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Testing Volatility Restrictions on Intertemporal Marginal Rates of Substitution

Implied by Euler Equations and Asset Returns

Recent empirical research on asset pricing has examined the restrictions on
the volatility of a representative consumer’s intertemporal marginal rate of substi-
tution (IMRS) implied by asset return data. The pioneering work of Hansen and
Jagannathan (1991) shows that the Euler equations derived from a broad range of in-
tertemporal asset pricing models, together with the first two unconditional moments
of asset returns, imply a lower bound on the volatility of the IMRS. For an IMRS
with a given mean, they derive and compute the minimum standard deviation it must
possess. The goal of their work is to restrict the parameter space for a given class
of preferences that can be used to understand the dynamics of asset pricing. The
purpose of this paper is to develop and implement a statistical procedure for judging
whether a particular model of preferences meets Hansen and Jagannathan’s lower
volatility bound.

The computation of the lower volatility bound has recently developed into a widely
used diagnostic tool for assessing the usefulness of a number of classes of preference
orderings. For example, Burnside (1990), Epstein and Zin (1991), Hansen and Ja-
gannathan (1991), Heaton (1991a), and Ferson and Harvey (1992) all compare the
lower volatility bound, computed from stock and bond returns data, with estimates
of the mean and standard deviation of the IMRS implied by various utility functions,
computed using data on aggregate U.S. consumption. Snow (1991) examines higher
order moments, Bakaert and Hodrick (1992) apply the volatility bound analysis to the
study of international equity returns data, while Backus, Gregory and Telmer (1991)
use these methods in an attempt to understand foreign currency returns.}

Thus far, researchers have employed this analysis by comparing point estimates of
the volatility bound with point estimates of the mean and standard deviation of the
IMRS implied by a specific utility function. While the comparison of point estimates

may be useful for some purposes, there will be occasions where the investigator will

"The recent paper by Cochrane and Hansen (1992) provides a survey of work on this topic.



want to employ formal tests of the restrictions that are implied. This paper develops
and uses such a test.

Our approach is to formulate a procedure that accounts for the two sources of
uncertainty that arise in the comparison of the mean and standard deviation of the
IMRS implied by a particular model of preferences with the bound that is computed
from asset returns data. First, because the volatility bound itself is estimated from
the data, it is random. Second, the computation of the mean and standard deviation
of the IMRS using a specific utility function relies on estimates of the moments of the
consumption process, and so it too is random. As a consequence, a formal statistical
evaluation of the restrictions imposed by the implied lower volatility bound requires
a test of whether the difference between two random variables is zero.

We apply our test to four extensively studied data sets, and three popular prefer-
ence specifications. We study both annual and monthly data on consumption, equity
returns, and short term Treasury debt, as well as data that combines monthly U.S.
consumption data with monthly Treasury bill term structure data and with monthly
U.S. dollar returns on five major foreign currencies. The utility functions we consider
are a one-lag model of consumption durability, a one-lag habit persistence model, and
the conventional time-separable constant relative risk aversion model (CRRA).

An important issue that we address concerns the relative size of the two sources of
sampling variation that are present in our test statistic. We find that the uncertainty
induced by random returns in the estimation of the lower volatility bound, for a given
mean of the IMRS, is small relative to the uncertainty in the calculation of the mean
and standard deviation of the IMRS based on a model of preferences. Put differently,
most of the variation in the comparison of the two random variables in our test is the
result of uncertainty induced by estimation the mean of the IMRS. This is the result of
uncertainty contained in the consumption data, which appears to be relatively high.
Our conclusion is that the availability of relatively short time series of consumption
data — less than 100 years of annual data, and approximately 30 years of monthly
data — seriously undermines the ability of tests that use the restrictions implied by

the volatility bound to discriminate among different utility functions. For example,



using the monthly U.S. data set, the point estimates of the standard deviation of the
IMRS implied by time-separable CRRA utility appear to lie a considerable distance
from the implied volatility bound. But, setting the annualized time discount factor
to 0.99, and a coefficient of relative risk aversion of 0.2, we find that the implied
volatility restrictions cannot be rejected based on a two standard error rule.

The remainder of this paper is divided into four sections. In Section I we be-
gin with a review of Hansen and Jagannathan’s method for computing the volatility
bound from data on asset returns. This is followed by a description of the utility
functions we examine, along with a discussion of the stochastic model for consump-
tion. We then show how to compute the IMRS implied by the class of preferences
we consider, and derive the statistic used to test whether a model meets the restric-
tions implied by the volatility bound.? Section II reports results of the applications
we study. Section IIT discusses how to impose the restriction that the mean of the
IMRS is nonnegative and reformulates the testing methodology appropriately. Using
this modified procedure, we examine the implication for one of our applications —
the annual data on consumption, equity returns and Treasury debt. While the non-
negativity restriction tightens the point estimates of the volatility bound, raising the
minimum standard deviation of the IMRS for a given mean, the standard errors grow
so much that the test imposing nonnegativity is no more informative than the one

without it. Finally, Section IV provides concluding remarks.

I. A Testing Framework

The purpose of this section is to derive a test to evaluate whether a particular
model of preferences is consistent with the restrictions implied by Hansen and Jagan-
nathan’s volatility bound. We begin with a review of the method used to compute
the bound from data on asset returns.

In Section I.B we describe the specific utility functions that we examine. These

*Burnside (1991) has independently devised a set of tests that are similar to the ones discussed
in Section I.



include simple forms of preferences that allow for either consumption durability or
habit persistence, as well as the conventional time-separable, constant relative risk
aversion case. In order to derive the mean and standard deviation of the IMRS im-
plied by each model of preferences, we require knowledge of the consumption process.
Section I.C describes the stochastic model for consumption that we employ. To this
end, we assume that the consumption growth rate follows a random walk in annual
data, and a first-order autoregression in monthly data. Section I.D then presents
the derivation of the mean and standard deviation of the IMRS for the examples we
consider.

Finally, Section LE describes the statistical testing procedure we employ to de-
termine the class of preferences that meet the Hansen and Jagannathan restrictions.
Since both the bound itself and the implied volatility of the IMRS for a given util-
ity function depend on data, the comparison of the model to the bound is a test of
whether the difference between two random variables equals zero. We exploit this
reasoning, together with standard asymptotic distribution theory, in the derivation
of the test.

Throughout this section we ignore one important implication of asset pricing the-
ory — that the expected value of the IMRS must always be nonnegative. Hansen
and Jagannathan argue that use of this information can substantially change the lo-
cation of the volatility bound, and so it can further restrict the set of models that
meet the restrictions implied by the bound. We defer discussion of this nonnegativ-
ity constraint until Section III, where we present a testing framework in which it is

incorporated.

I.A The Hansen-Jagannathan Volatility Bound

We begin with a brief description of the derivation of the lower volatility bound

on the IMRS first suggested by Hansen and Jagannathan (1991).® The starting point

3In addition to the exposition in Hansen and Jagannathan, and the one presented below, there
are numerous ways to describe the derivation of the volatility bound. See, for example, Cochrane
and Hansen (1992) for another alternative.



is the set of Euler equations implied by intertemporal asset pricing problems. We

write these as
qt-1 = Ez—l(vtzz) (1)

where E,_;(-) is the conditional expectation given information at ¢t — 1, g-1 is an
(nx1) vector of asset prices at date t — 1, z, is the corresponding vector of date ¢
asset payoffs, and v, is the intertemporal marginal rate of substitution, which is the
discounted ratio of marginal utilities at ¢ and ¢ — 1. In returns form, ¢;—1 may be a
vector of known constants and &, a vector of gross returns. For example, g¢—1 might
be a vector of ones, so that each asset is defined to command a unit price in return
for a stochastic ‘payoff’ equal to its gross return.

To continue, take unconditional expectations of both sides of equation (1), and

use the law of iterated expectations, to obtain
e = E(vaz,) , (2)

where s, is defined as the unconditional expectation of ¢,_;, E(g-1). Next, define
He = E(v), ol = E(v, - :uv)21 bz = E(‘It) and X, = E(zt - #I)(‘rt — ), and

then project (v, — 4, ), the deviation of the IMRS from its mean, onto (z, — Hz), the
deviation of the asset payoffs from their means, to obtain a set of coefficients g,, such
that

(vt - l‘v) = (It - /‘:)lﬂv +u, (3)

where u, is the projection error. Using the definitions of the unconditional means and

variances, we can write

Bo = ZIUE(zi— po)(ve — o))
= E;l[E(ztvt) — fzily) (4)

= E;l[iuq - our.ull] ’

where the last equality in (4) makes use of the Euler equation (2). Now, using (3)

and (4), together with the fact that the projection error u, is orthogonal to z,, we



can derive the variance of the IMRS. We write this as

oy = (g = pobta) B3 (g = pottz) + E(uy) . (5)
Since E(u?) is nonnegative, it follows that

0y 2 0z = [(pg — prote) T5 (g — Hottz)]

N

(6)

The right-hand-side of (6) is the lower volatility bound derived by Hansen and
Jagannathan (1991) and we label it o,. Provided that g, is not a zero-valued vector,
the bound is a parabola in (y,,0,)-space. As Hansen and Jagannathan note, the
derivation of this volatility bound may be viewed as the dual to the mean—standard
deviation efficient frontier analysis in the theory of finance, except that there is no
guarantee that the returns used to generate the IMRS volatility bound are on the
efficient frontier.

The current practice in examining the implications embodied in the lower bound
is as follows. First a point estimate of the bound is computed using point estimates
of p; and £, from data on asset returns. Next, point estimates of p, and o, are
computed using a particular utility function and consumption data. The investigator
then asks which values (if any) of the preference parameters for the utility function
result in (py,0,) pairs that lie inside the parabola.

As we note in the introduction, this procedure may be useful for addressing certain
questions. The question we ask is whether the mean and standard deviation of the
IMRS of the model is ‘close’ to the parabola in a statistical sense. The purpose of

the remainder of this section is to describe a method for answering this question.

I.B Preferences

The main use of the volatility bound is to provide a set of restrictions that allow
us to restrict the parameter space for a given class of utility function. We begin by
studying the utility functions examined by Hansen and Jagannathan (1991). They

assume that the period utility function displays constant relative risk aversion defined
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over consumption services derived at ¢, S;. Expected utility is the discounted expected

sum of period utilities, and is written as

& o Ser =1
U, =E Ttk 7
' 'Z‘;ﬂ (1=1) @

where § is the discount factor and consumption services are generated by a simple

one-lag model in consumption expenditure, C,, such that
St = Cl '+‘ 501_1 - (8)

This utility function includes three cases of interest. When § = 0, (7) is the
familiar time-separable constant relative risk aversion formulation. For 6 > 0, (7)
implies that consumption purchases contain a durable component of the type studied
by Dunn and Singleton (1986) and Eichenbaum, Hansen and Singleton (1988). Fi-
nally, negative values of § imply the kind of habit persistence Constantinides (1990)
has found useful in explaining the equity premium puzzle.?

Using (7) and (8), we can write the IMRS between ¢ and ¢t 4+ 1 as

_ BIS + BSE (S )

IMRS = . 9
H ST+ BSE(STY) ®)

We will use (9), together with consumption data, to compute the mean and stan-
dard deviation of the IMRS, given values of the preference parameters (8,7, §). For
the familiar CRRA case in which § = 0, IMRS, 4, = 8 (c—é‘ﬂ) _‘1, and so the mean and
standard deviation, g, and o,, can be estimated nonparametrically from consump-
tion data. For nonzero values of § we must evaluate the conditional expectations
in (9) parametrically. This requires that we specify the stochastic process governing

consumption growth.

4We note that Heaton (1991) examines a model that combines aspects of both durability and habit
persistence, while Ferson and Constantinides (1991) provide empirical evidence for this specification
of the utility function.



I.C A Stochastic Process for Consumption Growth

Our goal is to examine data at both annual and monthly frequencies. As such, we
must select a model for both annual and monthly consumption growth. It is useful
to begin with a brief description of the consumption data we study. The annual real
consumption series we use is for per capita nondurables plus services. From 1889
to 1928, this series is the data used in Grossman and Shiller (1981), and was pro-
vided by Robert Shiller. Beginning in 1929, and continuing through 1987 we use the
NIPA series for real personal consumption expenditure on nondurables and services.
Monthly data is the seasonally adjusted series on real consumption of nondurables
and services from April 1964 to December 1988 obtained from CITIBASE.

In order to choose a stochastic model, we first estimate a fourth-order autoregres-
sion for the annual data, and a twelfth-order autoregression for the monthly data.®
The top panel of Table [ reports ordinary least squares estimates of these simple au-
toregressions. The results clearly suggest that the annual data is well approximated
by a random walk, and so this is the model that we use. For the monthly data,
the coefficient on the first lag of consumption growth is —0.2704 with a t-statistic of
5.1, and a Wald test fails to reject that the second through twelfth coefficients are
zero simultaneously. The p-value of this joint test is 0.121. We take these results to
suggest that monthly consumption growth can be accurately modeled as an AR(1).

The final estimates are reported in the bottom panel of Table 1.5

5We find that the results are robust to changes in the process for consumption. See footnote 14
below.

SWe realize that the AR(1) for monthly data does not aggregate to a random walk at an annual
frequency. The inconsistency could easily be explained by the fact that the data is time averaged.
As He and Modest (1991) point out, the most common method for dealing with this is to assume a
process for spot consumption, and derive the statistical implications for time-aggregated consump-
tion. Heaton (1991a) examines this problem at length, and shows that use of data averaged over long
periods of time reduces the impact of time-aggregation bias. For other discussions of the problems
induced by time-aggregation see Grossman, Melino and Shiller (1987) and Breeden, Gibbons and
Litzenberger (1989).



Table I: Estimated Consumption Processes
Annual and Monthly Real U.S. Consumption Growth Rates

1. Autoregressions
Annual Data 1890-1987 Monthly Data 1964:4-1988:12
Fourth-order autoregression Twelfth-order autoregression
Coefficient Standard Error Coefficient Standard Error
Constant 0.0185 0.0054 Constant 0.0011 0.0004
Lag 1 —0.0972 0.1398 Lag 1 —0.2989% 0.0470
Lag 2 0.1651 0.1343 Lag 2 0.0329 0.0521
Lag 3 ~0.0670 0.0904 Lag 3 0.1130 0.0544
Lag 4 —0.0567 0.1085 Lag 4 —0.0254 0.0596
Lag 5 0.0185 0.0549
Lag 6 0.0117 0.0497
Lag 7 0.0452 0.0517
Lag 8 0.0801 0.0462
Lag 9 0.0304 0.0531
Lag 10 0.1134% 0.0543
Lag 11 0.1463+ 0.0492
Lag 12 0.0119 0.0504
I1. Final Estimates
Annual Data 1890-1987 | Monthly Data 1964:04-1988:12
Random Walk First-order autoregression
Parameter | Estimate Standard Error | Estimate Standard Error

P 0.0172 0.0029 0.0016 0.0002

o? 0.0012 0.0003 1.9¢-5 1.5e-6

p — — —0.2839 0.0511

Notes: Standard errors are robust to conditional heteroskedasticity. Asterisks indicate
significance at the 5 percent level. The final parameter estimates and their standard
errors taken from generalized method of moments estimates of the parameter vector
§ and its covariance matrix, %y .




I.D The Mean and Standard Deviation of the IMRS

Using the stochastic model for consumption growth, we can now compute the
mean and standard deviation of the IMRS implied by the preferences described in
Section I.B. We consider both the case in which the sampling interval for the data
and the holding period interval over which returns are computed are the same, and
the one in which they are not. For the case of monthly data, this means that we are
examining monthly data on both one and three month holding period returns, using
a stochastic model of consumption that is assumed to be monthly.

We begin with the simpler case in which the holding period interval and the

sampling interval coincide. First, write the consumption growth process as
my= pe(l — p) + prga + 6, (10)

where m; is the consumption growth rate, defined as in (c_?‘:)* and € is an iid.
normal random variable with mean zero and variance o2, Using (10), the IMRS, (9),

can be rewritten as

ﬁe-—'ﬂm [(emx+x + 5)—'1 + ﬁ66_7m'+‘E¢+1(6m‘+’ + 5)—7]

MRS1s1 = K(mey me) = (e™ + 8)~7 + B~ Ey(em+i + 8)7
(11)

where
Et(emﬂ-l + 5)—“1 = /°° [e(uc(l—p)+pmg+c) + 5] - @C(e)de ’

—~00 ifé6>0
In(=8) —pc(1 —p)—pmy f6<0

I
Il

and ®,(e) is the normal p.d.f. with mean zero and variance 2.

"The consumption process-in (10) implies that ¢ can take on very small values. When § is
negative, and ¢ is sufficiently small, then (11) would require that we calculate the value of a negative
number raised to the power —y. This problem leads us to put a lower bound on the value of ¢ when
we integrate the expression used to compute the IMRS. This lower bound is labeled ¢. The definition
of the Ey(e™+ + &)~ in (11) is not entirely consistent with the stochastic process for consumption
being correct, since (11) permits € to take on large negative values with nonzero probability. In
practice, this is not a serious problem as ¢ < ¢ is extremely unlikely for all of the cases we consider.
The quadrature rule we use to compute a discrete approximation to the normal density never strays

10



It follows from (10) that the unconditional distribution of {m,,m,y,) is bivariate

normal

my ~N He D‘Z 1 P

)
Meyy He 1"‘P2 P 1

We denote this distribution ®(m;, m.4;). Now, using (11), we compute the mean and

standard deviation of the IMRS as®

= /w /oo K(m,m")®(m,m')dmdm’ (12)
and
=/ / — 120 (m, m)dmdm' (13)
where
—00 ifé6>0

In(=6) if6<0

When the holding period interval is k periods, for a data sampling interval of one
period, then the relevant IMRS is the one from period t to period t + k. Using the

consumption process (10), we can write this as

k=1
IMRS,i4r = A(me, Mgk, 3 mugs) (14)
=0
BFe~T L% M [(eme+* + 8)77 + Boe Tk Byyy(e™erH 4 6)77)
((eme + 8)=7 + Bée~ "™ Ey(em™+1 + §)7]

The consumption process implies that {mg, mgy, S50 My4:} is multivariate normal,

given by
™y e , 1 Pt TS
UC
Mtk ~ N He 1 — p2 pk 1 2: =1 P 3
25:01 My Fpe Ek_ol o E =1 pok+2 Z ( i)P

into the portion of the density where ¢ < ¢. This implies that our quadrature rule will yield the
same results regardless of whether we impose a lower bound on ¢.

SThe use of m in equations (12) and (13) is for reasons exactly analogous to the ones that required
¢ in equation (11). See footnote 7.

11



which we label T'.
The analogs to (12) and (13) follow as

— g *®© b ! " ! n 7 "
Lok _./ / / I(m,m',m")A(m,m',m"Ydmdm'dm (15)

—ooJm Jm

and
o2 = /_0; /:o /,:O[I‘(m,m',m") — poi)*A(m, m', m"Ydmdm'dm” (16)

with m defined as it is in the simple case above.
In the applications, all of these integrals are evaluated using a 13-point Gauss-

Hermite quadrature rule.

I.LE Testing the Restrictions of the Volatility Bound

We now examine whether the model implied value for the standard deviation of
the IMRS is consistent with the bound derived from the asset returns data. This
involves asking whether the model values estimated using consumption data, &, is
near the bound implied by the asset returns data, using equation (6).

In order to conduct such a comparison, begin by defining ¢ as the vector of
parameters associated with the stochastic process governing consumption growth.
For the AR(1) model of Section 1.C, ¢ = (uc,aé,p). Next, define ¢ as the vector of
parameters that characterize the utility function, (4,v,6). Finally, recall that p, is
the mean vector of the asset prices, and g, and I, are the mean vector and covariance
matrix of asset payoffs.

We now stack all of the parameters that must be estimated from the data into the

vector §, such that

where vec(Z,) is the vector obtained by stacking all of the unique elements of the

12



symmetric matrix £,.° Now let 0§, be the true value of #, and & be a consistent
estimator of 8, such that \/T(é —-4,) L N(0,%). We presume that we have available
a consistent estimator of both §, and £;. In the applications, we compute 6 and
335 by generalized method of moments,!° in which 3 is the Newey and West (1987)
covariance matrix estimator with 11 lags.!?

Using this notation, we can make explicit the fact that the moments of the IMRS
and the volatility bound both depend on the sample. The estimated mean and stan-
dard deviation of the model values of the IMRS are i, = p,(¢; 1/;) and &, = o,(4; 1,.7;),

while the estimated volatility bound is
6o = 02(6:0) = (A = po(d D)) ET (B = (85 D)i))E (17)

The comparison of the estimated volatility bound, o.(¢; é), and the estimated
model implied standard deviation of the IMRS, o,(¢; 1/;), can be carried out by ex-

amining the difference

A(8;0) = a2(¢0) — o (¢19) . (18)

In order to evaluate whether this difference is large, we require an estimate of the
variance of A(¢; 9) This is constructed from the distribution of 4.

To proceed, take a mean-value expansion of A about 8,. It follows that

VT(A($;6) — A(¢:6,)) B N(0,02) ,

oA oA
2 _ —_— _
- (%)), (%)

9For all of our applications, fq is simply a vector of known constants, and so it can be omitted
from the specification of 6.

19The vector 8 is estimated using the first two moments of asset returns, the first two moments
of consumption growth and the first order autocovariance of consumption growth.

1The results do not appear sensitive to the number of lags used to compute the robust covariance
matrix. For example, there is little change when only three lags are used.

where

8,

13



This can be consistently estimated by

OA\| &« [0A
-2 _ (Y2 v
o= (a2 (&)
A test of whether a particular model meets the volatility restriction can now be

constructed by testing the null hypothesis, H, : A(¢;0,) < 0. We advance this test

(19)

é

procedure as a tool for constructing the regions of the preference parameter space that
are not rejected by the volatility bound at various levels of significance. In particular,
we compute the ratio A(¢; (;)/&A and look for values of ¢ that make it small. Since
this ratio is asymptotically normal, we can construct the regions of the preference
parameter space that are not rejected by the volatility bound at various levels of
statistical significance. Given that H, is an inequality, these tests are one-sided, and

so appropriate critical values are -1.65 for tests at the five-percent level, and -2.33 for

tests at the one-percent level. Implementation of this test is the task of Section IL

II. Applications

In this section we test the volatility bound restrictions using four well-known data
sets on asset returns. We examine both annual and monthly data on equity returns
and short term Treasury debt in the U.S., monthly returns on a portfolio constructed
from the U.S. Treasury Bills term structure, and monthly U.S. dollar returns on five
major foreign currencies. For each data set, we study the three forms of preferences
described in Section I.B: (1) time-separable CRRA, (2) one-lag durability, (3) one-
lag habit persistence. In all cases, we report representative values of the preference

parameters.*2

12 A1 of the results were computed using FORTRAN programs, and checked with programs writ-
ten in GAUSS. As a further check on the integrity of our results, both numerical and analytical
derivatives were used in most of our computations.

14



2.A Annual U.S. Equity and Short Term Bond Returns:
18901987

The first returns data set we examine is the one used in Cecchetti, Lam and
Mark (1991) to study the equity premium puzzle. The exact sources of the data
are described in the Appendix to that paper. Briefly, the data set combines the
annual consumption data described in Section I.C with annual returns on two assets:
the Standard and Poors’ index supplied by Campbell and Shiller (1987) and one year
U.S. Treasury note yields, or their equivalent. Real returns are computed by deflating
nominal values using the CPL

The results of the testing procedure are in Table II. For the purposes of these
example, we have set the discount factor equal to 0.99 and 1.02.2* The top panel of
the table reports the results for the case of time-separable utility (§ = 0), the middle
panel includes results for the durability model with § = +0.5, and the bottom panel
presents results for the habit persistence model with § = —0.5. Each row contains
estimates for a particular value of the curvature parameter 4. For each discount
factor, we report the model implied values of the mean and standard deviation of the
IMRS, p.{(#; 1/3) and o,(¢; z[)), the volatility bound evaluated at x,(4; 1[)), o.(¢; é), and
the t-ratio associated with the comparison of model with the bound, A(¢; é)/&A.

14 For the case of time-separable utility and

The main results are as follows.
B = 0.99, the difference between the model and volatility bound is less than 1.65

standard deviations when + is 10 or higher. With a discount factor of 1.02, then

13Following the theoretical arguments in Kocherlakota (1990), and the empirical evidence in our
earlier paper [Cecchetti, Lam and Mark (1991)] we include values of 8 that exceed one.

"4The results reported below are all robust to changes in the specification of the consumption
process. Using the annual data, we have examined two additional cases: (1) consumption growth
follows a simple AR(1) identical to the one used for monthly data, and (2) consumption growth is
governed by the simple Markov switching model described and estimated in Cecchetti, Lam and
Mark (1991). Using an AR(1), we obtain nearly identical results to the ones reported in Table 2.
For the Markov Switching model, there is no material change in the results either. However, we do
find that there is a smaller difference between the time-separable and the one-lag durability cases
than is suggested by the results obtained using a random walk. For example, il 8 = 0.99 and utility
is time-separable, the lowest 7 not rejected by a t-test at the 5 percent level is 12 for the random
walk case, 14 for the case when consumption growth is an AR(1), and 13 for the Markov Switching
model, If § = 0.5, and so preferences exhibit durability, the equivalent values of v are 22, 23 and 17,
respectively.
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Table II: Tests of the Volatility Bound Restriction

(Annual Data on Equity Returns, 1890-1987)

1. Time-separable utility: § =0

B =0.99 B =1.02
¥ i Gy Gy  tratio | [, a, &,  t-ratio
0 0.990 0.000 0.320 -3.633 |1.020 0.000 0.711 -3.073
1 0.973 0.033 0411 -2.201 |1.003 0.034 0437 -2.563
2 0958 0.066 0.644 -2.442 | 0.987 0.068 0.314 -2.537
4 0931 0.131 1.123 -2.615 | 0.959 0.135 0.620 -1.420
10 0.881 0.339 2.063 -1.881 | 0.908 0.349 1.557 -1.343
15 0.874 0.556 2.201 -1.103 | 0.900 0.573 1.697 -0.753
20 0.900 0.850 1.698 -0.375|0.928 0.876 1.185 -0.137
25 0.967 1.269 0.502 0.276 | 6.996 1.308 0.358 0.803
30 1.084 1.883 1.889 -0.002 |1.116 1.940 2516 -0.139

II. Time-nonseparable utility: § = 0.5 (durability)

B =0.99 B =1.02
¥ [y Gy 6;  t-ratio | [, Gy Oz t-ratio
0 0.990 0.000 0.320 -3.633 | 1.020 0.000 0.711 -3.073
1 0.973 0.027 0.413 -2.260 | 1.002 0.028 0.435 -2.607
2 0.957 0.052 0.657 -2.595 | 0.986 0.054 0.315 -2.562
4 0928 0.102 1.182 -2.951 |0.956 0.105 0.674 -1.717
10 0.861 0.238 2457 -2.684 | 0.887 0.246 1.957 -2.136
15 0.825 0.351 3.146 -2.264 | 0.850 0.362 2.662 -1.881
20 0.805 0.474 3.526 -1.805 |0.830 0.490 3.050 -1.509
25 0.800 0.620 3.610 -1.335 | 0.825 0.641 3.132 -1.098
30 0.812 0.808 3.391 -0.876 | 0.837 0.836 2.901 -0.687

IT1. Time-nonseparable utility: § = —0.5 (habit persistence)

B =0.99 B =1.02
e Ly Gy 6, tratio| [, &, &,  t-ratio
0 0.990 0.000 0.320 -3.633 |1.020 0.000 0.711 -3.073
1 0979 0.115 0.347 -1.440 |1.009 0.121 0.534 -2.067
2 0.982 0.231 0.330 -0.514 {1.013 0.244 0.587 -1.225
3 0997 0357 0.372 -0.068 {1.030 0.377 0.894 -1.032
4 1.028 0504 0.848 -0.472 |1.064 0.535 1.524 -1.167
5 1.077 0692 1.767 -0.864 | 1.119 0.744 2.575 -1.329
6 1.154 0983 3.244 -1.095 | 1.209 1.105 4.295 -1.397

Tests use data for consumption, returns on the S&P index, and one-year T-bills (or
the equivalent), 1890-1987. For chosen values of the subjective discount factor (f),
curvature parameter, (v), and lagged-consumption parameter (8), we estimate the
mean () and standard deviation (&,) of the IMRS, and the lower volatility bound
(¢, ). Test statistic (t-ratio) is constructed under the null hypothesis (o, = o).
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values of v below 4 are consistent with the bound. We contrast this with results that
are based solely on the point estimates. Using these data, obtaining point estimates
of (44, 0,) that lie within the volatility bound requires values of v above 25.

The middle panel of Table II displays results for the one-lag durability model in
which § = +0.5. Again, we report calculations based on v from 0 to 30, with b=
(0.99,1.02). As is well known, for given values of 8 and ~, this model of preferences
produces uniformly less variability in the IMRS than the time-separable model. But
even so, the one-lag durability model cannot be rejected at the five-percent level for
v 2 20 when § = 0.99, and for ¥ > 4 when 8 = 1.02.

Results from the third case we consider, one-lag habit persistence with § = —0.5,
are reported in the bottom panel of Table II. Here we allow for 4 ranging from zero
to six. As one would expect, habit persistence yields substantially more variation in
the IMRS for any given value of 4. Consequently, no 4’s from one to six is rejected
using the 1.65 standard error rule when 8 = 0.99. In addition, with 8 = 1.02, v from
two to six are not rejected at the five-percent level '

Our results are driven by the fact that the point estimate of the mean of the
IMRS for a particular model of preferences, ﬂ,,(d);d)), is very imprecise.’® To show
this, Table 111 reports a decomposition of the uncertainty in the comparison of o,
with o, for the time-separable case. We think of this uncertainty as arising from
three basic sources. Given the expected value of the IMRS, g, there is uncertainty
in both the location of the bound, ¢,, and in the mean of the standard deviation

implied by the model, ,. In addition, there is uncertainty induced by the fact that

L%For all of these cases, as well as those in Section I1.B, we have examined the impact of expanding
the number of assets from two to eight by multiplying each of the original asset prices by the lagged
gross return of the assets and the lagged consumption growth rate. Writing the problem in returns
form, denoting the gross return on debt as ry, the gross return on equity as ra; and n; as the
consumption growth rate we consider

7
G ={1, 1, rm1, P21, L em1, T2, 0m 1, Mem 1, Myt )

and
/
T = {Tx,u7‘2,:17‘1,17'1,z-1,7‘1,z7‘z,:-17"2,17‘1,¢-1,7‘2,z7'2,t-1.T1,t"x-1,7‘2,tﬂt-1} .

The effect of creating these additional assets is to raise the point estimate of volatility bound, but
when the standard errors are considered, it does not substantively alter the results.
15We thank Robert Stambaugh for pointing this out.
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Table I1I: Comparison of Sources of Uncertainty

7 fixed fixed fixed random random random random
Returns: random n.a. random  fixed n.a. fixed random
¥ se.(fz) s.e(d,) se(d) se(d:) se(dy) se(d) se(d)
0y (2) () (4) (8) (6) (M (8)
0 0.088 0.000 0.088 0.000 0.000 0.000 0.088

1 0.151 0.089 0.204 0.037 0.087 0.050 0.172
4 0.184 0.101 0.260 0.226 0.087 0.139 0.380
8 0.257 0.129 0.352 0.505 0.089 0.416 0.724
10 0.286 0.147 0.392 0.670 0.091 0.579 0.917
15 0.305 0.209 0.456 1.190 0.098 1.092 1.492
20 0.240 0.303 0.489 1911 0.107 1.805 2.265
25 0.160 0.444 0.563 2.346 0.119 2.227 2.774
30 0.432 0.663 0.738 4.472 0.135 4.608 4.010

Standard errors for estimated lower volatility bound (&), IMRS standard deviation (),
and the difference (A = &, — &), under alternative assumptions regarding the sources
of uncertainty. The utility function is time-separable; v is the coefficient of relative risk
aversion and §=0.99 is the subjective discount factor. Annual data for consumption, returns
on the S&P index, and one-year T-Bills (or the equivalent), 1890-1987.
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mean IMRS for the model, y,, must be estimated.

For each value of v, Table 3 reports a decomposition of the uncertainty in the
estimate of A = (0, — 0;) into its components. The standard error of the estimate of
the Hansen-Jagannathan bound for fixed 4, &, is in column (2).1” Columns (3) and
(4) report standard errors for &, and A, again for fixed ty. The next three columns
of the Table, labelled (5), (6) and (7), report the uncertainty in &, &, and A, that
arises solely due to randomness in f,. The final column of the table is our estimate
of the ‘total’ standard error in A, &4, computed using the technique described in
Section L.E.18

The results in the table show clearly that the main source of uncertainty is the fact
that p, must be estimated. For example, when ~ equals 15, then the estimate of oy,
including all sources of uncertainty, is 1.49, of which approximately two-thirds can be
attributed to the uncertainty arises from the estimation of the mean of the IMRS. The
source of the uncertainty in the estimate of y, can be linked to the consumption data,
since error in estimating the moments of consumption growth lead directly to variance
in the estimate of the mean IMRS from the model. Consequently, we conclude that the
large standard errors associated with the comparison of the volatility bound with the
IMRS moments implied by the models of preferences can be traced to the relatively

high uncertainty contained in the consumption data.

II.B Monthly U.S. Equity and Short Term Bond Returns:
1964-1988
We now examine a monthly U.S. data set that combines the consumption data

described in Section I.C with the return to the CRSP valued-weighted index of NYSE

stocks and the one month holding period return to three-month Treasury Bills.!®

7Hansen and Jagannathan (1988), an earlier version of the 1991 paper, studies this source of
uncertainty.

13We note that all of these quantities can be computed by setting various elements in equation
(19) to zero. The presence of nonzero covariances implies that entries in the Table need not add up
to other elements in the same row.

"It is common to use the one-month Treasury Bill for this exercise. But, as discussed in Sec-
tion I1.C below, we feel that the one-month data have problems that do not arise at longer maturities.
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The two return series are from the ‘Fama file’ available from CRSP. Real returns
are constructed using the implicit price deflator for consumption of nondurables and
services. The complete data set extends from April 1964 to December 1988.

Any attempt to meet the restrictions of the volatility bound using monthly data is
hampered by the relative smoothness of consumption growth during this time period.
As Hansen and Jagannathan (1991) show, this lack of variation in consumption growth
prevents the point estimates of the mean and standard deviation of the IMRS implied
by the time-separable (§ = 0) and the one-lag durability (§ = +0.5) models from
satisfying the bound unless v is extremely large. But once sampling variability is
taken into account, this is no longer the case. In fact, we are able to find cases in
which 7 is less than thirty that are not rejected by our test.

Table IV reports the results for the three preference specifications using monthly
data on stock and bond returns. Again, the top panel reports findings for the § = 0
case, while the middle and bottom panels depict the results for § = +0.5 and § = —0.5,
respectively. The results are striking, in that all three preference specifications imply
that, for 8 = 0.99 at an annual rate, there are values of v between zero and one that are
not rejected at the five-percent level — i.e. the t-ratio is below 1.65 in absolute value.
In addition, for the habit persistence case, there are intermediate values of ¥ between
five and ten that are consistent with the bound. For § = 1.02, the story is slightly
different, with values ¥ = 2 not being rejected in the time-separable and durability
cases, and v between 2 and 9 not being rejected when there is habit persistence.

These results contrast sharply with those that are obtained when sampling vari-
ability is ignored. For example, Hansen and Jagannathan (1991) note that v must
exceed 100 in the CRRA case, and suggest that the monthly data provides a more

stringent set of restrictions than the annual data do.

I1.C Monthly U.S. Treasury Bills Term Structure: 1964-1988

In choosing the next data set for study, we follow Hansen and Jagannathan and
examine the term structure of U.S. Treasury Bill data. Specifically we consider a

portfolio of three, six and nine months bills, and use monthly observations on three
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Table IV: Tests of the Volatility Bound Restrictions

(Monthly Data on Equity Returns, April 1964-December 1988)

I. Time-separable utility: § = 0

B =0.99 8 =1.02
5 iy Gy Gz t-ratio | fi, Gy [ t-ratio
0 0.999 0.000 0.214 -1.604 |1.002 0.000 0.981 -7.157
1 0.998 0.004 0.306 -1.731 | 1.000 0.004 0.475 -3.414
2 0.996 0.009 0802 -3.109 |0.998 0.009 0.065 -0.491
4 0993 0.017 1.780 -3.981 §0.995 0.017 1.012 -2.571
10 0.984 0.043 4.557 -4.376 | 0.986 0.043 3.796 -3.843
15 0977 0.064 6.694 -4.377 | 0.979 0.064 5.938 -4.021
20 0.971 0.085 8.671 -4.323 | 0.973 0.085 7.920 -4.051
25 0.965 0.106 10.490 -4.245 | 0.967 0.106 9.746 -4.023
30 0959 0.127 12.160 -4.153 | 0.962 0.127 11.420 -3.964

I1. Time-nonseparable utility: § =0.5 (durability)

B = 0.99 B =102
5 fiy G, [ t-ratio Ly Gy G, t-ratio
0 0.999 0.000 0.214 -1.604 | 1.002 ©0.000 0.981 -7.157
1 0998 0.003 037 -1.749 | 1.000 0.00 0.44 -3.424
2 0996 0.006 0.87 -3.151 |0.998 0.00 0.08 -0.493
4 0.993 0.012 1.83 -4.057 | 0.995 0.01 1.05  -2.658
10 0.983 0.031 4.69 -4523 098 0.03 3.98 -4.002
15 0976 0.046 7.00 -4.581 | 0.978 0.04 6.25 -4.236
20 0.969 0.061 9.20 -4.585 | 0.971 0.06 8.40 -4.325
25 0962 0.076 11.30 -4.568 { 0.964 0.07 10.60 -4.358
30 0.955 0.090 1340 -4.541 | 0.958 0.09 12.60 -4.364

1I. Time-nonseparable utility: § = —0.5(habit persistence)

B =099 G =102
v fy Gy Gz t-ratio | fi, Gy 6z t-ratio
0 099 0.000 0.214 -1.604 | 1.002 0.000 0.981 -7.157
1 0998 0.022 0.24 -1.247 | 1.000 0.02 0.59 -3.864
2 0.997 0.044 0.51 -1.933 | 0.999 0.04 0.21 -1.220
3 0.996 0.066 0.62 -1.794 | 0.999 0.06 0.17 -0.333
4 0.997 0.088 0.65 -1.317 (0.999 0.08 0.16 -0.235
5 0.997 0.111 049  -0.694 | 1.000 0.11 0.31  -0.496
6 0.998 0.133 0.11 -0.031 | 1.001 0.13 0.69 -0.920
7 1000 0.155 0.32 -0.250 | 1.002 0.15 110 -1.396
8 1.002 0.178 0.98 -0.894 | 1.004 0.17 1.76 -1.865
9 1.004 0202 1.71 -1.478 [ 1.007 020 2.58 -2.298
10 1.007 0.225 263 -1.991 | 1.010 022  3.40 -2.683
15 1.030 0.353 9.88 -3.593 | 1.033 0.35 10.70 -3.898
20 1.070 0.513 22.10 -4.117 | 1.073 051 23.10 -4.259
25 1134 0.771 4210 -3.819 | 1.138 0.78  43.40 -3.867

Tests use data for consumption, returns on the value-weighted NYSE

month T-bills, April 1964- December 1988. See Table II for details.
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month holding period returns constructed from the average of the bid and ask prices.
Real returns are computed using the deflator the nondurable plus service component
of consumption. Again, the data is from the ‘Fama file’ supplied by CRSP. In contrast
with Hansen and Jagannathan, we choose not to include the twelve month Treasury
bill, since the data set contains a large number of missing observations — i.e. months
in which there was no twelve month bill outstanding.®® Also, following common
practice, we exclude the one-month Treasury Bill.?!

Since we are using monthly observations on three month holding period returns
to compute the bounds, we must compute the model implied values of the mean and
standard deviation of the IMRS that mimics this timing. In the notation of Section I,
this means that we must calculate IMRS,; 43, which is just equation (14) with k = 3.
The model implied values of the moments of the IMRS follow immediately from
equations (15) and (16) of Section 1.D, again setting k = 3.

We begin by noting that the bound we compute using three, six and nine month
data is substantially below the one in Hansen and Jagannathan’s Figure 6, which
uses three, six, nine and twelve month data. For example, we find that a x, of 0.996
implies a o, of only 0.178 (see Table V, § = —0.5, § = 1.02 v = 2), while adding the
twelve month Treasury bill data (without adjusting for missing observations) results
in a value in excess of 0.5.

Table V reports the results of using monthly consumption data, together with

the three, six and nine month data on Treasury Bills, to test the models of interest.

20We note that the data file itself codes these missing observations as having returns of zero —
reporting prices at par. This seems to be the reason for the results Hansen and Jagannathan report
in their Figure 6, which appear to pose a substantial challenge to asset pricing models, particularly
when the nonnegativity constraint is imposed. But when the twelve month data are deleted, the
bound falls to nearly the level of the one computed using the so-called ‘equity premium’ data set
used in Section I1.C.

21Recent work by Luttmer (1991), and Cochrane and Hansen (1992) examines data on one, three,
six and nine month bills, and finds that the addition of the one month bill substantially raises
the bound. But the one-month bill market is extremely thin, with most trading occurring outside
the standard dealer/broker system and transactions costs being substantial — see, for example
Stigum (1990, pg. 667f). As a result, quoted bid/ask spreads are very large, and there is the
potential for reported prices to be inaccurate. The methods of both Luttmer and He and Modest,
which treat market frictions explicitly and so do not impose the law of one price, are less sensitive
to the problems posed by the one-month data.

(o]
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Table V: Tests of the Volatility Bound Restrictions
(Monthly Data on 3, 6 and 9 Month Treasury Bills, April 1964-December 1988)
I. Time-separable utility: § = 0

£ =10.99 8 =1.02
b Gy 6, tratio| f, 6y &  toratio
0.997 0.000 0.253 -1.907 { 1.005 0.000 1.211 -7.510
0.993 0.006 0.513 -2.299 | 1.000 0.006 0.552 -3.280
0.988 0.012 1.157 -3.302 | 0.995 0.012 0.223 -1.066
4 0978 0.024 2.445 -3.958 | 0.985 0.025 1.456 -2.711
10 0.951 0.060 6.132 -4.303 | 0.958 0.060 5.167 -3.831
15 0.930 0.088 8.993 -4.336 | 0.937 0.088 8.048 -4.019
20 0.910 0.115 11.669 -4.323 | 0.917 0.116 10.744 -4.081
25 0.892 0.142 14.168 -4.289 | 0.898 0.143 13.262 -4.092
30 0.874 0.169 16.498 -4.244 | 0.881 0.170 15.610 -4.075

II. Time-nonseparable utility: 6 = 0.5 (durability)

4 =0.99 8 =1.02
Loy Gy Oz t-ratio fly gy Gz t-ratio
0.997 0.000 0.253 -1.907 | 1.005 0.000 1.211 -7.510
0.993 0.006 0.504 -2.177 | 1.000 0.006 0.562 -3.213
0.988 0.013 1.137 -3.130 { 0.995 0.013 0.211 -1.016
4 0.978 0.025 2.405 -3.752 | 0.986 0.025 1.415 -2.523
10 0.952 0.060 6.028 -4.064 | 0.959 0.061 5.062 -3.595
15 0.931 0.089 8.835 -4.083 | 0.938 0.089 7.890 -3.768
20 0.912 0.116 11.457 -4.058 | 0.918 0.117 10.531 -3.818
25 0.894 0.143 13.903 -4.016 | 0.900 0.144 12,995 -3.819
30 0.877 0.168 16.181 -3.963 | 0.883 0.170 15.290 -3.795

II1. Time-nonseparable utility: § = —0.5 (habit persistence)

3 =099 B =102
fiy a, [ t-ratio | g, &, [ t-ratio
0.997 0.000 0.253 -1.907 | 1.005 0.000 1.211 -7.510
0.993 0.018 0486 -1.951 | 1.000 0.018 0.581 -3.014
0.988 0.036 1.060 -2.719 | 0.996 0.036 0.178 -0.913
0.984 0.054 1.600 -3.010 } 0.992 0.054 0.615 -1.318
0.981 0.071 2.098 -3.119 | 0.988 0.072 1.107 -1.826
0.977 0.089 2.552 -3.148 ] 0.985 0.090 1.561 -2.098
0.974 0.106 2.961 -3.133 | 0.982 0.107 1.971 -2.242
0.972 0.124 3.327 -3.091 | 0.979 0.125 2.338 -2.310
0.969 0.141 3.649 -3.031 | 0.977 0.142 2.660 -2.331
0.967 0.158 3.927 -2.956 | 0.974 0.160 2.939 -2.318
10 0.965 0.176 4.162 -2.871 | 0.973 0.178 3.174 -2.280
15 0.962 0.266 4.674 -2.308 | 0.969 0.268 3.678 -1.850
20 0.966 0.364 4.021 -1.541 | 0.974 0.367 3.004 -1.139
25 0.981 0.479 2.016 -0.546 | 0.989 0.484 0.963 -0.174

N = O

N = OS2

W0~ DU R W= O

Tests of the volatility bound restrictions using monthly data for consumption, three, six,
and nine month T-bills, April 1964-December 1988. See Table II for details.

23



Once again, the three panels of the Table refer to the time separable (§ = 0), one-lag
durability (6 = +0.5), and one-lag habit persistence (6§ = —0.5) cases, with 8 equal
to 0.99 and 1.02. When the discount factor is set to 0.99 at an annual rate, all of
the models reported are rejected at the five-percent level, since there are no t-ratios
with absolute value less than 1.65. But in all cases, values of 4 between zerc and two
are not rejected at the one-percent level, as the t-ratios are less than 2.33 in absolute
value.

When the discount rate is 1.02 at an annual rate, then, for each of the preference
specifications, there is a set of values for v that is not rejected using the 1.65 standard
deviation rule. For time separable utility and one-lag durability, values of v near two
are consistent with the bound, while for the one-lag habit persistence model values
of v between one and five are consistent with the volatility bound at the five-percent
level.

These results suggest that, while the Treasury Bill data set does present some
obstacles for asset pricing models, it is nowhere near as large a problem as originally
suggested by Hansen and Jagannathan. Consistent with both Luttmer (1991) and
Cochrane and Hansen (1992), we find that the restrictions imposed by the monthly
Treasury Bill term structure are roughly equivalent to those imposed by the monthly

data on equity and bonds reported in Section II.B.

II.D Monthly Foreign Currency Returns: 1973 to 1988

The final application we examine uses monthly U.S. dollar speculative returns on
five major currencies, together with the moﬁthly consumption data described above.
We study spot and one-month forward U.S. dollar prices of the Canadian dollar, the
deutchmark, the French franc, the pound, and the yen. These data are the Friday
closing quotations reported in the Harris Bank Foreign Erchange Weekly Review.
The sample is drawn from those Friday quotations that fell nearest to the end of the
calendar month. Again, we calculate real magnitudes using the implicit deflator for
consumption of nondurables plus services.

In order to construct the asset portfolios, we begin by defining s;; to be the dollar
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spot price of foreign currency 4, and f;, to be the one-month dollar forward price of
a unit of this currency determined at date ¢. In determining an investment strategy
at date ¢, an investor will want to go long in the forward foreign currency contract
if (fie — Sit41) Is expected to be positive, and short if (fi; — si¢41) is expected to be
negative.

Let I;; be an indicator function such that

1 i Eyffie—si41) >0
-1 if Et(f.‘t"siz+1)<0

fw
&
|

The Euler equations implied by this investment strategy can be expressed as

it = Sitp1 P, .
0=E, (vmlﬂf"—s'_*l—‘) J(i=1,2,..,n), (20)
Sit P

where P, is the aggregate U.S. price level.
In notation corresponding to that of Section I, we have g, = 0 and the ith element
of the gross return vector z, equals

fie ~ Sit1 L

Titg1 = Lqy .
Sit Py

Since p, is a zero-valued vector, the implied lower volatility bound is now a ray from
the origin given by
Or = #U{#;E;lllr]% . (21)

Backus, Gregory and Telmer (1991) investigate the lower volatility bound (21)
using univariate data on the five currencies we examine. They evaluate the indicator
function by projecting the currency speculative return, (i'i:"—:‘*l), on the forward
premium, (%) and using the fitted values as the estimates of the conditional
expectation of the return. The indicator I;; is then assigned a value of +1 when this

fitted value is positive, and —1 when the fitted value is negative.??

Z2The projection strategy is defensible on the grounds that the forward premium has proved to be
a robust predictor of future currency returns during the modern period of floating exchange rates.
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When preferences are given by the one-lag habit persistence model, with a v of
10, Backus, Gregory and Telmer find that the point estimate of the volatility of the
IMRS, &, is less than one-third of the volatility implied by the foreign currency returns
data and the Euler equations. From this, they conclude that these preferences are
not capable of explaining the dynamics of foreign currency returns.

Using the Backus, Gregory and Telmer method for evaluating the indicator func-
tion, we examine the portfolio constructed from the five currencies. Again we examine
all three preference specifications, § = (0,+0.5, —0.5), and two values for the discount
factor, # = (0.99,1.02). The results are reported in Table VI. For these data, the
volatility bound is substantially higher than it is when we use domestic U.S. stock and
bond data. At a mean IMRS value of one, g, = 1, the implied lower volatility bound
has risen from 0.322 for the monthly stock returns data discussed in Sectien II.B, to
0.402.

1t is obvious from the top two panels of Table VI that both the model with time-
separable utility, and the one with one-lag durability, imply much too little variation
in the IMRS relative to that implied by the data. For all of the parameter values
we consider, both of these cases are easily rejected by our testing procedure as the
t-ratio always exceeds 3.8 in absolute value.

The bottom panel of Table VI reports the results for the one-lag habit persistence
model using the data on the five foreign currency returns. Here, values of 4 of 15 and
higher cannot be rejected at the five-percent level.

It is with substantial caution that we conclude that the restrictions imposed by
forelgn currencies returns pose quite a challenge to asset pricing models. The source of
our prudence is the observation that frictions are often an important problem in these
markets. As both Luttmer (1991) and He and Modest (1991) suggest, transactions
costs, short sale constraints and restrictions on borrowing against future labor income
can have a very important impact on the height and shape of the volatility bound. It

is very possible that once the size of the bid/ask spread is taken into account, then

See Hodrick (1987) for a survey of theoretical developments and empirical evidence concerning the
behavior of foreign currency returns.
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Table VI: Tests of the Volatility Bound Restrictions
(Monthly Data on Forward Foreign Exchange, March 1973-December 1988)
1. Time-separable utility: § = 0
8 =10.99 B =1.02
[y oy Gz t-ratio | i, g, Oz t-ratio
0.999 0.000 0.402 -5.749 | 1.002 0.000 0.403 -5.749
0.998 0.004 0.401 -5.685 | 1.000 0.004 0.402 -5.685
0.996 0.009 0.401 -5.621 | 0.999 0.009 0.402 -5.621
0.994 0.017 0.400 -5.491 {0.996 0.017 0.401 -5.492
0.986 0.043 0.397 -5.106 | 0.989 0.043 0.398 -5.105
0.981 0.064 0.394 -4.785 | 0.983 0.064 0.395 -4.785
20 0976 0.085 0.392 -4.464 | 0.978 0.085 0.393 -4.464
25 0971 0.106 0.391 -4.143 | 0.974 0.106 0.391 -4.143
30 0.967 0.126 0.389 -3.823 { 0.969 0.127 0.390 -3.823
II. Time-nonseparable utility: § = 0.5 (durability)
B =099 8 =1.02
flu Ty gr  t-ratio | [y Gy 6z  t-ratio
0.999 0.000 0.402 -5.749 | 1.002 0.000 0.403 -5.749
0.998 0.003 0.401 -5.705 | 1.000 0.003 0.402 -5.705
0.996 0.006 0.401 -5.661 | 0.999 0.006 0.402 -5.661
4 0.994 0.012 0400 -5.572 {0.996 0.012 0.401 -5.572
10 0.986 0.030 0.396 -5.306 | 0.988 0.030 0.397 -5.306
15 0.980 0.044 0.394 -5.084 | 0.982 0.044 0.395 -5.084
20 0.974 0.059 0.392 -4.863 | 0.976 0.059 0.393 -4.863
25 0.968 0.073 0.389 -4.642 | 0.971 0.073 0.390 -4.642
30 0.963 0.087 0.387 -4.421 | 0.965 0.087 0.388 -4.421
HI. Time-nonseparable utility: § = —0.5 (habit persistence)
B =10.99 £ =1.02
Ly ay [ t-ratio | g, G, 0y t-ratio
0.999 0.000 0.402 -5.749 | 1.002 0.000 0.403 -5.749
0.998 0.021 0.401 -5.430 | 1.001 0.021 0.402 -5.429
0.997 0.042 0.401 -5.109 | 1.000 0.042 0.402 -5.107
0.997 0.063 0.401 -4.787 | 1.000 0.064 0.402 -4.785
0.997 0.084 0401 -4.465 | 1.000 0.085 0.402 -4.461
0.998 0.106 0.401 -4.142 | 1.000 0.106 0.402 -4.138
0.999 0.127 0.402 -3.819 | 1.001 0.128 0.403 -3.814
1.000 0.148 0.402 -3.496 | 1.003 0.149 0.403 -3.490
1.002 0.170 0.403 -3.173 | 1.005 0.171 0.404 -3.166
1.005 0.192 0.404 -2.850 | 1.007 0.193 0.405 -2.843
10 1.008 0.215 0.405 -2.528 | 1.010 0.216 0.406 -2.519
15 1.030 0.336 0.414 -0.934 | 1.033 0.338 0.415 -0.922
20 1.067 0.485 0.429 0.544 | 1.070 0.488 0.430 0.558
25 1.125 0.709 0.452 1.548 | 1.129 0.714 0.454 1.518

GEANHOQ

N = ol

O 00 DU AW~ Ol

Tests of the volatility bound restrictions using monthly data for consumption, and spec-
ulative returns on forward foreign exchange on the Canadian dollar, deutchmark, French
franc, pound, and yen, March 1973-December 1988. See Table II for details.

27



the bound will no longer be as significant as it appears from the results reported in

Table VL

I1I. Nonnegativity of the Mean IMRS

In this section we show how to generalize the framework described in Section 1
to incorporate an important implication of asset pricing theory. As Hansen and
Jagannathan discuss, the mean IMRS must be nonnegative or the model will imply
that assets with a zero probability of a negative payoff will command negative prices.
This means that it is of interest to reformulate the test of Section I taking into account
this information.

In what follogvs, we describe two methods for constructing test statistics that al-
low us to measure whether a model is close to the bound when the nonnegativity
restriction is taken into account. The first method we propose does not require distri-
butional assumptions about returns, and so it is nonparametric. The second method
is parametric, and is based on the assumption that the unconditional distribution of
returns is normal. Following the discussion of the methods we use for computing test

statistics, Section II.C reports results for the annual data studied in Section ILA.

II1.A The Nonparametric Method

We begin by describing Hansen and Jagannathan’s (1988) method for computing
point estimates of the volatility bound that impose the nonnegativity restriction.
Expressing the problem in returns form, which means that asset prices are all one,

the bound they derive is
Oz = [)‘—1 - .u'u]% 1 (22)

where u, is the mean of the IMRS, A is defined by

A = minE max[0,w + a'z]? (23)

s.bowpy +adl=1,
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T is an n-dimensional vector of returns, £ is a n-dimensional vector of ones, w is a
scalar parameter, and «a is an n-dimensional vector of parameters. In the absence of
the ‘max’ expression, (23) collapses to the simple case of Section I.A.

Hansen and Jagannathan propose estimating o, using the sample analog of A,

T
A = r&ianax[O,w+a'Iz]2 (24)
it

st wp, +adl=1, .
Then an estimate of the volatility bound is
- .| 1
Ge=[A"" = )7 (25)

Following the method in Section LE, we can construct the standard error for the
difference between the volatility bound and the model implied value of the standard
deviation of the IMRS: A = o, — 5,. ‘As is apparent from (24), X depends on the
sequence {z;}, rather than the sample moments of returns, ji, and vec(3;). This
means that we cannot express A directly as a function of the estimated moments
of consumption and returns, as is done in (18). Nevertheless, we can use the same

procedure if we redefine the vector of parameters 9 as
0, = , (26)
where A is defined by (23) and 4 is the parameter vector associated with the con-

sumption growth process, (g, o, p).

With this redefinition, we can compute the analog of (19),

oA . JA
Az — Pt -
78" (60:,) 5, = <69n>

Evaluation of (27) requires an estimate of Z,,, which depends on the covariance

(27)

bn
of X and 1,5, rather than the covariance of the samples moments of returns and 1/)
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We can compute an estimate, 3, by stacking the moment conditions implied by the
minimization problem that defines }, (24), together with the moment conditions used

to estimate ¢ and applying GMM.

ITI.B The Parametric Method

An alternative, and simpler, method for incorporating the nonnegativity restric-
tion, begins by assuming that returns are jointly normally distributed. If the vector
of returns z is multivariate normal, then {w + o'z) is univariate normal with mean
(wu, +a’u,) and variance a’Y.a. It follows that A is (23) can be written as a function

of u,, ur and ¥,

A= g(pos ps Ze) (28)
. b 2 d

r,rul}g/o v f(v)dy ,

st wy, +adl=1,

where y = w + ¢’z and f(y) is the normal density associated with y. An estimate of

X can now be computed as

o~ a

A= g(hy, fizy Xa) (29)
Using (22) we can estimate o, as

Go= [\ - )F (30)

It is straightforward to obtain an estimate of the standard error of A when it is
computed from &.. To see this, note that in this case, A can be written in a form
equivalent to (18). Specifically, (29) and (30) imply that &, is a function of &, f,
and £,. Since ji;, 5;, and the estimated parameters needed to compute j, are all
elements of é, we can express the distance between the model implied value of the

standard deviation of the IMRS and the volatility bound, when the nonnegativity
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restriction is considered, as
A =5.(40) - ou($i¥) - (31)

Since &, depends on g, oz, the analog to (19), will depend on the derivatives of g
Furthermore, g is the solution to the optimization problem (28), and so its derivatives

must be evaluated numerically.

II1.C Results with Nonnegativity

The results of including the nonnegativity restriction are presented in Table VII.
Here we report estimates of the mean and standard deviation of the IMRS, the volatil-
ity bound, and the t-ratio for A, using the annual data of Section II.A, time-separable
utility and a discount factor of 0.99. The top panel of the table reports results using
the nonparametric method, while the bottom panel contains results from using the
parametric method. For comparison, the table reports values of the bound and the
t-ratio both with and without the nonnegativity restriction. _

As Hansen and Jagannathan observed, the incorporation of the nonnegativity
restriction does sharpen the point estimates of the bounds. The effect of the restriction
is particularly pronounced when i, is small. For example, when g, is 0.881, o,
equals 2.063 when nonnegativity is ignored. But with nonnegativity, o rises to 4.749
when computed using the nonparametric method, and to 5.059 using the parametric
method.?®

This sharpening of the bound necessarily increases the estimate of A, the distance
between the estimates of o, and o,. But, as the Table shows, the estimated standard
error of A with nonnegativity increases by so much that the t-ratios are now closer
to zero, than they were without the restriction for all but the lowest values of v we
study.

This result is the opposite of that implied by Hansen and Jagannathan. By

23The two estimates of o, differ because the true returns distribution is fat tailed and negatively
skewed, relative to the normal. This implies that the two methods of computation will yield different
point estimates of o;.
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Table VII: Tests of the Volatility Bound Restrictions, With Nonnegativity
(Annual Data on Equity Returns, 1890-1987)

Without Nonnegativity | With Nonnegativity
Y| fe Gy 65 t-ratio G t-ratio
A. Nonparametric method
0 | 0.990 | 0.000 | 0.320 -3.633 0.320 -3.633
1 10.9730.033 | 0.411 -2.201 0.411 -2.203
2 | 0.958 | 0.066 | 0.644 -2.441 0.675 -1.975
4 (0.93110.131 | 1.123 -2.615 1.500 -1.753
10 | 0.881 { 0.339 | 2.063 -1.880 4.749 -0.967
151 0.874 | 0.556 | 2.201 -1.103 5.613 -0.473
20 [ 0.900 | 0.850 | 1.698 -0.375 3.033 -0.279
251 0.967 | 1.269 | 0.502 0.277 0.505 0.261
30 1.084 | 1.883 | 1.889 -0.002 2.107 -0.041
A. Parametric method
0 | 0.990 { 0.000 { 0.320 -3.588 0.320 -3.590
1 {0.9730.033 | 0.411 -2.256 0.411 -2.231
2 [0.958 | 0.066 | 0.644 -2.524 0.654 -2.332
4 10931 0.131{1.123 -2.674 1.296 -1.976
10| 0.881 [ 0.339 | 2.063 -1.901 5.059 -0.626
15 0.874 | 0.556 | 2.201 -1.112 6.344 -0.439
20 1 0.900 | 0.850 | 1.698 -0.377 2,770 -0.271
251 0.967 | 1.269 | 0.502 0.277 0.505 0.211
3011.084 |1.833|1.889 -0.002 2.849 -0.076

Tests of the volatility bound restrictions that incorporate nonnegativity of the mean
IMRS,using annual data for consumption, returns on the S&P index, and one-year
T-bills (or the equivalent), 1890-1987. See Table II for details.
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focusing on the implication for the point estimates, they suggest that inclusion of
the nonnegativity restriction will further limit the class of models that can meet
the constraints implied by the volatility bounds. Our finding is that imposing this
restriction actually makes the volatility bound less informative.

The added uncertainty driving our results comes from the truncation in the com-
putation of A. This is evident from the ‘max’ in (23) and from the form of the integral
in (28). The intuition for both cases is straightforward. In the nonparametric case,
as , decreases from the point at which o, is minimized (the bottom of the parabola)
the truncation caused by the ‘max’ function implies that more and more information
is thrown out in the calculation of A. As less data is used to compute the bound, the
precision of the bound deteriorates.

The parametric case is very similar. Note from (28) that calculation of the bound
requires computation of the expectation of a squared truncated normal random vari-
able. As u, decreases from the point at which o is at its minimum, a larger portion
of the distribution is truncated. This implies that the variation in the moments of
the returns now cause large percentage changes in A, and so any uncertainty in the
sample moments of returns is translated into large uncertainty in the bound.

Finally, we note that the usefulness of the volatility bound when nonnegativity
is imposed is likely to improve with sample size. As the sample size increases, the
standard error of A will shrink and statistical tests will be increasingly dominated
by the comparison of point estimates of the bounds, which are sharpened by the
nonnegativity restriction. But, the sample sizes we have here — roughly 100 years of

annual data — are not large enough for the nonnegativity restriction to be useful.

IV. Conclusion

This paper has developed and implemented a procedure for testing the restrictions
implied by Hansen and Jagannathan’s (1991) lower volatility bound for the intertem-
poral marginal rate of substitution. Our approach allows us to evaluate whether the

standard deviation of the IMRS implied by a particular model of preferences is con-
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sistent with the bound derived from asset return data. The result is a statistical test
that can be used to formally reject some models.

Previous investigators have concluded that the restrictions implied by the bound
allow rejection of many commonly used utility functions for reasonable parameter
values. But their methods involve comparison of the point estimates of the bound
with the IMRS volatility derived using different utility functions. In contrast to
these results, we find that by taking explicit account of the sampling variability, in
a number of cases the restrictions implied by the bound do not allow rejection of
models with reasonable parameter values. In particular, using annual data on equity
and bond returns in the U.S. over the last century, we find that the constant relative
risk aversion utility is consistent with the bound when the discount factor is 0.99 and
a CRRA coefficient of 6 or higher. From this we conclude that the failure of some
models is not nearly as extreme as the point estimates would suggest.

We go on to examine three additional data sets, and discover that we can always
find a set of preferences that are not rejected by the restrictions implied by the
volatility bounds. This is true of (1) monthly data on stock prices and Treasury
debt, where we find that time separable utility with a discount factor of 0.99 and
a CRRA coefficient below one is consistent with the data; (2) monthly Treasury
Bill term structure data, where we find that time separable utility with a discount
factor of 1.02 and a CRRA coefficient of two is consistent with the data; and (3)
data on returns to five foreign currencies, where we find that preference exhibiting
habit persistence with a discount factor of 0.99 and curvature parameter of fifteen is
consistent with the data.

We also examine the importance of explicitly considering the fact that the mean
of the IMRS must be nonnegative. While the incorporation of the information in this
restriction does sharpen the volatility bounds, as Hansen and Jagannathan originally
found, our results suggest that the uncertainty associated with the location of the
bound grows so rapidly as to make it less informative than tests that ignore the
restriction.

Qur conclusion is that the tests based on the volatility bound contain roughly
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the same statistical information as tests of Euler equations based on unconditional
moments. That is to say, these tests seldom either allow us to reject a particular

model, or help us to discriminate among alternative models.
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