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Annals ol E anomie iiI .S'ocial Measurement .3 1 1974

A PRACTiCAL METHOD FOR CONTROLLING A LARGE
NONLINEAR STOCHASTIC SYSTEM

BY RoBIRT S. HOLBROOK*

The paper reviews a practical technique for optimizing a quadratic object ire function under the constraint
of a large nonlinear econometric model, and extends that technique o the stochastic CeIi' Several qf the

difficulties which will accompany any attempt to control a large model are discussed, and the opti'mzanon
technique (for the deterministic case) is illustrated with an application to the Michigan Model of the (iS.

economy.

Economic applications of optimal control theory. first in its deterministic and now
in its stochastic form, are attracting great attention in the professional lterature,
and even in the press. In no area of economics is the anticipated payoff from this
activity greater than in that of macroeconomic policy making.

Developments in macro-model building during the last decade would almost
appear to have been designed with the aim offacilitating the use of control theoretic
techniques. Except for some relatively simple cases, however, model builders did
not utilize the techniques necessary to enable them to select an "optima!" policy.
The array of forecasts, simulations, multipliers, and model evaluations they
presented were certainly of great relevance to the needs of policy-making. But a
policy-maker typically is concerned with a multidimensional policy decision which
takes into account both current and future goals, a decision requiring some form
of optimal control technique rather than the standard fare of simulation results
commonly provided. Thus, it is not surprising that many economists are devoting
their attention to these problems, and that some excellent papers dealing with
them have appeared in the past few years (and this conference is the occasion for the
appearance of several more).

My own interest in this area arose as a result of my attempt to devise optimal
"rules of thumb" using RDX2, the Bank of Canada's model of the Canadian
economy' (ultimately I found it easier simply to control the model in an optimal
fashion than to develop such rules of thumb). Thus, my approach wasand is
from the point of view of a real world policy-maker, and not that of a control
theoretician. as I'm sure will be evident in the course of this paper.

I was searching for a practical, simple, and cheap means of selecting an
optimal path for a large nonlinear model. I believe that the method I developed
while at the Bank of Canada satisfies these criteria.2 The original report [5] dealt
only with a deterministic version of the optimizing method. This paper extends it
to the stochastic case.

The model is described by Helliwell. et al. [4], and my experiments with It are reported in [5]

and [6].
* I would like to thank Gregory Chow and my colleagues Saul Hymans and Harold Shapiro for

their helpful comments. I also wish to thank Lockwood Lyon for his valuable programming assistance.
and Ms. Kris Maki for her speedy and expert typing. Part of this research was supported by the NSF
under grant GS-36932X.
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In Section I I describe SOtflè of the (ltthctilties confronting anyone who
attempts to use a nonlinear model or policy ma k lug I describe tn optimi,itp
procedure in its deterministic version briefly in Section Ill, and cite some new
results from its use wit lithe Michigan Model [8] in Section IV. Section V contains a
theoretical extension to the stochastic case, but there is as yet no empirical evidence
as to the method's success under those conditions. Section VI coticl tides the paper.

II

Many diffIculties are presented by the problem of selecting an optimal
macroeconomic policy for an actual economy. First, the selection of the objective
function is usually subjective and often quite arbitrary. Although I doubt if any
policy-maker could describe the function controlling his policy decisions, such a
function is ahsoluteiy necessary before we can speak of or hope to derive an
"optimal' policy. I have described elsewhere an approach which could he used in
an attempt to decipher the policy-maker's views, and to capture them in functional
form,3 but at best the function finally chosen will he only a rough approximation
to the truth. Since we are doomed to great uncertainty regarding the appropriate
form, variables, and parameter values for this function. I believe that the many
computational advantages of the quadratic form make it the obvious choice.
Though its faults are well known, its advantages are so great as to outweigh them,
in the absence ofsiihstantial evidence that some other form is more nearly correct.

Second, the actual economy for which policy is to be chosen is highly complex
and is only imperfectly represented by even the largest of our macroeconomic
models. This conference is concerned with one aspect of this imperfection, namely
that the models are deterministic representations ofa stochastic system. But there
are other difficulties, due not to stochastic but to systematic errors in the models.
When the model is used to simulate much beyond the fitting period, it usually will
get off track rather quickly. Various adjustments, dummy variables, etc., may be
used for repair purposes, but this can be done only after the actual data become
available. Our primary interest is in planning policy for the future, however, and in
this context no such corrections are possible until it is too late. For this reason (as
well as others perhaps less well founded) no policy-maker is likely ever to base his
actual decisions solely upon an optimal control calculation using a model of the
economy. Instead lie is likely to use the optimal control results as signals, noting
their sign and order of magnitude, hut ignoring everything beyond the first couple
of significant digits. lithis is true, it suggests that practical economic policy making
does not require that the control problem be solved exactly. A cheaply and easily

2
s.as not surprised sshen I was informed by others more familiar sith the control liteuature thatthe method I had deseloped wasin fact, aradient method related to hut not identical with the Newton--

Raphson method as described by Polak [10].
In [5] I uggested simply that the staff economist explore the polic)-makers preference map by

ulleans of a series ofquestions comparing hypothetical situations. Ann Fricdlaender [21 has shown how.
under certain assumptions, one can infer from historical data the coefficients of the policy-maker's
objectise function. Unfortunately, one of the assumptions required is that p01ev-makers aim for what
they get. This rna be appropriate for historical analysis (the use to which Friedlaender puts iii but it is
not likely to be very useful in an actual policy-making conteSt.
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obtainable exact solution would he best, of course, bitt lacking that, a close approxi-

mation to the exact sol'ition vill probably be cntiel adequate.

Third, leaving aside the question of how well the model rcprescnts the real

world, there is an additional problem within the model itself. With few exceptions.

most of the important models in use today consist in part of a set of simultaneous,
nonlinear, equations. The solution of this system of equations is usually carried

out by a computer program in an iterative fashion. continuing until some preset

convergence criteria are met. This is not an exact solution, and a given set of values

for the exogenous and lagged endogenous variables can give rise to an indefinitely

large number of different solutions, depending on the initial values from which the

iterative procedure begins. Much of this imprecision is hidden from view. as only a

few significant digits are usually printed on the computer output, hut this degree of

inaccuracy in the solution of the model equations limits the degree of accuracy of

the control calculations. Although one can tighten the convergence criteria used

in the model solution program, this is costly in terms of increased solution time.

and it will probably result in the inference of a degree of accuracy which is entirely

spurious. If the model builders believe their results to three decimals and choose

the convergence criteria accordingly, tightening these criteria will apparently

yield more exact answers. but these answers can contain no more information than

before.
With these cautionary comments as preface. I turn to the problem of actually

selecting an optimal path for a set of macroeconomic policy variables with the aid

of a nonlinear model. Among a variety of approaches that could he taken, perhaps

the most aesthetically pleasing would be simply to treat the problem in a straight-

forward control theory manner: set tip the Hamiltonian. solve the necessary

conditions, and obtain an exact analytic solution. This would be enormously

difficult to carry out for most of the macro models now in use, however, and it also

has the major disadvantage that the entire process would have to be carried out

separately for each model: there would be no standardized procedure which could

be applied easily to all models.4
A dynamic programming framework also suggests itself, but in any realistic

context, with several instruments to he used to control several targets over several

time periods, the "curse of diniensionality" is likely to result in too massive a

demand for computer storage space.
In response to these problems. the tendeiicy has been to utilize some kind of

linear approximation rather than the true model, and thus to avoid the difficulties

associated with nonlinearity. This is the approach which I have taken, and which I

will describe in the next part of the paper.

Ill

The optimization procedure I will describe has several advantages, not the

least of which is that it is relatively inexpensive to use with any model ahread)

prepared for computerized simulation experiments. With the exception of one

series of matrix manipulations, all necessary calculations can be performed by the

An additional drawback s that an apparently minor change in the structure of the model could

require that the entire problem be re-analy?ed.
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existing solution program. Another advantage is that the extra Storage reqiiireme
for the optimization procedure depends only on the number of 'ari,l in the
objective function, and not on the size of the model. And fInally, although the true
model isapproximated by a set of linear relations, this is not a once-for..ilf lineariza.
tion, but is repeated at each step in the iterative process.

At this stage all problems associated with uncertainty and the presence of
stochastic elements will be ignored. I assume the existence ofa known loss functionwhich is quadratic in certain target and instrument variables, and of a known,
nonstochastic (and in general, nonlinear) relationship bet ween the instruments andthe targets. These assumptions will now be spelled out in greater detail.

Targets will ordinarily be related to concepts such as uneniploynie,tt inflation
growth, balance of payments, etc. For example, the tinemployniejit target might he
defined as the unemployment rate, or as the number of unemployed workers, and
it could be defined in terms of the entire work force or of sonic sub-category (or
several unemployment concepts might be used as separate targets). Any of these
alternatives can easily be handled, provided only that two requirements are met.The first is that the target variables so defined (or functions of them) niust heappropriate for inclusion in a quadratic loss function, and the second is that their
values must be generated by the model.

The second of these requirements is trivial, since the presence in the lossfunction of a variable which is not at the same time in the model would have no
operational significance. The first is not trivia!, as one of the difliculties with aquadratic loss function is that it treats deviations of a variable from its targetsalue as eq ually undesirable, regardless olsign. While this may be quite appropriate
for some target variables, for others positive deviations may be viewed quite
differently from negative ones. To deal with this problem, simply devise a functionof the variable in question which will be smooth and will at the same time capturethe essential characteristics of the policy-maker's attitude toward the original
variable's behavior. For example, suppose that we dislike values of t!flCmploymentgreater than 4 percent hut are nearly indifferent to values less than 4 percent. In this
case we can create a new variable ( Y) related to unemployment (U) such that 1 iszero when U is 4 percent, dYdU is positive and large when U is greater than four
percent, and dY/dU is positive but small when U is less than fotir percent. Such arelationship could be approximjted by a single function or by pieces of several
functions, so long as care is taken to avoid sharp corners where the functionsjoin.5With some care arid ingenuity, this technique could he used to fit most targetvariables into a quadratic function.6 It is implicit in the above example, and I willcontinue to assume, without loss of generality, that each target variable is definedsuch that its "desired" value is zero.

Much of what wasjust said about target variables will be equally true ofinstru-ment variables Each instrument must be a variable whose value can reasonably
Suchan approach issimilar to the use ofa "penalty function as a means ofiurnina constrainedInto an unconstrained minimization problem 110].

6 [:riC(jflMfl [3] suggests ihat the problem should be solved by the use ofan objective function whichis piecewise quadratic, but I beliese that the procedure I hase described will he equally effective, and moreeasily Implemented In the event that we must use a
non-quadrjtic objective function, an extension o1nyoptimizing method described in [5] could probably be usedThis assumption will usually eliminate the necessity for linear terms in the loss function
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be assumed lo he chosen by the policy-maker. It must appear in the model as
an exogenous variable, and be defined so that it makes sense when included as an
argument ofa quadratic lOSS function with a desired value ofzero. The incorporation
of policy instruments in the loss function has been viewed as a questionable device
[ii], but it seems clear from casual observation that policy-makers are not in-
different to the values they select for their policy instruments. Their attitude may
reflect political considerations, uncertainty about the future, or merely a desire for
the quiet life, but whatever the reason, I do not believe that reality is violated when
we include policy instruments in the loss function.

As an example of a policy instrument, consider government purchases of
goods and services. Clearly, it is nonsense to assume that the government would be
willing to spend at whatever level is dictated by simple macroeconomic considera-
tions. Many of the other goals that government spending is designed to achieve
tmost of them not even represented in the typical mnacroecoimomic model) are
likely to be poorly served if spending is determined only on the basis of macro-
economic goals. it is more sensible to assume that there is some desired level (or
tate of growth) of government expenditure, and that progressive deviations from
this desired value (in either direction) are viewed as increasingly undesirable. And,
of course, this is precisely the attitude captured when we include the appropriate
function of government spending as an argument in the ioss function.8

I can now write the loss function as

(I) L. = (1'

where Y and X are column vectors of targets and instruments, respectively, as
described above, and H is a symmetric matrix of coeflIcients.9 Although the only
operational information emerging from the optimization procedure will have to do
with the current period, a policy-maker would probably wish to take account of the
path of the economy for some time into the future: if that is true the Y and X
vectors must contain both current and future values of the target and instrument
variables, for as many periods as are necessary. If there are n targets and 'ii instru-
ments, and the planning horizon is T periods, then

I

321

,Vj 2

and X= -'rn I

-' I 2

More complex assumptions regarding the policy-maker's view of the behavior of his instrument
variable can be easily handled by the device described earlier in the discussion of an unemployment rate
target.

As noted earlier, it will usually be unnecessary to employ linear terms in the loss function, and I
will omit them here in the interest of simplicity. See [6] for a derivation which includes the linear terms.
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where the lower ctse let tets refer to the md ividimal target or iflStFtiIlleIlt valucs. The
iliatrix i/is then (a ± miT 5 (n -- miT, and must hc positive definite (implying Ihat
loss lakes on its minimum value of zero when, and only when. Y arid X are both
zero VectOrS).

The model describing the behavior of the economic system is typically both
large and nonlinear, colitamnirig many non-target endogenous variables and non-
instrument exogenous 'aria bles. In fact, ii may he that none of the original variables
in the model precisely fit the definitions chosen for target and instrumeilt variables
in which case we would have to augment the model by adding the necessary
equations, as described in Section II.

This (augmented) model can be written as

(2) F( 1. }', X. X ) = U

where Y and X are as before, Y1 is a vector of the non-target endogenous variables
and X1 is a vector of the 11011-instrument exogenous variables. The vectors Y and
X contain all the arguments of the loss function, so if T (the number of periods in
the planning horizon) is greater than one. I" is not simply the set ofequatjo in our
econometric model, but rather is T sets of these equations, one for the current
period,and one foreach ofthe 1' - 1 future periods over the planning horizon, with
appropriate time subscripts.

The variables in Y1 can be ignored, as their values are ofno consequence to the
policy-maker. He mat' wish to know about their behavior along the optimal path,
hut, by assumption, there is no feedback front that behavior affecting the choice
ofoptinlal policy. I also drop explicit mention ofX1 since, although the values of
its elements much be chosen (or predicted) by sonic means or other, once they have
been chosen they can be taken as paranleters rather than variables with respect
to the optimization problem. In principle, then, the system can he simplified to
(3) 1 = G(X).

While it may be difficult or even impossible act'iallv to write out tile equations
explicitly in this way, the typical econometric model has an associated computer
program which can readily provide numerical solutions, and this is all that is
necessary.

The problem is simply to select that value of X which will minimize L, subject
to the constraint imposed by the relationship in (3). This can he done as follows:

Let X. Y. and L* he sonic initial mutually consistent values such that

Y *L* - (1*' X*')!I
_;._*

and

= G(X*).

Then define AL, A Y, and AX such that

)*
x*' ±AX)H_______

X ± AX
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and
Y + Al = (;(x* + AX) (;(x*) + K(X*.AX).

Even if G is a nonlinear function, it will ordinarily he safe to assume that, for
sufficiently small AX, K is reasonably linear in AX. We thus approximate K by the
nT by mT matrix U, such that

AY = K(X*,AX) = UAX
where each element of U isan approximation to the partial derivative ofa particular

where I is an tnT by mT identity matrix. Then

where Ag is the loss minimizing value of AX. given Y, X*, and U, and is an
approximation to the lOSS minimizing value ofAX, given }'*, *, and G. This will
be valid only to the extent that the approximation of K by UAX is valid, but if AA
is very small, the error in the approximation is likely also to be small and the
solution will be almost correct.

The matrix U can most easily be estimated by a series of niT simulations of the
model over the planning horizon. In each simulation all elements of X but one are
set equal to the values in X*, and that one (say xi,) differs from its value in Xt by a
small amount (Ax1,). The values of the elements of Yin this perturbed simulation
will differ slightly from those in Y*, and it is these differences (each divided by the
size of the perturbation that caused them) that are used as the elements of U. When

is perturbed, a vector of results is obtained of the form

Yii - 1'j 1

321 321

Ax1,

_,*).t JnI
Ax,,

.112 312

Ax,

)nT - )ni
Ax1, j

and this vector will be used as the [n(t - 1) + i]-th column of LI.
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(4) AX = -
I-
I (U': 1)11

U---
I j

1-'
I (LI' nfl

y with respect to an x, evaluated at X X*. Then

(L4 + AL) - 2[ K(X*,AX) + K(X*,AX)
11HiAX - [ lAX j f AX

U
0 = (U' 1)H

X*
+ (U nil ---

I
AX



I

L

The initial value of X * is likel to he rather far from its optimal aitic, So the
solution of(4) will yield large values for the elements of AA'. If G is not linear, these
will not be the truly optimal changes in X*, but it is simple to make the indicated
changes, solve for new values of }', both control and perturbed, and solve (4) once
again. My experiments indicate that this iterative procedure con verges rapidly even
when the model is rather large and quite nonlinear.

Before presenting some recent results obtained with the use of this technique, I
will discuss its relation to one of the standard gradient methods of function minimi-
zation. As described by Polak [10], the Newton-Raphson iteration procedure can
be written as

''2L(Y.)-
=

VL(X

where X1 isa p-vector of values of the independent variables as of the i-tli iteration.
and VL(Xt is the gradient of L at X1. written as a column vector.

Using (3). 1 can rewrite (1). evaluated at X as

G(X)(6) L(X) = (G(X1) X')H

The tIrst derivative of L with respect to X. written as a column vector (i.e., the
gradient of L) is then

(5)

(9) D 0
L

01
0H ..:

1j_J
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o G(X1)

o A'.
4-

0 0 ... G(X,)

0 0 ;...

(7) = VL(X)

and the second derivative is

i2L(X)
(8) ----,,-- =2

where

[ iG(X)

=

I-

rG(X)- :i
(A

?G(x1)

I)H()

+1)

X)

H

rG( X1)

-

-------
I

G(X1) 0 -°xi 0 0



and x is the j-th element of X. Using (7) and (8), I can now rewrite (5)as

(10) x1 - x1=
( -)-) + D )9)

This equation is exactly equivalent to (4), except for the second derivative terni, D,
which has no counterpart in the earlier equation. My optimizing procedure is
based on the assumption that G is nearly linear within a small neighborhood, and
thus that D can safely be set equal to zero.

In fact, D is ordinarily not exactly zero, and omitting it will have an effect on
the size of the step (X1 - X;). and thus on the convergence properties of the
method. It remains true, however, that if the sequence generated by the repeated
application of(4) converges, the gradient at the point of convergence must he zero
(this follows from the fact that H is assumed to be positive definite). I must leave
unanswered the question of the conditions tinder which the procedure necessarily
converges to a solutjon. I can only report that it has converged to within a small
neighborhood very quickly for two large, nonlinear models; whether it will do
so for others remains to be determined.

There are several other general points that should be made regarding the use
of this optimization method on a large model of the standard type:

Assuming that the procedure converges, it can at best find only a local
minimum for the loss function.

The only ways I know to be sure of finding the global minimum are to search
over a very fine grid, or to solve the problem analytically. I am comforted, however,
by the fact that in the many runs I have made with two different models there has
never been the slightest hint of multiple minima.

Although the model is nonlinear, we approximate it by a linear function
and ignore the second derivatives. Using that linear approximation. we
could satisfy all the requirements for minimizing the loss function, and yet
actually be at a maximum for the true model)0

This is not a serious problem, for two reasons. First, as stated earlier, the sokition
programs do not solve the model exactly. Thus, the optimizing procedure cannot
converge to a point, but only to a neighborhood (the size of which will be discussed
in point 3, below), and once it has reached that neighborhood the solution will
tend simply to wander about, moving in first one d'rection, then another, but
always being pushed back toward the loss minimizing point. Ifwe were really at a
maximum, a point of inflection, or a saddle point, such wandering would almost
certainly discover it, and the procedure would immediately move us off in the
appropriate direction. A second factor reducing the probability that this problem
could arise is that we are not taking derivatives of the model at a point, but finite
differences, and these will also tend to move the solution around enough so that the
fact that we had reached a maximum rather than a minimum would quickly become
apparent.

As just noted, when the solution arrives in the neighborhood of the optimal
value, the nonzero convergence criteria used in the solution of the model

° Richard Kopcke was the first to point out this possibility to me.
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and the finite perturbations used in estimating the matrix prevent us
Iroin ever reaching an exact solution.

In principle, we could reach any desired degree of accuracy simply by reducing
both the convergence criteria and the size of the perturbations as we approach
minimum loss, but there are limits to this, as mentioned in Section II. First, the
cost of solving the model goes tip rapidly. Second, the precision of the computer
programs is limited. And third, in most models the effects of changes in policy
instruments on certain targets is likely to he quite small, so the smallest perturba-
tion we can use may have to be 1,000 or 10,000 times the size of the convergence
criterion, in order to ensure that we obtain sutlicient signilIcan t digits to produce a

dependable answer. Given the leveJ of accuracy of the econometric model and of
the forecasts of exogenous variables, however, an attempt greatly to increase the
accuracy of the optimization proced tire beyond the level now easily attained cannot
be justified on practical grounds.

Some of these problems are illustrated in the nest section of the paper. where I
discuss a recent application of the method to the Michigan Model.

IV

I first applied my optimization procedure just described to RDX2, the
Canadian model mentioned earlier. I have just begun to experiment with the
Michigan Model, but it will be useful to examine sonic of the preliminary results.
These are of interest not so much as policy prescriptions (the instruments, targets,
and loss function coefficients are all chosen rather arbitrarily) but because they
illustrate both the ease with which the technique can yield a solution, and the
limitations caused by some of the problems described in Section Il.

The Michigan Model consists of6l equations, of which about 45 form a set of
simultaneous relationships while the remainder are recursive. The simultaneous
block is solved by the GaussSeidel method, with a convergence criterion for all
variables of 0.001 (i.e.. one-tenth of one percent).

I chose three target variables: unemployment, inflation, and the trade balance:
and three instrument variables federal spending, personal income tax rates, and
the reserve base. The precise definition of each of these variables follows:

In the model, UG°) is the global unemployment rate, in percent.! assume that
the desired value of this target is zero, so the first target is defined simply as the
global unemployment rate. in percent,

(Il) - tJNEMP, = UG

This variable is referred to as Y1, when it is utilized in the optimizing equation (4h
but in the text and tables I will use the mnemonic UNEMP. In this case there is
an apparently needless proliferation of variable names, but it is desirable to
differentiate between those variables already defined in the model and the special
variables defined for the purpose of policy selection.

The model defines PGNP as the gross national product implicit deflator,
but does not provide an explicit rate of inflation. I take the desired rate of inflation
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to be zero, and define the second target as the annual percentage rate of change in
the GNP defiatui,

(12) = INFL1
= [-PGNI'11

I assume that it is the nominal surplus or deficit in the balance of trade which
is of concern to the policy-maker, and that he prefersa zero balance. This assump-
tion is subject to objection, and can easily be modified in future experiments. The
model defines exports in billions of current dollars (X), imports in billions of 1958
dollars (M). and the import implicit deflator (PM). The third target is then simply
the difference between exports and imports in billions of current dollars,

Y, = BOFT, = XS, - (M1).

Federal nondefense purchases of goods and services in current dollars
(GFOS) is an exogenous variable in the model, and the implicit deflator for these
purchases(PG) is an endogenous variable. I assume that, in the absence ofstabiliza.
tion problems, the desired level of federal purchases would grow. in real terms,
about as fast as the economy (say, 0.9 percent per quarter). The policy-maker is
assumed to inflate constant dollar purchases by the price deflator in the preceding
quarter. because of the simultaneity problem (i.e., he doesn't know what PG will be
next quarter). Given an acceptable figure for these expenditures in period t. it is
easy to calculate their "desired" value in period t as

"Desired"
(s) = (l.009Y0(Ob0).

The expenditure policy instrument is the difference between actual and desired
expenditure, expressed as a percentage deviation at an annual rate.

G FOS,

X1, = GEXP
= (GFOS,0\

1-101(1.009)
, PG,, /

Since expenditure has now become an endogenous variable, it must have a defining
equation.

GFOS,
=

+ 1.o](1.009)tboGFos10(!_1).

The tax instrument is a one-time percentage surcharge (positive or negative)
applied to the average tax rate on personal incomes. Given total personal income
tax liability in current dollars (TP) in some initial period, t0. the model defines
the difference between tax liability in that period and in some later period t as

TPS, - TPS,0 = 0.20[(YPS, - GTRPS1) - (YPS10 - GTRPS,0l]

where YPS is personal income and GTRPS is government transfer payments to
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persons, both in current dollars. The tax instrunicti i TAX1. -'2' is then the one
period surcharge as a percent of the total tax liab,lit calculated Ott Ilk' basic of
(17), so the act ual tax liability in an period. including the surcharge, is

TPS, = (.o ± )(TI)s. ± 0.20[(Y PS, - (iTR P,( (Y PS, (;TR PS,)]t

(Is)

The monetary instrument is defined as the difFerence between the actual
annual rate of growth in unhorrowed reserves in current dollars (tRS and 6
percent.

RES, = A3,
LRS, - 1.0)400.0 - 6.0

so actual unborrowed reserves in any period are

URS,
[REsf 6.0

+ l.0]UR511.

I have made three optimizing experiments with the Michigan Model using
these definitions for the targets and instruments. The results are presented in Table
1. In each case the loss function coefficients for all targets in all periods were
assigned the same value (I000). This assumption is made not for its realism hut
because it simplifies the presentation of and comparisons among the outcomes.
The loss function coeflicients for the instruments are also the same in all periods,
but diljer between instruments and between experiments, as shown in the table.
The same six quarter planning period (196K3 to 1969.4) was used for all experi-
ments. and all non-instrument exogenous variables were assigned their actual
historical values.

Part A of Ta ble 1 shows the paths of the target variables when the instruments
are set at zero for each period.'' The loss function coefficient for each target in each
period is shown to be 100.0. The loss associated with each target is shown separately

TABLE I

Setting an instrument al zero implies that the underlyins policy variah!e is foItowirt what 1 haveassumed to be Its "desired" path, as described in equations(l6) (18). and (20). It should not he confusedwith a zero value for the underlyin policy variable (e.g.. government spending) or with its historicalpath.
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Quarter IJNEMP INFL
A Initial Path

BOFT GEXI' TAX RES Los,

1968: 3 3.52 4.82 5.21 0.0 0.0 0.0 6.27669
4 3.66 4.80 0.97 0.0 0.0 0.t) 3737.651969: I 3.84 4.64 1.50 0.0 0.0 0.0 3852.52
2 4.00 4.97 L73 0.0 0.0 0.0 4,369.38
3 4.13 5.02 2.18 0.0 0.0 0.0 4700.97
4

I.oss
427 4.23 2.48 0.0 0.0 0.0 4.227,62

coefficient 100 100 100
Loss 9,182.14 13.55962 4.42307 27164.83



°,, decline in
loss Front
initial
path 21.1 °,, 1.0',, 37.1 ",, 10.7",,

at the bottom ofeach column, and the combined loss associated with each period is
shown at the right end of each row.

Part B displays the results obtained when each instrument is assigned a loss
function coefficient of 5.0. Total loss has declined about 2.5 percent. but this
improvement is not reflected equally in all targets. The rate of inflation has hardly
been affected at all, but the increase in unemployment has been significantly
reduced. and the average trade balance has been reduced by about a third of a
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Quarter ((NEMP INFI.

UAUI.F ontinticd
R Exerimcnt I

BOFT GEXP TAX RES Loss

1968: 3 3.52 4.80 517 -011 -4,4! - 0,71 (,,315.7S

4 3.63 4.76 0.83 0.37 -4.79 -0.35 3,765.36
1969: 1 3.75 4.59 1.23 0.43 -6.04 0.04 1847.69

2 3.52 4.93 1.31 0.59 6.35 0.00 4264.69
3 3.57 4.99 1.64 0.47 - 5.33 0.0! .1,399.81

4 3.96 4.40 1.89 0.02 -2.20 -0.01 3.88557
Loss

coefficient 100 100 100 5 5 5

1.oss 8,488.07 13533.07 3,690.85 4.52 762.23 3.14 26,481.55
°.,, decline in

loss from
initial
path 7.6°,, ((.2",, 16.6',, 2.5',,

C Experiment 2
Quarter UNEMP INFL BOFT (JEXP TAX RES Loss

1968: 3 3.52 4.5(1 5.17 0.56 -4.15 -4.06 6.31065
4 3.63 4.75 0.84 2.55 -4.46 -221 3.75754

1969' I 3.75 4.58 1.23 4.70 -5.91 -2.00 3,542.87 J

2 3.51 4.93 1.30 5.56 -6.28 -0.06 4.263 75
3 3.85 4.99 1.62 5.62 -5.30 0.56 4.39110
4 195 4.40 1.87 0.65 -2.06 0.16 3,567.35

Loss
coc!1iccnt lot') tOt) 100 0.5 5 13.5

loss
decline in
loss Irorii
initial
path

8,457.09

7.9°,

13,514.39

0.3",,

3.67587 46.13

16.9",,

727.26 12.86 26,433.59

2.7',,

D Experimeni 3
Quarter UNEMP INFL I3OFT GEXP TAX RES Loss

1968: 3 3.48 4.78 5.10 14.05 -7.88 -10.94 6,143.52
4 3.55 4.66 0.66 4.49 -6.01 7.16 3.49700

1969: I 3.57 4.57 0.88 22.71 - 15.84 8.68 3,595.43
2 3.46 482 0.56 24.62 -18.88 10.12 3,765.42

3 3.39 4.91 0.40 22.54 -23.79 -2.95 3,584.84
4 3.40 4.63 0.35 -6.45 -11.13 0.23 3.37596

Loss
coetlicient 100 100 100 0.05 0.5 0.05

Loss 7,248.15 13,422.63 2,751.61 94.50 697.7! 17.87 24,262.47



billion dollars per quarter. F.xantination of the trends in the variables will ie eat that
the improvement is small at the beginning, hi.it tends to increase later in the plan-
ning period, reflecting the presence of lags in the effects of the policy instrunietits
In fact, we get almost no improvement at all in the initial period, and it isn't until
the third period that the conihined loss (shown in the last column) begins to decline

The small values of the expenditure and monetary instruments in the fIrst
experiment led me to reduce their loss coeiljcients in the second experiment, as
shown in Part C. The overall results are not substantially different from those in
Part B. except that GEXP and RES are used more vigorously than before.

Part D shows the optimal result when the weights on the instruments are
reduced to one tenth their size in Part C. Here we see a major improvement in
the unemployment situation, together with sonic measurable reduction of infla-
tion.1 2 The average trade balance has now been reduced by about a billion dollars
per quarter. All these improvements hake been achieved through substantial
increases in federal spending. reductions in income taxes, and rather wild gyrations
in the reserve base, hut the behavior of total loss indicates that it was worthwhile.
Total loss over the six periods has declined by almost II percent from the initial
path. and the reduction of loss in the fourth quarter of 1969 alone is more than 20
percent.

Experiment I required six iterations to achieve a minimum loss configuration,
experiment 2 required 14, and experiment 3 required 10. As described earlier,
these were not exact solutions, and continued iteration might eventually have
produced slightly lower values of loss. Any further improvement, however, would
almost certainly conic from a rearrangement of the instrument values, rather
than from any reduction in the loss due to the target values. In fact, the optimization
procedure usually requires only four or five iterations to achieve values of the
target variables that are within a very narrow range (typically ± 0.02) of the
ultimate optimal values. Further iteration only explores improved ways ofarrang-
ing the instruments in order to achieve those target values.

rhe optimal solutions in Table I were derived with a convergence criterion
of 0.0001, one tenth of the value usually used for solving the Michigan Model. I
tried even smaller values, hut the number of iterations necessary to solve the model
increased so fast that I decided to Ibrego the higher degree of precision.

In most cases the smallest perturbation I used was 0.5. The reason for this
should be apparent from an examination of Table 2, which shows the effects on
the target variables of a perturbation of 1.0 for each of the instrument variables in
196X.3. Many of the effects are so small as to he quite unre!iable. even with the new
convergence criterion, but the optimization routine takes them all to be equally
significant, and produces an optimal path based upon them. It is not surprising.
then, that the resulting path fails to he quite optimal. given the fault information
from which it was derived. I 3

Exceptirithefouoh quarierof l969,the thirdexperimeni managed to reduce both unemployment
and the rate of inflation in every period fin comparison with their initial values). There is obvio'slv a
limit to ihs, and xe may he running into it just at the end of the planning period. If this is true we would
probably wish to lengthen the plannine horiion in order to temper somewhat our near-term policyaction.

'
The data in Table 2 also explain why the lax variable is used so vigorousls in the first experiment:

us far more effectie (per unit) than either of the other two instruments
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C Perturb;ition of 1.0 for RES in 1968.3
1968 3 1968 4 1969 I 1969 2

\1
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1969 3 1969 4

* The figures shown arc the differences between the perturbed path and the inittal path as gisen in
Part A of Table I.

Many other experiments are suggested by the results just described, and they
will he undertaken as part of the continuing research effort in the Research Seminar
in Quantitative Economics at the University of Michigan.

In Sections 111 and IV I assumed the existence both of a fully deterministic
model and of errorless forecasts of all exogenous variables over the planning
horizon. These assumptions will now be replaced by more reasonable ones regard-
ing the nature of the model and of a policy-maker's ability to forecast the future.

Many of the non-instrument exogenous variables are actually random
variables with means, variances, and covariances which would have to be esti-
mated from information outside the model (proha'oiy from the lorccastcrs sub-
jective views regarding the reliability of his data and projections). The estimated
coefficients in the equations of the model are also random variables, and each fitted
equation has an additive error term as well. For these reasons I now assume a
stochastic relationship between the selected values for the policy instruments and
the resulting values of the target variables.

Under these modified assumptions, a particular set of values for the instru-
ment variables (X*) will result in an outcome Li *) which is the sum of its expected
value (W*) and an error term (e) with an expected value of zero,

(21) = G(X) = E(Y*) ± 1; = W +

= 0.

S

Li !i(IN (ii (Jtt Pt-Il IUIIUA lIONS ua T.-sRoI- \-\RIAHt is

of 1.0 for (i1Xl' in 1968$
I969 I 1969 2 1969 3 1969 4

A
1968 3

Perturbation
1968 4

UNEMI1 - 0.00292 - 0.00335 u0033-4 0.00267 -- 0.00196 - 11.00 147

INFL 0.0 -0.00267 (00343 0.00343 0.00305 01)0229

BOFT -0.00145 -0.00328 0.00133 --0.00121 -0.00148 -0.00125

IJNEMP 0.004!6 0.01205 0.01338 0.01073 0.00740 (1.0(1402

INFL 0.00648 0.01183 -0.01411 -0.01717 -ft01564 -0.01907
BOFT 0.01508 0.03140 0.02769 0.01775 0.01593 0.01640

UNEMP -0.00199 -0.00179 - 0.00203 - 0.1)0)76 --0.00123 - 0.00078

INFL --ft00076 0.0 0.00191 0.00153 0.00114 0110114

BOFT -0.00050 -0.00050 0.00055 0.00090 0.00133 0.00191

B Perturbation of 1.0 for TAX in 1968.3
1968 3 1968 4 1969 I 1961) 2 1969 3 1969 -I



At the same time, the matrix of elTects Irom :1 set of perturbations (given \* k
also a random variable ( ) whteh is the sum ol its expected vaiue and an errot
term (Q) with an expected value of zero.

(22) = LAX E(L')AX -+ QAX = tAX + QAX

E(Q) = 0.

Estimates of W*, V. and the variances and covariances of the elements of,: and
Q will be obtained by means of stochastic simulation ..A complete set of control
and perturbation runs will he made for each set of values assigned to the stochastic
elements in the model. After a suitable number of such runs the indicated calcula-
tions can easily he performed.

(liven the successful completion of these stochastic simulations, two problems
will remain. First, what if the estimated values of W* and V are not equal to the
deterministic values of * and U we used in Section III? And second, how should
we incorporate our knowledge of : and Q into our policy solution?

Regarding the first of these two issues, Howrey and Kelejian [7] have shown
that in a nonlinear system the values of the endogenous variables obtained by
solving the model with all stochastic variables set equal to their expected values
(as we did in Sections III and lV will not in general be equal to the expected values
of those endogenous variables. Thus, we would expect that the value of W
calculated as the mean outcome from the stochastic simulations would differ
systematically from the value of Y * we employed before in the deterministic
version (the same can he said for V and U). Although annoying. this problem
presents no serious difficulty, as we can simply replace our earlier values of Y*
and U with Wt and V. and proceed. 14

The question regarding the use to be made oh: and Q is the primary subject of
this section. We proceed very much as in Section ill, but this time we mitiifllize
expected loss:

E(L* + Al.) = I. (Y' ± A Y' X + AX)!!
Y ± AY
X + AX,

This can he rewritten as

EL* + AL) = F[(W* ± : + AXL

+ AX'Q' X* + AX)II(
4 .+ /AX+ QAX)]

Faii [I] also suggests the use of stochastic simulation as a device forestimating the mean va!ue of
in a control context. Muench ci al. [9] made some stochastic simulation experinients using an

earlier sersion of the Michigan Model. They found that, while there were systematic differences between
the' point estimates of 'V based on the deterministic model and the mean outconie of the stochastic
simulations, the differences in most cases were quite small. It is yet to be seen whether this remains true
for the current version of the model.
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Now expand, dropping those terms with an expected value equal to zero.

Make the following defInitions

= i[:'

0 = E[(Q' O)I1(__)
I

= E[(Q' O)H(-_)1.

Now we can solve for Ag. the value of AX which wil minimize the expected loss:

d(E(L* AL))
= 2(V' I)H + 2(V' I)H(--)AX + 20 + 2AX

JAX

F 1-il-
AX = - I (V

L

The solution of this matrix equation is readily obtainable, given the results of the
stochastic simulations already described. The two new factors, and 0, are corn--
posed of elements each of which is a weighted suni of variances and covariances
of some components of Q or of Q and . For example, the element in the ith row and
jth column of Z is equal to

coy qq
I I

where hgk is an element of!! and is an element of Q.
The effect of including E and (1 can more easily be seen if (23) is rewritten as

[ [ / V \l 1[ I V \i I I4\
A)

- [i
+ [

I)H(_-j-.) - 1[(V
!)H(__)i
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1)11
/ jI I (V I)H + 0

[

E(L* + AL) = (IV*' %'*')fl
x*

lI/*

+ (4/*' y*')[/ ---A'I

I I

± AX') F' I)H
X*

+ AX'(l" flU AX

+ E[(: o)11(-_) + (i;' O)H(__)AX

+ AX'(Q O)i!(_j_) + AX'Q'



It can he observed that the tirsl term in (24) is simply the optimizing value of A. f
and 1) were assumed to he zero. multiplied by a factor which is It1'ersely related to

. and which becomes the identity matrix if equals zero. The second term in (24)
is an additive correction factor whose size depends on the covartation between the
elements ofQ and those oft: (it also contains the same function of as a multiplica
tive factor).

With the aid of this form of the optimizing equation, it would be Simple to
calculate an optimal value for AX on the assumption of zero variances and
covariances, and then to calculate the effects on that optimal value due to the
estimates ofand f). It is possible that the size of the effect is so small relative to our
overall degree of confidence in our results that we would then decide to omit the
adjustment.'

It may be of some interest to examine the diflerenec in loss associated with the
alternative approaches suggested in the preceding paragraph.' ' If the calculation of

If we ignore and f) (i.e.. assume when calculating AX that their 'a ues are zero).
then the value of the expected loss (call it E(L)to distinguish it from the former ease)
will he

147* r I!
(76) F(L) = (IV*' v*')[f + - I(J4*' X*'IH ___l + f)x* L 1/

[1/' i)I1(_)] [(v' !)!I(ri_)+ 0]

x*'ii(___ I)HIL I

[ V 1-' Iw*i)H _;:_
J

(V'

F V 1-'
1)11 0.

Although one would expect E(Lj to be greater than E(L), that relationship
does not emerge easily from a comparison of equations (25) and (26). 1-lowever. if

In fact, if (t happens to have the value

F I' 1
I)H j (I.' I)!!

Then the correction due to is just offset by that due to 0. and optimal policy will be unaffected by
the inclusion of these two terms.

In the following calculations I assume that the correct values of IFt and F are used in both cases.
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AX takes account

-
(25) E(!.) = (147*'

x(

of and f) as in (23)

1V
X*')H

[ V
(V' I)H

[ I,

or

+

+
1-'[][

(24),

I

the expected

[(W*' X')Ii

(I' 1)11
111*---
X

value

I'--

+

of otal

+ f)

()

loss is



we subtract (25) from (26) and carry out a great deal of manipulation, the result
can be simplified to

(27) E(L) - E(L) [I4/* *)H(i_)

[(V i)H(_)
+

x

x

F V
1)11

]

(V' i)H x*

0

I

0

which is merely a very large quadratic form. As we might have anticipated, the
improvement in loss is due to two effects. one of them a function of alone, and
the other a function of both and 0. Further examination will reveal that all the
matrices within the large square brackets are either positive definite or semi-
definite (a zero difference in loss is possible if 8 takes on the value mentioned in
footnote 15, so that the correction in AX due to E is just offset by that due to 0).
The implications of a value of 0 for either or 0 can easily be deduced from (27),
and in general it can be shown that the improvement will be "small" if the variances
and covariances contained in and 0 are small relative to the squares and cross-
products of the variables themselves.

As stated earlier in the paper, I have not had the opportunity to experiment
with this proposed solution to the stochastic control problem, as we have not yet
done any stochastic simulation with the new model at the University of Michigan.
Thus, it is impossible to say with any degree of certainty how it would work out in
practice. When such an opportunity becomes available, I suggest the following
procedure:

Solve the deterministic control problem in the iterative manner described in
Section III.
On that path, conduct a sufficient number of stochastic simulations to
provide reliable estimates of W* and V, and of the weighted covariance
matrices and A.
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Reoptimize utilizing equation (23) or (24).
Return to step 2.

Rv unlizing this procedure we vould soon learn whethera single pass through
steps 2and 3 issufficient,or whetherseveral iterationsare necessary.

Ifthedifference
between 11* and the deterministic Y is as small as some of the values obtained by
Muench, et al. [9] and the difkrence between V and the deterministic U is corres-
pondingly small, a second iteration may not he required. In l)rinciplc, however and
ignoring costs, one could continue iterating until any convergence criteria were
met, but we would soon run into the same problems as before, regarding the solu-
tion program convergence criteria and the loss of significance when the perttirb
ticns are very small.

VI

In this paper I have described a simple method for selecting, within either a
deterministic or a stochastic framework, an optimal set of values for several policy
instrumenis SO as to minimize a quadratic loss function containing both those
instruments and a set of target variables. The use of the method in the deterministic
case was illustrated with an application to a medium-sized nonlinear model of the
U.S. economy.

The procedure used does not yield an exact solution, partly because of its own
nature, and partly because of the nature of the econometric model. Its accuracy
can be increased at a cost. hut I have questioned whether this increase in accuracy
is teal or only imagined, given the inaccuracies in the model itself. Optimal policy
calculations can in general be no more exact than the model solution from which
they are derived, and we should not overlook this fact in our quest for ever more
accurate control techniques.

I have also raised the question of whether, in practice, the cost of carrying
out the stochastic optimization procedure will exceed the value of the resulting
improvement in control. This is an empirical question, however, and could easily
be explored with the framework developed in Section V. I would not he surprised
ife were to find that (given our current state of knowledge about the economy)
for practical policy-making purposes a solution to the deterministic control
problem provides a sufficiently high degree of accuracy.

Whatever the answer to the question raised in the preceding paragraph, the
method I have described here has the advantage of being relatively simple, practical.
and inexpensive to implement, and at the same time provides a mechanism for
obtaining as exact a solution as the policy-maker is willing to trust.
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