operational significance. The first is not trivial. as one of the difficulties with a
quadratic loss function is that it treats deviations of a variable from its target
value asequally undesirable. regardless of sign. While this may be quite appropriate
for some target variables. for others positive deviations may be viewed quite
differently from negative ones. To deal with this problem. simply devise a function
of the variable in question which will be smooth and will at the same time caplure
the essential characteristics of the policy-maker’s attitude toward the original
variable’s behavior. For example. suppose that we dislike values of tnemployment
greater than 4 percent but are nearly indifferent to values less than 4 percent. In this
tase we can create a new variable (Y) related to unemployment (U) such that Y is
zero when U is 4 percent. d Y/dU is positive and large when U is greater than four
pereent.and dY/dU is positive but small when U is less than four percent. Such a
rclationship could be approximated by a single function or by pieces of several
functions, so fong as care is taken (o aveid sharp corners where the functions join.*
With some care and ingenutity. this technigue could be used to fit most target
variables into a quadratic function.® It is implicit in the above example, and I will
continue to assume. without loss of generality. that each target variable is defined
such thatits ““desired " value is zero.”

Much of what was just said about target variables will be cqually truc of instru-
ment variables. Each instrument must be a variable whose value can reasonably
) 3 Suchan approach is similar to the use of 2 “penaliy function™ as a means of turning a constrained
nto an unconstrained minimization problem [10].

¢ Fricdman[3] suggests that the problem should be solved oy the use of an objective function which
is plecewise quadratic, but I bejieve that the procedure I have described will beequally effective, and more
easily itnplemented. In ihe event that we must use a non-quadratic objective function. an extension of my
optimizing method described in [5] could probably be used.

" This assumption will usuaily eliminate the necessity for linear terms in the loss function.
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be assiined to be chosen by the policy-maker. [t must appear in the model as
an exogenous variable, and be defined so that it makes sense when inchided as an
argument of a quadratic loss functior: with adesired value of zero. Theincorporation
of policy instruments in the loss function has been viewed as a questicnable device
[11], but it seems clear from casunal observation that policy-makers are not in-
different to the values they select for their policy instrnments. Their attitude may
reflect political considerations, nncertainty about the future, or merely a desire for
the quict life, but whatever the reason, 1 do not believe that reality is violated when
we include policy instrizments in the loss function.

As an example of a policy instrument, consider government purchases of
goods and services. Clearly, it is nonsense to assume that the government wenld be
willing to spend at whatever level is dictated by simple macrocconomic considera-
tions. Many of the other goals that government spending is designed to achicve
{most of them not even represented in the typical macroeconomic model) are
iikely to be poorly served if spending is determined only on the basis of macro-
economic goals. It is more sensible to assume that there is some desired level (or
rate of growth) of government expenditure, and that progressive deviations from
this desired value (in cither direction) are viewed as increasingly nndesirable. And,
of course, this is precisely the attitude captured when we include the appropriate
function of government spending as an argiment in the ioss function,®

[ can now write the loss function as

, Y
I L=(Y X)H ~~—)
(N (Y"X) ( X

where Y and X are column vectors of targets and instruments, respectively, as
described above, and H is a symmetric matrix of coeflicients.® Although the only
operational information emerging from the optimization procedure will have todo
with the current period, a policy-maker would probably wish to take account of the
path of the economy for some time into the future: if that is tric the Y and X
vectors must contain both current and future values of the target and instrument
variables, for as many periods as are necessary. If there are n targets and m instru-
ments, and the planning horizon is T periods, then

( Yir RN
Yo ASS
Y=1 v and X = | x,,
Vis Nyo2
| Vo1 L'Vm'l' _

% More complex assumptions regarding the policy-maker’s view of the behavior of his instrument
variable can be easily handled by the device described earlier in the discussion of an unemployment rate
target.

9 As noted earlier, it will usually be unnecessary to employ lincar terms in the loss function. and I
will omit them here in the interest of simplicity. See [61 for a derivation which includes the linear serms.
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where the lower case letters refer to the individual target or instrument values, The
matnx flisthen(n + miT by (n + m) T and must ke posiiive dclinilc(implying that
loss takes on its minimum value of zero when, and only when. ¥ and X are both
Zero vectors).

The model describing the behavior of the economic system is typically both
large and nonlinear, containing many non-target endogenous variables and non-
instrument exogenous variables. In fuact, it may be that none of the original variables
in the model precisely fit the definitions chosen for targetand instrument variables.
in which case we would have to augment the model by adding the necessary
equations, as described in Section 11.

This (augmented) model can be written as

2 FIY. ¥, X X)) =0

where Yand X are as before, Y, isa vector of the non-target endogenous variables,
and X'y is a vector of the non-instrument exogenous variables. The veetors Y and
X contain all the arguments of the loss function. so if 7 (the number of periods in
the planning horizon} is greater than one, F is not simply the set of equations in our
econometric model, but rather is T sets of these equations, one for the current
period.and one foreach of the 7 — | future periods over the planning horizon. with
appropriate time subscripts.

The variables in ¥, can be ignored, as their values are of no consequence to the
policy-maker. He may wish to know about their behavior along the optimal path,
but, by assumption, there is no feedback from that behavior :ffecting the choice
of optimal policy. I also drop explicit mention of X, since, although the values of
its elements much be chosen (or predicted} by some means or other, once they have
been chosen they can be tuken as parameters rather than variables with respect
to the optimization problem. In principle, then. the system can be simplified to

3) ¥ = G(X).

While it may be difficult or even impossible actually to write out the equations
explicitly in this way. the typical econometric model has an associated computer
program which can readily provide numerical solutions, and this is all that is
necessary.
The problem is simply to select that value of X which will minimize L. subject
to the constraint imposed by the relationship in (3). This can be done as follows:
Let X*, ¥* and L* be some initial mutually consistent values such that

y*
L* = {¥* X*)H (——*--)

4

and
Y* = Gy,
Then define AL, AY, and AX such that
Y* 4 AY
L* + AL = (Y* 1 AY ;i x% 4 A,\")H( ——————— ,
X* + Ay
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and

Y* 4+ AY = GIX* + AX) = G(X*) + K(XY*. AX).
Even if G is a nonlinear function. it will ordinarily be safe to assume that. for
sufficiently small AX, K is reasonably lincar in AX. We thus approximate K by the
nT by mT matrix U. such that

AY = K(X* AX) = UAX

where each clement of U is an approximation to the partial derivative ofa particular
y with respect to an x. evaluated at X = X*. Then

aL* +an o f (i’iﬂx_*ﬂ{)) f ,}
CAX L ‘

X* + AX

Y* 4+ K(X*.AX))

™

0= (U nH‘—;*—

. Uy o
+(U": l)H(—;—)AX

where 'is anmT by mT identity matrix. Then

- U ! Y*
4) AX = —{(U' ; IDH(-——” (v I)H(——~)
i I X*

where AX is the loss minimizing value of AX. given Y* X* and U, and is an
approximation to the !oss minimizing value of AX, given Y*. X*, and G. This will
be valid only to the extent that the approximation of K by UAX is valid. but if AX
is very small, the error in the approximation is likely also to be small and the
solution will be almost correct.

The matrix U can most easily be estimated by a series of mT simulations of the
model over the planning horizon. In each simulation all elements of X but one are
set equal to the values in X*, and that one (say x; ) differs from its valuein X* bya
small amount {Ax;). The values of the elements of Y in this perturbed simulation
will differ slightly from those in Y*, and it is these differences (each divided by the
size of the perturbation that caused them) that are used as the clements of U. When
X;, 1s perturbed, a vector of results is obtained of the form

, *
Y

Ax;

Yar — 5
Axy

Jm1 = Yar

Axy, ]

and this vector will be used as the [n(r — 1) + ij-th column of U.
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The initial value of X* is likely to be rather far fromAil's optimal value so the
solution of (4) will yield large values for the elements of AX. If G is not tinear. these
will not be the truly optimat changes in X*, but it is simple to make the indicated
changes, solve for new valtues of Y. both control and perturbed. and solve (4) once
again. My experimnents indicate that this itcrative procedure converges rapidly even
when the model is rather large and quite nonlinear.

Before presenting some recent resuits obtained with the use of this technique, |
will discussits relation to one of the standard gradient inethods of function minimi-
zation. As described by Polak [10], the Newton-Raphson iteration procedure can
be written as
LX)

=1
~xr 2 ) VL(‘/YI)
cX-

(S) 1".”.! —1",': _(
where X, isa p-vector of values of the independent variables as of the i-th iteration,
and VL(X;}is the gradient of L at X,. written as a column vector.

Using (3) I can rewrite (i), evaluated at X;.as

. R L ¢(P. )
(6) LX) = (G(X,) | X,-)H(—)? —).

The first derivative of L with respect to X, written as a column vector (ie., the
gradient of L) is then

CL(X,) , fGUXY) (G(X.-})
7 Cot = VLX) =2 i g 22
and the second derivative is
cGLX;)
2L, "GIX. X
(8) (*T"‘(, 5"') =2 ((;({_\/') I) S + D
cX- cX I
where
[ P(PG(X,}) ,_(FG(X,»))' ,(6(;(..\;))'
Ty Ay Aay™
) D=1 f_\: oo X ] 0o .. VX
L Cx, Cx, : £x,
H 0 ... 07 [Gxy o 0]
O H o X, 0 0
o _ 0 G(X) 0
R ] B R AR
00 Gy
L 0 Xi ]




and x; is the j-th element of X. Using (7) and (8). | can now rewrite (5) as

(X9 G(X)) 1

+D ((Gﬂ(_\') I)H‘SI(—'\"—’),
cX Y

v

(10 Xy - X;= - (‘:‘Q‘;’@l I)H
(

!

-\

Tt
This equation is exactly equivalent to (4). except for the second derivative term. D.
which has no counterpart in the earlier equation. My optimizing procedure is
based on the assumption that G is nearly linear within a small neighborhood. and
thus that D can safely be set equal to zero.

In fact, D is ordinarily not exactly zero. and omitting it will have an effect on
the size of the step (X;., — X:). and thus on the convergence propertics of the
method. It remains true. however. that if the sequence generated by the repeated
application of (4) converges. the gradient at tie point of convergence must be zero
(this follows from the fact that H is assumed to be positive definite). | must leave
unanswered the question of the conditions under which the procedure necessarily
converges to a sclutjon. [ can only report that it has converged to within a small
neighborhood very quickly for two large, nonlinear models: whether it will do
so for others remains to be determined.

There are several other general points that should be made regarding the use
of this optimization method on a large model of the standard type:

1. Assuming that the procedure converges. it can at best find only a local

minimum for the loss function.
The only ways I know to be sure of finding the global minimum are to scarch
over a very fine grid. or to solve the problem analytically. | am comforted. however.
by the fact that in the many runs [ have made with two different models there has
never been the slightest hint of multiple minima.

2. Although the model is nonlinear, we approximate it by a linear function
and ignore the second derivatives. Using that lincar approximation. we
could satisfy all the requirements for minimizing the loss function. and yet
actually be at a maximum for the true model.!°

This is not a serious problem. for two reasons. First, as stated earlier. the solution
programs do not solve the model exactly. Thus, the optimizing procedure cannot
converge to a point, but only to a neighborhood (the size of which will be discussed
in point 3, below). and once it has reached that neighborhood the solution will
tend simply to wander about. moving in first one direction, then another. but
always being pushed back toward the loss minimizing point. If we were really at a
maximum, a point of inflection. or a saddle point. such wandering would almost
certainly discover it, and the procedure would immediately move us off in the
appropriate direction. A second factor reducing the probability that this problem
could arise is that we are not taking derivatives of the model at a point. but finite
differences, and these will also tend to move the solution around enough so that the
fact that we had reached a maximum rather than a minimum would quickly become
apparent.

3. Asjustnoted, when the solution arrives in the neighborhood of the optimal
value, the nonzero convergence criteria used in the soluticn of the model

'? Richard Kopcke was the first to point out this possibility to me.
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and the finte perturbations used in estimating the U matrix prevent us

trom ever reaching an exact solution.
tn principle. we could reach any desired degree of accuracy simply by reducing
both the convergence criteria and the size of the perturbations as we approach
minimum foss, but there are hmits to this, as mentioned in Section 1. First, the
cost of solving the modet goes up rapidly. Second, the precision of the conipnter
programs is limited. And third, in most models the effects of changes in poticy
instruments on certain targets is likely to be quite small, so the smallest perturba-
tion we can use may have to be 1,000 or 10.000 times the sizce of the convergence
criterion. in order to ensure that we obtain suflicient significant digits to produce a
dependable answer. Given the fevel of accuracy of the econometric model and of
the forecasts of exogenous variables, however. an attempt greatly to increase the
accuracy of the optinnzation procedure beyond the level now easily attained cannot
be justified on practical grounds.

Some of these problems are illustrated in the next section of the paper. where |

discuss a recent application of the method to the Michigan Model.

v

I first applied my optimization procedurce just described to RDX2. the
Canadian model mentioned carlier. | have just begun to experiment with the
Michigan Model. but it will be useful to examine sonie of the preliminary results.
These are of interest not so much as policy prescriptions (the instruments, targets,
and loss function coefficients are alt chosen rather arbitrarily) but because they
lustrate both the case with which the technique can vield a solution, and the
himitations caused by some of the problems described in Section I1.

The Michigan Model consists of 61 equations, of which about 45 form a set of
simultaneous relationships while the remainder are recursive. The simultaneous
block is solved by the Gauss-Seidel method, with a convergence criterion for all
variables of 0001 (i.c.. one-tenth of one percent).

Ichose three target variables : unemployment. inflation, and the trade balance :
and three instrument variables : federal spending, personal income tax rates, and
the reserve base. The precise definition of cach of these variables follows:

In the model, UG, is the global unemployment rate, in percent. [ assume that
the desired value of this target is zero. so the first target is defined simply as the
global unemployment rate. in percent,

(1) Y, = UNEMP, = UG®,,.

This variable is referred to as ¥,, when it is utilized in the optimizing equation (4},
but in the text and tables I will use the mnemonic UNEMP,. In this case there is
an apparently needless proliferation of variable names, but it is desirable to
differentiate between those variables aiready defined in the model and the special
variables defined for the purpose of policy sclection. '

The model defines PGNP as the gross national product implicit deflator,
but does not provide an explicit rate of inflation. I take the desired rate of inflation
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to be zero, and define the second target as the annual percentage rate of change in
the GNP deflator,

PGNP

12. )‘ = {NFL = - -——
4 - ' [PGNP,_l

l.()]tl()().().

I'assume that it is the nominal surplus or deficit in the balance of trade which
is of concern to the policy-maker. and that he prefers a zero balance. This assump-
tion 1s subject to ebjection. and can casily be modified in future experiments. The
model defines exports in billions of current dollars (X$), importis in billicns of 1958
dollars {(M). and the import implicit deflator (PM). The third target is then simply
the difference between exports and imports in billions of current dollars,

PM,

13 Y, = BOFT, = XS, — (M
(13) » = BOFT, = X5, ‘”1000

Federal nondefense purchases of goods and services in current dollars
(GFO$) is an exogenous variable in the model. and the implicit deflator for these
purchases (PG)is an endogenous variable. I assume that. in the absence of stabiliza-
tion problems, the desired level of federal purchases would grow. in real terms,
about as fast as the economy (say. 0.9 percent per quarter). The policy-maker is
assumed to inflate constant dollar purchases by the price deflator in the preceding
quarter, because of the simultaneity problen: (i.e., he doesn’t know what PG will be
next quarter). Given an acceptable figure for these expenditures in period tq, it is
easy to calculate their “desired” value in period 1 as

GFOS,
Gr~l/

14 - d™
(14) Desire ‘ PG

GF
= (1.009) - ( GFO, )

The expenditure policy instrument is the difference between actual and desired
expenditure, expressed as a percentage deviation at an annual rate,
ros 1
PG, . I
(15) X, = GEXP, = - 1.0
(1.009y "o CPOS
| oomr (G

to

400.0.

Since expenditure has now become an endogenous variable. it must have a defining
equation,

GEXP,
=|——+ | 1.009) ""*GFOS, | ——— .
{16) GFOS, [ 3000 + 0}( ) S, (

The tax instrument is a one-time percentage surcharge (positive or negative)
applied to the average tax rate on personal incomes. Given total personal income
tax liability in current dollars (TP$) in some initial period. 1. the model defincs
the difference between tax liability in that period and in some later period ¢ as

(17 TPS, — TPS, = 0.20{(YPS, — GTRPS,) — (YPS, — GTRPS, )]

where YPS$ is personal income and GTRPS is government transfer payments to
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persons. both in current dollars. The tax instrument TAX, Cor X, is then the one
peried surcharge as a percent of the total tax Hability calculated on the basis of
(17), so the actual tax habihity in any period. including the surcharge. is
TP$ 1.0 TAX,
) e AN
! 100.0
{I8)
The monetary instrument is defined as the ditference between the actnal
annual rate of growth in unborrowed reserves in current dollars (URS) and 6

)(TPS__“ + 0.200YPS, — GTRP,) - (YPS, — GTRPS, )

percent.
URS
RES, = Xy, =1}, .-5" = 1.0]4000 — 6.0

“9) R Sr 3 (lIRS,_l )
so actual unborrowed reserves in any period are

RES, + 6.0 i
2 JRS, = - 4+ 1LOIURS, .
(20) URS, l: 4000 _] iRS, _,

I have made three optimizing experiments with the Michigan Model using
these definitions for the targets and instruments. The results are presented in Table
I. In cach case the loss function coeflicients for all targets in all periods were
assigned the same value (100.0). This assumption is made not for its realism but
because it simplifies the presentation of and comparisons among the outcomes.
The loss function coeflicients for the instruments are also the same in ali periods,
but differ between instruments and between experiments, as shown in the table.
The same six quarter planning period (1968.3 to 1969.4) was used for all experi-
ments. and all non-instrument cxogenous variables were assigned their actual
historical values.

Part A of Table 1 shows the paths of the target variables when the instruments
are setat zero for each period.! ' The loss function coefticient for each targetin cach
period is shown to be 100.0. The loss associated with each ta rget 1sshown separately

TABLE 1
A Initial Path
Quarter UNEMP INFL BOFT GEXP TAX RES Loss
1968 : 3 3s2 482 321 0.0 0.0 0.0 6.276.69
4 166 4.80 0.97 0.0 0.0 0.0 173765
1969 : | 184 4.64 1.50 0.0 0.0 0.0 185252
2 4.00 497 173 0.0 (0.0 0.0 4.369.38
3 4.13 5.02 2.18 0.0 0.0 0.0 4.700.97
4 427 423 248 0.0 0.0 (.0 $.227.62
lLoss
ceeflicient 100 100 100
Loss 9.182.14 13.359.62 4.423.07 27.164.83

1t : H : : : : : ; ;

Settingan nstrument at zero implies that the underlying policy variable is following what I have
as_surned to be its “"desired™ path, as described in equations (16). (18). and (20). It should not be confused
with a zero value for the underlying policy variable (e.g.. government spending) or with its historical
path.
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TABLE 1

B Experiment |

continued

Quarter UNEMP INFL BOFT GEXP TAX RES lLoss
1968 3 352 4.80 7 -0.11 —-1.4f -071 6315875
4 163 476 083 0.37 -4.79 —0.35  1.768.36
1969: 1 R 4.59 1.23 0.43 -6.04 004 384769
2 382 493 1.31 0.59 - 6.35 0.00 4.264.649
3 3.87 4.99 1.64 0.47 --5.33 0.01  4399.%1
4 3.96 4.40 1.89 0.02 -220 ~-0.01 3.883.57
Loss
coeflicient 100 100 100 S s 3
Loss 8.488.07 13.533.07 3.590.85 4.52 762.23 314 2648188
% decline in
loss from
initial
path 7.6°, 027, 166", 280
C  Experiment 2
Quarter UNEMP INFL BCOFT GEXP TAX RES Loss
1968: 3 352 480 17 0.86 —4.15 -4.06 631065
4 163 475 (.84 255 —4.46 -221 373784
1969 1 375 4.58 1.23 4.70 ~-5.91 =200 384287
2 3181 493 1.30 556 —6.28 —0.06 4263785
3 385 1.99 1.62 562 —5.30 0.56 439110
4 395 4.40 .87 0.65 —2.06 0.16  3867.3%
Loss
coethicient 100 100 100 0.3 5 0.5
Loss 8.457.09 13,514.39 3.675.87 46.13 727.26 1286 2643339
‘o dectine 1n
loss from
initial
path 1.9°, 03, 16.9", 27,
D Experiment 3
Quarter UNEMP INFL BOFT GEXP TAX RES Loss
1968: 3 248 478 s.10 14.08 ~7.88 —-1094  6.143.82
4 355 4.66 0.66 449 —6.01 7.16  3.497.00
1949: ] 3.57 4.57 0.88 2271 - 1584 8.68 359542
2 346 4.82 0.56 24.62 — 18.88 10,12 3.765.42
3 339 491 0.40 22.54 -23.79 —295  3.8&4%4
4 340 463 0.38 —6.45 ~11.12 023 3375396
Loss
coetlicient 100 100 100 0.05 0.5 0.05
Loss 7.248.15 13,422.63 2.7181.61 94.50 697.71 17.87 24.262.47
2, decline in
loss frem
nitial
path 211, 107, e, 16.7",

at the bettom of each column, and the combined loss associated with each period is
shown at the right end of each row.

Part B displays the results obtained when each instrument is assigned a loss
function coefficient of 5.0. Total loss has declined about 2.5 percent, but this
improvement is not reflected equally in all targets. The rate of inflation has hardly
been affected at all, but the increase in unemployment has been sigmficantly
reduced. and the average trade balance has been reduced by about a third of a
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billion dollars per quarter. Exammation of the trends in the variables will reveal thay
the improvement is snutli at the begmning, but tends to increase later in the plan-
ning period, reflecting the presence of lags in the cffects of the policy instruments,
In fact. we get almost no improvement at all in the nitial period, and it isn't nngl
the third period that the combined loss (shown in the last column) begins to decline.

The small values of the expenditure and monetary instruments in the firsy
experiment led me to rednce their loss coeflicients in the second cxperiment. as
shown in Part C. The overall results are not substantially different from those in
Part B. except that GEXP and RES are used more vigorously than before.

Part D shows the eptimal result when the weights on the instruments are
reduced to one tenth their size in Part C. Here we sce a major improvement in
the nunemployment sitnation, together with some measurable reduction of infly-
tion.'* The average trade balance has now been reduced by about a billion dollars
per quarter. All these improvements have becn achieved through substantial
increases in federal spending. reductions in income taxes, and rather wild gyrations
in the reserve basc, but the behavior of total loss indicates that it was worthwhile.
Total loss over the six periods has declined by almost 11 percent from the initial
path. and the reduction of loss in the for:rth quarter of 1969 alone is more than 20
percent.

Experiment 1 required six iterations to achieve a minimnm loss configuration.
experiment 2 required 14. and cxperiment 3 required 10, As described earlicr,
these were not exact solutions. and continned iteration might cventunally have
produced slightly lower values of loss. Any further improvement. however, wonld
almost certainly come from a rearrangement of the instrument values, rather
than fromany reduction in the loss due to the target values. In fact, the optimization
procedure usually requires ouly four or five iterations to achieve values of the
target variables that are within a very narrow range (typically +0.02) of the
nltimate optimal values. Further iteration only explores improved ways of arrang-
ing the instrnments in order to achieve those target valies.

The optimal solutions in Table 1 were derived with a convergence criterion
of 0.0001, one tenth of the value nsually nsed for solving the Michigan Model. |
tried even smuallcr values, but the number of itcrations necessary to solve the model
increased so fast that ! decided to forezo the higher degree of precision.

Ir most cases the smallest perturbation T used was 0.5, The reason for this
shonld be apparent from an examination of Table 2, which shows the effects on
the target variables of a perturbation of 1.0 for cach of the instrument variables in
1968.3. Many of the effects are so small as to be quite unreliable. even with the new
convergence criterion. but the optimization rontine takes them all to be equally
significant, and prodnces an optimal path based npon them. It is not surprising.
then, that the resulting path fails to be quite optimal. given the faulty information
from which it was derived.!?

'* Exceptin the fourth quarter of 1969 the third experiment managed toreduce both unemployment
and the raie of inflation in every period {in comparison with their initial valucs). There is obvionsly a
himit to this. :ind we may be running inio It just at the end of the planning period. If this is Irue we would
pro_bably wish to lengthen the planning horizon in order o temper somncwhat our near-term policy
actiorn.
~ "'The datain Table 2 also explain why the tax variable is used so vigorously in the first eaperiment;
it is far more eflective (per unit) than either of the other two instruments.
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TABLE 2

Errects o UNIL FERIURBA IONS On TARGHE Variapris?

A Perturbation of 1.0 for GEXP in 19683

1968 3 1968 4 1969 i 1969 2 1969 3 1969 4
UNEMP —0.00292 —0.00335 —0.00334 —0.00267 — 0.06196 - 0.00147
INFL 0.0 —0.00267 0.00343 0.00353 0.00305 020229
BOFT -0.00145 - 0.00328 —~0.00133 - 0.00121 —0.00148 — 000125
B Perturbation of 1.0 for TAX in 19683
1968 3 1968 4 1969 1 1969 2 1969 3 1969 4
UNEMP 0.00416 0.01205 001338 0.01073 0.00740 0.00402
INFL 0.00648 0.01183 - 001411 —0.01717 -(L01564 -0.01907
BOFT 0.01508 0.03140 0.02769 0.01775 01593 0.01640
C  Perturbation of 1.0 for RES in 1968.3
1968 3 1968 4 1969 1 1969 2 1909 3 1969 4
UNEMP ~0.00199 —1.00179 —0.00203 —-0.00176 —-0.00123 - 0.00078
INFL --1.00076 0.0 0.00191 0.00152 0.00114 00t14

BOFT —0.00059 —-0.00050 0.00055 0.00090 0.00133 0.00191

* The figures shown are the differences between the perturbed path and the initial path as given n
Part A of Table L.

Many other experiments are suggested by the results just described, and they
will be undertaken as part of the continuing research effortin the Research Seminar
in Quantitative Economics at the Umversity of Michigan.

\l

In Sections III and IV I assumed the existence both of a fully deterministic
model and of errorless forecasts of all exogenous variables over the planning
horizon. These assumptions will now be replaced by more reasonable ones regard-
ing the nature of the model and of a policy-maker’s ability to forecast the future.

Many of the non-instrument exogenous variables arc actnatly random
variables with means, variances, and covariances which would have to be esti-
mated from information outside the model (probably from the forecaster’s sub-
jective views regarding the reliability of his data and projections). The estimated
coefficients in the equations of the model are also raudom variables. and cach fitted
equation has an additive error term as well. For these reasons I now assume a
stochastic relationship between the selected values for the policy instruments and
the resulting values of the target variables.

Under these modified assumptions, a particular set of values for the instru-
ment variables (X*) will result in an outcome (Y *) which is the sum of its expected
value (W*) and an error term () with an expected value of zero.

(21) Y* = GIX*) = E(Y*)+e= W*+¢
Ee) = 0.
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At the same time. the matrix of eflects from =i set of perturbations (given X*) i
also a random variable (U} which is the sum of its expected vaiue (Vhand an error
term {Q) with an expeeted value of zero.

22) AY = UAX = E(UJAX + QAN = FAX + QAN

E(Q) = 0.

Estimates of W*, I and the variances and covariances of the elements of ¢ and
Q will be obtained by means of stochastic simukttion. A complete set of control
and perturbation runs will be made for each sct of values assigned to the stochastic
elements in the model. After a suitable number of such runs the indicated caleula-
tiens can casily be performed.

Given the successful completion of these stochastic simulations, two problems
will remain. First. what if the estimated vatlues of W* and V are not equat to the
deterministic vatucs of Y* and U we used in Section HI? And sccond. how should
we incorporate our knowledge of ¢ and Q into our policy solution?

Regarding the first of these two issues. Howrey and Kelejian {7] have shown
that in a nontinear system the values of the endogenous variables obtained by
solving the model with all stochastic variables set equal to their expected vahies
{as we did in Sections IIT and V) will not in general be equal to the expected values
of those endogenous variables. Thus. we would expect that the value of W*
catcutated as the mean outcome from the stochastic simulations would differ
systematically from the value of Y* we employed before in the deterministic
version (the same can be said for ¥ and U). Although annoying. this problem
presents no serious difficulty. as we can simply replace our carlier values of Y*
and U with W* and V. and proceed.'*

The question regarding the use 1o be made of « and Q is the primary subject of
this section. We proceed very much as in Scction JII. but this time we minimize

expected 1oss:
Y* + AY”
X* + AXT

E(L* + AL) = E[( YE LAY XY + AXOH
This can be rewritten as

E(LY + AL) = Ii[( W* 4+ + AX'

. W* + ¢+ VAX + QAX
+AXQ X 4 A.,\")u(————if—-——_——Q——H.

.“ Fair [1]also suggests the use of stochastic simulation as a device for estimating the mean vatue of
W* in a control context. Muench et al. {9] made some stochastic simulatior: experinients using an
carhc.r.vcrsion of the Michigan Model. They found that, while there were systematic differences between
lhe point estimates of ¥ based on the deterministic model and the mean outcome of the stochastic
simulations. the differences in most cases were quite small. It is yet to be seen whether this remains true
for the current version of the model. ’
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Now expand, dropping those terms with an expected value equal to zero.

‘ o , 1
E(L* + AL) = (W*" | X*')H(h\j*—) + (W* .\'*')H(—--I-—)AX
i/ % [
+ AX(V l)ll‘——~) + AX'() HH(———)A.\'
X* 1

+ E[(z:" : 0)11(~f—
0

+ (¢ O)H(—%—)A/\'

+AX(Q ow(—i—
L0

+ AX'(Q: 0]11(—%—)[&)(]

Make the following definitions:

b=kl ())H(—;—:—”

1

0 =F _(Q’ LO)H (—(—)—)J

T = E:(Q' ; O)H(—g—ﬂ.

-

Now we can sofve for AX, the value of AX which will minimize the expected loss :

KE(L* + AL ‘ *) i
AELZ AL o l)H(———) + 2V L DH (——— AX + 20 + 25AX
o . v -1 . W
(23) AX = = (V' i DH|-———| + £ v i nHl-=-] + 8.
I X*

The solution of this matrix equation is readily obtainable, given the results of the
stochastic simulations already described. The two new factors, X and 0, are com-
posed of elements each of which is a weighted sum of variances and covariances
of some components of Q or of Q and «. For example, thc element in the ith row and
Jjth column of  is equal to

Al naT
Y Y hacovq,g,

g=1k=1

where h, is an element of H and ¢,; is an element of Q.
The effect of including £ and 6 can more casily be seen if (23) is rewritten as

R ¥ -1 -1 v M-t uz*)
- | A _——— AN —_ /* ; —_
AX [1 + [( : I)H‘ ] ):I Z:i [(! : I)H( ; )J (1 I)II( Ty
(44) B V -1 -1 v -1
e o) ] ol
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[t can be obscryved that the first term in (24) s simply the optimizing value 6f A Y if
¥ and # were assumed to be zero. multiplicd by a factor which is inverscly related 1o
%. and which becomes the identity matrix if £ cquals zero. The second term in (24)
is an additive correction factor whose size depends on the covariation between the
elements of Q and those of ¢ (it also contains the same function of £as a multiplica-
tive factor).

With the aid of this form of the optimizing cquation. it would be simple to
caiculate an optimal value for AX on the assumption of zero variances and
covariances, and then to calculate the effects on that optimal value due to the
estimates of £ and 8. It is possible that the size of the effect is so small relative to our
overall degree of confidence in our results that we would then decide to omit the
adjustment.'®

[t may be of some interest to examine the differcuce inloss associated with the
alternative approaches suggested in the preceding paragraph.'® If the calculation of
AX takes account of X and ¢ as in (23) or (24), the expected value of total loss is

- "
+ ¢ — [(H"*' : X*'_)H(—;-) + {)':|

i NH l}) X:l_]rl' IIH( w
S IDH{-—-] + CDH -
x[' 1) ( ;) L( ) o

,i/'*

(25)  E{l) = (W= X*')H(

¥

vl

Il we ignore ¥ and 6 (i.e.. assume when calculating AX that their values are zero).
then the value of the expected loss (call it E(L)to distinguish it from the former case)
will be

W

|

-— - — [ (W* i X H|——-] + o
o] oo el o]
‘ " Vv ~-1 o 1 W* '
x (V' : hH —7— (V :1)”(—‘{*— + 6

. [V . et
+(W* X*')H(———) [(l"' : I)H(—-——)]

) I

( ( i e
TV hH|-=— Vol DH|-——
X _( ) ; ” (Vi ‘.\'*)

i26)  E(f) = (Ww*: _.\’*’)H(-

+H[(l ‘I)H( ; )J 0.

Although one would expeet E(L) to be greater than E(L), that relationship
does not emerge casily from a comparison of equations (25) and (26). However. if
'3 In fact, if 0 happens to have the value

ol AT
Z[(l _IJH(»I~)J (f ,1)11(~'\,,-}'

Thep the correction due to T is just offset by that due to 0, and optimal policy will be unaffected by
the inclusion of these two terms.

1 . A .
®Inthe following calcuiations | assume that the carrect values of W* and V are used in both cases.
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we subtract (25) from (26) and carry out a grcat deal of manipulation, the result
can be simplified to

—
N9
~J

-

&
™~

_— b
) — E(L) = [( W+ X*’)H(—;—) : 0’]

X _____.____.._._____._..__~____.___..'_ ______ _--l.
0 [(V’ : I)H("—) + z] !
I
vyl
Z[(l"’ ; 1)H(—7—)] 0 )
O T N L R
0 I
oyl
z[w'slm(—“ﬂ oy ]
I |

which is merely a very Jarge quadratic form. As we might have anticipated, the
improvement in loss is due to two effects. one of them a function of ¥ alone, and
the other a function of both T and 6. Further examination will reveal that all the
matrices within the large square brackets are either positive definite or semi-
definite (a zero difference in loss is possible if # takes on the value mentioned in
footnote 15, so that the correction in AX due to ¥ is just offset by that due to 6).
The implications of a value of 0 for either ¥ or ¢ can easily be deduced from (27),
and in general it can be shown that the improvement will be “small™if the variances
and covariances contained in £ and @ are small relative to the squares and cross-
products of the variables themselves.
As stated earlier in the paper, I have not had the opportunity to experiment
with this proposed solution to the stochastic contrel problem, as we have not yet
done any stochastic simulation with the new model at the University of Michigan.
Thus, it is impossible to say with any degree of certainty how it would work out in
practice. When such an opportunity becomes available, I suggest the following
procedure:
1. Solve the deterministic control problem in theiterative manner described in
Section 111.

2. On that path, conduct a sufficient number of stochastic simulations to
provide reliable estimates of W* and ¥, and of the weighted covariance
matrices ¥ and 8.
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3. Reoptimize utilizing equation (23) or (24).

4. Return to step 2.

By utilizing this procedure we would soon learn whether 2 single pass through
steps Zand 3is suflicient. or whetherseveral iterationsare necessary. If the difference
bc(‘ween W* and the deterministic Y* is as small as some of the values obtained by
Muench, et al. [9] and the difference between V and the deterministic U 1S corres-
pondingly small. & second iteration may not be required. In principle, however, and
ignoring costs. one could continue iterating until any convergence criteria were
met. but we would soon run inte the same problems as before. regarding the solu-
tion program convergence criteria and the loss of significance when the perturba-
tions are very smalk.

Vi

In this paper | have described a simple method for selecting, within either a
deterministic or a stochastic framework. an optimal set of values for several pohicy
mstruments so as (o minimize a quadratic loss function containing both those
instruments and a set of target variables. The use of the method in the deterministic
case was illustrated with an application to a medium-sized nonlinear model of the
U.S. econonty.

The procedure used does not yield an exact solution, partly because of its own
nature. and partly because of the nature of the econometric model. Its accuracy
can be increased at a cost. but I have questioned whether this increase in accuracy
is real or only imagined, given the inaccuracies in the model itself Optimal policy
calculations can in general be no more exact than the model solution from which
they are derived, and we should not overlook this fact in our quest for ever more
aceurate contro! techniques.

t have also ruised the question of whether. in practice. the cost of carrying
out the stochastic optimization procedure will exceed the value of the resuiting
improvement in control. This is an empirical question, however. and could easily
be explored with the framework developed in Section V. I would not be surprised
if we were to find that (given our current state of knowledge about the economy)
for practical policy-making purposes a solution to the deterministic control
probiem provides a sufficiently high degree of accuracy.

Whatever the answer 10 the question raised in the preceding paragraph. the
method Lhave described here has the ad vantage of beingrelatively simple, practical.
and inexpensive to implement, and at the same time provides a mechanism for
obtaining as exact a solution as the policy-maker is willing to trust.

University of Michigan
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