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1. Introduction

The analysis of seasonal variation in economic times series is almost as old as macroeconomics
itself (Mitchell (1927), Burns and Mitchell (1946), Macaulay (1938)). Despite this long history,
however, there is little consensus on how seasonality should be treated in empirical research on
aggregate fluctuations. The specification of seasonality varies significantly from one paper to the
next, and few researchers provide an explicit justification for their handling of seasonal variation.
Since the statistical properties of different seasonality models are distinct, and since seasonality
in quantitatively important in many aggregate series, the imposition of one kind when another is
present can result in serious biases or loss of information. It is therefore useful to establish what

kind of seasonality is present in the data.

In this paper we provide evidence on the presence of seasonal unit roots in aggregate U.S. data.
Of the three main definitions of seasonality offered in the literature (deterministic dummies, non-
stationary stochastic seasonality due to seasonal unit roots, and stationary stochastic seasonality),
it is the non-stationarity due to seasonal unit roots that raises the most troubling statistical issues.
In addition, the investigation of seasonal unit roots logically precedes the examination of other
kinds of seasonality, since such examinations can produce spurious results if seasonal unit roots
are present but not accounted for. The analysis of seasonal integration also logically precedes the

analysis of cointegration.

Our investigation of seasonal unit roots is conducted using the approach developed by Iylle-
berg, Engle, Granger and Yoo {1990) (HEGY); this is a general procedure that can test for unit
roots at some seasonal frequencies without maintaining that unit roots are present at all seasonal
frequencies. We first derive the mechanics of the HEGY procedure for monthly data and use Monte
Carlo methods to compute the finite sample critical values of the associated test statistics. Franses
(1990) provides a similar analysis. We then apply the HEGY procedure to both monthly and quar-
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terly data on a number of aggregate U.S. data series. The data reject the presence of unit roots at
most of the seasonal frequencies for a large fraction of the series considered.

The remainder of the paper is organized as follows. Section 2 reviews the testing procedure de-
veloped in the HEGY paper by deriving it for monthly data and comparing it to earlier approaches.
This section also presents Monte Carlo finite sample critical values for the case of monthly data,
supplementing the quarterly Monte Carlo results in HEGY. In Section 3 we apply the HEGY proce-
dure to quarterly and monthly aggregate U.S. data. Section 4 concludes by discussing implications

of the results.

2. Testing for Seasonal Unit Roots in Monthly Data

A recent paper by HEGY (1990) explains how to test for seasonal unit roots in processes that
may also exhibit deterministic or stationary stochastic seasonality. The paper also shows how to
test for a unit root at frequency zero when unit roots may be present at some or all of the seasonal
frequencies. In this section we review the HEGY procedure by deriving its mechanics and the
asymptotic distributions of its test statistics in the case of monthly rather than quarterly data. \We
then use Monte Carlo simulations to tabulate the finite sample distributions of test statistics for
hypotheses about unit roots at seasonal and zero frequencies in monthly data and to investigate

the size and power properties of the test under various data generating mechanisms.

2.1 The HEGY Test Procedure

Let z, be the series of interest, generated by a general autoregression of the form

w(B)z, = ¢, (1)

where (o(B) is a polynomial in the backshift operator and ¢ is a white noise process. Let 7, be
the roots of the characteristic polynomial associated with (B). Assume for the moment that
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deterministic terms, such as seasonal dummies or time trends, are known to be absent from the
process for z;. In general, some or all of the 7, may be complex.

The frequency associated with a particular root is the value of a in €, the polar representation
of the root. A root is seasonal if a = 2—?, j=1,...,5—1, where § is the number of observations

per year. For monthly data, the seasonal unit roots are

—1; +4; - (1 £ V3i); 1(1 £ V3i); ~H(V3 i), H(V3 1) (2)

with these roots corresponding to 6,3,9,8,4,2,10,7,5,1, and 11 cycles per year, respectively. The
frequencies of these roots are v, £ 7, F 73" V3, Fix e and £ %, respectively. We wish to know whether
the polynomial in the backshift operator, ¢(B), has roots equal to one in absolute value at the zero
or seasonal frequencies. In particular, the goal is to test hypotheses about a particular unit root
without taking a stand on whether other seasonal or zero frequency unit roots may be present.
The testing procedure developed by HEGY (see Appendix A for details) consists essentially
of linearizing the polynomial (o(B) around the zero frequency unit root plus the § — 1 unit roots

given in (2). Thus, write ¢(B) as

Z/\kA(B) ‘Z“()B)+A(B)¢'(B) (3)
where
oL I ., _TTs
8(B)=1-g B M=y A(B)—kI;[l «(B),

@"(B) is a remainder with roots outside the unit circle, and the 8 are the zero frequency unit root

plus the § — 1 seasonal unit roots. In the case of monthly data, substitution of (3) into (1) gives

P(BY na = kayk,(-l + € (4)



where:
y“=(l+B+Bz+B3+B‘+BS+BG+B7+38+B9+B1°+B”)z,
y2e=—(1-B+B*-B*+ B~ B*+B%-B"+ B® - B° + B!’ - B'!)z,
y3 = —(B - B*+ B* - B" + B® - B')z,
yar = (1 — B* + B* - B® + B® - B'%)z,
y5,=-—%(1+B—2B’+B3+B‘-2B5+B“+B’—2B“+B°+B‘°¢2B“)z,
ys:=-2@(1—B+B3—B‘+BS—B7+BS-—B‘°):t
yre = %(1—B—QBZ—B3+B‘+2B5+BG—B’-QBB—B9+B‘°+2B”)1. (5)
y8,=—?(I+B—B3—B*+BG+B7—B9—B1°)z,
y9¢=—%(\/§—B+B3-—\/§B‘+235—\/§BS+B7—BS+\/§B’°—QB”)x‘
Yior = %(1 -V3B +2B* - V3B® + B* - B® + V3B" - 2B® + V3B® - B'%)z,
Ve = %(\/:h B - B3-3B*-2B% - V3B® - B" + B® + V3B 4+ 2Bz,
Y1 = —%(1 +V3B +2B* +V3B® + B* - B® - v3B" - 2B% - V3B® - Bz,

Yiae = (1 - Bn)rr-

Appendix A shows that each yi, can be written as a function of the frequency associated with that
yet- In addition, for k& > 4, yx_1¢ can be written simply in terms of yx: and yxi-1, which makes
construction of these variables easier.!

In order to test hypotheses about various unit roots, one estimates (4) by Ordinary Least
Squares z-md then compares the OLS test statistics to the appropriate finite sample distributions
based on Monte Carlo results. For frequencies 0 and 7, one simply examines the relevant t-statistic

for m, = 0 against the alternative that 7, < 0. For the other roots, one tests 7 = 0, where Kk is

even, with a two-sided test, The even coefficient is zero if the series contains a unit root at that

! Qur implementation of the HEGY approach differs from that in Franses (1990) in that ours makes the set of
regressors mutually orthogonal. This greatly facilitates the derivation of the asymptotic distribution.
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frequency. It is not zero otherwise for the seasonal frequencies other than 7. For %, the coefficient

is not zero if no root exists at that frequency. Under the alternative, the even coefficient may be
positive or negative. If one fails to reject 74 = 0, then one tests x4y = 0 versus the alternative
that 7x—; < 0. The test is one-sided because the sensible alternative is that the series contains
a root outside the unit circle. Under stationarity the true coefficient is less than zero. Another
strategy is to test m,_; = mx = 0 by calculating an F-statistic. To show that no unit root exists
at any seasonal frequency, 7 must not equal zero for k = 2 and for at least one member of each
of the sets {3,4}, {5,6}, {7,8}, {9,10}, {11,12}. One cannot separately test for a unit root at a
given seasonal frequency and its negative because of the aliasing problem.

The hypothesis tests are amendable to the case where the alternative includes a constant,

seasonal dummies, or a time trend. Equation (4) becomes

12 12
P B) yiae = Z"fkyk.z-l + mot + m; + EmkSkg + €. (6)
k=1 k=2

The equation is still estimated by OLS, but the asymptotic and finite sample distributions change.
The advantage of the HEGY procedure over earlier approaches is that it allows one to distin-
guish processes that may be integrated at only some of the seasonal frequencies. Hasza and Fuller

(1982) consider as their null the model

(1 - B)1- By =«,

where d = 2,4,12 depending on the number of observations per year. They suggest estimating the

equations
a1ye-1 + @Yt-d + @3Yt-d-1 + €

Il

Yt

Yt = A1y + 62(Yi-d — A1ye-a-1) + €,
and then testing the restriction a1, a2, a3} = {1,1,~1] or [¢1,¢2] = [1,1] by calculating a standard

F-statistic and using the proper distribution in their Table 5.1.2

? Wasserfallen (1986) applies the Hasza-Fuller test to aggregate macro series for several OECD countries. He finds
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Interpretation of results from the Hasza-Fuller test is difficult for two reasons. First, the test
imposes two unit roots at frequency zero under the null. Second, it is unclear how the performance
of the test changes when only some of the seasonal frequencies possess a unit root. Rejection does
not prove that no unit root exists at any frequency. Moreover, failure to reject does not help identify
the frequencies that are integrated. One is left with the null that all of the frequencies possess unit
roots, and frequency zero has two. Finally, as HEGY point out, the test imposes a particular form
for the alternative: all of the seasonal roots have the same modulus. If the true process has no
unit roots but the roots at the seasonal frequencies have different moduli, there will be residual
autocorrelation and many lags of the dependent variable will be needed to whiten the errors. Thus,
applications of the test are likely to suffer from low power and residual autocorrelation in the errors.

Dickey, Hasza and Fuller (1984) bypass the assumption of two unit roots at frequency zero by

considering the null model (1 = BY)y; = ¢;. They suggest estimating the equation

-1
~—

T = pri—g + be + €, (

and testing whether p = 1, where b, is either a constant or seasonal dummies. They publish the
distribution of various statistics when the regression equation includes a constant and seasonal

dummies.?

As with the Hasza-Fuller test, this test suffers from the problems of interpreting
rejections, low power and residual autocorrelation. The HEGY test procedure avoids these problems

by including a regressor corresponding to each of the potential unit roots,

limited evidence of unit roots at seasonal frequencies. Ghysels (1990) applies the test to quarterly U.S. GNP
and per capita GNP. When he excludes seasonal dummies and a time trend, he fails to reject the (1— B)(1— B*)
model. When he includes seasonal dummies and a time trend he rejects the model, but autocorrelation in the
residuals prevents him from putting much faith in the results.

Ghysels (1990} applies the Dickey-Hasza-Fuller test to GNP data and rejects the (1 — B*) specification in favor
of a stationary alternative that does not include seasonal dummies and trends. Bhargava (1987b) also considers
the test of p = 1 in equation (7), emphasizing the importance of the inclusion of seasonal dummies. He rejects
the null of p = 1 in U.K. consumer expenditures. See also Bhargava (1987a).
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2.2 Asymptotic Distributions of the Monthly HEGY Test Statistics

Derivation of the asymptotic distributions of the test statistics proposed above follows Chan
and Wei (1988), Park and Phillips (1988), Phillips (1987), and Stock (1988). We consider first
the distributions of the t-statistics when constant, seasonal dummy and trend terms are excluded
and the regression is correctly specified. The goal is to develop the asymptotic distribution of
t1,t3,tx and tgyq where k € {3,5,7,9,11}. We prove that the asymptotic distributions of the
five t, are the same as are those of the five tx,;. For ease of notation, we write that k is odd if
k #1and k € {3,5,7,9,11} and that k is even if k # 2 and k € {4,6,8,10,12}. W, denotes a
standard brownian motion independent of all other W; for k£ # j. Lemma 1 gives the asymptotic

distributions of these t-statistics.

Lemma (1):

1
! Wi(r)dW,(r) k= I
( )

[ witry2ar
[ wa(r)aws(r)

T - - ik =2
_ L= ¥k16 L ! (flo Wa(r)2dr) ,
- (T Wi(r)dWi(r W aw,
o(Sha vt L Sk “fﬂ‘ bar(n) “;‘" if k odd:
(f] watnyrars | Wiar(r)3dr)
1 . 1 ,
fo Wir)dWioa(r)- [ Waoa(r)dWa(r) & even.

L () waaanrars [ w.(r)wr)i

Proof: The appendix provides the full proof; we sketch it here. Note that yi-; can be written
in terms of sine or cosine weighted averages of the last twelve partial sums of ¢;. The numerator
is the scalar sum of yi,_1€, because yi(_; is orthogonal to y;.-1 Vj # k by construction. The
denominator is the sum of y?,_,. One first sums over years keeping the cosine and sine terms
constant. This leads to the type of analysis in Phillips (1987) or Stock (1988). One then sums over
the trigonometry terms as in Ahtola and Tiao (1987). e

It follows from Lemma 1 that ¢; and t; have the same asymptotic distribution, that all of
the odd seasonal statistics have the same distribution, and that all of the even seasonal statistics
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have the same distribution. The It calculus shows that t; and t; have the Dickey-Fuller (1979)
distribution (Phillips, 1987; Stock, 1988). The construction of 7y and 7 in Franses (1990) is the
same as here, so his statistics have the same distributions as ours. The distributions of the odd
seasonal -statistics are the negatives of the distributions in Corollary 3.3.8 in Chan and Wei (1988)
and the same as for 3 in Engle, Hylleberg, Granger and Lee (1991) (EHGL), while the distributions
of the corresponding even statistics are the same as for ¢, in EGHL. The construction of 3 and m4
in Franses (1990) is also the same as here with the exception that he reverses our notation. As Chan
and Wei prove, the distribution of t3 is the same as for i4 with d = 2 in Dickey-Hasza-Fuller (1984)
(see also EGHL). Finally, Ahtola and Tiao (1987) and Chan and Wei note that the distribution of
the odd seasonal statistics are the same across frequencies.

We next consider the distributions of the t-statistics when deterministic terms are included in
the regression. Define y, as the residual from a regression of yx¢ on a constant. Define yi,, y¢, and
yi: analogously, where 7 stands for constant plus trend, £ stands for constant plus eleven dummies,
and £r stands for constant, eleven dummies, and trend. The numerators and denominators of the
respective regressions are partially defined in Lemma 1. Let N equal the part of the numerator
different from the corresponding numerator in Lemma 1, z € {u,7,£,£7}. Let D equal the square
of the denominator different from the square of the corresponding denominator in Lemma 1.
Lemma (2):

1 .
N¥ = -Wi(1) [y Wa(r)dr ifk=1;
() N {0 ° ifE> 2

—4Wy(1) fy Wa(r)dr + 6 fy Wi(r)dr [} rdWi(r)

(r) Ni=9§ 12 L eWi(r)dr [} rdWi(r) + 6WA(1) [y rWh(r)dr ifk =1
0 itk >2
—~Wi(1) f, Wi(r)dr if k=1

(€ N ~W(1) J) Wa(r)dr if k=2

—1Wi(1) f) Wi(r)dr = IWesa(1) fy Wiga(r)dr if k odd;
—1WL(1) fo Wier(r)dr + 2Wioa(1) f) Wilr)dr if k even;



—4Wl(1) fo Wl(r)dr + 6_[0 W] dT fol TdW](T)
-12 fo rWi(r)dr fo rdW,(r) + 6W;(1) fo rWi(r)dr ifk=1;

(fr)Nkf = —Wz(l)fo Wa(r)dr ifk=2;
— Wi (1) J§ Wi(r)dr = 1Wiqa(1) fy Wiga(r)dr if k odd;
—1Wi(1) Jy Wi(r)dr + 1Wio1(1) fy Wioa(r)dr if k even.
1 2 .
(1) D:s{anwﬂﬂh) g:;;
~4(Jg Wi(r)dr)’ +12 f§ Wi(r)dr [y rWi(r)dr
(r) Di= { —12(]01 rWl(r)dr)2 ifk=1;
0 ifk>2
([~ (J Wi(r)dr)® if k=1
(€) Df = | (fol Wz(")dT)2 ifk=2;
* %(fo W'Ir("')d")2 1‘(_[01 Wk+1(r)dr)2 if k odd;
%(fo Wy 1(7')) - —(fol Wk(r)clr)2 if k even;
(—4(f} W, (r)dr) +12 [ Wi(r)dr [} rWy(r)dr
..12(_}'0 rW'l(r)dr)Q ifk=1;
(ér) D{ = s (f Wg(r')dr)2 ifhk=2
-%(fo Wk(r)dr) = 1{Jo Win(r alr)2 if & odd:
- 1(Jd Wiea(r)Pdr = L(Jy Wi(r)dr)’ if k even.

Proof: The proof is similar to that for Lemma 1 and is developed fully in the Appendix. Sce also
Park and Phillips (1988). s

Given these results, the distributions of the t-statistics when the regression includes determin-

istic terms are as follows:

Lemma (3):
([} Wy (r)dW,(r})+ N}
[} War)aws () + ,} S
(fx; Wi(r)2dr+Df)
Wa(r)dWa(r)+ NE
T fq, ) 3 ifv=2
f = L2 Ve ¢ ({o W:(r)’dr-l-D;)l
= =2 vkenl )
&(Z:T=z v,_,)? [ wanawi(n)+ [ W..”(r)dW.H(r);N, i k odd:
(f) watryadrs [ Wapa(r)2ar+ ;)
[ Wa(r)dWapa(r)= [ w,“(r)dW.(r);N: if & even,
L (f: Wu-l(f)’dr-i-f; Wc(r)’dr-#-D:)
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where z = u, 7,§,éT.
Proof: Directly from Lemmas 1 and 2 and the continuous mapping theorem (Billingsley, 1988). e
Lemma 3 shows that all of the odd statistics have the same distributions when different deter-
ministic regressors are included in the regression. The same is true for the even statistics. One can
also see that t; is invariant to the inclusion of seasonal dummies as long as a constant is included.
The distributions of t} and t] are the same as in Park and Phillips (1988) or Stock (1988), while
the distributions of t;,...,t;2 are independent of constant and trend terms. The explanation is
that the terms yxy (K > 2) can be written as functions of cosine and sine waves that repeat every
twelve periods and sum to zero over those periods. These terms are asymptotically orthogonal to
terms that are not periodic, such as a constant or a time trend. Also, the distribution of t; when
dummies are included in the regression is the same as that of ¢; when only a constant is included.

The distributions of the F-statistics follow from Lemmas 1-3. Write

Fi = (1/(26%)6'(X'X)b

with
Y1 Yk+1
Bx ]
b= X _ . .
[ﬁk-n : :
Y. T Yk41,T
This implies
Lemma (4):

L
Ff o 53 +1h),

where z = ., u, 7, £, and £7 and & € {3,5,7,9,11}.
Proof: The orthogonality of yx ;~1 and yx41.¢-1 means that X'X is diagonal. Writing out the above

in scalar notation gives:

T T
Ff = (1/(26%)) (85° Z?J:}—l + B85t Eyﬁl.t—l) = F(52 + 54).
t=2 t=2
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The asymptotics then follow from Lemmas 1-3 and the continuous mapping theorem. See also

EGHL. »

2.8 Finite Sample and Asymptotic Critical Values for the Test Statistics

Table Al contains critical values from the finite sample distributions of the ¢ and F statistics
needed to employ the AHEGY procedure with monthly data. The critical values were obtained
by simulating 24,000 regressions of the form (4), with various combinations of constants, seasonal
dummies and trends included. The fundamental series were generated by y; = y;—12 + €, with ¢
standard normal. These results complement those in HEGY for quarterly data.

The critical values for 1,44, teven and F were calculated by combining the observations on all five
similar statistics. For instance, t 44 is computed by stacking t3,ts5,t7,tg and t;; and calculating the
order statistic for that (120,000 x 1) vector. Thus, ¢; and t; are based on 24,000 observations while
odds Leven and F are based on 120,000 observations. The first rationale for this procedure is that the
asymptotic distributions of these statistics are the same for each of the five pairs of coefficients, as
shown above. In addition, investigations of the finite sample distributions for a subset of the cases
considered below indicates that these distributions are similar for a given number of simulations
and converge as the number of simulations increases.

Table Al also contains the asymptotic critical values of the monthly HEGY test statistics.
To calculate these values, we approximate the functions of brownian motion using partial sums of

normal random variables. For example, W(1) is approximated as

p Se0o
w(1) = W ; €5
where the ¢; are independent, standard normal random variables. This procedure is then repeated
100,000 times.
The standard errors of the estimated critical values are less than or equal to .02 for t; and ta.
less than or equal to .01 for togq and t.yen, and less than or equal to .03 for F. These standard
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errors are based on the asymptotic distribution of the normalized central order statistic (Bickel
and Doksum, 1977, p. 400). In calculating the standard errors, a kernel estimate of the density
using the Epanechnikov kernel with bandwidth equal to (40y/7) 2 N~? was used (N = 24,000 or
120,000).

Examination of the results in Table A1 suggests that the finite sample distributions display all
the characteristics of the asymptotic distributions described above. First, the distribution of each
of the eleven seasonal coefficients is unaffected by the presence of a constant or a constant plus
trend; these terms only affect the distribution of t;. Second, the distribution of ¢; is unaffected by
the presence of seasonal dummies as long as a constant is included in the regression. Third, the
distribution of ¢, when dummies are included is similar to that of t; when a constant is included.
In addition, the results in the table indicate that there are not large differences between the finite

sample and asymptotic distributions.

2.4 Size and Power Issues

One problem that arises in carrying out these tests is the treatment of residual autocorrelation
in z;. If ¢(B) is allowed to be of order greater than §, then ¢*(B) # 1, so additional lags of
y13: must be included on the right hand side of (4). These extra lags do not affect the asymptotic
distribution of the test statistics (so long as they correctly estimate the remaining AR component
of z,), but they do affect the finite sample distribution. In particular, if the model has a true
MA component, the correct number of lags in ¢o(B) is infinite. This implies a finite sample bias
that disappears as the number of lags grows to infinity. Stated differently, the testing procedure
approximates a true ARMA model with a high-order AR model {Said and Dickey, 1984). Schwert
(1987), however, maintains that there exist substantial biases in zero {requency unit root tests for
samples of moderate length.

In Table A2 we present some suggestive evidence on this source of finite sample bias. Ghysels.
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Lee and Noh (1992) provide a similar discussion. The top half of the table reports the probability
of rejecting the null of integration when the true process is integrated but contains an MA(1)
component that is approximated as a finite order AR component. The two specifications presented
in the table model the error term as ¢ = n; + p7¢—1, where p = £.85 and the regressions include
twelve lags of the dependent variable. To save computation time, the table reports results based
on a series twenty years long, with regressions that contain a constant and seasonal dummies but
no trend. Inclusion of a trend does not significantly affect the results.

Two consistent results emerge in the table. First, there is some bias in the size of the test. At
a test size of 5 percent, t3,¢5 and ¢; reject only about 1.5 percent of the time, and g and ¢;; only
about 3.3 percent. The even statistics are more troublesome. When p = —.85, the distributions of
tq and tg shift to the left. 17 and 8 percent of the densities, respectively, are to the left of the 5
percent critical value. The distributions of ts and to shift to the right. 20 and 13 percent of the
densities are to the right of the 5 percent right-hand side critical value. The F-statistics uniformly
reject at a rate lower than the implied critical value. The highest is Fgj0 at 3.9 percent for a 5
percent test; the lowest is F7 g at 1.8 percent. The distributions of #; and {; are not substantially
affected. At a test size of 5 percent, one rejects a unit root for t; 4.9 percent of the time and for f»
3.4 percent of the time.

Second, the difference between the eflect of p = —.85 versus p = .85 can be predicted by
examining the spectrum of an MA(1) process (this argument ignores the twelve lags of the dependent

variable that also appear in the regression). If z; = 1y + pn;—y the spectrum of z, given p is
Szp(w) = o2(1 4 p* + 2pcosw).

It is immediately clear that for an MA(1), S ,(w) = Sz,— (7 —w). This implies that the distribution
of statistics associated with frequency w when p = .85 will be the same as those associated with
7 —w when p = —.85. Table A2 verifics this prediction. The rejection probabilities for t; (w=0)
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and t; (w = ) flip. The pair t5,ts (w = %”) flips with the pair t7,t5 (w = %), and the pair tg,t0

]

(w= 561) flips with the pair t11,212 (w %). The distribution of t3 (w = 7) appears not to change
while ¢, changes its center so that it is offset to the other side of the original distribution.

The results of a different model are reported in the bottom panel of Table A2. Here the
fundamental series is generated by (1 ~ B?)zy = (1 - .85B%)¢,, where ¢, is white noise. The series
is still integrated at all the respective frequencies but only fifteen percent of the shock is permanent.
The regressions that generate the t and F statistics include twelve lags of the dependent variable,
a constant and eleven seasonal dummies. As in the previous cases the statistics for a unit root at
frequency 0 and 7 are not much affected by the additional correlation and lags of the dependent
variable. At a test size of 5 percent one rejects 4.4 and 4.5 percent of the time, respectively. For
t3-t17 the distributions shift to the right. For the left-hand side statistics one rejects much less often
than is implied by the size of the test. For the even statistics one rejects more for the right-hand
side. As in the MA(1) cases, the F-statistics have lower sizes.

One should avoid drawing a strong conclusion about the robustness of these statistics to
residual correlation in the errors from the few simulations reported above. Still, the statistics
we focus on the most, t;, t; and the five F-statistics, do not have true sizes higher than implied by
the critical values in Table Al. The results also suggest that the F—statistics are better behaved
than the sequential t-tests on t3,...,t;2.

A second area of investigation is the power of these statistics to some alternative. Asis typically
the case, there are many alternatives one would like to consider. In the top half of Table A3 we

report the probabilities of rejecting the null of unit roots when the true z, process is generated by

(1-p2B )z, = ¢. (8)

In this case the series contains roots at frequency zero and all of the seasonal frequencies, but all
twelve roots lie outside of the unit circle. In the bottom half of the table we report the probabilities
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of rejecting the null of unit roots when the true z, process is generated by
(1-BY1+p*B + p®B%)z, = €. (9)

In this case the series contains roots at the same frequencies as in (8), but for frequencies 0, = and
% the roots lie on the unit circle. The stationary roots have modulus -:;, as in (8).

In all cases the regressions contain a constant and eleven dummies but no trend. Experimen-
tation suggests that the inclusion of a trend does not change the results, so we omit this term to
reduce the computational burden. The fact that we include seasonal dummies in the regressions
means that the results are robust to processes that include an arbitrary seasonal dummy pattern.

The tables suggest several conclusions about the power of these tests. First, when the fre-
quency in question possesses a unit root, the probability of rejection is close to the size of the
test, independent of frequency and independent of the size of the roots at other frequencies. For

instance, when the process is generated as in (9), one rejects unit roots at frequencies 0, 7, and

[XIE]

only 5-6% of the time at a 5 percent critical value. Second, the power of the test is moderate when
the root lies close to the unit circle. For instance, when the series is generated as in (8) with the
modulus equal to %g = 1.05, the test rejects unit roots at frequencies 0 and = 45 percent of the
time and at the remaining frequencies 71 percent of the time. As one increases the modulus of the
root, the probability of rejection increases substantially. When the modulus is -_31—5 = 1.18, the test
rejects at frequencies 0 and 7 99 percent of the time and at the remaining frequencies 100 percent
of the time. Finally, the test has more power at frequencies with complex roots than at frequencies

0 and r.

3. Evidence on Seasonal Unit Roots

We now present results of applying the HEGY test procedure to aggregate U.S. time series.
The quarterly series that we consider are real GNP, consumption, fixed investment, and government
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purchases (for these regressions we use the critical values presented in HEGY). The monthly series
are the nominal money stock, the price level, real and nominal interest rates, industrial production,
real retail sales, real wages, and the unemployment rate. All series are in log levels, except for
nominal rates (log of gross rates) and real rates (ex-post net rates). The sample period is always
the longest subperiod of the post-WWII period for which data are available; details are provided
in the tables. The sources and exact definitions of the series are given in the Appendix B.

The estimation equations include a constant, eleven seasonal dummies, time, and lags of the
dependent variable. We allow for seasonal dummies in all tests because the loss of power that
results from their inclusion when unnecessary is insignificant compared to the bias that results
from their omission when necessary. We report OLS t- and F-statistics.

For the results presented in the tables, the set of lags was determined by first estimating the
equation with three years of lags and then excluding those lags that failed to enter significantly
at the 15 percent level. This approach trades off the loss of power that results from including
unnecessary lags against the bias that results from excluding necessary lags. We have also used the
Schwarz (1987) and Akaike (1974, 1976) criteria to determine the number of lags. We compared
the criteria for all unrestricted autoregressions of order P, with P equal 36 months or fewer.
The Schwarz criterion almost always chooses a specification with fewer than a year of lags, while
the Akaike criterion (which is known to overparameterize (Granger and Newbold, 1986)), usually
chooses the specification with almost three years of lags. Based on an earlier version of this paper,
which simply reported results for 0, 1, 2 or 3 years of lags, we conclude that if we chose the lag
length based on the Schwarz criterion we would obtain results similar to those reported in Tables
1 and 2 below. If we allowed for the much larger set of lags implied by the Akaike criterion, we
would reject much less often.

In the quarterly data on the national income accounts, reported in Table 1, there is no series
for which the data fail to reject a unit root for at least one of the seasonal frequencies at the 3
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percent level or better. At I, the F-statistics reject at the 5 percent level for GNP, Investment and
Government Purchases and at the 10 percent level for Consumption. In addition, the ¢-statistic for
either 73 or 74 is below the 5 percent critical value for all four series. At frequency = we reject at the
5 percent level for GNP and Investment and at the 10 percent level for Government Purchases, but
we fail to reject for Consumption. At frequency zero we reject at the 5 percent level for Investment
and Government Purchases but fail to reject for GNP and Consumption.

In the monthly data on measures of real activity, reported in Table 2, we generally reject
seasonal unit roots more strongly than in the quarterly data in Table 1. For Real Retail Sales
we reject unit roots at the 5 percent level at all the seasonal frequencies (including frequency =)
using the t-statistics, and we reject at frequencies %, %, 7, 27", and %51 using the F-statistics.
For Industrial Production we reject at every seasonal frequency using the ¢-statistics and in every
case except ¢ using the F-statistics. The data on Unemployment and Money reject unit roots
less often than those for Retail Sales and Industrial Production, although they reject at several
frequencies in both cases. For both series, the data fail to reject at the 5 percent level at frequency
x. For Unemployment, they also fail to reject at frequency %"— using the {- and F-statistics and at
oz

and % using the F-statistics. At frequencies T, §, §, and 23—", the data reject at

x x

frequencies %, 7,
the 5 percent level using the t-statistics. They also reject at 2—;’- at 5 percent and at § at 10 percent
using the F-statistic. For Money, both the t and F-statistics reject at all frequencies other than =,

The data on monthly price variables, also reported in Table 2, provide stronger evidence against
seasonal unit roots than the data for quantities. The data reject at the 5 percent level or better
using the t— and F-statistics at all seasonal frequencies, except for the F-statistic for the Real
Wage at frequency %, in which case the data still reject at 10 percent. The data reject the zero
frequency unit root at the 5 percent level for the Real Rate and at the 10 percent level for the
Nominal Rate.

To summarize, for most series we reject unit roots at most frequencies, and there is no series
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for which we fail to reject unit roots for at least one of the seasonal frequencies. The strongest
evidence for a seasonal unit root is at frequency =, but even in this case we reject more often than
not at the 5 percent level. Moreover, as discussed earlier, tests at this frequency have lower power
than tests for seasonal unit roots at other frequencies. Generally, we fail to reject the hypothesis of
a unit root at frequency zero. Osborn (1990) and Lee and Siklos (1990) provide similar results for
the U.K. and Canada, respectively, while Beaulieu and Miron (1990a,b) obtain similar conclusions

for disaggregated U.S. manufacturing data and aggregate QECD data.

4, Conclusion

We conclude by discussing the significance of these results. As noted by many authors in
the context of the zero frequency, there are potentially serious problems of statistical inference
when one or more series contains a unit toot. For example, the variance of a series with a unit
root is infinite, the distribution of the estimated first order autocorrelation changes when the true
autocorrelation equals one, and two independent integrated series can display spurious correlation
(Granger and Newbold, 1986). These problems are not alleviated by blind differencing to ensure
stationarity (Quah and Wooldridge, 1988).

Many of these same issues arise when one considers unit roots at frequencies other than zero.
In prior considerations of seasonality, different parameterizations have been used to explore the
importance and effects of seasonality in univariate and multivariate contexts. The use of seasonal
dummy variables, as in Barsky and Miron (1989), is not appropriate if the observed seasonality is
generated by an integrated process. Models of seasonal cointegration, such as in HEGY, EGHL, and
Lee and Siklos (1989), require the series to be seasonally integrated. Finally, the appropriateness
of applying the filter (1 — B?) to a series with a seasonal component, as advocated by Box and
Jenkins (1970), depends on the series being integrated at frequency zero and all of the seasonal
frequencies.

18



Given these observations, the implication of our results is that the mechanical application of
the seasonal difference filter is likely to produce serious misspecification in many instances. There
is sufficient evidence against seasonal unit roots that empirical researchers should check for their
presence using procedures such as the one discussed above, rather than simply imposing seasonal
unit roots a priori. In addition, since the power of these tests is never perfect, it is presumably
also sensible to ask whether the economic problem under consideration suggests mechanisms that

would plausibly give rise to seasonal unit roots.
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APPENDIX A: TECHNICAL DETAILS

A 1. Construction of yx.

For seasonal integration in monthly data, (1 ~ B'?) is the relevant polynomial. It can be

factored as
(1-B"%)=(1-B)1+B)(1+B*)(1+B+B*(1-B+B%(1+V3B+B*)(1-+v3B+B)

with corresponding roots, 8, = 1 plus the eleven roots given in equation (2). Expanding ¢(B)
about these #, using equation (3):
@©(B) = M B(1 + B)(1 + B*)(1+ B* + B®)
+ A (—B)(1 - B)(1 + B*)(1 + B* + B®)
+ M(=iB)(1 - iB)(1 - B®)(1 + B* + B®%)
+ M(iB)(1 4+ iB)(1 - B*)(1+ B* + B®)
+As(-1B)1-V3i+2B)1- B+ B*)(1-B*+B°- B%)
+ Xe(-1B)(1+ V3i+2B)(1 - B+ B*)(1- B* + B® - B®)
+27(1B)(1 - V3i-2B)(1+ B + B*)(1 - B* + B® - B%) (A1)
+2(3B)1+V3i-2B)(1+ B+ B*)(1- B* + B® - B%)
+ Xg(~1B)V3-i+2B)1-V3B+ B*)(1+ B? - B® - B®)
+ Ao(-1B)V3+i+2B)(1 - V3B + B*)(1+ B* - B® - B?)
+2i(3B)(V3-i-2B)(1+ V3B +B*)(1+ B* - B° - B®)
+M2(3B)V3+i-2B)1+ V3B + B*)(1+ B* - B* - B%)
+¢"(B)(1 - BY).
Because ¢(B) is real, the pairs (X3, Ay),(Xs, As ), (A7, As), (Ag, Aro ), and (A11,A12) must be complex
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conjugates. Let 7, be defined implicitly as follows:

M =-m As = 3(—75 + i76) Ao = 3(—79 + im10)
Ay = =73 Xs = 3(—75 — img) Ajo = J(—m9 = imyo)
A3 = (=73 +imy) Ar = }(—77 4 ing) Ann = H(=m + impg)
M = %(—-w;, —imy) As = %(—-ﬂ"r —img) Az = %(‘7"11 - imy2).

Substituting 7; for Ag gives
o(B) = - mB(1+ B)(1+ B*)(1 + B* + B®%)

m2(-B)(1 - B)(1+ B*)(1+ B* + B%)

(4 + maB)(-B)(1 - B¥)(1 + B* + B®)

- 1(/3r6 — (1+2B)m5)B(1 ~ B + B*)(1 - B + B® - B%)

- }(V3rg ~ (1 - 2B)m7)(-B)(1 + B + B*)(1- B* + B® - B®) e
- Ym0 = (V34 2B)19) B(1 - V3B + B*)(1 + B? - B® - B®)

- Y(m2 - (V3= 2B)my;)(-B)(1 + V3B + B*)(1 + B* - B® - B%)

+97(B)(1 - B'?).

From equations (1) and (A2) one obtains regression equation (5). Note that we can rewrite equation

(5) as
12 » 12 . .
Yie = ZCOS(OJW)B"1 Y1 = Zcos(l:i"')BJ—l = _"3@(3/5' = 2yse-1)
i=1 j=’
12 ‘ 12 , )
vae = Y cos(jr)Bi! ys = = ) _sin(§)B7
i=1 =1
12 _ _ 12 ) )
Y= ZCOS(%)BJ-I = Yar-1 Yoo = Zcos(iél)B’_l = —(V3yi0t + 2100-1)
i=1 i=1
12 ' ‘ 12 ) .
Yoo = — Z:sin(%’i)l?"1 Yioe = Zsin(ils_’!)BJ"l
i=1 j=l
12 . ' 13 . ;
Ys¢ = ZCOS(Z‘;—*‘)BJ-I = —g(yst + 2ys¢_1) Yiie = ZCOS(%)BJ-‘ = _(\/Eylﬂ - 2912:-1)
i=1 j=1
12 . 4 12 ) .
Yer = Zsin(%l)B"l W2t = — ZSi“(Jsl)BJ_l-
=1 j=1

24



This shows explicitly how yi ¢ is related to its particular frequency.

A 2. Proofs of Lemmas

This section finishes the proofs of the asymptotic distributions of the various statistics. In the
proofs, however, a large amount of notation must be fixed, and a couple standard convergence facts

established. The first two subsections set-up the proofs which are given in the third subsection.

A 2.1 Weak Convergence to Brownian Motion

The strategy is similar to that in Chan and Wei (1988), Park and Phillips (1988}, Phillips
(1987), and Stock (1988). The major assumption is that ¢, is a martingale difference sequence with
constant variance equal to o? and sufficient conditions on other moments such that one can apply
an invariance principle. The condition sup, E|¢/|* < oo for some § > 2 is sufficient. (See Stock, 1988
and Phillips, 1987.) In addition to avoid excessive notation, the assumption of a balanced sample,
that is each month has the same number of observations, is convenient. Because an asymptotic
distribution is the goal, to ensure a balanced sample one can imagine that a few observations on
either end of the sample are always available. Denote the total number of observations as T' and let
t=12j+!. 7 =0...J — 1 denotes the year and ! the month. Finally, initial values do not matter

asymptotically and are set to zero for convenience.

Given these assumptions one can write the partial sum of the errors in a particular month
converging to a brownian motion independent of another month's. Independence follows from the
¢; being the fundamental Wold innovations. In addition, given the martingale difference assumption,
weak convergence to stochastic integrals of the form fol W(r)dW(r) is assumed. These results are

summarized in Lemma Al.
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Lemma (Al):

T
:I;T‘“i Z(g
"T } Z €12j41

J=°

Y B0)

1=0
J-1 m

%J-i Z E €125+41

m=0 s=0

-1 m
Z Z €12s+1-n€12m41
m=0 s=0

Q|-

where Bi(r) are mutually independent standard brownian motions.

brownian motion.

Proof:

in

in

s

wi(1)

7’173:(1)

Wl (7‘) (A3)

/01 By(r)dr

1
/ Bi_n(r)dBy(r),
0

Wi(r) is also a standard

For the first two convergences see Park and Phillips (1988). The equality is implied by that

which is above it. For the next convergence result see Park and Phillips (1988). For the last see

Chan and Wei (1988) or Phillips (1988a.b). e

The -\715 term is needed to insure that the variance of differences are conventional.!

A 2.2 Trigonometry

As is seen in section Al of the appendix, the right-hand side regressors can be written as

weighted sums of the observed series where the weights are sine or cosine functions. In deriving

4 In other words, if 7152}:‘ Bi(r) =

can write
Z Bi(s) -

Var( —
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Wi (r) then the variance of differences must be equal also. By this one

12 12
112 ‘Z; Bi(r)) = 713 ,2_1:(, —r) = Var(W, (s) = Wi (r)).



the numerator and denominator of the various {-statistics, terms of the form

11 12
3> g (6l - 8) Xi-sZi

i=0 =1

ZJ: 121 (i trg (8x(! - 8))X1-.) :

m=1 (=0 ‘s=1

are needed, where trg denotes either the sine or cosine function. The index, k = 1...12, corresponds
to 1 ... Y12, and 8 is the frequency associated with the root used to make yi. Note that ys, ys
and y); are actually equal to the negative of the sum. For these three cases, one can replace the
root with its negative though such details will not be expressed in the rest of this appendix. The
subsequent analysis would be unchanged because of the symmetry of the distributions of y46.8.10.12-

Define the vectors X = [Xo,X; ... Xn1]"s 2 = (20,21 ... Z11]'. Also define the matrix

trg(6x-0)  trg(6c-1) trg(6x-2) ... trg(fk-11)
trg(0x - 11)  trg(8x-0) trg(fx-1) ... trg(6x-10)

Ap = trg(6i - 10) trg(fx-11) trg(6c-0) ... trg(f- 9) | . (A1)
trg(0x-1) tg(0-2) trg(fx-3) ... trg(6x-0)

Similar matrices are found in Ahtola and Tiao (1987). With these definitions one can write

11 12
SN g8l - ) Xi-sZi = X' AKZ

=0 a=1
11 12 (10)

J 2
2 (ths(gk(l—s))-’«’:-,) = X' ALALX.

m=}{=0 ‘s=1

Because A, = ~ A/, if trg = sin and A, = A} if trg = cos, the second equality can be rewritten as
X ALALX.

Though it is rather inconvenient to show analytically, simple numerical calculations show that
Ay has rank equal to one if k = 1,2 and has rank equal to two if & > 3. Define the singular
value decomposition of Ay = UxDiVi where Dy is diagonal with only the first or first two diagonal

entries non-zero. Uy and Vi are orthonormal, and thus ULU; = V{Vi = I. Replacing in (10) yields

X'Ukasz and X’UkaDkULZ. (AC'))
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The elements of X and Z will converge to simple functions of the twelve brownian motions,
either B,(r), dB,(r) or fol Bs(r)dr. Post multiplying X with Uy and pre-multiplying Z with
Vi defines a vector of linear combinations of B,(r). Including the matrix D in the middle and

multiplying leaves only one or two brownian motions.

Consider the case where v = 1,2, The rank of Ai equals one with Dy;;,; = 12. Because D is
all zeros except for that first entry, only the first column of Uk and the first row of Vi matter. Let
u. o1 denote the first column of Uy (12 x 1), and v,y the first row of Vi (1 x12).

tra=v.a = 75LL4LL. LY

Upel = Vhpy = 7‘1-5[1,-1,1,—1,...1,-1]'
For example, take X = Z = B(1) = [Bo(1), Bi(1),... B11(1)}'. Then
B(1)'Uy D1Vi B(1) = B(1)'uj 0129y -1 B(1) = 12W,(1)?

B(1)'U2DaVaB(1) = B(1)'uz a12v2 1 B(1) = 12W5(1)%.

One can verify that the W;(1) above is the same as is defined in Lemma Al. The 1¥(1) in the

second line is by definition.

Consider now the case where v > 3. The rank of Ax equals two with Dg, 11 = Dy;22 = 6.
Because Dy is all zeros except for the first two entries, only the first two columns of Uy and the
first two rows of Vi matter. The exact form of uy, . differs across k, but a couple properties hold

for all odd k and for all even k. Because Uy and V, are orthonormal

u;c; citk; ci = Vk; Tl‘v;:; =1 u;:; clUkic2 = Uk Tlvi’; r2 =0
Moreover, for all odd &, that is trg = cos,

Uk; rilik; el = Uk r2Uk 2 = 15 Vk; r1Uk; 2 = Vk;r2tkier = 0,
and for all even k, that is trg = sin,

Vg 1tk 2 = 1 Vg r2Uk; el = ~ 15 Uk r1tk el = Vkr2Uk; 2 = 0.
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Because of this perfect correlation (positive or negative) for k odd, one can write
B(r)uk o = Wi(r) = vi, 1 B(r) and  B(r)'uk; 2 = Wiy1(r) = vi, 2 B(r).
For k even, one can write
B(r)'uk, 1 = Wiet(r) = —vi;r2 B(r) and  B(r)'uk; 2 = Wi(r) = vi. n B(r).

These definitions of W(r) for I > 3 will be the convention for what follows.

For example, take X = B(1) = [Bo(1), B1(1),... B11(1)) and Z = dX. Then if k is odd
B(1)'UxDxVi B(1) = B(1) ug; c16vk; r1d B(1) + B(1) uk; 26V, 12dB(1)
= 6Wi(1)dWi(1) + 6Wiy1(1)dWis1(1).
If k is even
B(1)'UxDiVi B(1) = B(1) uk; 16vk; 1d B(1) + B(1) uk; 260k, r2dB(1)
= 6Wi_1 (1)dWi(1) — 6We(1)dWi_1(1).

The specific use of these trigonometric expressions will be clearer in the proofs.

A 2.3 The Statistics

First to consider is the distribution of the ¢-statistics when no other terms are included in
the regression, and the regression is correctly specified. The goal is to develop the asymptotic
distribution of t;, t3, tx and txyy where k € {3,5,7,9,11}. It will be proved that the asymptotic

distribution of the five ¢, are the same and the five tx41 are the same.

For all & the numerator of the t-statistic is 23.:2 Yk,1~1€:1. Because z; — T;_12 = €, 2, =
Zg‘zlz)z]C]Qj+{, where | = t — 12(t/12] and [] rounds towards zero. The denominator of the t-
statistic is (1, vii1) } Lemma1 gives the asymptotic distribution of these t-statistics. In the

proof the distribution of the numerator and denominator is established separately, which gives the

total distribution by the continuous mapping theorem (Billingsley, 1968).
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Lemma (1):

( LM} ifk=1,
(f: Wx(f)’dr) !
LM} ifk=2

v g | ([ wanrer) :

b 1
&(23;2 yi . 1)} fo th(")dwn(")+folan(")dWH;(") if k odd;
([, wa(r2drs [ Wasa(r)2dr)
[ wa(r)awioa(r) = [ Wa_s(r)dWa(r)
(f) wacatryrars f} W.(r)’dr);

iy =

if k even.

\

Proof.
As will be typical of what follows, since the goal is an asymptotic distribution, assume that
one can observe a few observations in the past, specifically for ¢t = 0, and in the future to guarantee

a balanced sample. Keeping this in mind, write

1-12 [t/12)

Ykt-1 = z trg(8x(t - s)) E €12j 43
j=0

s=l-1

The numerator of the {-statistic can be written

T n -12
Zyk.t—lft Z Z Z trgde(l — 3)Z€12,+a€12m+l
t=0 m=0 =0 s={~
11 J m
= Z Z trgfe(l - 8) z Z €12j+2€12m41 (A6)
=0 s=1 m=0 j=1
5 %TZZtrg&k I—s)/ Bi_,dB..
=0 s=1

That last step is from Lemma Al. The term T'/12 appears because it indicates that the numerator

must be normalized by J~! to ensure convergence.

Let B = [By, By, ... By1|' and the (12 x 12) matrix A be defined as in (A4). With this matrix
one can rewrite (A6) as |

11 12 1 1
ST S5 tg(i(t - 9)) / B,_,dB, = ;T/o B’AkdB=${-;-T/o B'UxDiVidB.

i1=0 s=1
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Post-multiply B by U, and pre-multiply dB by Vi. This step is simply making linear combinations
and is well-defined. Applying the analysis in the Trigonometry subsection finishes the asymptotics

for the numerator.

As for the denominator note its square equals

ZJ: i( ‘i’ trg(6x (I - 5)) }m:en,-,u.)z.

m=11{=0 ‘s=i-1 )=1
Denote by X the vector [Z;":l €12;40s- - E;"___l €12;411)'. The denominator can be rewritten as

J
> X ALAX,
m=1

or because A’'4 = AA'

J J
Y X ALAX = S X'UDeDLULX
m=1 m=1 . (A?)
= ﬁi‘T’/o B'(r)Ux Dx DxULB(r)dr

The term T2 /144 appears because J~? is the normalizing factor. Post-multiplying B’ by U and pre-
multiplying B by U’ finishes the proof. Note that the brownian motions defined by this operation
are the same as in the numerator. Taking the square root of (A7) gives the asymptotic distribution
of the denominator, and taking the ratio of the asymptotic distribution of the numerator and the
denominator gives the asymptotic distribution of the ratio by the continuous mapping theorem.
Finally, by taking the ratio, the T’s cancel while there is an extra ¢ in the numerator. This ¢ is
canceled by dividing by & in the construction of the t-statistic. That & is estimated is no problem

by the asymptotic equivalence lemma. o

Squaring the denominator and multiplying the numerator by two for k& > 3 gives the distribu-

tion of T8, which is another statistic considered in the literature.

Next to consider are the t-statistics when additional terms are included in the regression. A
straight forward application of Lemma 2.1 in Park and Phillips (1988) combined with the above
analysis yields Lemma A2.
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Lemma (A2):

S Wi(r)dr ifk=1;
ifk>2;

—

T
(a) %T-%Z:yk,t—l 5 {
t=0

T 1 .
(8) %T—i Z tYk,e-1 £ { fo rWi(r)dr ifk=1;

o

- 0 ifk22;
T 1
(c) 1p-3 Z“' 5 / rdWy(r).
t=0 0
Proof (Lemma A2a):
. T
Rewrite 3. _o Ykt as
T 12 J-1
S e =30 Y vt
t=0 =1 m=0
12 J-1 12 m
= ZZtrg(12m+l—(12q+p)+ 1)0xe1294p
i=1 m=0p=]¢=0
12 12 J=1 m
= 7-1 Ztrg(!—p+l)9kzzfnq+p-
i=1 p=1 m=0¢=0
Note
J-1 m c 1
T-% Z‘l?q+}7 - 121120/ BP(T)dT
m=0 ¢g=0 0
But for any x,:
12 12
trg(6x(l = s))xp =0 Yk # 1.
i=1 p=1

Thus:

T-% o - c ik [ Bi(r)dr, ifk =1
tghe(l=s) 3 D €r2g4p — 7— 0

=1 p=1 m=0 ¢=0 l if k 2 2.

Interchanging the order of summation and mtegratxon, 7— 2, 21 b B,(r)dr = fo Wi (r)dr, finishes

the proof. s
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Proof (A2b):

It is easiest to consider the two cases k = 1,k # 1 separately. Suppose k = 1 first. Then

" ?Ztyu 1=T" *ZZte.

t=0 =

5 / rWi(r)dr.

0

This result is directly from Park and Phillips (1988) or Stock (1988).

Now, let k # 1. Denote the seasonal mean of yi 12m41 as ﬁi',.

11 J-1

T- iztyu 1=T" a'ZE:(12TTI.-'}-IY,I'g Gk(t—s Ztum.H 1
=0 m=0
J-1 m
=T %JZka,JrT i‘JZZtrg 8t = 5) Y cragapr.
{=0 p=0 m=0 ¢=0

The first term in the second line converges to zero as T grows large. The second term by the proof

in (A2a) equals zero. e

Proof (A2¢):

Direct application of Park and Phillips (1988) Lemma (2.1). e

Lemma A2 gives the asymptotic limits needed to derive the distribution of statistics involving
a constant term or a constant and trend terms. Lemma A3 gives the asymptotics needed for
regressions with seasonal dummies. Define Wy(r) as in Lemma 1 and Wa(r), A«, Uk, D, Vi, and
Wi(r) as in the Trigonometry subsection. Define

= y-1 = = 71
612m+ =J" E €124 yilum.H = Z Yka2;5+10
j=

that is each is the monthly mean, or fitted values from the regression of the variable on seasonal
dummies. Lemma A3 follows.
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Lemma (A3):

'W] l)fo W] dT ifk=1,

1 .
1p-1 £ £ L Wi(1) f, Wa(r)dr if k=2
7 ngk'l—lfl < ';'W*(l)fol Wi(r)dr + Wiy ( 1)f0’ Wigi(r)dr if k odd;

WD) fy Wiea(r)dr — YWila (1) [ Wi(r)dr  if k even;
((Js Wn(r)dr) k=1
11 .

-2 _£2 i (f Wg(r)dr) ifk=2;
ST A { L fo Wi(r)ar)® + 1(/, Wk“(r)dr) if k odd;
! %(fo Wi- 1(r)dr) + z(fo Wk(")dr) if k even;

Let
J-1 c 1
xi=J4 Z Yi12m4n — / Byu(r)dr
m=0 0

J-1
a=J4Y imin S Ba(l).

m=0

The convergence results are from Lemma 1. Let X = [Xo,X;...X11), and £ = [¢g,6;...601]"

Write " N
T—l‘] gi,l—lgf = T-I‘] Z z Y 12m+i- l) z ‘12m+l
=0 =0 m=0
11 s J-1
=%y (J7F E Yeazmsi-1) (7 > €@amsi)
I=0 m=0 m=0

= HXAE = X' Ux Dy Vi€,
Passing U into &X' from the right and V into £ from the left and taking the limit finishes the proof.

To prove the second equality, replace &; with yx4-1. Then
1
T-%J }: 5118 = X' AgALX
I=

The rest of the proof follows both the proof of the first equality in the lemma and the development

in the Trigonometry subsection.

Armed with Lemmas A2 and A3 one can develop the asymptotics for the numerator and for
the denominator. Define yi, as the residual part of a regression of yx¢ on a constant. Define
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¥k, as the fitted values from that regression. (yx, =

€T

Ye: T ¥5.)- Analogous definition hold for

(Y00 ¥k (yﬁ’t, gﬁ,,) and (yi',, Ji1)- The numerator of the respective regressions is partially

defined in Lemma 1.

Let N/ equal that part of the numerator different from that base case

likewise D} the denominator.

Lemma (2):
1 .
N* = —Wl(l)fu Wi(r)dr ifk=1;
W) { 0 ifk>2
[ Jo Wi(r)dr + 6 f} Wy(r)dr fj rdWy(r)
(1) Ni=9q —12f) rWy(r)dr fy rdWi(r) + 6Wi (1) f) rWi(r)dr il k = 1;
0 k> 2
—Wl(l)fo wl )dr ifk=1;
- 7, i =
© Ni= W2 (1) f; Wa(r)dr if k=2
—-Wk(l)_f0 VVk(r)dr = Wi ( l)fo VVkH(r)dr if k odd;
—1Wi(1) Jy Wioa(r)dr + YW1 (1) [ Wi(r)dr if k even;
—4W1(1) f; Wi(r)dr + 6 [, Wi(r)dr [} rdWy(r)
—12 [} rWy(r)dr [, rdWi(r) + 6W1(1) fy rWi(r)dr if k = 1
(ETYNET = —Wy(1) [} Wa(r)dr ifk=2;
- IWe(1) fy Wi(r)dr = 1Wig1 (1) J) Wiga(r)dr if k odd;
—IWi(1) fy Wioa(r)dr + 2Wi_ (1) f) Wi(r)dr if k even.
1 2 .
DY = -(f lVl(r)dr) ifk=1;
() Di {o ° if k> 2
S Wi(r)dr)? + 12 ] Wi(r)dr [} rW(r)dr
(r) Di= —12(f) Wi (r)dr)’? k=1
0 ifk>2
-y Wl(r)dr) if k=1
¢ (f Wg(T)dT) if k=2
'I(fo Wk(r)dr) T(fo WkH(r)dr) if k odd;
{ —}(fo Wi l(r)) dr - —(fo Wi r)dr) if k even;
4(f Wi(r dr) + 12f0 W';(r )dr fo rWy(r)dr
-12([01 rW,(r)dr) itk =1
(ér) DY = ¢ —(f2 Wa(r) dr)2 if k=2
%(jn Wi(r)dr)® = L(f} Wiy (r)dr)? if k odd;
L -1, Wi ,(r)) dr - L(J)f Wi(r)dr)® if k even,
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Proof (Lemma 2p):

T T
Z k1€ = Z(yk,t—l = Fero e — &)
=0 t=0

Since the averages are the same for all ¢

T

T T
o - =N ps
Eyk.:-l‘t = Zyk.t-lfz = Eyk,:-l‘t 1

=0 t=0 t=0

and therefore,

T T
u - T
Eh.r-l‘:‘ = Z Vei-160 — T,

t=0 t=0

Applying the proper normalization and Lemma A2 finishes the proof. e

Proof (27):
As in (2u)
T T T T T
PREIRTHED W TRSTIESD N RTINS PR THART SN Y T4
t= t=0 =0 t=0 t=0

0

Denote the OLS slope coefficient of ¢; on t and a constant as b, likewise for b,. As before ignore the

fact that lags make some variables unavailable. Assume the observations are available if necessary.

b, = Zeco(e = O(t=1
Tiolt =

2
The denominator in b, is Y1_o(t - ) = TTENATH) _ T(TH). o 71"—2, while the numerator in b,

is

T

E(g(t—t‘) = ZC:‘—@%(T'{- 1)

t=0 t=0
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This leaves

T

T L
z!/k.t-lft =

t=0

(yki-1 — § = by(t = D)) (ec — E~ be(t = 1))

g["l“i Aag)s

Ykt~ 161—2 g+ by (t—1))e~ Z(‘+b(t—t—))ykt 1

t=0

T
+ (7 + byt - D)(E + bt - D)
t=0

Ykt~ 1€t-z(y+b (t-1))e

0]~ gl"]%

T
Yk-1€ — 4T§E — 12773 Zyk,t—lt Z €t
t=0 t=0
T T
+6T7'§Y etr+ 6T71€)_ yriat.

t=0 t=0

-~
]
S

The second to last equality is from expanding the terms and noting that Zz;o(t —1) = 0. Applying

the proper normalization, and lemma A2 finishes the proof. e

Proof (2):

T T T T T
Z yi.t-l‘f = Zykvt-l‘t - Zgi,t—xfl - Zyk.i—lé + Z 37(.: 1€¢
t=0 t=0 t=0 t=0 t=0
It is easily seen that the last two terms cancel leaving after a few simple manipulations
T T 11
Zyi,g-lff = Zyk.t—lft - JZ!?i,:-xzfv
t=0 t=0 1=0
where g,f', = J-1 Z::lo Yk,12m+1- Applying the proper normalization and lemma A3 finishes the
proof. e
Proof (267):

Asymptotically the vector of seasonal dummies is orthogonal to the vector of trend terms. One
can write yilf‘_l = Ykt-1— Jfgg — ﬂi‘,_, + i _,- The addition of the g ,_, is necessary because

37



both §;,., and gi_t_l both take it out. Thus,
T

T
z yi,rt_l‘ff = Z(yk,t—l - k-1~ 175,:-—1 + 37;:.:—1)(‘! -§- Ef +&)
t=0 t=0

T
= Z(yk.t—l - Pre-1)(e — &)+ (—gi,g-lft - Yre-18 + fli,g-;ff)
=0
+ (37i_g_1€}r + ﬁ;,t-lé) + Fep—a (e~ & - &)
+ & (Yxp-1— FL g — ?i,t-l) + Thpr e
The asymptotics of the first term in parentheses is given in (2r). The asymptotics of the second

term is given in (2€) and equals
11
-J Z gi.l—lc_f'
=0
The next term will be shown below to equal 2T§#é+0,(1), When the numerator is multiplied by T~!

the 0,(1) term disappears. The final terms when added together equal —T§#¢. The asymptotics of

this term is given in (2u). Adding this up yields
T T T T
Z Yk t-1€¢ + T[-IQT-i Eyk_g_]t + T_i Z(gt - GT—g zyk'g_;T'iqt
t=0 t=0 t=0 =0
T T
-67-% Z yk,t—-ltT—ift] - 3T[T-§ Zyk.t—lT-i(t]
t=0 t=0
11 J-1 J-1
- J[Z J-1 Z Ve azmer-1d "} Z €12m+1)-
=0 m=0 m=0

The asymptotics are straight forward.

The rest of the proof establishes the claim that

Consider the first term; the second is derived analogously.

T T T
z gi.t-lgz =& Z yi.g_) + b( z yﬁ',_l(t - t-)
Y =0 t=0
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As is shown in (2€), the first term equals Té#§#. The second term equals

T 11 J-1
bed Wb (t-D=b) vi,, Y (12m+i-HT+1)
t=0 =0 m=0
11
=b Y vk (V- 1T + ).
i=0

Because the term at the end is of order T and not T2 is why this whole term is 0,(1). Factoring

out the J and writing the definition of yi',_l and of b, gives

11 11
= b Z Yk 1zmei-1(0 — )
=0 m=0

T T n u
= (12T‘3 > et —6T? Z(:) DO vezmea(l - )

t=0 =0 =0 m=0

T T 1 1

= (12T—% D= 674 Z“) NS penampra (= ).

t=0 t=0 =0 m=0

In light of lemmas A1,A2 and A3, each term converges to some random variable. Multiplying
by T-! sends this to zero. To do its partner in the denominator, g;‘,_lzf, switch ¢ and yg, being

careful about the factors of T that ensure convergence. o

With the numerator and denominator defined, the distribution of the ¢-statistics is simply the

ratio by the continuous mapping theorem. These are given in Lemma 3 in the text.
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Table A1l

Critical Values from the Distributions of Test Statistics for Seasonal Unit Roots,

data generating process Ajzzy = ¢, 0id(0,1)

Fractiles
Auxilliary ‘th oy ‘1% xq ‘1" Xodd
Regressions T 0.01 0025 005 Q.10 001 0.025 005 0.10 0.01 0.025 005 0.10
No intercept 240 -2.51 -2.18 -1.89 -1.58 -2.53 -2.16 -1.87 -1.57 -250 -2.16 -1.88 -1.55
No seas.dum. 480 -2.52  -2.21 -191 -1.59 <252 -220 -1.91 -1.59 -2.52 -218 -190 -1.57
No trend o« -2.57 -224 -195 -1.62 <257 224 -195 -1.62 -2.56  -223 -1.95 -1.59
Intercept 240 -3.35  -3.06 -2.80 -2.51 -248 -2.15 -1.89 -1.57 -2.51 -2.16  -1.87 -1.54
No seas.dum. 480 -3.40 311 -285 -2.5% -2.54  -220 -1.91 -1.59 -2.56 -220 -1.90 -1.57
No trend =) -3.41  -312 286 -2.87 <257 224 -195 -1.62 -2.56 -223  -195 -1.99
Intercept 240 -3.32 -3.02 276 -247 -3.28  -3.01 -276 -2.48 -3.83 -351 -325 295
Seas.dum. 480 -3.37  -3.06 -2.81 -2.53 -3.37  -3.07  -2.81 -2.52 -3.86 -355 -329 -2.99
No trend oc -34y 0 .3.12 .2.86 257 -3.41  -3.12 .2.86 -2.57 -3.91  .361 -333 -3.05
Intercept 240 -3.87 358 -3.32 -306  -252 -218 -1.88 -1.55  -249 216 -185 -1.34
No seas.dum. 480 -3.92  .363 -3.37 -3.09 -2.55 220 -1.93 -1.60 -2.53  -220 -191  -1.57
Trend =) -3.97  -3.67 -3.40 -3.12 -257 224 -195 -1.62 -2.56  -223  -19% -1.59
Intercept 240 -3.83  -3.34 -328 -2.99 -3.31 -3.02 275 -2.47 -3.79  -350 -39 -2.95
Seas.dum. 480 -3.8%5  .3.57  -3.32  -3.04 -3.40 -3.08 -284 -2.54 -3.85 -35%5 -3.29 -3.00
Trend co 397 -3.67 -340 -3.12  -341 -312 -2.86 257  -3.91 -361 -335 -3.05
Fractiles

Auxilliary ‘4" Xeven F' Xodd Teven
Regressions T 0.01 0025 0.03 0.10 0.90 0.95 0.975 0.99 0.90 0.95 0975 099
No intercept 240 231 -1.9%  -1.83 -1.27 1.25 1.61 1.93 2.29 2.34 3.03 3.71 4.60
No seas.dum. 430 -2.33  -1.86 -165 -1.28 1.27 1.63 1.94 2.32 2.38 3.08 3.78 4.70
No trend x <230 -1.94 -163 -1.28 1.27 1.63 1.94 2.32 2.40 3.10 3.79 1.68
Intercept 240 -230  -1.93 -1862 -1.27 1.24 1.60 1.91 2.28 2.32 3.01 3.08 4.60
No seas.dum. 480 -2.32  -1.95 -1.63 -1.27 1.27 1.62 1.93 2.30 2.36 3.06 3.76 4.66
No trend o -230 -1.994  -163 -1.28 1.27 1.63 1.94 2.32 2.40 3.10 3.79 4.68
Intercept 240 -2.61 221 -185 -145 1.46 1.86 2.20 2.60 5.27 6.26 7.19 8.35
Seas.dum. 480 265 225 -1.90 -149 149 191 225 263 542 642 738  8.60
No trend =) -272 231 -1.95  -1.54 1.53 195 230 2.72 5.64  6.67 7.63  5.79
Intercept 240 -228  -193 -161 -1.25 1.4 1.59 1.90 226 230 297 364 4.33
No seas.dum. 480 <230 -1.94 163 -1.27 1.25 1.61 192 2.28 236 305 372 462
Trend ) -230 -194 -163 -1.28 1.27 1.83 1.94 232 240 310 379 468
Intercept 240 257 218 .1.85 -145 145 186 219  2.60 525 623 7.4 833
Seas.dum. 480 -266  -2.27  -1.91  -1.49 1.49 1.90 2.25 2.64 5.44 6.43 7.35 8.52
Trend o -2.72 <231 -1.95  -1.54 1.53 195 230 272 5.64 6.67 763 879
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Table A2: Size of Monthly Unit Root Tests, Probability of Rejecting

(1- Bz = (14 pB)n,

Left Side (-Statistics

I y ; % :
p Percentile ¢ 1y 13 t4 ts ts ty 13 tg t1o t t12
-.85 5% .049 034 .011 .172 .017 .006 .016 .085 .033 .004 .035 .057
.85 5% .035 .044 .010 .008 .013 .085 .018 .006 .033 .053 .033 .005
Right Side 1-Statistics F-Statistics
L S S S 1 Py 5 % %
p  Percentile ¢4 tg t3 tio ti2 Fs4 Fsg Frs Foi0o Fiia
-85 95% .009 197 .023 .134 .042 .020 .032 .018 .039 .036
.85 95% 71 025 191 036 .142 .020 014 .036 .034 .039
(1= B¥)z = (14 pB)n,
Left Side t-Statistics
0 % % i : 5 ;
p  Percentile ts {3 4 ts ts t7 s ty tio ty 2
-.85 5% 044 045 .015 .054 .021 .036 .022 .040 .034 034 .035 .037
Right Side t-Statistics F-Statistics
P ¥ 5 ¥ % P F 5 ¥ %
p  Percentile 14 te ts  tio 2 Fs4 Fsg Frz Feno Fnn
-85 95% .054 056 .054 .059 .059 .015 .022 .024 .035 .036

Notes to Table A2:
1. Left and Right hand statistics are t-statistics; F-statistics are the joint statistics calculated as an F~

statistic. The percentiles give the percentage of the area underneath the simulated density to the left
of the listed statistic. These statistics are based on 24,000 regressions with 20 years of data.

. 1¢ 1s standard normal.
3. The regressions include twelve lags of the dependent variable, a constant and eleven seasonal dummies,

D

but no trend.
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Table A3: Power of Monthly Unit Root Tests, Probability of Rejecting

(1-p2BY)y = ¢

Left Side t-Statistics

N ; 3 : 0 :
P Percentile t tz t3 ty ts s tr is ty tlD tn tu
.95 5% 447 448 796 033 .795 .033 .795 .032 .794 .034 .794 .034
.85 5% .987 988 1.000 .028 1.000 .029 1.000 .029 1.000 .029 1.000 .028

Right Side t-Statistics F-Statistics

x 2 x 5x x b4 i x 1.4 x

2 3 3 6 6 3 3 3 6 3
p  Percentile i4 113 ts tio tiz Fs.q Fes F1,s Fo10 Fu,xz
.95 95% .031 .032 .030 .030 .03l 16 113 713 714 711
.85 95% 028 .027 .025 .024 .025 1.000 1.000 1.000 1.000 1.000

(1= BY(1+p*B*+ p*B%)y, = ¢,
Left Side t-Statistics

0 ; 5 3 % :
p Percentile ) 123 ts t4 ts te t7 ta to tio i1y tia
.95 5% .057 052 .054 .052 1.000 .000 1.000 .000 1.000 .979 1.000 .979
.85 5% 057  .058 054 .052 1.000 .000 1:.000 .000 1.000 .977 1.000 .976

Right Side t-Statistics F-Statistics

x 2x z Sx .4 x 2r x Sx, x

2 3 3 6 6 ] 3 3 3 6
p Percentile 1t 16 ts tho t12 Fs¢ Fs¢ Fis Fypo Fupae
.95 95% 053 966 963 .000 .000 .053 1.000 1.000 1.000 1.000
.85 95% .051 965 .964 .000 .000 .051 1.000 1.000 1.000 1.000

Notes to Table A3:

1. Left and Right hand statistics are t-statistics; F-statistics are the joint statistics calculated as an F-
statistic. The percentiles give the percentage of the area underneath the simulated density to the left
of the listed statistic. These statistics are based on 24,000 regressions with 20 years of data.

[+

. ¢ is standard normal.

3. The regressions include a constant and eleven seasonal dummies but no trend.
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APPENDIX B: DATA

The data we use are seasonally unadjusted, U.S. macroeconomic time series for the post-
WWII period. All of the data were obtained through Data Resources, Incorporated. All series
are measured in log levels, except for nominal rates (log of gross rates) and real rates (ex-post net

rates).

The quarterly series are from the Bureau of Economic Analysis. They are Gross National
Product, Personal Consumption Expenditures, Gross Private Domestic Fixed Investment, and
Government Purchases of Goods and Services. All of these series are deflated by the CPI, which is

from the Bureau of Labor Statistics (BLS).

The monthly series on real activity are Retail Sales, the Industrial Production Index, and the
Unemployment Rate. The first two are from the Board of Governors while the third is from BLS.
The Wage series is Average Hourly Earnings in Private, Non-Agricultural employment, also from
BLS. The money stock is M1 and the Nominal Rate is the rate on 3-Month T-Bills; both series are

from the Board of Governors. Retail Sales and Wages are deflated by the C.P.I
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