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ABSTRACT

It is common in empirical research to use what appear to be sensible rules of thumb for cleaning data.
Measurement error is often the justification for removing (trimming) or recoding (winsorizing)
observations whose values lie outside a specified range. This paper considers identification in a linear
model when the dependent variable is mismeasured. The results examine the common practice of
trimming and winsorizing to address the identification failure. In contrast to the physical and laboratory
sciences, measurement error in social science data is likely to be more complex than simply additive
white noise. We consider a general measurement error process which nests many processes including
the additive white noise process and a contaminated sampling process. Analytic results are only
tractable under strong distributional assumptions, but demonstrate that winsorizing and trimming are
only solutions for a particular class of measurement error processes. Indeed, trimming and winsorizing
may induce or exacerbate bias. We term this source of bias "latrogenic" (or econometrician induced)
error. The identification results for the general error process highlight other approaches which are more
robust to distributional assumptions. Monte Carlo simulations demonstrate the fragility of trimming and

winsorizing as solutions to measurement error in the dependent variable.
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1 Introduction

Empirical researchers frequently use apparently sensible rules of thumb to clean data. Observations where
the value of the dependent variable is outside some range are typically removed. The justification for this
practice is that these observations are subject to measurement error, and by removing them, the impact of
measurement, error is reduced. As an example, researchers analyzing survey reports of wages and salaries
often remove observations whose value for the hourly wage is below the minimum wage or above some
prespecified cutoff: sample exclusions based on wages can be found in Katz and Murphy (1992), Card and
Krueger (1992), Bound and Freeman (1992), Juhn, Murphy, and Pierce (1993), and Buchinsky (1994). We
cite these authors only to illustrate the use, and therefore endorsement, of this practice by the leading
scholars in the field. It appears to make prima facie sense to delete observations who values are outside of
sensible bounds— for example, reported hours worked with negative values, or observations with more than
52 weeks worked in a year. As we demonstrate in this paper, the intuitively appealing strategy of discarding
certain observations is not costless and can introduce specification error in cases where no error previously
existed. Moreover, rather than reduce the impact of measurement error, it can exacerbate bias caused by
measurement error in the dependent variable. Given the fact that the inconsistency is exacerbated by the
analyst’s actions, we borrow a term from the medical literature and term this form of bias “iatrogenic”
specification error. In the medical literature an iatrogenic event is an adverse reaction to a well-intentioned
treatment initiated by a physician, and we believe that parameter inconsistency that is caused by the analysts
well intentioned actions shares the same features of the physician induced complications.

Given the widespread acceptance of this practice, the topic of “robust” estimation has received the
attention of both economists and statisticians. In one the earliest formal examinations, Stigler (1977) poses
an interesting question: how much have methods such as trimming, winsorizing, the Edgeworth average, or
Tukey’s Biweight reduced the bias in the laboratory estimation of physical constants such as the speed of light
or the density of the earth. Stigler concludes that the 10% trimmed mean, the smallest trimming amount
considered in his study, is the most reliable estimator. In his conclusions he echoes a prescription made by
the famous mathematician Legendre who had recommended deleting those observation whose errors were
“too large to be admissible”. Most recently in the econometrics literature, Angrist and Krueger (2000) apply
trimming and winsorizing techniques to the matched employer-employee data that were studied by Mellow
and Sider (1983). When they trim both the employer and employee wage data, they find that the correlation
between the two measures improves (this result does not hold for reports of hours worked). On the basis of
this finding they conclude that “a small amount of trimming could be beneficial.” Their prescription, which

summarizes the intuition and current practice of most analysts, including ourselves, may be summarized as:



“Loosely speaking, winsorizing the data is desirable if the extreme values are exaggerated
versions of the true values, but the true values still lie in the tails. Truncating the sample is more
desirable if the extremes are mistakes that bear no resemblance to the true values. (p.1349)”

We examine this practice in detail here, focusing on cleaning based upon the dependent variable. We
use wages and earnings as a motivating example, but clearly the results apply elsewhere to general errors of
measurement in survey data (for example the type studied by Rodgers, Brown and Duncan (1993)). Similar
to the work of Hyslop and Imbens (2001), we posit a general model of response error in the dependent
variable of a simple linear regression model and characterize the properties of different cleaning techniques
on measurement error processes. We demonstrate, both analytically as well as through the use of simulations,
that in general there is no reason to believe that removing “obvious errors” reduces bias. This is similar,
in spirit, to the finding of Hyslop and Imbens (2001), who examine instrumental variables approaches to
solving the measurement error problem and find that they only apply to very specific measurement error
processes. We demonstrate that the results in Stigler (1977) do not necessarily carry over in a regression
framework. Indeed, trimming or windsorizing can bias coefficient estimates by as much as 10-30 percent.
These are not second-order effects. Indeed, in many cases it either induces bias that did not previously
exist, or exacerbates the bias due to measurement error. We further show that the cases where the cleaning
actually results in reduced bias occur only by serendipity. If a researcher has the information to know that
the data fit one of these special cases, there are other approaches which are far simpler given the availability
of this information.

Our paper is organized as follows: Section 2 describes identification with (general) measurement error in
the dependent variable. We establish that the linear projection of the mismeasured dependent variable on
the covariate matrix constitutes the central equation of interest for the purpose of our analysis. In Section
3, we consider three specific models of measurement error (additive white noise, linear transformation and
the contaminated data process) to understand the relationship between estimated coefficients in regression
models that have these types of measurement error and the general model considered in Section 2. Section
4 examines the implications of the cleaning proposals analytically. The researcher is assumed to choose a set
of values ¢ < E'[y] < C and retain a data set through trimming or winsorizing such that {y;, z;|y; € [¢,C]}.
Under this framework we rigorously examine the bias from trimming and winsorizing, and also consider the
implications of these cleaning procedures on the estimation of the asymptotic variance of the coefficients.
We also discuss results for the multivariate case. We prove analytically that only in highly specialized cases
does cleaning reduce bias, mostly through serendipity. In these cases, the information necessary to reduce
bias leads to a simpler correction which actually requires fewer assumptions. Section 5 presents detailed

Monte-Carlo simulation results for the cases considered analytically, as well as those for which no tractable



analytical results are possible. Finally, we generate quasi-simulated data from the 1990 US Decennial Census
to study the properties of winsorizing and trimming on multivariate data whose covariance structure is not
determined by ad hoc simulations. These simulations are found to support the results of the earlier two

sections. Section 6 provides concluding comments.

2 Identification with Measurement Error in the Dependent Vari-
able

To evaluate the widespread practice of “cleaning” data as described above we consider a general model
for measurement error processes in the dependent variable. We demonstrate in the next section how this
model nests common measurement error processes such as those with classical measurement error, linear
transformation, and contaminated data processes of Horowitz and Manski (1995). In order to keep the
analysis simple and intuitive, we focus on a linear regression model as the underlying structural model of
interest to the researcher. That is, the researcher hypothesizes that the relationship between the “true”

dependent variable and the covariate is described by:

combined with the usual assumptions sufficient for identification and estimation of the vector of interest 3

and its associated covariance matrix.

Al : Eluilz;] =0
A2 : gz, is a vector random variable with mean 0 and
full rank second moment matrix V,,

A3 : Random Sampling

We note that the mean independence assumption is stronger than necessary for identification of the vector
B3, but allows for a simpler analysis below. The zero mean for z; is the usual normalization. The researcher
is only able to obtain data on y;, a mismeasured versions of the variable of interest. The focus in this paper,
as motivated above, is on measurement error in the dependent variable yf. At the outset, we assume a

general process that relates the true value ¥} to the observed value y; :

Yi :h(y;7§i)7 (2)



where

A4 : h(.,.) has finitely many discontinuities
A5 . g, is independent of (y;,z;,u;),

A6 Cov(yi,y;) > 0.

The fourth assumption is necessary for moments to be well defined, and A6 simply ensures that the measure-

ment error process is not so perverse that y; is uninformative about y; (covariance of zero), or that y; and

*

Yi

were known and that the covariance is not zero. The fifth assumption is the strongest one. It implies that

are negatively related. Indeed, the necessary condition would simply be that the sign of the covariance

the measurement error process is independent of z; and wu; except through y’. Formally, this insures that
Fyilyl) = fyilys, z;, us). Regardless of the process in equation 2, one summary of the joint distribution of

y; and y! is the population linear projection of y; on y :
Yyi =0 +y; + e 3)

The population projection defines (8,+) and the properties of e; :

§=Ely, (4)
~ Cov(yi,y})
=TV ©)
and
Ele;] = Eleiy;] = 0. (6)

It is important to note that this is simply definitional: provided second moments exist, the linear projection of
y; on y! exists as defined above. The linear projection is not a statement about the data generating process,
but rather a summary measure of the joint distribution of (y;,y}). The actual measurement process, as
defined by h (yF, g) may be substantially more complicated. We will show that in the linear regression context
the projection is the only relevant information contained in the joint distribution of (y;,y;). Assumption
A6 insures that v > 0.

The researcher is only able to observe (y;,z;). As is well known, OLS estimation is a consistent estimator

for the population linear projection of y; on z;. Substituting equation 1 into equation 3 yields:

yi =0+ z] By + yui + e (7)



Assumption A5 insures that Cov (z;,yu; +€;) =0 and E [yu; + e;] = 0. This defines the population linear

projection of y; on z; :
yi=a+zib+ (8)

where b =3, a = é,and n; = yu; + e;.

Hence, under the assumptions above, the OLS regression of y; on z; yields a consistent estimate of b
which is proportional to 3. The parameters of interest are identified up to an unknown scaling constant.
This would imply for example, that estimates of ratios of the parameters are consistent. In some situations,
this may be sufficient for the conclusions of the researcher. For example, in wage regressions the coefficients
on years of education and years of labor market experience can be combined to consistently identify the
relative return of experience to education. This may be sufficient to answer questions about schooling
choices. Indeed in many settings, identification up to scale is considered sufficient. Estimation using prior
information about the scale of parameters is largely underexplored. While it may be difficult to obtain
point identification, bounding information on any one of the slope coefficients will result in bounds for all
coefficients, including ~.

In general however, we assume the researcher is interested in recovering the parameters 3. This sug-
gests two important identification approaches: obtain information about the scaling constant -, or obtain
information about one of the elements in 3. While it may be possible to obtain some consistent estimate of
one element in § from auxiliary regressions or economic theory, an approach with a history in the literature
would be to utilize validation data to estimate y. Bound and Kreuger (1992) and Bollinger (1998) have
examined the structure of response error when y is the natural log of annual labor market earnings using
Social Security Income data matched to the Current Population Survey. They find a point estimate of ~ is
0.90. This estimate could be used in log wage models to rescale slope coefficients to account for measurement
error. In support of the assumptions above, with the exception of a gender variable, Bollinger (1998) finds
that beyond the information contained in y; the x; variables are independent of y;. An important point
here is that only a consistent estimate of v is necessary to arrive at consistent estimates of 3. As will
be seen below, an optimal trimming rule requires this information as well. It further requires a complete

characterization of the joint distribution of (y;, v}, ;).

3 Specific Measurement Error Models

The above analysis holds for rather general examples of measurement error. Here we present three special

cases which are interesting for at least one of three reasons: they are cases commonly examined in the



literature, they are cases empirically supported in the literature, or they have specific results in the context

of this paper which are of interest.

3.1 Additive White Noise

In the first case the measurement error is additive white noise:
Yi =y, +e€i (9)

This is the traditional measurement error process often assumed. Indeed, the error (or residual) in regression
models has been motivated as measurement error. It is easy to confirm that the parameters of the LP of y
ony*arey=1,6 =a=0. Asis well known, the least squares estimates are consistent for the parameters
of interest 3. Of particular interest here, is the fact that this model would imply observations that appear
with error. Indeed, if y were hourly wages, it would be possible to have observations less than the minimum
wage (or for that matter even negative observations) and observations above whatever threshold is deemed
as a maximum. While it may be true that observations outside the acceptable region are measured with
error, observations within the acceptable region are also measured with error. Indeed the presence of error
here does not lead to any bias. Researchers will often point out that “standard errors are too large” because
of the additional measurement error. Standard errors are meant to capture the variation in estimates due to
differences across samples. As long as the data generating process does not change, the sampling variation of
the estimating coefficients will depend on the variation in both the structural model, as well as the variation
in the error model. Hence, the traditional estimates of the standard error are not biased, but rather reflect

the variation across samples for this data generating process.

3.2 Linear Measurement Error

A second case is where the data generating process is linear:
yi = d+ gy; + €. (10)

It is important to note that the results in the previous section do not assume this process. Here, perhaps
obviously, the parameters in the LP of y on y* are v = g and 6 = d. This model can either have v > 1
or v < 1. Here again, the data generating process can lead to observations outside the “acceptable”
range. It is important to note that even if v < 1, because of the values of 6 and the distribution of ¢;, it is
quite possible to have both observations that are “too high” and observations that are “too low”. Hence
observations below some minimum or above some maximum do not distinguish v or ¢ from this model or any

other model. Empirical work by Bollinger (1998) and Bound and Krueger (1991) supports the possibility



that v < 1.For example, using non-parametric regression on the 1978 CPS-SSA matched data, Bollinger
(1998) estimates that vy is equal to 0.91 for men and 0.97 for women. He estimates the intercepts ¢ to be
$1,364 and $211 respectively. Cognitive psychologists have noted that this model, with v < 1, will arise when
respondents exhibit “regression to the mean.” If survey respondents give answers that try to make them
appear “average,” then those below the mean report higher values, on average, while those above the mean
report lower values, on average. Similarly, the hot deck procedure used by Census to impute earnings can
also lead to a regression to the mean (Hirsch and Schumacher, 2001). To our knowledge, no study has found
any variable with a v > 1.

It is difficult to think of examples where v should exceed one. Behaviorally, for either economic or
psychological reasons, this would happen if respondents at the lower end of the distribution have an incentive
to understate the true value of a variable relative to respondents at the higher end of the distribution. One
example where v > 1 may be responses to an “hours worked” question. It is possible that workers at the
bottom end of the distribution work some hours at “under the table” jobs that they fail to report both to

surveys and to government agencies.

3.3 Contaminated Data
A third example is a simple contaminated sample:
yi = (yi) * Llew > K] + (d+e2) x 1[en < k. (11)

The term 1[.] is the indicator function and (e1;,€2;) are mutually independent and independent of (z;, u;).
This model produces a mixture: with some probability p = Pr[e1; > k|, we observe the true variable y,
while with probability (1 — p) we observe only noise: (d 4 ¢3;). This leads to a model where we have some
correctly measured observations and some observations where the observed y has no relationship to the
actual y*. In this model vy =pand § =d (1 —p). Again, some observations may fall outside a given range,
depending on the distribution of e9; and the value of d. An important implication of this model is that
estimates of the slope parameter 3 can be obtained if an estimate of p is available. Horowitz and Manski
(1995) note that the expectation of y* given z cannot be bounded unless information about d is available.
Our analysis does not contradict this, but rather points out that in a linear model, the slopes can be identified
up to the contamination rate. In many cases researchers have a priori bounds for the contamination rate.
The bounds on the contamination rate will yield trivial bounds for the slope coefficients. If p< p <P, then
the elements of 3, 3;, are bounded by [%, %}.

One important implication for each OE these processes is that they all may result in observations that fall

outside of some particular range (presumably the support of y¥). Moreover, depending on distributions



for g;, there is no way to distinguish between these models without further information. Corrections based
upon an assumption that one of these models pervades must be supported with evidence. In general, the
error process is likely to be far more complicated than any of the above. It is likely to contain some kind of
mixture of these processes: some individuals have minor errors which may be simply additive white noise
(or rounding noise), others may have more complicated error structure such as a linear model, while still
others may give “‘junk” as in the contaminated sampling model. In any case, the relevant measure is the

linear projection of y on y*.

4 Effect of Cleaning

As noted in the introduction, the cleaning approaches we consider are defined by
{yi, wile <y; < C} (12)

for known constants (¢, C) such that ¢ < E'[y] < C: the researcher truncates above and below the mean,
rather than truncating so severely that all observations below (or above) the mean are removed. We compare
the slopes obtained from a least squares projection of y; on x; using this doubly truncated data. We use the
least squares projection equation 8 as a departure point. We examine a set of conditions under which an
analytic comparison demonstrates that the least squares projection using the censored/truncated data will
result a slope coefficient that is attenuated relative to b (see, for example, Madalla (1983)). To be clear, the
result can only tell us the bias relative to b the biased estimate of 3 from the uncensored data. Since the
choice for the researcher is to “clean” or not clean, this is the relevant comparison. As noted in the section
above, the slope b may be larger or smaller (in magnitude) than the true slope 3. If b is inflated relative
to 3, then the cleaning may perfectly correct for the measurement error bias, but this result would simply
be due to serendipity. It may reduce the bias, but not completely. Indeed, it may even go so far as to
overcorrect for the inflation bias, leaving the researcher with an attenuated estimate. If b is itself already
attenuated relative to 3, then the censoring will result in a deeper attenuation (although it will not reverse
the sign). Indeed, without specific knowledge of the structure of the measurement error and distributions,
it is nearly impossible to determine the net result of the cleaning so popular in empirical work. This result
alone should serve as a warning: there is no reason, a priori, to believe that this cleaning approach will

reduce the bias due to measurement error.



4.1 Analytic Results: Trimmed Data

In order to arrive at a closed form analytic result for the attenuation bias due to cleaning, additional
assumptions are necessary. In the empirical section, we simulate a number of different situations where

analytical results are impossible to obtain. We first invoke:
AT : (y;,z;) jointly Normally Distributed.

This is a strong assumption, and implies that 7, is also normally distributed and homoskedastic. ~This
significantly limits the measurement error processes. This is not a limitation of our analysis, but rather
will highlight the strong assumptions necessary for cleaning to alleviate bias due to measurement error.
As Goldberger (1981) demonstrates, the slope vector from the least squares projection of y; on z; in the

truncated sample (where observations above C and below ¢ are discarded) is given by:

Proposition 1 Under the assumptions of normality (A7), the truncated slope b* is attenuated relative to

the slope b from the least squares projection in the full sample.

v = () "

with
V(yile <y, <C)
0= 14
v () (14
and
b2o2
2 _ x 15
P V(vi) 15)

Since y; is normally distributed, the variance of the doubly truncated distribution can be expressed (see

Madalla, 1983) as

V(yile<y; <C) = (16)

v+ [T )] (o) <) |

o(Sogt) o (555 RECORECY

It is easy to confirm that 0 < T(it‘))pz < 1 since both § and p? are between 0 and 1. Clearly, if v < 1,

then the attenuation bias of the measurement error is exacerbated by the attenuation bias of the sample

truncation. Hence, only if the researcher is certain that v > 1 can truncation alleviate bias from measurement

10



error. When « > 1, there exits an optimal level of truncation. The optimal level is determined by finding
(¢, C) such that (T{OVJ v = 1. With two unknown terms and only one restriction, there are many
solutions. Too little truncation will fail to fully correct for the bias, while too much will overcorrect. Ad
hoc approaches do not necessarily achieve this goal. Indeed, this is an interesting point. While removing
observations above and below some criterion based on an ad hoc definition of the support of y; may result in
the optimal trim level, other solutions exist as well. Thus, there is nothing magic about the choice of (¢, C).
Further, there is no reason to believe that the definition of support for y; will yield the optimal trimming
amount. For simplicity, only “symmetric solutions” will be examined here. We choose ¢ = E [y] — ¢* and
C = E [y] + ¢*, only the term ¢* needs to be found. The details of the derivation are given in the appendix,

and produce the following proposition:

Proposition 2 Because the solution involves the cdf of the standard normal distribution, there is no closed

form expression. The optimal c* is given implicitly by:

() (s o)

v o\ _g(=)] v
) w) - (ve)) F

Thus the optimal cleaning depends on the variance of the observed y, the correlation between y and gz,

and 7. The right hand side of 17 is increasing in 7. The left hand side of 17 is decreasing in ¢*. Thus as «
increases, the truncation points must move closer to the mean: the data must be truncated more heavily.
This highlights the fact that the optimal trimming choice is not specifically a function of a “known” support
for the data, since the optimal level of trimming will change with the measurement error process. In order to
obtain the correct amount of truncation, the researcher must know ~y, or at least have a consistent estimate.
In order to use this approach a number of highly restrictive assumptions must be met. First, the data must
be jointly normally distributed. Any discrete variables in z; will violate this assumption. Second, the
measurement error process must result in a projection equation for y; on y; where v > 1. Finally, specific
information on « must be obtained in order to arrive at a truncation rule. Ad hoc approaches which fail to
consider at least the last two requirements are highly suspect.

An interesting point here is that information about « is necessary for obtaining an optimal trimming rule.
The rule derived here relies upon the assumption of normality. Indeed, other optimal trimming rules can
be derived under other distributional assumptions. However, some assumptions about distributions must
be made. As will be seen below, the general impact of trimming on coefficients depends upon underlying
distributions.  Hence, to properly, and efficiently, trim, one must have both information about + and

information about distributions. The results in sections 2 and 3 demonstrated that with information on y

11



(estimates or bounds) that consistent estimates (or bounds) for 8 could be obtained. The results in sections
2 and 3 did not require information about underlying distributions. Hence, trimming, and by extension
Winsorizing (see below), require stronger information than is needed for identification. While some might
argue that trimming can be done without information about 7, one can similarly argue that rescaling the
slope coefficients b can be done without knowledge of v too. In both cases, an arbitrary assumption about
v has been made: in trimming it is made implicitly through expressions like equation 17 above. When
rescaling the arbitrary assumption about « is clear to all. However, both cases are equally arbitrary if no
external information about « is available. This will be seen in the Monte Carlo results below. There is no
one trimming rule that will work in all cases. There is no one rescaling rule that will work in all cases.
The variance of the measurement error is often used as a measure of the severity of the error. Hence,
the derivative of (ﬁ) with respect to 02 reveals how the truncation bias is effected by more or less

measurement error. The results in the appendix demonstrate our next result:

Proposition 3 Since a%g (T%),ﬂ) < 0 as the measurement error becomes more severe, the bias from
the truncation becomes more severe also! Thus, not only does truncation bias what would be a consistent
estimate, the relationship between that bias and the severity of the measurement error is quite the opposite

of what the researcher would like.
4.1.1 Does Trimming ‘Correct’ Standard Errors?

A second reason often cited for trimming is the reduction of standard errors. To examine this procedure more
rigorously we begin by noting that the truncation will introduce heteroskedasticity, hence the asymptotic

variance of the estimated slope from the truncated data needs be derived from the expression
AV (5) =Q'E [(yz —2lb) zalle <y < C} Q. (18)

Where Q = E [z;z] |c < y; < C] .Under assumptions A1-A7, the conditional distribution of y;|z; is normal
(zFb,V (yi) (1 - p?)). We can use the results in Goldberger (1981) to obtain an expression for the truncated

second moment matrix as:
Q=E[zuallc<y, <O = E [zl ] = (1-0) E [z;z] | " E [z,2]] . (19)

The term E [(yl — g?b*f glgﬂc <y < C} is considered by using the law of iterated expectations. The
E [(yl — gg’@*f |z, e <y; < C} can be decomposed into the variation of y; around the conditional mean in

the truncated distribution, and the squared difference between the conditional mean and the linear projection

12



term x7b*. Doing so yields:
E [(yz —LTQ*)Z |lz;,c <y; < C} =

0V (y;) (1 - (To—e);ﬂ> p2) + (20" —m(z;)’, (20)

where m (x;) is the conditional mean of y; given z; in the truncated sample. Combining these terms yields

AV (F) = v (1 - (71 — p2> p2) Q- (21)
+Q B[t ~m @) zalle <y <] Q.

The leading term is comparable to the asymptotic variance expression for the OLS estimate in the full

sample: V (y;) (1 —p?) E [z;z] ] ~'. As can casily be confirmed

oV (yi) (1 - (#‘?—9)/)2) P2> <V () (1-p%).
However, (E [glgﬂ _E [glgﬂc <y; < C] 71) is necessarily positive semi-definite (Goldberger, 1981). In-
tuitively, the variance of z; in the truncated sample cannot be larger than the variance of the full sample (a
sufficient condition here is the joint normality). Hence, a comparison of the leading terms is indeterminate.
This is in contrast to similar comparisons for only a mean (and consequently the results in Stigler (1977)).
In that case, the term 6V (y;) < V (y;) and thus trimming necessarily reduces the variance in the leading
term. Here, the comparison is not so straight forward.

The comparison does not end there. The second term is due to heteroskedasticity from the trimming.
That term is necessarily positive definite. Hence, even if the leading term is, in a positive definite sense,
smaller than the variance of the OLS estimate on the full sample, the second term may reverse, or at least
mitigate that difference.

Finally, the effect of truncation on sample size must be taken into account. The finite sample variance

of QA* is given by

. av (&)
v(E)= N (@ (el — o (Eud))

The term ® (%E%) - & (%[%l) < 1, measures the proportion of the sample discarded from the trun-

cation rule.
A comparison between the variance of the truncated estimates and the variance of the full sample es-

timates is complicated and highly dependent upon the underlying parameters of the joint distribution. It

13



is not possible to sign this difference, even here where the strong assumption of normality is imposed. It
is not clear that trimming will provide more precise estimates under these strong assumptions. Relaxing
normality will not make the result clearer.

Indeed, as the next section of the paper demonstrates, the rigorous monte-carlo simulations that we
undertake below indicate little or no effect on standard errors from trimming. Hence, no large gains in
precision are available. Further, precision is not the driving concern and the effects of trimming must be
measured using mean squared error. Certainly, it is quite possible to arrive at examples where trimming
both reduces bias (necessarily v > 1) and reduces the variance of the estimate. We advocate trimming when
these conditions are met. In order to know that these conditions are met, we must know the underlying
structure of the measurement error. Again, the above results only hold for the strong assumption of joint

normality. Claims when this assumption fails are highly suspect.

4.2 Analytic Results: Winsorized Data

An approach related to the truncation results above is the “winsorizing” approach (see for example Angrist
and Krueger (2000)). Rather than truncation, the data are censored at the points ¢ and C. Here, no

observations are removed, but values of y; outside of the region (¢, C) are transformed as follows

¢ ify,>C
y' =y ife<y; <C (22)
c Y < c.

Here, we present the effect on the coefficient comparable to the previous subsection when the data are

winsorized:
c—Ely; _ C—FEly;
P ) v )| g e iy
i i At 173 N c—blyi
Y Y (I)( V(yi) ) (I)( V(i) )
The results for winsorizing are, as one would expect, comparable to the results for trimming.  As will

be seen in the Monte-Carlo work below, Winsorizing will have less of an impact on the slope coefficients
(relative to the OLS). Again, if v > 1,an optimal choice of Winsorizing points is available. However, it
requires knowledge of «, plus the strong assumption of normality (AT).

The effects of Winsorizing on the variance are derived similarly to the results above:

AV (f) — Bz’ E [(in —~ gib**f&z&ﬂ E[zaT] .
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Here, the term F [(ylw - gib**)2 |gz} can be broken into three terms

¢ = Eyil c— 2.b)2
V (yi) >( ™)

Combined with results from the previous section, we obtain
v (£7) =

(o (S78) -+ (78 (w0 - () st v

+E [zal] ' E [(%Tb** W ()" gzl le < yi < C} E[zz]] 71)

o (o) (Blead) " B [(e-nt P aal ) ln <] Blead) )

+ (1 -2 (C";(—i[)yl]>) (E [%%T]il E [((C _lib**)2§i£?> lyi > C’} E [LLT]A> :

Again, the comparison is difficult. Here, the first term will necessarily be smaller than the OLS expression.

E [(yfv — b’ IL} = (

However, the second, third and fourth terms are all positive definite. As in the trimming case, the impact on
standard errors depends upon the parameters of the model. One advantage Winsorizing has over trimming is
that the penalty of lost data does not effect the expression for the finite sample variance. Overall, Winsorizing
and trimming have similar effects on both slope estimates and asymptotic variance. Again, with strong

information, optimal rules can be found. However, other estimators are available with this information.

4.3 Cleaning Data in the General Case

The results derived in the previous section rely heavily upon the normality assumption (A7). However, as
Goldberger (1981) shows, if the normality of x is relaxed, then the attenuation bias results for truncation do
not hold (except in the simple case where « is scalar). Some coefficients may be attenuated by truncation,
while others, in the same model, may be inflated by truncation. Similarly for the censoring case (winsorizing).
Hence, even if the direction of the bias due to measurement error were known, without knowledge of the
underlying joint distribution of (x,u,¢), the truncation or winsorizing of the data cannot be relied upon
to adjust the slope coefficients for the bias. It is conventional wisdom that truncation typically results in
attenuated coefficients, but this result depends heavily on the underlying distributions. The formulas given

above for optimal cleaning when the parameters of the response error model are known, depend upon the joint
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normality assumption. Optimal trimming (winsorizing) rules could be derived under other distributional
assumptions. As a practical matter one would need to derive a rule specific to each researchers case.

In contrast, the measurement error bias results from Section 2 were derived under much weaker conditions.
This implies that if information about 7 is available the rescaling approach discussed previously is also
available. Indeed, simple expressions for bounds and sensitivity of results are clear from the projection
equation 8.

Our results demonstrate the conditions under which cleaning procedures may or may not work. However,
the analytical results do not offer a sense of the degree to which cleaning affects the magnitudes of the
estimated coefficients. Understanding the empirical magnitude of these effects is the subject of the next

section.

5 Results

In order to examine more general results, we present a set of Monte Carlo simulations. The simulations
can be divided into two groups. In the first group, we generate data with known distributions in order to
examine the robustness of the results above to deviations from the distributional assumptions necessary for
analytic solutions. In general, we find that the results above hold qualitatively. However, it is difficult
to find optimal trimming rules, even when such rules might exists. Further, they are often not obviously
related to the known distributions. In the second group of simulations, we draw data from the 1990 PUMS
and estimate the returns to schooling. We treat estimates from the full PUMS file the population to be
analogous to population parameters, and benchmark the results of different cleaning procedures against these
parameters. This allows for a complicated model to be examined, with relationships similar to those found

in typical economic data.

5.1 Monte Carlo Evidence from Simulated Data

5.1.1 TUnivariate Results

We discuss Monte Carlo from simulated data as evidence in support of our analytical results at two levels.
First, we examine the case derived analytically above: all variables are jointly normally distributed. By
parameterizing the models, the extent of the bias due to measurement error, and the specific impact of
typical cleaning strategies can be seen. The analytic solutions above provide a general result, the results
here provide an understanding of the relative magnitudes. Second, we study the case where the x variable is
not normally distributed, and find that qualitatively the analytic results are supported. This finding further

strengthens the argument against cleaning.
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The first set of results is reported in Table 1. Here, we report the effect of different cleaning procedures
on clean (uncorrupted) data that were generated using the model y = 1 + = + « where ©”N(0,1).The idea
of “cleaning” data with no error might strike the reader as a peculiar exercise. Our motivation for doing
so is to demonstrate that cleaning procedures are not benign and can introduce significant bias when they
are not required; alternatively, if the degree of contamination is low, the iatrogenic error from cleaning data
may be substantial. In Table 1 we report Monte Carlo results from estimating the basic model using 1,000
replications each with a sample size of 1,000. For each replication we resample the covariate, the measurement
error, and the regression error. The first panel indicates that with a normally distributed covariate, trimming
and winsorizing both lead to bias: the bias from 1% trimming is almost 7% and that from 1% winsorizing
is 2% (the true value of the coefficient on x is known to be one). The bias grows dramatically as the degree
to which the data are truncated or censored increases, and approaches 25% with a 5% trimming rule. None
of the cleaning procedures are neutral when the data are uncontaminated. While not explicitly discussed in
the analytical section of our paper, we also report the results from performing median regression on the data
as an alternative cleaning procedure. In general, median regression produces results that are very similar
to standard least squares regressions (although it is computationally much more intensive and is inferior to
least-squares on a RMSE criterion).

Similar results are obtained regardless of the distribution of the covariate (the distributions of the mea-
surement error and regression error continue to be drawn from N(0,1)). When the covariate is uniformly
distributed, 1% trimming introduces a bias of over 10%, while the bias from 1% winsorizing stays at 2 per-
cent. While the pattern of results demonstrating the non-neutrality of trimming is completely stable, it is not
the case that winsorizing dominates trimming as a general rule— as the last panel of the table demonstrates,
when the covariate is log normally distributed, 1% winsorizing introduces a bias of over 20 percent (and 5%
winsorizing attenuates the coefficient by 45%). Here, trimming is certainly less harmful than winsorizing,
although the strategy of not cleaning the data at all strictly dominates the other two.

In Table 2 we repeat the exercise but now introduce different forms of measurement error. Since the
results of the second section proved that the linear projection of y on y* is the central equation of interest
for assessing the improvements produced by cleaning, we restrict our analysis to three values of ~ that
parameterize the linear projection (y = 1,7 = 0.9 and v = 1.1). Here, it is obvious that in the case of
additive white noise, all cleaning procedures are inferior to doing nothing. This is true both in terms of
bias, as well as in terms of variance, implying that the strategy of not cleaning the data dominates on a
RMSE criteria. Furthermore, we find support for our theoretical conjecture that as the variance of the

measurement, error increases, the bias from trimming increases as well. Winsorizing is immune to this
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problem— while dominated by the “doing nothing” strategy, the bias from 1% and 5% winsorizing is stable
regardless of the variance of the underlying measurement error.

When we consider the realistic case of v = 0.9 (as was estimated by Bollinger (1998) using the structure of
measurement error in earnings) we see that once again the cleaning procedures are always dominated by the
choice of not cleaning the data. Even though the bias from not cleaning the data is a little over 10 percent,
the bias from trimming is uniformly greater. As such, we find support for our “iatrogenic” characterization
of cleaning processes. For the most part, 1% winsorizing or the use of median regression are neutral rules
with respect to point-estimates, but both procedures are dominated by not cleaning the data on the basis of
a RMSE criteria. Finally, in the last panel we note the cases where trimming works: when v > 1, a 1 percent
trimming rule clearly dominates not cleaning the data. Before this conclusion is embraced too quickly by
practitioners, we raise two important caveats: first, even though 1% trimming works, 5% trimming is much
worse that not cleaning the data; the optimal trimming rule is therefore not a known constant and small
perturbations from the optimal truncation will generate large biases relative to not cleaning the data. In fact,
the "best rule” for the case of v > 1 would be to use 5% winsorizing, especially in the light of winsorizing
robustness to the variance of the measurement error. Second, as stated in Section 2 of the paper, it is very
difficult to find examples of measurement error where v > 1.Therefore, before applying the prescription, it

is key that the analyst be able to justify the v > 1 model.

5.1.2 Multivariate Results and Departures from Normality

In the three panels of Table 3, we study the effects of cleaning procedures on multiple regression with a non-
normal distribution for the regressors. In Table 3A we construct a normally distributed covariate and include
its squared term (the squared term will not have a normal distribution). In Panel 3B, the covariate has an
exponential distribution and in Panel 3C it is log-normally distributed. In all three tables, the population
parameters on the coefficient of the covariate and its squared term are both set to one. The results from
Table 3A are striking. When v = 1 or 7 < 0, there is no cleaning procedure that improves estimates over
not cleaning the data. In fact, as demonstrated in the univariate case, the bias from cleaning procedures is
an increasing function of the variance of the measurement error. In the case where v = 1.1 (Table 3C), a 1%
trimming rule is preferred to doing nothing, but this result is undone at the 5% level. unlike the univariate
case studied in Table 2, it is no longer the case that a 5% winsorizing rule is the best cleaning procedure—
for the case in which v = 1.1,a 5% winsorizing rule introduces much more bias than doing nothing, and a 1
percent winsorizing rule does the best.

Unfortunately, it appears to be impossible to derive generalizable results for the optimal trimming rule

18



in the multivariate case. As can be seen in Table 3B winsorizing the data at any level wrecks havoc with
the data when the X’s are exponentially distributed. Analogous to the univariate case, cleaning procedures
do not reduce bias (even on a RMSE criteria) when v = 0.9. In this non-normal cases, a limited case can be
made for 1% trimming when v = 1.1 and the variance of the measurement error is small. However, even in
this case, as the variance of the measurement error increases, all the gains from trimming disappear implying
that this is not a general result. In the case of Table 3C where the covariate has a log-normal distribution,
there is evidence favoring a 1% Trimming rule when v > 1, but as the variance of the measurement error
increases, this result can no longer be justified on a RMSE criteria. Interestingly, Table 3C also documents
another problem with cleaning procedures: while a certain cleaning rule may improve matters over not
cleaning the data for a single coefficient, the same rule can exacerbate the bias for another coefficient. This
problem is clearly seen in Table 3C, in the cases where [y = 0.9, var(e) = 1], when [y = 0.9, var(e) = 1]
and when [y = 1.1, var(e)=1]. In all these cases, the 1% trimming rule improves the estimate of either the
coefficient on x or that on x-squared. Simultaneously, note that the corresponding coefficient on x-squared
(or x) has worsened on a RMSE criteria. Together the results presented in this section demonstrate that it
is impossible to agree on a universal cleaning procedure— there are occasions when a certain rule appears to
work, but this finding depends on the distribution of the covariate, the degree of cleaning, the presence of
another covariate, and the variance of the measurement error. In other words, when we do find a rule that

works, it appears to do so only serendipidously.

5.1.3 Comparing rescaling approaches to trimming approaches.

As noted in previous sections, another identification approach is to rescale the estimates. It was noted
above in section 4 that in order to arrive at an optimal trimming rule, one needed both information about
distributions and information about . The Monte Carlo results highlight this aspect. If we know that
v = 1.1, a strong assumption indeed, then scanning across the different tables, no particular trimming or
winsorizing rule will work in every case: however rescaling will always work. Examination of the “Nothing”
column shows that no matter what value v may take, knowledge of v alone will be sufficient to arrive at
consistent estimates. It is clear in examining the results across these tables that knowledge of 7 is not
sufficient to determine how much trimming is necessary. Indeed even when ~ is know, trimming cannot
always be used to obtain consistent estimates of all slope coefficients.

Even if v is not known, one can use the rescaling result to perform sensitivity analysis: how sensitive to
different values of v are the conclusions we draw from our OLS slopes? The robustness of our conclusions

can be examined either by placing bounds on v, as suggested in Manski (1995), or alternatively by asking
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what values of v support the conclusions typically drawn (an approach suggested in a similar context by
Bollinger (forthcoming), and Bollinger (2001)). Further, researchers may not have detailed information
about v but may have information about the likely range of v. It is difficult to use that information for

trimming and winsorizing, but it can be trivially used in a rescaling approach.

5.2 Monte Carlo Evidence from U.S. Decennial Census Data

To shed light on the more general case we present evidence from quasi-simulated data drawn from the PUMS
samples of the 1990 US Decennial Census. We study the conventional problem of assessing the returns to
schooling, using a standard ”Mincerian specification” (that is, Inwage = 5, + 3, Schooling+ B, Experience+
By Experience? + 3,Black + u) to describe the relationship between hourly wages, years of schooling, race
and potential experience. The PUMS data are treated as having no measurement error: we are using
them as the true population for y; and x. This allows us to examine a case where the underlying joint
distribution of (y}, x) is a more complicated multivariate distribution. We use the full PUMS data and delete
all observations that had a value of minimum wage under $3.35 in 1989. To keep the analysis tractable, we
delete all non-workers from the sample and restrict our analysis to prime aged men (those between 25-55).
These sample-selection criteria were imposed in order to abstract from simultaneously having to model labor
force participation or enrollment in college. We artificially add measurement error to reported wages (based
on the models above), while retaining the distribution of the covariates. We are treating the PUMS sample
of 346,900 men as a population from which we will draw random samples of size 1,000. Table 4 presents
mean and standard deviation parameters for the population. Black men comprise 8.3 percent of the sample
and the average years of potential experience is 17.67. The men in our sample had on average completed
13.37 years of schooling. The table reports ”population parameters” in column 3. These were generated
by estimating the Micerian wage equation on the sample of 346,900 men. In Tables 4 and 5, we use 1000
replications of samples of size 1,000.

Table 4 is generated in the spirit of Table 1- no measurement error has been added to the PUMS data. In
this situation, the cleaning procedures do not generally do better than not cleaning the data. In general, the
RMSE from the cleaning procedures (including median regression) is greater than that from doing nothing.
Whereas a 1% trimming rule improves the estimation of the coefficients on experience and experience squared,
it is also found to be simultaneously inferior to not cleaning the data in regards to the estimation of the
coeflicients on schooling and race. Together these results confirm the results from the univariate case— no
cleaning procedure is neutral when applied to already clean data.

Measurement error is added to the data in Table 5; we select two values for the variance of this measure-
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ment error using the results of Bound and Kruger (1991), who note that Var(InY) = 0.458 and 0.529 with
corresponding error variances are .083 and .116. This implies that the variance of the error is 18% and 22%
of the total variation in InY. Rogers, Brown and Duncan (1993) find even higher implied estimates of the
variance of the measurement error. Therefore, to study empirically relevant cases we simulate measurement
error whose variance is 0.1V ar(wage) and 0.3Var(wage). In the case of additive white noise we find that a
trimming is once again dominated by not cleaning the data. A case can be made for a 1% winsorizing rule
over not cleaning the data, but it is important to note that significant bias is introduced with the censoring
rate is increased to 5%. Least-squares is found to be always superior to median regression.

When v = 0.9 there is no cleaning procedure that strictly dominates OLS. A 1% winsorizing rule provides
superior estimates on a RMSE criteria for many coefficients but simultaneously raises the bias on others.
For example, the coefficients on Exp, Exp-Sq and Black all have lower RMSE when a 1% winsorizing rule
is applied, but the coefficient on schooling has a larger RMSE at the same time. When v = 1.1 winsorizing
at 1% and 5% are preferred to doing nothing. Trimming procedures dominate not cleaning the data on a

RMSE criteria, but can be worse in terms of the bias component.

6 Conclusions

The common practice of cleaning data by removing observations where the dependent variable is larger or
smaller than some threshold has often been justified by claiming that it reduced the impact of measurement
error.  For example, observations where the wage falls below the minimum wage, or is so high as to be
“incredible” are often discarded as being “obvious measurement error.” While this appears to be a sensible
argument, the problem is that the observations are not removed randomly, but rather systematically. This
induces bias in the estimates. Under certain circumstances, as discussed in section 4, it may be possible to
achieve an optimal cleaning strategy, but if the information necessary for that result were available, a simpler
approach works too. Moreover, the optimal solution is highly dependent upon the underlying distributions
and cannot be generalized: it must be treated on a case by case basis. Yet the simpler solution is available
under much weaker conditions.

The analytic results demonstrate that only the case where measurement error in the dependent variable
results in an upward bias of the magnitude of coefficients can cleaning strategies work. This case is not sup-
ported empirically by investigations into the structure of response error, at least for earnings data. Typically,
rather than actually improve estimates, the cleaning strategies further exacerbate bias due to measurement
error. Following medical terminology, we term this source of bias “Iatrogenic” (or econometrician induced)

specification error.
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The results here only begin to shed light on this subject. Other questions remain: one important
extension may be to examine cleaning rules based on X variable values. While in general, truncation and
censoring along the X axis does not bias slope coefficients (provided the linear model applies), however,
it may be that an interaction with certain measurement error processes can result in either bias, or bias
correction. Another extension may be to examine more complex measurement error processes: where the
error process for Y differs across values of X’s. Finally, in the case where the researcher has access to panel
data (and multiple outcomes on the dependent variable), it may be possible to derive complicated cleaning
procedures that exploit the signal to noise ratio in that data.

We conclude by noting that for any approach to correcting measurement error the key information is
some knowledge of the structure of the error process. Our results don’t contradict those of Stigler (1977),
but rather consider a broader class.  Stigler (1977) only considers estimation of the mean, the results
here demonstrate that the problem is more complicated in a regression setting. Stigler’s (1977) results
are shown for a set of lab experiments where the assumption of additive white noise measurement error is
quite plausible. In social sciences that assumption is more difficult to maintain. Echoing the conclusions
of Hyslop and Imbens (2001), we note that information about the measurement error structure cannot
be inferred from primary data and so we highlight the need for studies like Bollinger (1998), Bound and
Kreuger (1991), Bound, Brown, Duncan and Rodgers (1994), Mellow, and Sider (1983), or Rodgers,. Brown
and Duncan (1993). These type of studies provide the important information that can allow researchers to
address problems of measurement error. Ad hoc approaches, such as trimming or winsorizing are unlikely

to cure the disease and may even further bias conclusions.
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7 Appendix
7.0.1 Derivation of equation 17
To solve for the expression in 17, begin by noting that E [y] = 6++4vya+v8u, and V (y) = y2 %02 +~%02 402,

Additionally we simplify the analysis by only considering a symmetric truncation scheme where ¢ = F [y] —¢*

and C = E[y] + ¢*. so that only ¢* need be found. Consider first the expression for 6 in this case:

(7)o (7o) - (S) o (S

C—6—ya—Bu, c—E[y]
? (semeitmie) — 2 (o)

c—Elyl C—Ely
¢( ) ) ¢< V() )
C-E[y] c—E[y]
‘D( V) )_q’< VW) )
substituting the symmetric expressions for ¢, C yields

- (WM((J))) (vC(m ¢(vc<y>>

0 = 1+

Next, noting that A is observable and ~ is assumed to be known solve (ﬁ) v =1 for # in terms of ~

and \:

Substitute for 6 and solve

7.0.2 Proof of Proposition 3

To show that the bias gets worse with more variance in e, consider the derivative of the bias term:
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= aaagg (1-(1-0)p%) ‘9<p237§_(1_9) aozﬂ /(1= (1=0)p)

This term is negative iff the numerator is negative, considering only the numerator and grouping like deriva-

tives yields

%(1—p2)+(1—9)

€

op?
do?’

As noted in Goldberger both p? and 6 are bounded in the unit interval. Inspection of the definition of p?
clearly demonstrates that g% < 0. Now, consider the definition of §: inspection reveals that this has the
truncation points standardized by the mean and variance of y. Hence increasing o2 is equivalent to increasing
¢ and decreasing C' for a truncated standard normal random variable. Since 6 is also (see Goldberger) the
ratio of the variance of the truncated standard normal to the variance of the untruncated standard normal,
increasing ¢ and decreasing C' will result in a lower variance for the truncated distribution and thus a lower

0. Hence, by inspection, %(i’; < 0 also. Combined with the bounds on p? and 6, the result is established.
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Table 1: Monte Carlo Simulations of the Effect of Cleaning Procedures on Uncorrupted Data,
by Distribution of Covariate; True Model is y* =1 + x + u; u~N(0,1)

Do Nothing Trim 1% Trim 5% Wins 1% Wins 5% Median

NORMAL X

Beta 1.0000 0.9323 0.7683 0.9800 0.9002  1.0002
se (b) 0.0312 0.0316 0.0328 0.0310 0.0305  0.0400
RMSE (b) 0.0312 0.0747 0.2340 0.0369 0.1043  0.0400
Cons 1.0000 1.0000 0.9999 0.9999 09999  1.0010
se (cons) 0.0325 0.0326 0.0338 0.0325 0.0330  0.0413
UNIFORM X

Beta 1.0037 0.8916 0.6505 0.9862 09091  1.0062
se (b) 0.1066 0.1017 0.0937 0.1047 0.0987  0.1380
RMSE (b) 0.1067 0.1487 0.3618 0.1056 0.1342  0.1381
Cons 0.9979 1.0540 1.1745 1.0066 10451 0.9960
se (cons) 0.0634 0.0612 0.0574 0.0625 0.0598  0.0818
EXPONENTIAL X

Beta 1.0011 0.9437 0.7693 0.9510 08137 1.0006
se (b) 0.0316 0.0344 0.0383 0.0374 0.0409  0.0402
RMSE (b) 0.0316 0.0660 0.2339 0.0616 0.1907  0.0402
Cons 0.9997 1.0702 1.2556 1.0439 11605 1.0003
se (cons) 0.0447 0.0463 0.0480 0.0483 0.0502  0.0570
LOGNORMAL X

Beta 1.0000 0.9798 0.8718 0.7964 05517 0.9994
se (b) 0.0147 0.0201 0.0311 0.1083 0.0927  0.0193
RMSE (b) 0.0147 0.0285 0.1319 0.2306 04578 0.0193
Cons 0.9994 1.0518 1.2477 1.2931 15984  1.0011
se (cons) 0.0393 0.0441 0.052 0.1693 0.1444  0.0505

Reported estimates are empitical sample moments from 1,000 replications each with a sample size of
1,000. Each replication resampled both the measurement error and the regression error. The regression
error and measurement error are uncorrelated with each other.
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Table 5: Monte Carlo Simulations of the Effect of Cleaning Procedures on Corrupted Data, Evidence
from the Returns to Schooling in 1990 PUMS Data

Var (e) = 0.1 x Var (wage); Var (wage) = 0.3144

Nothing Trim 1% Trim 5% Wins 1% Wins 5% Median

Error Model: y = y* + e

Schooling 0.0918
SE (Schooling) 0.0078
RMSE 0.0078
Pot. Exp 0.0375
SE (Pot Exp) 0.0084
RMSE 0.0084
Pot. Exp. Sq /100  -0.0538
SE (Pot. Exp Sq) 0.0218
RMSE 0.0218
Black (1= yes) -0.1417
SE (Black) 0.0596
RMSE 0.0596
Constant 0.8640
SE 0.1273

Error Model: y= 0.9y* + e

Schooling 0.0826
SE (Schooling) 0.0070
RMSE 0.0117
Pot. Exp 0.0338
SE (Pot Exp) 0.0076
RMSE 0.0085
Pot. Exp. Sq /100  -0.0484
SE (Pot. Exp Sq) 0.0197
RMSE 0.0203
Black (1= yes) -0.1276
SE (Black) 0.0539
RMSE 0.0558
Constant 0.7772
SE 0.1154

Error Model: y= 1.1y* + e

Schooling 0.1010
SE (Schooling) 0.0086
RMSE 0.0124
Pot. Exp 0.0413
SE (Pot Exp) 0.0093
RMSE 0.0100
Pot. Exp. Sq /100  -0.0591
SE (Pot. Exp Sq) 0.0241
RMSE 0.0247
Black (1= yes) -0.1557
SE (Black) 0.0656
RMSE 0.0670
Constant 0.9502
SE 0.1404

0.0880 0.0706 0.0910  0.0856  0.1000
0.0072 0.0069 0.0075  0.0070  0.0086
0.0083 0.0226 0.0076 ~ 0.0095  0.0117

0.0362 0.0295 0.0372  0.0353  0.0401
0.0079 0.0068 0.0081 0.0076  0.0095
0.0080 0.0105 0.0081 0.0079  0.0098

-0.0522  -0.0420  -0.0535 -0.0508  -0.0562
0.0203 0.0172 0.0211 0.0196  0.0244
0.0203 0.0208 0.0211 0.0198  0.0246

-0.1383  -0.1083  -0.1418  -0.1339  -0.1637
0.0545 0.0501 0.0579  0.0532  0.0702
0.0546 0.0604 0.0579  0.0538  0.0734

0.9263 1.2354 0.8748 09657  0.7296
0.1186 0.1116 0.1227  0.1146  0.1413

0.0792 0.0635 0.0819  0.0770  0.0903
0.0065 0.0062 0.0068  0.0063  0.0078
0.0144 0.0292 0.0122  0.0163  0.0080

0.0326 0.0265 0.0335  0.0318  0.0363
0.0071 0.0062 0.0074  0.0069  0.0085
0.0086 0.0125 0.0084  0.0089  0.0086

-0.0470  -0.0378  -0.0481 -0.0457 -0.0511
0.0183 0.0158 0.0190  0.0176  0.0220
0.0194 0.0223 0.0198  0.0193  0.0221

-0.1244  -0.0979  -0.1277  -0.1206  -0.1474
0.0494 0.0452 0.0522  0.0480  0.0640
0.0525 0.0631 0.0542  0.0525  0.0642

0.8337 1.1111 0.7870  0.8688  0.6511
0.1077 0.1008 0.1112  0.1039  0.1291

0.0968 0.0777 0.1001 0.0942  0.1102
0.0079 0.0075 0.0082  0.0077  0.0095
0.0092 0.0162 0.0115 0.0079  0.0205

0.0397 0.0324 0.0410  0.0388  0.0442
0.0086 0.0076 0.0090  0.0084  0.0105
0.0089 0.0091 0.0096  0.0085 0.0125

-0.0573  -0.0461  -0.0588  -0.0558  -0.0620
0.0222 0.0194 0.0233  0.0216  0.0272
0.0225 0.0208 0.0239  0.0217  0.0284

-0.1514  -0.1192  -0.1558  -0.1471  -0.1801
0.0603 0.0543 0.0636  0.0584  0.0752
0.0611 0.0589 0.0651 0.0586  0.0843

1.0195 1.3577 0.9621 1.0621 0.8004
0.1302 0.1218 0.1352  0.1262  0.1551

Var (e) = 0.3 x Var (wage); Var (wage) = 0.3144

Nothing Trim 1% Trim 5% Wins 1% Wins 5% Median

0.0925
0.0081
0.0082

0.0377
0.0084
0.0084

-0.0539
0.0215
0.0215

-0.1426
0.0639
0.0639

0.8535
0.1345

0.0833
0.0074
0.0115

0.0339
0.0075
0.0083

-0.0485
0.0195
0.0201

-0.1276
0.0576
0.0594

0.7672
0.1208

0.1018
0.0090
0.0132

0.0415
0.0092
0.0101

-0.0594
0.0239
0.0246

-0.1560
0.0702
0.0716

0.9380
0.1480

0.0883  0.0704 0.0916  0.0859  0.1001
0.0074  0.0068  0.0078  0.0072  0.0091
0.0084  0.0227  0.0078  0.0095 0.0121

0.0363  0.0294  0.0374  0.0354  0.0402
0.0078  0.0070  0.0081  0.0075  0.0096
0.0079  0.0107  0.0081  0.0078  0.0100

-0.0524  -0.0419 -0.0537 -0.0510 -0.0566
0.0201  0.0178  0.0209  0.0193  0.0248
0.0202  0.0213  0.0209  0.0195  0.0250

-0.1394  -0.1097 -0.1426 -0.1346 -0.1616
0.0578  0.0513  0.0616  0.0564  0.0730
0.0578  0.0606  0.0616  0.0569  0.0756

09222 1.2396  0.8667  0.9621  0.7281
0.1237  0.1147  0.1289  0.1203  0.1502

0.0795  0.0634  0.0825  0.0773  0.0901
0.0067  0.0062  0.0071  0.0066  0.0082
0.0142  0.0294  0.0119  0.0161  0.0084

0.0327  0.0264  0.0337  0.0318  0.0360
0.0071  0.0061  0.0073  0.0068  0.0087
0.0086  0.0127  0.0083  0.0088  0.0088

-0.0471  -0.0375 -0.0483 -0.0459 -0.0502
0.0182  0.0158  0.0190  0.0175  0.0225
0.0193  0.0225  0.0197  0.0191  0.0227

-0.1250  -0.0976  -0.1276  -0.1205 -0.1439
0.0518  0.0458  0.0554  0.0507  0.0641
0.0545  0.0637  0.0572  0.0551  0.0641

0.8295 1.1165 0.7789  0.8651  0.6558
0.1108  0.1020  0.1158  0.1075 0.1351

0.0972  0.0775  0.1008  0.0945 0.1104
0.0082  0.0075  0.0087  0.0080  0.0100
0.0097  0.0164 0.0123  0.0084  0.0208

0.0400  0.0325 0.0412  0.0390  0.0441
0.0087  0.0075  0.0090  0.0083  0.0106
0.0090  0.0089  0.0097  0.0085  0.0125

-0.0577 -0.0466 -0.0591 -0.0562 -0.0616
0.0224  0.0192  0.0232  0.0214  0.0275
0.0227  0.0205  0.0238  0.0216  0.0286

-0.1527  -0.1204 -0.1562 -0.1478 -0.1789
0.0635  0.0554  0.0675  0.0618  0.0803
0.0644  0.0594  0.0690  0.0621  0.0884

1.0126  1.3612  0.9522  1.0567 0.7982
0.1352  0.1238  0.1418  0.1321  0.1656

Dependent variable is In hourly wage. PUMS data are restricted to white (non-hispanic) and black men in the 1990 PUMS files of the Decennial Census who
are aged 25-55 during the census reference week. Nonworkers and repondents with hourly wages less than $3.35 in 1989 (the nominal value of the minimum
wage) are deleted from the analysis. Column (1) reports means and standard deviations for this sample of 346,900 individuals, and column 2 reports the

parameters from estimating the model: In wage=[ +1 Schooling +B, Exp+f3 Exp2 +4 Black + u on this sample. Reported estimates are empirical sample
moments from 1,000 replications each with a sample size of 1,000.
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