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,4n,uil. n/ Econunuc and Social Measurement, 32. 1974

DETECTING ERRORS IN ECONOMIC SURVEY DATA:
MULTIVARIATE VS. UN1VARIATE PROCEDURES

FlY Pint.ip MtJSGROVE

Errors are sought in a large body of luntsehuld sorter data hr using prior knowledge of relations among
rariahies, rather than assunuptwIIs about the distribution of the errors. Prorhled the errors ore confuted
to the dependent tarioble of a !inetzr regression tootle!, the residuals front thc' regression can he used to
idenrfy prohuthlv-erroneoas'ohseruat ions. This test is compared. in efficiency and thoroughness, to a oni-
rariate test which detects only extremely high or low ohscriatios.

AcK NOWLED(; EM ENTS

I am indebted to several colleagues, none of whom is to hiame for the faults of the
paper. The notion of the cost and benefit ofan extreme value test derives, with some
modification, from a proposal by Arturo Meyer for comparing a number of tests.
The multivariate test was developed by Howard I-lowe: discussion of it with
Denisard Alves was most helpful. The empirical results were assembled by Ximena
Cheetham, Manly Ludcrs, Jorge Lamas and Dana Nowicki. One of the computer
programs used was written by Roberto Villaveces: the other was written by Marcia
Mason. Robert Ferber advised on the tests developed and commented on some
preliminary ideas for this essay. Howard Howe reviewed the first draft and offered
several helpful criticisms. William Madow commented on the paper as it was
first presented. Lester Taylor offered a suggestion for treating one of the principal
problems noted.

I. 1NTROI)UCTION

This paper considers how to detect errors in quantitative continuous variables
of the kind obtained in survey data. "Errors" include the readily apparent extreme
values together with misreported values which may lie near the center ofa 'aria ble's
distribution but still differ significantly from the true values. The procedures and
results discussed derive from the experience of trying to correct errors in a large
body of household budget data.

Both the purpose of the inquiry and the assumptions employed in it differ
from those associated with many errors-in-variables problems. These differences
are briefly described, with reference to some of the literature, in the bibliographic
note at the end.

2. SOME CHARACTERISTICS OF TESTS FOR ERRORS

Suppose there are T observations of each of n variables. We define a lest
as any procedure for selecting from this matrix ij observations of one variable.
(n is the number of variables used in the test, which may be much less than the
number available in the data.) If ii 1, the test is unirariate: if ii > I. the test is
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Pflullirariate. let v be the number of errors present in the variable being tested, and
let v(q) he the number of such errors detected in observations.

We define the efl:ck'nc' of a test as O(ij) = v(j)1i. and the tIIorough?It.'ss as
T(?1) = v()/v. A test is efficient if it finds only a few correct (non-erroneous) values,
and it is thorough if it finds most of the erroneous values, if the hypothesis is that a
particular value is erroneous, then an efficient test is unlikely to lead to a Type I
error (rejecting a correct value), for which the probability is I - O(), hut it may
easily lead to a Type IJ error (accepting an erroneous value). The reverse is true of
thorough tests.

The probability that a value chosen at random is erroneous is v'T, while the
probability that one of the selected values is erroneous is 0(q). We define the relative
efficiency of a test as the ratio of the two probabilities, or (q) = 0(q)T/v = Tv(q)/vij.
When, as is usual, v is unknown, 0 can perhaps be estimated but r and ' cannot.
As j increases fron-i zero, 0 is initially zero or one, and 0 - 'i'/Tas q - T. In order
for a test to be better than randorri selection, ' > I is required for some range of,1.
If this occurs, it is not evident a priori where 0 is maximal; and although 0 even-
tually declines, the decline need not be monotonic. With increasing q, r can be
expected to rise monotonically. Balancing the effects on 0 and r, and the relative
importance of Type I and Type Il errors, leads in principle to an appropriate
choice of ,ì.

3. TI-IE DISTRIBUTION OF ERRORS

Let x 1....,x. be the true values of a variable, and let ' be the
corresponding reported values. Let ar be a random variable with probability dis-
tribution p(), independent of x1. We assume that

= f(,)x,
If x is written as x -i-- t,. the additive error v, is a random multiple of x,. One
complication is that if x1 is a component of x1, and x, contains an error, so does
x31, with

= (I + [f(,) -
so the error in x,, is correlated with x, as well as with -

Now let s(x1 be any statistic to be ealcu!ated from the sample. Let
be the p-th moment off(), or

where for simplicity we assume that has a discrete distribution. If a statistic s is
homogeneous of degree p in the values of x, then it follows that s calculated from
xi", and s calculated from x, are related in probability by

.
That is. since

it follows that

E[x")P] = E{f"(cç)x] = E[f9(;)Jx ==

E[s(x ..........= 9s(x1 ,...,x
The exact value ofs(xt1) .j)) depends of course on which values contain errors;
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expression (5) merely emphasizes the usefulness of knowing something about the
error distribution.

A particularly convenient form of 1(z) isf(a,) = exp (a,). Then

log x =; + log x,

and

E[s(Iog x,..., log x)] = + s(log x .....log IT)

when the statistic s is horn-p in log x. ; is the p-th moment of the distribution
of a, or

p =

If there are different types of errors (with a serving as an index of severity or
frequency), a test may be efficient, or thorough, at finding some errors but not
others. The number v is replaced by the vector v(z), where v(a,) = p(a1)T and

= v. Similarly v(a, j), O(a, j), t(a, tj) and (a, j) are defined, where v() and
O() can be found by summation over a but z(;) and y(ij) cannot. The design of a
test should take account of which class(es) of error it is most important to detect;
it may not matter if some errors go unnoticed. The functions O(a, q) need not move
together with increasing ,, for different values of a; nor need the z(a,q). This
complicates the choice of ;.

If(3) refers to all the errors initially in the data, we can define the moments
corresponding to the errors remaining after applying a test of thoroughness
t(a, ) as

(t) = [I r(a. q)]JP(a)p(a)

If f"(a) is replaced by a. expression (9) gives the moment p(r). The importance
of an error a depends on the functionf, the frequency p(a) and the particular values
x, for which a, = a.

4. SEVERAL VAR!ABLES AND PRIOR INFORMATION

Suppose that our prior information about a set of n variables can be expressed

- x1, + b2x2, + ... -1- -1- a, = 0

where b1 = 1 for normalization, and a, is an error term with zero mean and con-
stant variance, independent of x1.......x,,,. Substituting the reported values,
some of which contain errors,

where v, includes the effects of the errors in the variables, and may not be well-
behaved, a, and v, cannot be observed separately; only the sum u, = a, + v, is
observable. Since a, and v, are uncorrelated, the larger is a value u,, the more likely
it is to contain a non-zero error v,. The variance a is unknown, so the best measure
of "large" u, is the variance c = -i- c. Let k be a parameter describing the



Stringency 01 the test: then an observation [x'/,...,x'] is said to be extreme if> k2c.

5. MULTIVARIATE TESTS

Suppose that x, ,...,x are observed without error (x is the variable to betested). Then

(12) x = h0 + b2x21 + ... + +

This relation can be estimated without bias by ordinary least-squares regressionif E(v) 0 and E(u) is independent ofx1: that is, if the errors r have the samecharacteristics as the errors c. Otherwise h0, b2,.. . ,b, will be estimated with bias,as vilJ the distribution of the errors ii. The usual procedures for coping with hetero-scedasticity, such as dividing all the variables by x1 or x, are of no help since thatwould introduce errors on the right-hand side. It is also impossible to adjust fornon-zero mean error if is unknown.
Since the object of the test is not to estimate b0, b2.....b, it may not appearto matter if they are biassed. It is important however that the regression provide agood fit to the sample. When the regression is not significant, the expected valuefor the dependent variable (x1) is just the sample mean. Large values of u are thenassociated with large (or small) x,. that is, with values which are extreme t'i1houtconsidering any other variables. In these circumstances the multivarjate testcollapses to a univarjate test. Furthermore, biassed coefficients pull the regressionline toward the erroneous values, which makes them harder to detect (by reducingtheir residuals) and makes some correct values appear erroneous. Therefore weconsider three possible means of modifying a multivariate test so as to retain therelation (12) while reducing the bias likely to be introduced by OLS regressionon the full sample.

The simplest procedure is to estimate (12) from a censored sample, excludingthose observations most likely to contain large errors i'. A large enough error inx will not only make u extreme, hut will make x extreme compared to theother values of X, independently of the values of The univariateextreme values should therefore perhaps be excluded, lithe excluded values arein fact erroneous, this procedure will reduce u, improve the estimates of b0, b2,b and (for a given value of k) make the test more stringent.
A second possibility is to use an estimating procedure which is relativelyinsensitive to large residuals, rather than least-squares estimation. The idealregression method might estimate (12) by minimizing

(13) Q(x .,), where + b2x,1 +. . +
and the function Q would have the properties Q(0) = 0, Q(x) = Q(x), Q(x) 0,Q'(x) and Q"(x) 0. Beyond some distance from the regression line, a pointshould cease to have any (further) influence on the estimates so Q"(x) isdesirable. Computing algorithms do not exist except for Q(x) = x. It is not vitalto have a zero mean residual, since E(t',) 0 necessarily.

The third possibility is to retain all the sample points and use OLS estimationfor the ease ofconiputation, but to group the data before estimating. If the observa-
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tions are appropriately grouped, the regression can be protected from individual
errors.

A multivariate test may be justified to the extent that it (i)setccts observations
in the tail(s) of the distribution more efficient!)' than a univariate test, or (ii) finds
erroneous values in the center of the distribution, which would escape a univariate
test. The test need not be symmetric: a given can he divided between too-high
and too-low values of x by testing u, > k1r and u1 < k2o, for k1 k2.
The object in using a multivariate test is to trade assumptions about error distribu-
tions for assumptions about relations among variables, where the latter kind of
information is more likely to be available. The relations to be tested can be based
on, or even identical to, the relations to be examined after the data have been
cleaned: using them at an earlier stage may tell something about their plausibility
at the same time that errors are detected. Whether the additional cost of a multi-
variate procedure is repaid in greater efficiency or thoroughness is a question for
empirical examination.

6. THE DATA ANALYZED

In 1966-1972 household budget surveys were conducted in 18 major South
American cities as part of the ECIEL Program coordinated by the Brookings
Institution.1 The data collected are in many cases the most complete or the most
accurate available; nonetheless it was expected that they would include a variety
of errors and would require careful cleaning before analysis.

The samples, and the procedures for treating the data, have been extensively
described elsewhere [16], [17]. We indicate a few characteristics of several samples
for which the cleaning process is (essentially) complete and from which some
conclusions can be drawn. Some results were previously reported for the first
sample studied [12]. All the stratified samples are non-proportional.

7. THE TESTS APPLIED

These data were subjected to two extreme-value tests. The first is a univariate
frequency distribution which selects all the observations outside a specified range.
The usual test was to define the range as . ± 3o, with . (mean) and (standard
deviation) estimated by first observing the entire distribution. The test has
regularly been used only on the upper tail of the distribution: often L - 3o < 0,
while x > 0 is required. The second test is a regression model of the form (12).
The dependent variable was in most cases a share of total expenditure on a

'ECIEL is the Spanish acronym for Joint Studies on Latin American Economic Integration.
14 institutions in ten countries collaborated in this study; four are national statistical offices ind ten
are universities or private research institutes.
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Country Cities No. Observations No. Intervals No. Strata
Colombia 4 2949 4 3

Chile 1 3378 4 3

Paraguay 1 568 2 (1)

Peru 1 1357 4 4



particular category of goods and services, and to minimize bias in the estimation
due to errors in x2, , all the latter were usually dummy variables- The usual
criterion was k = 3, or u, > 3: as with the univariate test, very few too-low values
were detected.

8. Sosie OuTcoMes

Almost invariably there are a few very high values in the upper tail, with the
highest observations exceeding + 6c and with approximately one or two per-
cent of the observations exceeding I + 3.The univariate test finds these extreme
values quickly and cheaply, hut it does not select any values in the center of the
distribution. The very high values are quite frequently erroneous, orwhen the
same observation appears for several variablescome from an unrepresentative
household. Once these values are eliminated or corrected, the test becomes much
less efficient.

The regression test is considerably more expensive than the univariate proce-
dure. The first questions of interest are (i) do the two tests select (essentially) the
same observations, for equal tj, and (ii) if they do not, is the multivariate test more
efficient. The answers appear to depend very much on exactly how the tests are
performed. If the share-of-expenditure is tested both ways, the two tests tend to
pick out the same values. For example, in nine of the ten variables tested for Chile,
the univariate test (at slightly higher j) found all the regression-test errors. Three
multivariate tests for Peru yielded values always above I + 4a. Four such tests
for Paraguay yielded six extreme values, of which four exceeded I + 7 and
two fell under I + 2a: four tests for Columbia detected only one value under
.1 + 3a. Three other tests found 212 of 391 values below I + 3cr. In all these
cases, the residuals from the two tests are highly correlated.

If instead the regression test is based on share-of-expenditure while the uni-
variate test is based on actual expenditure, the results are very different. 01102
extreme values detected in 19 variables for Paraguay, only 45 had values above
.1 + 3o, 42 were below I + 2o, and nine were below 1. 14 such tests for Peru
yielded 152 extreme values, with 66 above I + 3a, 72 below I + 3o, and eight
below I. It is evident that the multivariate test can find extreme values which are
hidden in the univariate distribution, and therefore that in general the analysis
of any variable should take some account of the values of other variables. However,
in the case of expenditure variables, a great deal is gained simply by taking ratios
of total expenditure, after which the multivariate test adds relatively little. Also,
it is not so valuable to select "extreme" values near the mean if most of the interior
values are correct, and most of the errors lie several standard deviations away.
In the Peruvian tests described, it was possible to correct 56 of the 152 values
selected, and of these 39 exceeded I + 3o. The efficiency of the multivariate test
averaged 0.33 overall, with 116 errors found in 354 values selected in 36 variables.
In the Colombian sample the efficiency was 0.16. for 932 observations selected
from 40 variables. In the Paraguayan sample almost no errors requiring cor-
rection were found. The rather poor performance of the niultivariate test may
be partly due to the use of dummy variables to explain a ratio with a fairly
low variance in the sample. Probably more important is the fact that often

338

k



the regressions were not significant (by an F-test) so that the test collapsed to a
univariate inspection.

These results are inconclusive, because differences between tests may be sub-
merged by differences between types of variables tested or by an unsatisfactory
specification of the regression. The true error distribution is unknown, so that r
cannot be estimated; for the same reason, the efficiency of both tests may be under-
estimated. An experiment was therefore conducted by deliberately introducing
errors in the data from one sample, and then comparing the univariate and multi-
variate procedures for finding them. The errors are multiplicative, of the form

exp (;).

9. DESIGN OF THE EXPERIMENT

Three distributions were used to generate errors in the Colombian sample.
It was assumed that the artificial errors dominate, in number and severity, any
errors remaining after the cleaning of the data. Distribution I was applied to three
expenditure variables. Distribution II to six other expenditures, and Distribution
Ill to two of those six.2 The errors were carried into the logarithms of the variables
and the shares of total expenditure. Observations were selected random!y with
respect to city, interval and stratum. Either ten percent or four percent of the data
were disturbed; this is believed greatly to exceed the true error frequency. The
error probability distributions and their first and second moments are shown
below:

Both tests were then applied three times for each expenditure category: once to the
actual value (EV), once to the logarithm (LEV) and once to the share in total
expenditure (SEV). To improve the performance of the multivariate test, one
continuous variabletotal expenditurewas included among the independent
variables. This exaggerates somewhat the efficiency of the test, since in practice
such a variable might also contain errors.

10. COMPARISONS OF RELATIVE EFFICIENCY

The statistic y is used to compare the two tests. The results for the three
variables affected by error-distribution I are as follows (for k = 3.0): results
marked * are based on too few observations to be significant.

2 The expcnditure studied were: meat and fish, medical care, and household equipment and
supplies (1); cereals, vegetables, clothing, personal care, education, and housing (II); and education
and housing (III).
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I p(s) 0 0 0 0.9 0.1 0 0
II p(a) 0.01 0.015 0.025 0.9 0.025 0.015 0.01
Ill p() 0 0.0075 0.0125 0.96 0.0125 0.0075 0

Pi exp(a)
1 0.1 0.1 1.17 1.64
II 0 0.45 1.29 5.94
III 0 0.085 1.14 1.46



Tests using logarithms are almost useless for detecting asymmetric errors
such as these. The tests of E\' and SEV show, first, that varies considerably
among variables; and second, that there is--at these values of i and vno signifi-
cant difference between the two tests. For such large multiplicative errors, an
erroneous value is \'ery likely to be extreme in the univariate distribution. We may
suppose that with either increasing or decreasing v, the multivariate test would
improve its performance relative to the univariate test. Only further experiments,
however, could show at what parameter values this would occur, and whether the
gain would justify the additional cost.

A test based on Distribution I has the disadvantage that the results depend
on the relation off() to the range of x. Distribution II was introduced to minimize
this problem and to see how well each test could pick out errors of one kind in the
presence of errors of greater or lesser severity. If x, < x,., f() > f(;.), and

< x, a test should be more likely to select observation I than observation 1'.

A univariate test fails this criterion: the question then becomes whether a multi-
variate test can satisfy it.

The results of the comparison for the six affected variables are shown below,
giving ;j and y for . = 3, 2, 1, 1, 2, 3. The other measure shown is the mean
severity of the errors detected, defined as

(14) :y.* = log expfotj/;,'1] = 0

This measure increases (but is 3.0) when errors are found at = ±3, and de
creases as the errors detected are less severe (have lower values of ). It does not
matter on which side of zero lies. The statistic is of interest only when there
are different kinds of errors in the distribution: * is uniformly 1.0 for error-
distribution I.

The multivariate test appears to perform overall at least as well as the uni-
variate test. Both tests concentrate on > 0 when the absolute expenditure or the
share is analyzed; the univariate test is more likely to find errors with < 0. The
regression test finds errors much more symmetrically when logarithms are
examined. The regressions generally have R2 between 0.2 and 0.5, with several
coefficients significant: so the two tests really are different, although because of
the large values of f() they find many observations in common. There does not
seem to he any connection between the goodness of fit ofa regression and whether
it out-performed the univariate test. The differences in and -, between the two
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S

procedures are so small that it is not clear the greater cost and complexity of the
multivariate test are justified.

In three respects, this comparison is unfair to the inultivaciate test. First, the
experiment was limited, particularly by having q < v in all cases. Second. the
regressions are ordinary least-squares, and therefore suffer from the biasses des-
cribed in section 5 above; also, all the observations were used, without grouping.
Third, both tests were applied to the identical data, which included some extreme
values easily detected by the univariate test. To the extent that the multivariate
test "wasted its time" in finding those errors, it was less able-for a given value
of k, or of ?1----to detect errors buried in the center of the distribution. The regression
method would probably be much more efficient, relative to the univariate inspec-
tion, if the univariate extreme values were first removed.

Error-distribution III was introduced to reduce the total number of errors
and their maximum severity, so as to reduce the importance of the first and third
problems just described. Errors of = ± 3 were eliminated, and p{) was halved
for = -2. -- I. 1.2. Four percent errors remained in the data. The stringency was
also varied, to see the effect of changing Pi: values ofk of 2.5 and 3.5 were used. This
distribution was applied to variables 5 and 6 only: the results are shown below.

Under these circumstances, the multivariate test performs better relative to
the univariate test. For k = 2.5, it yields lower j and higher y and i' in almost
every case. The increased efficiency is not at the expense of thoroughness; ,j can
be lower while still detecting a large share of the errors in the data. At k = 3.5, ij is
about halved for the expenditure and share variables, but drops almost to zero for
most of the logarithms. In general, the superiority of the multivariate test is more
pronounced than at the lower stringency. It is much more efficient than the uni-
variate test at finding the large errors ( = 2). It appears that the regression proce-
dure is superior when there are errors of different degrees of severity in the data;
when the most severe errors present are still not so large as always to lead to uni-
variate extreme values; and when the total number of errors is not too large.
In these conditions, the multivariate test is markedly more efficient at detecting
the more severe errors, and-when examining a small number of observations-
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y, Univariate Test y Multivariate Test
'j --2.-; 1 2 f t -2 -1 I 2

k = 2.5
EV 5 78 5.! 8.6 1.73 57 7.0 16.5 1.79

6 38 6.3 17.6 1.52 22 10.8 30.4 1.82
SEV 5 67 5.9 12.0 1.76 37 10.8 21.8 1.77

6 50 8.0 18.8 1.79 48 5.0 28.0 1.90
LEV 5 36 7.5 2.00 30 9.0 5.3 22.3 1.90

6 46 3.5 5.8 1.73
I 7! 15.1 18.9 2.00

k = 3.5
FV 5 48 6.6 1.00 27 8.8 9.9 1.64

6 19 8.4 28.3 1.85 12 6.6 44.6 1.91
SEV 5 33 9.6 16.2 1.73 23 17.3 29.1 1.73

6 17 4.7 23.6 1.89 19 42.4 2.00
LEV5 2

6 0 2! 6.4 19.2 2.01)



more efficient overall. When these conditions do not hold, sonic prior examination
of the univariate extreme values appears to be desirable. Improved versions or

ways of using a multivariate test should increase these advantages by reducing
the estimation biases and allowing the test to hunt for errors in the center of the

distribution of the variable examined.

11. BIBLIoGRAPhIC Noie

The information collected in household budget surveys may be thought of as

generated by a sequence of steps. each of which allows the introduction of errors.

Initially there are response errors, due to incomprehension, deceit or forgetfulness.

Subsequently the data may be incorrectly coded or keypunched. Errors can also

arise if values must be converted to different physical or monetary units or periods

of reference. Some true values, containing none of these errors, may also he so
unrepresentative that they might better be considered erroneous. All these difficul-

ties increase when several slightly different samples are to he compared, so that

more stages are required to harmonize them.
In principle, most of the errors created after a household is interviewed can be

prevented by sufficient care in designing questionnaires. training interviewers

and verifying the field vork and subsequent data manipulation. In practice, such

care is not always take. There are then two broadly-defined possibilities for

analyzing the data (excluding the course of taking no account of the errors):
Estimation of particular relations by models which expressly characterize

the errors but do not identify them or remove them from the data; or
Selection of certain values which are thought likely to be erroneous and

which are then eliminated or replaced by information derived from the sample.

The latter procedure also requires that some assumptions be made about

the errors so as to identify values which are likely to be in error. We assume that

systematic errors can be corrected at an early stage in the analysis, so that the

remaining errors affect a small share of the observations. Errors in qualitative

variables can often be detected with the aid of strong prior information. Only

certain (coded) values of a variable may be allowed, or only certain logical relations

with other variables. For quantitative variables, however, the only prior restriction

may be nonnegativity, and an error may lead to an extreme value which will bias

any calculation based on that variable.
Procedure (1) is the domain of the errors-in-variables model (EVM) [13,

chapter 10]. Provided one can estimate the covariance matrix of their errors, any

combination of variables can be used for linear regression analysms. Since the model

assumes zero means for all the errors, analyses based on mean values, such as

tabulations. are unbiased. The errors are also assumed to have constant variances

and to be independent of the true values of the variables. These assumptions may

apply to conceptual variables such as permanent income [9], but they do not

plausibly characterize the errors obtained in survey data. Such errors do not
appear generally to have zero means [7], [8] and even when they are symmetric

and have small means they may be correlated with the variable in which they

occur or with related variables [I]. The assumptions seem not to hold exact1)

even for data much less subject to error than those in household surveys [15].
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Because both dependent and independent variables contain errors, it IS not
possible in this model to estimate individual errors without the additional restric-
tions that the covariar,ce matrix be diagonal and that each true vadable be an
exact function of some exogenous, error-free variables [10]. Even if all the restric-tions can be accepted, any nonlinear transformation of the data will change the
error structure, If the object is not only to estimate certain relations hut to leavethe data ready for other analyses, this procedure is not of much help.

The problem becomes much simpler if only the dependent variable is assumedto contain errors. Then it may be possible to estimate individual errors and evenif this is not done, both the true relation and some parameter(s) of the error
distribution may be estimated without bias. The assumptions of independence,
zero mean and constant variance may be dropped. An example is Elashoff's
model [6], in which the dependent variable includes errors which are quadratic
functions of the independent variable. (The regression line could be used to imputetrue values, if desired.) Chen and Dixon [2] consider the dependent variable toinclude a normal error in either location or scale. For a certain range of proba-
bilities of error, it is shown that either trimming or Winsorizing the set ofvalues of the dependent variable associated with each value of the independent
variable, gives better estimates of the regression coefficients than are obtainedby ignoring the errors. The improvement disappears as the probability of errorrises.

Such adjustments are already an example of method (2). Many proceduresproposed for data editing are of this form: certain values are either eliminated or
changed, without verifying the existence or size ofan error. Often they are designedto improve the estimation of some statistic(s) by eliminating or reducing theinfluence of the errors. An example is McCarthy's [14] suggestion for discarding"inliars" to improve the dichotomous classification of a variable; another isSearls' [18] proposal to reduce the effect of large true values on the estimate of the
mean. A number of Contributions such as [5] discuss parameter estimation forparticular distribtitjonsmost often the normalwhen some values are erroneousor missing. The distribution of the errors is still often assumed to be normal. A
general procedure for dealing with outliers or with a long-tailed error distribution
is presented by Tukey [19, pp. 21-32].

Further analysis, and the identification of individual errors, often is feasibleif (i) the data have passed through several stages, and it is possible to check adoubtful value against an initial entry, or (ii) the verification of errors can draw oninformation in the sample or exogenous to it, which was not used to select theobservations for analysis. Both conditions are likely to hold for consunler surveydata: (i), because data that have been coded, converted and keypunched can hecompared to questionnaire entries, for correction of errors introduced at thesestages, and (ii), because the number of variables is likely to be much too large touse them all in the selection procedure.
Much of the literature on the detection of errors (for example [3], [4]. [11]) ischaracterized by the following set of assumptions:

Only one variable is considered.
Errors in the variable are most likely to give rise to outliers, so the testshould determine whether the highest (or lowest) values are erroneous.
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The errors are normally distributed and independent oitlie true values of
the variable.

The sample is small (often 20) and only one or a few outliers are to he
tested.

The true distribution of the variable is known (often normal and the
chief problem may be to estimate its parameters in the presence of errors.
Clearly not all these assumptions apply to all the procedures available, but some
subset of them nearly always appears.

In this inquiry, we abandon assumptions 4 and 5. Assumption I is (largely)
retained. Assumptions 2 and 3 are special cases of more general hypotheses put
forward about the errors being sought. The model developed is somewhat similar
to the balancing of costs-of-inspection and losses-from-errors discussed by van der
Waerden for problems of quality control [20J.
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