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ABSTRACT
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efficients in panel data, and applies the techniques to analyze the dynamic
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’predict current expenditures, but that past expenditures do not help to

predict current revenues,
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I. Introduction

Vector autoregressions are now a standard part of the applied
econometrician's tool kit. To be sure, the interpretation of vector auto-
regressions remains controversial. “Some argue that the results reveal
causal relationships between variables. (See, e.g., Granger [1969] or
Sims [ 1972.) Others such as Leamer [1984] deny that causality is revealed
in any economically meaningful sense. Nonetheless, even critics of the
causal interpretation admit that vector autoregressions are a parsimonious
and useful means to summarize the time series 'facts."

To date, vector autoregressive techniques have been used mostly to
analyze macroeconomic time series where there are dozens of observations.
(See, e.g.,Taylor [1980] or Ashenfelter and Card [1982].) In principle,
these techniques should apply equally well to disaggregate data. Does an
individual's hours of work "cause" his or her wage? (See Lundberg [1984].)
Does a community's tax structure '"cause" its level of local public
"expenditure? Unlike macro applications, héwever, the available time series
-on micro units are typically quite short. Many of the popular panel data
sets, for example, have no more than ten or twelve years of observations
for each unit.l

Because the number of time periods observed is relatively small, the
standard causality tests cannot be applied directly to panel data. In an

important paper, Chamberlain [1983] developed a technique for estimating

1
Nevertheless, our techniques are appropriate for more "traditional' macro-

economic applications. For example, Taylor [1980 ] examined and compared
the time series properties of several key macroeconomic variables for a
number of European countries. Our methods could be used to execute formal
tests of similarity between them.



vector autoregressions using panel data. However, he does not explore
the problems surrounding identification and hypothesis testing that
are of major importance to practitioners.

The purpose of this paper is to explain carefully how to execute
tests of causallity on panel data so that this powerful tocl becomes
‘available to micrbeconomists. In doing so, we stress that it is not our
intention to take sides in the debate over whether the results reveal
anything about '"causality." Each user must decide this for him or
herself. However, for the sake of readability, we will henceforth refrain
from putting quotation marks around that word.

Section II presents the basic model, discusses the relationship to
conventional panel data estimators, and highlights the critical issues
in a simple context. Section IIT1 presents a more general treatment of
the statistical theory and computations. Section IV applies the methods to
an example from local public finance. Specifically, we investigate the
dynamic relationships between community expenditures,‘revenues from local

sources, and grants. Section V provides a brief summary.



II. Basic Setup

A. What's the Problem?

We begin by considering causality tests in their usual time series
context. The issue is to determine the causal relationship between the
detrended variables x and vy ,'on.which the investigator has a large
number of observations. The variable x is said to not (Granger) cause

the variable y 1if:
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where E{-|-} denotes a linear projection. Intuitively, if cne's prediction of

Ve oo given the history of y , cannot be improved by including the history
of x , then x does not cause y .
Essentially, the procedurg is to estimate a regression of the form:
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where the a's and ¢&'s are parameters and the lag lengths m and n
are sufficient to ensure that u, is a white noise error. While it is not
essential that m equal n , we follow typical practice by assuming that they
are identical. The test of whether x causes y is simply a test of
the jéint.hypothesis that 61f62=...= Gm are all equal to zero. This can
be done using standard F-tests.

To perform the test, there must be enough observations on x and y
to obtain consistent estimates of the parameters in equation (2.2). Panel
data generally dec not have the requisife number of observations. Instead,
there often are a great number of cross-sectional units, but only a few

years worth of data on each unit. To estimate any parameters, investigators

typically pool data from different units, a procedure which imposes the



constraint that the underlying structure is the same for each cross-sectional
unit.

Given this, why not simply stack all the time series-cross section
observations together and use them to estimate equation (2.2)? The main
pitfall of such a procedure is that it ignores the possibility that each unit
has an "individual -effect'--which translates in practice to its own intercept.
The individual effect summarizes the influence of unobserved variables which
have a persistent effect on the dependent variable. For example, a worker's
wage rate each period may be affected by his or her "ambition," or a
community's expenditure each period might be affected by its "political make-up".
To the extent that the other right hand side variables are correlated with
the individual effect, its oﬁission results in inconsistent estimates.
Although there are standard methods for estimating individual effects, they
are not appropriate for our préblem. We now explain why.

B. The Standard Individual Effects Model

Assume that there are N cross-sectional units observed over T periods.
Let 1 index the cross-sectional observations and t the time periods.
The goal is to determine whether variable x causes variable y . In

analogy to equation (2.2), the temptation is to specify the relationship as:

(2.3) vy 0
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t=(m+l),...,T

If equation (2.3) is the correct model (and Usp is white noise), then the

conventional techniques do indeed apply. If, however, one assumes the

existence of an individual effect (fi) for the ith cross-sectional unit,



the model becomes:2
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A standard method of estimatiqg the individual effect is to first

difference the data to eliminate fi and then usze ordinary or generalized

least squares to estimate the differenced equa‘cion:3

m
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i=1,...,N

t=(m+2),...,T

A guick examination of equation (2.5) indicates the flaw with this approach

in the current context: because Vig-1 depends on uét—l (via equation
(2.3)) the error term (uit - uit-l) is correlated with the regressor
iy ™ Yie-2?-

The fact that differencing can induce a simultaneity problem is

well-known from the conventional literature on time series analysis and has

ITf the %x's and y's require detrending, equation (2.4) can be augmented
‘with a time trend. Estimation and identification are not complicated
by this addition; hence, for simplicity, it i1s suppressed below.

Another common technique is to compute the difference between each
variable and its time mean (by cross-sectional unit) to eliminate fi'

See, e.g., Lundberg [1984]. In the current context, this procedure will
yield inconsistent estimates because the time means are correlated
with all the error terms for each cross-secticnal unit.



been explored in a panel data context. (See, e.g., Nickell [1981].)
The usual solution is to employ an instrumental variables estimator.
Here, too, this turns out to appropriate, but it is implemented in a
different fashion than is typical. This is because, as we demonstrate
below, the variables which are legitimate candidates for use as instrumental
variables change &6ver time. The technique is outlined in Section III.
Before leaving the standard model, we note that heteroskedasticity
is 1ikely to be a problem in the panel context--different units may be
expected to have error terms with unequal variances. Efficient estimation
and correct formulae for standard errors require that heteroskedasticity
be taken into account.

C. Chamberlain's Solution

Equation (2.4) specifies that the parameters are constant not only
across'differgnt units, but aiso over time. Similarly, each individual
effect is time invariant. Both assumptions underlie virtually all applications
using individual effects; In contrast, Chamberlain's [1983] investigation of
the notion of causality (conditional upon the individual effect) allows
both the parameters and the individual effect to vary over time. In this
section we present a simple example of Chamberlain's approach, highlighting
the features of interest prior to a more general treatment.

To keep the notation manageable, consider a panel extending over
four periods and a model with a first order lag structure. Then the model
is:
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where wt (t=1,2,3,4) is the coefficient multiplying the individual
effect in period t. The standard model implicitly restricts the wt's

equal to one in each period. Notice that Yio and x are not observed

i0
by the econometrician, so the equaf‘on for Vi1 cannot be estimated.
We include it in the system (2.6) because of its implications for later

observations.

To test for causality, one must estimate the equations (2.6) jointly

and determine whether the data-are consistent with the restriction:

(2.7) 8,y =8, =8,5=8,, =0

Given that the individual effects now have time-varying coefficients, how
should the system be estimatedé Simply differencing the data will no

longer "work'--the individual effects will not disappear. Chamberlain
suggests the following transformation: multiply the eéuation for time period
t by (y

t+l/wt) and then subtract it from the equation for period t+1.

The result is:

Yip 7 (agy = Togy) * (agy + 1)) yog = Tpa v+ 8 ome - rpdy s
t (ug, - ryugy)
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where: r, = (db/di)
r, = (d@/d@)
r, = (%/%)



The procedure is to estimate (2.8) jointly and test the causality
hypothesis. Again, some of the right hand side variables are correlated
with the (transformed) error term, so an instrumental variables estimation
technique is required. The natural choices for the instrumental variables
are (appropriately) lagged values of x and y . However, not all of the

- equations in (2.8) are estimable. To see why, consider the equation for t=U.
Recall the necessary condition for identification, that there be as many
instrumental variables as right-hand side var*iables.lJr There are four right
hand side variables (in addition to the constant) Yig» Y500 Xig and Xine

The lagged variables available as instruments, i.e., that are uncorrelated

i ey = 1, . . . cne W i
with (ul rthsk are X:i5 X5, Vi1 and iz e thus have four instruments

I
to match our four right hand side variables, and hence, no identification
problem. But for t=3 and t=2 there are not enough instruments; the equations
for these péfiods cannot be estimated.

Note that as more lags are added, a larger number of lagged observations
are necessary for use as instrumental variables.‘ Thus, in the case of a
second ofder lag in (2.6), even the equation for period 4 would not be
usable. In the absence of an additional year of data, no parameters could
be identified. Since the investigator will not know the true lag structure
a priori, all specifications are potentially open to this problem. We will

refer to this phenomenon, which does not appear to have been discussed in

previous treatments of this issue,as the lag truncation problem.

Importantly, the ¢'s are not identified as only their ratios appear.
Intuitively, since each Y appears only interacting with the latent variable,

disentangling its independent effect is impossible. As already suggested,

kFor a discussion of this criterion, see Fisher [1966].



the identification of the other parameters is dependent upon the number of
instruments available, and a full discussion is deferred to Section III.

We conclude this section by asking why one should depart from the
standard model and examine this mofe general specification. Chamberlain
does not address this question, but we can think of two possible reasons:
1) Time invariant parameters indicate that stationary behavior has been
achieved. Chamberlain's approach explicitly assumes that the investigator
has observed the entire time series for each unit, literally from its
"pirth" (thus circumventing the lag truncation problem). It is natural
to allow for the possibility that the behavior of such a unit will change
as it "matures." We do not assume that the panel data encompass the entire
life of the unit. Behavior of "mature" units is more likely to be time
invariant, but of course stationarity still may not obtain. 2) As long as
it is possible to test whether the parameters are time invariant, why not
do so? To the extent that investigators impose an unchanging structure when

inappropriate, inconsistent estimates will result.
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II1I. Statistical Inference

This section presents a discussion of identification, estimation and
hypothesis testing. The criterion we use for identification is that there
must be a sufficient number of instrumental variables to allow estimation
of the equation in question. This leads directly to an instrumental variables
estimator suggeéted by Chamberlain which has a generalized least squares
(GLS) interpretation. In addition, we introduce a method for hypothesis
testing, an issue which has not been discussed in this context before.
Specifically, we show how to compute test statistics for some pertinent

nypotheses--those of correct lag length, stationarity, and causality.

A. Identification

Consider the model (2.5), above, which results from assuming that
the parameters are time invariant and differencing to eliminate the
individuai'effect (see Section II). (Thé more generalvcasé is addressed
below.) As usual, we assume tha# the error term, Uiy s is uncorrelated

with all past values of y and =x , and the individual effect:

(3.1) Ely,u; ) = Blx, u,

it 1t} = E{fiuit} =0, s <t

The orthogonality conditions (3.1) can be used to identify the parameters

of (2.5), since the disturbance term v. (= u

it it T Yypop) Wil be

uncorrelated with Vit-s and Kep_g for s > 2. The equation

for each time period t has 2m right-hand side variables. To identify
the parameters, there must be at least this many instrumental variables.

..»X..] are available as

The 2(t-2) wvariables [yit—Q""’yil’X i

it-2°°

instrumental variables to estimate the equation for time period <

Thus, to have at least as many instrumental variables as right-hand side
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variables, it must be true that 2(t-2) > 2m, or t > m+2.§

Given our assumed lag structure, it is impossible to estimate the
equations (2.5) for time periods before +t = m+2. Thus, these equations
"are ignored. Clearly, the decision'zbout which equations to "ignore' depends
crucially on assumpticns. concerning lag length. If we make an incorrect
assumption and truncate the lag distribution, the parameter estimates
will be inconsistent. It is interesting to recall that Chamberlain circumvents
this problem by assuming that the first observation in the panel coincides
with the "birth" of the unit. Hence, he assumes that the entire lag
structure is observed. Such an assumption seems untenable in most applications.
An alternative assumption which is both more iikely and in the spirit of
causality testing in time series applications is the hypothesis that the
birth of each unit occurred long before the first period of observation.

A difficulty associated with this more realistic assumption is that
most panel data setsvencompass a relatively small number of time periods.
This creates a potential identification problem when the lag length is
“unknown. Causality testing will not be possible unless some a priori
restriction is imposed on the lag distribution. We do not present a general
treatmentAof the problem, and instead use only the straightforward restriction
_implicitly imposed above: that if the largest lag length is m , then

the number of time periods T is greater than m+2.6

5A sufficient condition for identificaticn is that in the limit the
cross-product matrix between the instruments and the right-hand side
variables be non-singular.

A more general treatment might use methods similar to those of Pakes
and Griliches [1984].
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We turn now to issues that arise when the parameters are not constant
across time periods. The simplest relaxation of stationarity is to

introduce a time varying intercept; i.e. to allow o to depend on t .

In this case, the differenced version (analogous to equation (2.5)) is:

m : m
(3:2) yip = ¥ypq T3t Lo lyie g Yipoge) ¥ L8 (Rieg ™ Fpogy)
) =1 2=1
tlugy T ugey)
where ap T G4 T 04 A different constant term now appears in the

equation for each time period. The preceding identification discussion
remains unchanged because a vector of 1's can be added to the instrumental
variables for the equation for period t to identify the intercept.
Operationally, all that the inclusion of a separate constant for each time
period requires is the introduction of time dummy variables.
The moéf general specification is to.allow all of fhe parameters

to depend on the time’period.7 The general form for this case (refer to
equation (2.6)) is:

m

(3.3) Yip = 0pp t wtfi + 251

u. [t=(m+1),...,T]

Y 28 it-2 it

n~g
=3
X
-+

. . +
“or?it- g

This case, considered by Chamberlain, requires the transformation discussed
in Section II to eliminate the individual effect. It leads to:
m+1 mt+l

= a, + X + Z
L= 2=

(3.4) 1y, y CotYi,t-2 1 dpe®s p-n T Vip [E5(me2),...,T]

7A special case which may be of particular interest occurs when the a's
and ¢'s are time invariant, but wt is not.
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where: v, = (wt/wt—l)

t
% T %t T Tt%t-1

10 T Tr T %1t

Cor T %pp ~ rtaz—l,t—l [e=2,...,m] (3.4a)
Cml,t © Tt%m,t-1

de T %1t

dnt :62t - Ptél—l,t—l [252,...,m]

dm+l,t = -rtém,t-l

Vie T Yie T TtYiLt-2

Observe that in each of the equations in (3.4) there are 2(m+l) right

hand side wvariables other than the constant, or a total of (2m+3). To

identify the parameters of (3.;) an equal number of instrumental variables

is required. Note that this is greater than the (2m+l) required in

equation (3.2). Since the instrumental variables vector is
[l’yit-2’""yil’xit—Q""’xil]’

it is now required that t > m + 3 to have a sufficient number of

instrumental variables for the equation for time period t .8 Thus, as one

would suspect, allowing for time varying parameters makes identification

more difficult. To see this most clearly, note that if T = (m+2) ,

"the parameters of the equation for the last year in the panel can be

identified in the stationary case, but not when the parameters are time-

varying. More generally, with time-varying parameters, the equation for

one more year of data in the panel cannot be identified.

Not all of the parameters of equaticn (3.3) can be recovered

from the estimates of eguation (3.4). The parameters of (3.4)

for the time period t depend upon the parameters for

8Hence, the equation for the earliest year estimated will be just
exactly identified.
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time period t-1. Since this is true of all periods and we do not

observe the entire life of the unit, it is not in general possible to

"'solve back" to all of the original parameters. However, it is still

possible to test for non-causality in the non-stationary case because,

as the definition of dlt makes cléar, all the §'s being zero implies that

all the d's are zero. Moreover, under certain conditions some of the parameters
of equation (3.3) can be recovered from the c¢'s and d's estimated from

equations (3.4). From (3.4a), in all cases, 8 . is identified directly from

1t

dlt' Further, in the special case of stationary individual effects (rt=l),

by solving equations (3.4a) recursively, one can obtain all the &'s and
a's (except for the intercept), provided that the number of equations
estimated is at least as large as the lag length. To see this, note that the
number of estimated parameters is (T-m-2)(2m+2); this has to exceed the
number of underlying parameters, (T-m-1)(2m). But (T-m-2)(2m+2) i_(T—m—l)(?m)
implies that (T-m-2) > me

Finally, if all parameters are stationary, one is back to the standard

individual effects model, and all the parameters can be recovered. .

B. Estimation

Unlike the discussion of identification, our presentation of the
estimation procedure will proceed from the most general case (all parameters
varying over time) to more restrictive specifications; showing how any
restriction may be imposed. The spirit of the procedure is straightforward.
For each time period, we have available a set of instrumental variables
which may be used to.obtain consistent estimates. However, the list of
instrumental variables differs for each time period, so the procedure that
is familiar from the typical simultaneous equations framework must be

modified.
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The presentation requires some additional notation. Let

= C . ' = . !
Yo = Lypes--onyygd and Xoo= Dxgseeooxy, ]

[

be Nx1 vectors of observations on units for a given time period. Let

W, = [e,Y ]

t

t-1°"° "Yt—m-l’xt—l""’xt-m-l

be the Nx(2m+3) vector of right hand side variables for eguations (3.4)

where e 1is an Nxl1 vector ones. Let

— t
Vt = [vlt’°"’th]

be the Nxl vector of transformed disturbance terms, and let

.,d It

By = lay.ey m+l,t

. .d .
£ %1, e

be the (2m+3)xl vector of coefficients for the'equations. Then we can

write equations (3.4) as:?

(3.5) Yt = tht + V_t [t=(m+3),...,T]

To combine all the observations for each time period, we can "stack"

equations (3.5). Let

Yy = [¥!

1 1
mea 200t o Yy

[(T-m-2)N x 1]

B = [B’

1 1
m+3 ""’BT ]

[(T-m=-2)(m+3) x 1]
Vo= DV
[(T-m-2)N x 1]

] 1]
R

LR ]

[(T-m=-2)N x (T-m-2)(m+3)]

- s 1
W= dlag[wm+

90bserve that we exclude t < (mt2) because these eguations are not

identified. See the discussion above.
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where diag[.] denotes a block diagonal matrix with the given entries
along the diagonal. With this, the observations for equations (3.4)

can be written:
(3.6) Y = WB + V

So far the discussion is quite similar to that of a classical
‘simultaneous equations system where the equations are indexed by t and
the observations by i . However, in the classical system the predetermined
variables--which serve as instrumental variables--are the same for each
equation. As we have stressed, this is no longer the case. The matrix
of variables which qualify for use as instrumental variables in period t
is:

X,

Zt = [e,Yt_Q,...,Yl,Xt_Q,..., 1

which changeé with t . To allow the différent instrumental variables for
different equations, we Qhoose the matrix of instrumental variables for
the system in (3.6) to be block diégonal. Consider the matrix Z

defined és:

]

Z = dlag[Zm ./

+3?° T

The orthogonality conditions ensure that
1
(Zm+3 Vm+3)/N

plim (Z'V)/N = plim =0
Nevoo Nooo

(Z% VT)/N

(-~ -

It follows directly that Z is the appropriate choice of instrumental

variables for (3.6).10

10 ) )
Limits are taken as No» , with T fixed.
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To estimate B, premultiply (3.6) by 2' +to obtain:
(3.7) 2Z2'Y = Z'WB + Z'V

We can then form a consistent inst:umental variables estimator by applying
GLS to this equation. As usual, such an estimator requires knowledge of
the covariance matrix of the (transformed) disturbances, Z'V. This

covariance matrix, Q , is given by
@ = Ee{z'vv'z} .

2 is not known and therefore must be estimated. To do so, let é be
the preliminary consistent estimator of B formed by estimating the
coefficients of the equatiomns for time periods t using two-stage least
squares (2SLS) on the equatiog for each time period alone--using the

correct list of instrumental variables. M Using these preliminary

estimates, form the vector of residuals for period t: Vt = Yt - tht .

A consistent estimator of (Q/N) is then formed by 12

(3.8) (Q/N)rs = 'El (Virviszir Zis)/N

1

where Voo (t=r,s) is the ith element of Vt and Zit is the ith row

of Zt . Finally, £ 1is used to form a GLS estimator of the entire

~

- parameter vector, B , using all the available observations:

(3.9) B = [W'z() Tzl twrz) tery

1l That is:

- -1
- [y ' 3%
B, (w2 (2120 "2¢ 3
12 This procedure is an extension of White's {1980] heteroskedasticity
consistent covariance matrix estimator. It is appropriate if .
E{v. v. }=0 for i,j,r,s such that i#j, that is,error terms for different
ir Js

units are uncorrelated. Note that common factors are controlled by
inclusion of time dummy variables in the estimating egquations.

-1 . v -1 ry
wtzt(z,E Zt) 200
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To summarize, the estimator is formed in three steps: i) Estimate
the equation for each time period using 28LS. 1ii) Using the residuals
and the matrix of instruments, estimate the joint covariance matrix
iii) Estimate all parameters jointly using GLS on the stacked equations.
Since there are no non-linearities in the parameters, our proccedure is

.easily carried out using standard ccmputer software for matrix manipulations.

Efficiency

~
~

Several comments concerning the efficiency of B are in order. B 1is
efficient in the class of instrumental variable estimators which use linear
combinations of the instrumental variables. This follows directly from
the results of Hansen [1982]. (See also White [1982].) However,
just as 3SLS on an entire system of equations may be more
efficient than 3SLS on a subset of the equations, it may be possible to
improve the efficiency'by jointly estimatiné both the equafion‘for Vit
given past values of y and x ggg:the equation.for X:y given the history
of x and y . Because such a procedure is much more complicated and
requires ué to make éssumptions concerning the lag structure of x , we do
not pursue it here.

Linear Constraints

Causality tests require estimating B subject to linear constraints.
The most obvious is the constraint that all lagged values of x have zero
coefficients. For the sake of illustration, consider the simple example
in (2.8). After the transformation leading to (2.8), only the final year
(t=4) of the data is idéntified. Using the general notation introduced in
(3.4), the linear constraint that x not cause y is that 4 =d =0

14 24

and c

and that the constrained and unconstrained values of bu, iy oy

be identical. Using matrix notation, this may be written:
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pbu-— _i OO— B —O—
Sy 010 b,4 0
Czu = 001 Ciy | T 0
dll+ 000 _C24_ 0

Ld2“_ ._OO 0_ —O—

More generally, a simple way to formulate such constraints is to specify

that
(3.10) B=Hy + G

where v is a kxl vector of parameters, H is a constant matrix with
dimensions [(T-m-2)(m+3) x k] #nd G is a constant vector of the same
dimension as B %3 Since Yy 1is the restricted parameter vector, it has
dimension smaller than B .

Replacing B by Hy + G and subtracting WG from both sides of

(3.6) gives
(3.11) Y=Y -We =WHy +V =Wy +V

Thisiequétion has exactly the same form as (3.6). Thus, we can estimate
Y as before--using the data matrices transformed by G and H .

Another constraint of interest is that of stationary coefficients.
Consider again the simple example (2.6). Under the assumption of stationary
coefficients, the equations for time periods 3 and 4 are both identified.

To test for stationary coefficients (other than the time dummies), estimation
involves using first-differences of the data. TFirst differencing the

.equations (2.6) and re-arranging ylelds

13The rank of H must be k for the restrictions to be unique.
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Yig T Py F L4y, mogygy o+ Syxpn - Gyxe o+ (upg - ug,)
(2.6")
Yiy TPy F (14 ey = oy yxpg - x4 (ugy - ugg)

The appropriate choice of matrices is:

_bS— —1 Q‘O O— —O-
13 0 0 1 0O 1
53 6 0-1 0 0
dl3 0 0 0 1 (;3 o
d23 0 0 0-1 bI+ 0
bq =/0 1 0 O a, +| 1
Cyy 0O 0 1 o Lf%J 1
Coy 0 0-1 O 0
d14 0 0 0 1 0

~—d2LLL .B 0 Ofl_ _O_

Note that the choice of the matrix H and the vector G implicitly
differences the data prior to estimation.

C. Hypothesis Testing

In this section we discuss the computation of statistics to test
the hypothesis that =x does not cause y , that the parameters are
stationary, that m is the correcf lag length, and other possible hypotheses.
In each case, the test statistic revolves around the sum of squared
residuals, resulting in tests with a chi-square distribution in large
samples. The primary consideration is to transform the residuals to
ensure that they have the requisite statistical properties. TFurther, we
consider two additional topics: tests when parameters are not identified

under the alternative hypothesis and sequences of tests.
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We consider only tests of linear restrictions on the estimated

parameters, B . Consider the null hypothesis:

(3.13) HO : B =Hy + G

where the notation is as before. As we have shown, it is straightforward

to impose this restriction during estimation. Let

Q = (Y-WB)'Z(2) Yz (Y-uB) /N
(3.14) i
Q = (Y-W§)'z(n)’lz'(Y-w§)/N

Q is the unrestricted sum of squared residuals and QR is the restricted
sum of squared residuals. Q and QR each have a chi-square distribution
as N grows.’“‘L By analogy with the F-statistic in the standard linear

model, an appropriate test statistic is

(8.15) L =0Qp-Q

L has the form of the numerator of the F statistic. By construction,

the covariance matrix of the transformed disturbances is an identity matrix.
As a result, L has a chi-squared distribution with degrees of freedom
equal to the degrees of freedom of QR minus fhe degrees of freedom of Q.
‘When all of the parameters are identified under both the null and the

alternative hypotheses, the degrees of freedom of § is equal to the number of

156 see this, let P be the matrix such that P'P = Q_l. Then pre-

multiplying (3.7) by P results in:
PZ'Y//N = (PZ'W/YN)B + (PZ'V//M)

Note that asymptotically, the disturbance P'Z'V/VN is normally distributed
with a covariance matrix equal to the identity matrix. As usual, sums
of these squared residuals will have a chi-square distribution.
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instrumental variables (the number of rows of Z'V in (3.7)) minus the number
of parameters, i.e. the dimension of B. Similarly, QR has degrees of freedom
equal to the number of instrumental variables minus the number of restricted
parameters--the dimension of y. Thus, for (3.7) L has degrees of freedom

equal to the dimension of B minus the dimension of y.ls

Unidentified Parameters

When executing causality tests with panel data, it is often the

- case that some parameters are not identified under the alternative hypothesis.

For example, under the null hypothesis that x does not cause y , lagged
x's can be used as instrumental variables for lagged y's. This is because
lagged x's will be correlated with lagged y's via the individual effect.
Use of these instruments permits us to identify the parameters in (3.6).
Under the altermative hypothesis, the greater number of parameters means
that not all of the parameters are identified. Nonetheless, a test of the
null hypothesis is still possible. The method is analogous to conducting

a Chow test with insufficieﬁt observations.16 (See Fisher [1976].)

To address this issue, consider again the system (2.6) which leads
to (2.8). Under the null hypothesis that x does not cause y , there

are three parameters (b )} in the equation :for time period 3 and

3? ©13° ©23

the 'same number of instrumental variables (e, Yy xl) available. Under

151 can be thought of as the extension of the Gallant and Jorgenson
{1979] test statistic for 3SLS to this application. Of course, we could

use other asymptotically equivalent test statistics to test the null
hypothesis. In fact, the well known Wald test is numerically equivalent
to our L. Newey and West [1985] discuss the relationship between L and
other test statistics; including regularity conditions.

15 The analogy is not exact because we consider more general hypotheses
than simply hypotheses which impose equality across equations and because
the joint covariance matrix across (3.7), above, and (3.16), below, is
not diagonal.
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the alternative hypothesis d13 and d23 must also be estimated; the
number of parameters grows to five and the equation is underidentified.
The equation for time period 4 is identified under either the null or

alternative hypcthesis.

In more general notation, suppose that the parameters of the equation

are not identified (in the absence of the restrictions imposed by the
null hypothesis) for time period s , i.e. ZS has fewer elements than

BS (and, hence fewer than WS). That is, in the equation
(3.16) Z2'Y = Z'W B + Z2'V
s's S 5 S s s

the number of_row; in Z;Ys' is fewer than the number of parameters in BS
The apﬁropriate'test statistic once égain uses the'difference
betweén the restricted and unrestricted sum of squared residuals, but care
must be taken in constructing the covariance matrix € . Since the same
covarianée matrix must be used when computing both the restricted and
unrestricted sum of squared residuals, the following procedure is appropriate.
First obtain the restricted sum of squares, incorporating the fact
that BS is identified under the null hypothesis by adding equation (3.16)
to the list of equations to be estimated. Let B¥ =‘[B',Bé]' be the
coefficients for the equations for‘all time periods. The parameters B
are .identified under either hypothesis, but those for time period s are
not. For the simple example

d

]

—_ =} 1
B = [byscqys0h,5dy,,5d,,)

B = [bs,c

s 13°%23
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Consider the null hypothesis
(3.17) H, : B* = Hy + G,

0

where the elements of Yy are identified. Using similar notation, let

It

v = [VO,VITT YR = LYY,

Wk = diag[W,W_] 2% = diaglZ,2_]

Under the null hypothesis, we may add equation (3.16) to equation (3.7)

as:
(3.18) Z%'Y®R = 7RIy + Z8VyE
where Y% = Y% - W*G and W% = W*H .

Next estimate the parameters, B*, and covariance matrix, Q , using
the procedure described above.

To obtain the unrestricted sum of squares and the appropriate test
statistic, only those equations identified under the altermative hypothesis
are employed. Accordingly, the appropriate estimate of the covariance matrix,
Q is a ;ubmatrix of the covariance matrix estimated under the null
hypothesis. The desired submatrix is that for equations identified under
17

the alternative hypothesis.

As before, Q% - Q will have a chi-square distribution in large

R

samples. In this instance, the degrees of freedom is given by:

(3.19) [dim(z#'v¥*) - dim(y)] - [dim(Z'v) - dim(B)]

l7Importantly, the submatrix must be obtained from the estimated covariance
matrix, § , prior to inverting the matrix and constructing the unrestricted
sum of squares.
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In our example, dim(Z*',v*} equals 8 (three instrumental variables for

time period 3 and five for time period u4), dim(y) equals 6 (three
parameters in the equation for each time period, dim(Z'v) equals five, and
dim(B) equals 5 (the number of parameters in the equation for time period 4
under the alternative hypothesis. Thus, the degrees of freedom for the
causality test is 2 in this example.

Sequences of Tests

Two important questions in this framework are whether the data are
consistent with a lag of length m and whether x causes y . It seems
natural to nest the hypothesis of non-causality within the hypothesis
about the lag length. That is, it makes sense to think of testing for
non-causality conditional upon the outcome of a test for the lag length.
When hypotheses are nested in»this manner, we can construct a sequence of
test statistics which will be (asymptotically) statistically independent.
This permits us to isolate the reason for the rejection of the Jjoint
hypothesis.

To see how such a sequence is constructed, consider the two hypotheses

H, : B = Hy + G,

1
and the second hypothésis, nested within Hl
H2 Yy = ﬁ§-+ [
Let Q be the unrestricted sum of squares, QRl the restricted sum of
squares from imposing Hl , and QR2 the sum of squares from imposing

both Hl and H2 , i.e. the restriction:

B = HHy + (HG + G)

Then Q 1T Q is the appropriate test statistic for testing Hl and

R

- QRl is the appropriate statistic for testing H2 conditional upon

H being true. Furthermore, it is the case that the two statistics
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are asymptotically independently distributed.l8

The significance of a joint test of Hl and H2 may be determined,

Suppose that the test consists of rejecting Hl and H2 if either

statistic is too large. Let the fi-st test have significance level a;

and the second a, - The significance of the joint test is:

Notice that, if Hl is accepted, we can infer the correctness of H2

from whether or not the test statistic for H2 is too large. However,

if Hl is rejected we can say nothing about H2 because it is nested

within Hl .

183ce Newey and West [1985].

19 4 similar procedure based upon Wald tests is discussed by Sargan
[1980] in the closely related context of testing for dynamic specification
of time series models.
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IV. An Example

In this section, we demonstrate the techniques described above by
investigating the dynamic interrelationships between local revenues, grant
revenues, and local expenditures for a sample of 171 United States
municipalities.

A. The Issues

Public finance economists have long investigated the determinants of the
level of local government expenditure; particularly the impact of alternative
federal grant policies. (For a review of this literature, see Gramlich [19877].)
One empirical regularity is the '"flypaper effect'": a dollar increase in
exogenous grant monies stimulates local spending more than a dollar increase in
local income. One interpretation of this result turns on the hypothesis that
lo;al Dureaucfats, for a variefy of reasons, seek to increase the magnitude
of public spenéing bey@nd the level desired by the representative voter.
Assuming further that fhe bureaucrats have better information than voters on
the magnitude of outside grants, the bureaucrats may '"trick" the voters into
supporting larger expenditures than they might otherwise permit.

Since local governments are considered the most likely (via some variant
of the Tiebout mechanism) to supply an efficient level of public services, the
implications for efficient resolution of the social choice problem are disheart-
ening. (Less pessimistic interpretations are possible. See, e.g., Hamilton
{1983].) As far as we know, all evidence on the flypaper effect comes from
cross-sectional analysis of local governments. The dynamic and stochastic

properties of local revenue, grant, and spending streams have not been explored.



28.

A straightforward dynamic reinterpretation of the flypaper effect is that
grant monies cause (in the sense discussed above) local expenditure.

A second hypothesis of interest is whether expenditures cause local
revenues, since either the median voter model or the benign tyrant
interpretation of government behavior imply that revenues are raised only
due to the necessity of financing desired public provisions. Finally, a
third hypothesis is suggested by the common beiief that revenues cause
expenditures. A typical expression of this view is that of a state senator
from New Jersey. "It is axiomatic that government spending will rise to
meet and eventually exceed available revenuesﬂzo_ Our framework allows a test
of this "axiom."

cven if the investigator ;s unwilling to accept the causal interpretations
of the results, investigation of the dynamic relationships will summarize the
empirical facts to which theoretical studies muét conform. For example, how
long are the distributed lags which relate revenues and expen&itures? In the
* absence of éome empirical benchmark, it is not even clear what the theory has
~to explain. |

B. Data Description

Our data are drawn from the annual Survey of Governments between 1973 and
1980 and the Census of Governments conducted in 1972 and 1977. A random sample
of municipal government records was selected from the data tape for 1979 (the
year with the least coverage) and these same government records were selected

. . . 21 . .
for the remaining eight years when possible. There is usable information on

17

(=]

municipal governments over a period of nine (fiscal) years.

20 New York Times, New Jersey Weekly, March 17, 1985, p. 22.
21

To remain in the sample, communities had to report positive
school expenditures.
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In each year, the record for each government essentially presents the
budget identity--including revenues from a variety of sources, expenditures
by program and type (current, capital, etc.}, debt transactions, grant receipts
(by source), and grant transfers (of minimal importance at the municipal
level). These dollar amounts were converted to per capita real dollars using
a regional price index with December 1977 = 100. All variables are

entered as natural logarithms.

The data contained virtually no information on the economic and demographic
characteristics of the communities. Such variables typically play an important
role in regression analyses of local government spending. However, to the
extent that economic and demographic characteristics can be regarded as
"individual effects," this absence of information will cause no problems. In
essence, the»statistical procedure eliminates these effecfs via differencing.

In addition, the effects of any cyclical variables that might influence outcomeé

are captured by the time dummy variables.

For the estimations presented here we use total local current expenditures,
total local revenues, and total grants received. Less aggregative work focusing

on specific revenue and expenditure categories, while important and interesting,

must await future research.

C. Lbstimation and Testing

Our focus is on the dynamic interrelationships between three variables:

expenditures, revenues, and grants. For each variable, we estimate a model 1in
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which it appears on the left hand side. On the right hand side are its own
lags and lags of the other two variables. The results are used to investigate
issues of parameter stationarity, lag length, and causation. Below, we present
the results for the expenditures, fevenues, and grants equations in turn.

Expenditures. We begin by estimating an equation with 2 lags of each

22

of the right hand side variables; in terms of our earlier notation, m=2.
The quasi-differenced version, then, has 3 lags. Given that in our data T=9,
m=2 implies that we can estimate parameters for only the last 5 years in the
data set; i.e., t=1976,...,1880. When the equations for these years are
estimated jointly using the three-stage procedure described above, the minimized
value of the x2 test statistic (Q in our earlier notation) is equal to 1.99,
and has 30 degrees of fr*eedom.i3 (For convenience, this result and others to
follow are summarized in Table 1l.) Now, inferences about causality will be
incorrect if the lag distribution is incorrectly truncéted and/or parameter
stationarity is incorrectly imposed. In order to avoid these (type II)

errors, we choose . 10% significance levels for the tests on lag length and

parameter stationarity, rather than the conventional 5% or 1% levels.

22 We began at m=2 in order to estimate the covariance matrix necessary to
test for this and other (including larger) lag lengths. However, it is obvious
from the test statistic that the restriction m=2 is consistent with the data. This
also turns out to be true for the revenues and grants equations.

23 The calculation of degrees of freedom is as follows: For 1980, we have

available 7 years of data for each variable (1972-1978). Adding a constant
gives 22 instrumental variables. This number falls to 19 in 1979, 16 in 1978,
and so forth. Thus, the total number of instrumental variables is 22 + 19

+ 16 + 13 + 10 = 80. TFor each year we estimate 10 parameters; for a total of
50. The degrees of freedom is simply the difference: 80-50.



Table 1

Expenditures Equation

i) m=2

ii) stationary fixed effects
(given 1)

iii) all parameters stationary
(given ii)

iv) m=1 (given ii)
v) m=0 (given ii)
vi) exclude revenue (given iv)

vii) exclude grants (given iv)

L46.48

18.03

108.44

39.41

32.72

1.55%

42.94

15.49

89.41

20.38

13.869

Degrees of

31.

Freedom XQ’
30 40.26
g 14.68
30 40.26
18 25.99
18 25.98
6 12.86
6 12.6

*For lines i through v, x2 is evaluated at the 0.10 significance level
for lines vi and vii, at the 0.05 significance level.
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Because the value of the xgo at the 10% level is 40.26, we can easily
accept m=2.

When we examined the coefficients of this specification, we noticed
that most of them were gquite small velative to their standard errors. To
see if we could sharpen -the results by putting more structure on the model,
we 1lmposed the condition that the coefficients on the individual effect be

stationary, i.e., that r_=1 for all t. The value of Q from this

t
restriction is 3.54. Therefore, from equation (3.15), the value of L is
3.54 (=QR) minus 1.99 (=Q), or 1.55. (There are 9 degrees of freedom because
there are Y4 restrictions with rt=l, and 5 restrictions on the parameters
for the third lag of each variable.j The associated critical value of
xg at a .10 significance level is 14.68; hence, the model with stationary
individual effects passes the test by a wide margin. (See line ii of Table 1.)
Are all the parameters similarly stationary over'time?_ Using'the
procedure outlined in Section III.B, we imposed this comstraint. The associated
value of é is 46.48. In this case; then, L = 46.48 - 3.54, or 42.94, and has
30 degrees of freedom. (There are 30 degrees of freedom because the 6 lag
parameters for each of 1975 through 1979 are constrained equal to their 1980
values.) The critical value of the Xgo distribution at the 0.10 level is 40.26.
~We therefore reject the hypothesis that all the coefficients are stationary
across time.
We next investigate results relating to lag length (conditional on the

assumption that rt=l). The first question is whether the data will permit us

to shorten the lag length from 2 to 1. When we impose m=1l, the value of Q
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is 19.03. Comparing this to the value of Q in line ii of Table 1, we find
that L = 15.49, and has 18 degrees of freedom. (There are 18 degrees
of freedom because we are restricting 3 lags in each of 6 years.)
The critical value of the XiB distribution at the 0.10 level is 25.838. We
~can accept the reétriction that one lag in each variable adequately characterizes
the data.

The fact that m=1 passes the test gives rise to the thought that an
even more parsimonious specification, m=0,'might do so as well. When we estimate
the expenditures eqguation with no lags at all, the value of Q jumps to 108.44;
the associated value of L is 89.41 (= 108.44-19.03). The data clearly
reject this hypothesis by a wide margin. (See line v of Table 1.)

Conditional on m=1 and stationary fixed effects, we next turn to
causality issues. As noted above, to test whether revenues cause expenditures,
we simply estimate the expenditures equation excluding revenues, and evaluate
the increase in the minimum x2 testlstatistic. The value of Q when revenues
are excluded is 39.41; the value of L is 39.41 minus 19.03, or 20.38, and it
has 6 degrees of freedom. (There are 6 degrees of freedom because the
coefficient on the lagged value of revenues in each year 1975-1980 is restricted
equal to zero.) The critical value of the Xg distribution at the 0.05 level
is 12.6; hence, the data reject by a wide margin the notion that revenues do
not cause expenditures.

When we estimate the expenditures equation excluding grants, we find
that Q = 32.72, L = 13.69, and the hypothesis of non-causality is agzin

rejected, although by a smaller margin.
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To summarize: We find that community expenditures can be described
by a dynamic process which has only 1 year lags. The individual effects are
stationary across time periods, but the other parameters (taken as a group)
are not. Further, one can reject the hypothesis that revenues and grants do
not cause expenditures.

So far we have not discussed the values of the parameters themselves.
Because the expenditures, revenues, and grants equations form a system which
determines the evolution of all three variables, it is most useful to analyze
the parameters of all three equations jointly. Hence, we defer that discussion
until after the revenues and grants equations have been discussed.

Revenues. The calculations for the revenues equations are very similar
to those of the expenditures equétion which were just described in detail.

We therefore mérely summarize the results which are reported in Table 2:

(a) A lag length of 2 is at least sufficient to charactérize the data

(see line i). (b) Given m=2, one cannot reject the hypothesis that all the parameters
are stationary across time periods (see lines ii and iii). (c¢) One can reject the
hypothesis that m=1 (see line iv). (d) One cannot reject the hypothesis that
expenditures do not cause revenues (line v), but one can reject the hypothesis

that grants do not cause revenues (line vi).

Grants. The results for the grants equation are reported in Table 3.

The main conclusions are: (a) A lag length of 2 is at least sufficient to
characterize the data (see line i). (b) As before, the data are consistent
with stationary fixed effects (see line ii). As in the case of the expenditures

equation, however, the data are not consistent with all the parameters being



Revenues Equation

Table 2

Degrees of

Q L Freedom X

i) m=2 1.24 - 30 50.26
ii) stationary fixed effects

(given i) 3.49 2.25 9 14.68
iii) all parameters

stationary (given ii) 24.13 20.64 30 40.26

iv) m=1 (given iii) 47.23 23.10 3 6.25
v) exclude expenditures

(given iii) 25.43 1.3 2 5.99
vi) exclude expenditures

and grants - h7.37 23.24 4 9.49

*For lines i through iv,x2 is evaluated at the 0.10 significance level;
for lines v and vi at the 0.05 significance level.



Grants Equation

Table 3

Degrees of

36.

ate”

Q L Freedom x2 -
i) m=2 ' 9.u8 - 30 40. 26
ii) stationary fixed effects
(given 1) 22.17 12,68 g 14.68
iii) all parameters
stationary (given ii) 162.37 140.2 30 40.26
iv) m=1 (given ii) 50.386 28.19 18 25.99
v) exclude expenditures
(given 1ii) 51.09 28.92 12 21.0
vi) exclude revenues : 36.60 34.43 12 21.0

(given ii)

* For lines i through iv,x2 is evaluated at the 0.10 level; for

lines v and vi at the 0.05 level.
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stationary (see line iii). (c) A lag length of one is not consistent with the
data. (d) One can reject the hypotheses that expenditures or revenues do
not cause grants (see lines v and vi).

This last result should be interpreted with caution given that some
grants are allocated on the basis of expenditure and revenue behavior. Are the
equations telling us something about causality, or simply reproducing the
"law"? To the extent there is a random component in grant receipts, the causality
test traces the effect of this innovation on revenues and expenditures. That
there is such a random component seems extremely likely; indeed, local
officials cite grant uncertainty as one of their most important budgetary

problems. [See Advisory Council on Intergovernmental Relations (1977, p. 5).]

Parameter Estimates. We next turn to an examination of the parameter  esti-

mates. In Table 4 we generally report the lag coefficients of the most parsimonious

specification of each'equatibn that is consistent with the data, based on the
discussions surrounding Tables 1, 2, and 3. (To conserve space, the coefficients
of the unrestricted equations are not reported; these are available upon
request.).Table 4 sﬁggests the following thoughts:

1. While the processes generating expenditures, revenues, and grants share
the important characteristic of a stationary fixed effect, they differ with
respect to lag length and whether the lag parameters change over time.

More coefficients are reported for expenditures and grants than for revenues,
because only for the latter are all the parameters stationary over time.
2. In general, parameter stationarity can be rejected for one of twe

reasons. Either the estimates are qualitatively "close'" but are very precisely
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Table 4

ote
Parameter Estimates "

38.

Expenditures . Revenues Grants
0.0981 (.786) 0.054 (.202) -0.172 (.568)
0.05Y4 (.051) 43.7 (36.7)
0.988 (.616) 0.543 (.179) -1.40 (1.69)
-0.0189 (.0245) -34.0 (25.6)
-0.212 (.5486) -0.16Y4 (.0640) 0.913 (.u48)
-.101 (.0245) -11.3 (9.36)
-0.1860 .727 50.22 (35.0)
--7.24‘ (3;00)
1.13 .659 -36.8 (23.8)
2.35 (1.81)
-0.211 .175 -10.1 (8.80)
-.0207  (.361)
0.201 .220 2.30 (2.36)
2.02 (2.38)
0.642 .219 -1.78 (1.693)
1.60 (2.22)
-0.1u45 .0578 -0.433 (.599)
1.04 (1.12)



Table 4 (continued)
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Expenditures Revenues Grants
0.170 (.185) 2.12 (1.60)
-0.228 (.680)
0.628 (.208) 2.15 (1.74)
-0.299 (.761)
—0.207‘ (.0809) 1.09 (1.00)
0.0753 (.u48)
0.262 (.117) 0.311 (1.33)
1.09 (.653)
- 0.884  (.166) 3..61 (1.94)
-1.19 (.565)
-0.137 (.0L443) 1.32 (.883)
0.0598 (.179)
0.151 (.335) 0.00754 (1.07)
3.05 (1.22)
.662 (.288) 1.20 (1.37)
0.457  (.275)
-0.176 (.141) 0.605  (.678)
-0.0733 (.341)

“"Numbers in parentheses are standard errors.
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estimated, or the parameters differ greatly in magnitude even if they are
individually estimated without much precision. The former seems roughly to be
the case in the expenditures equation. The latter appears to be the case

in the grants equation. We conjecture that the behavior of the grants
equations may be due té the instability over time of the process by which
grants are administered. For example, the provision of special one year

project grants could radically alter the relevant lag correlations.

3. In virtually all cases, causality hypotheses cannot be rejectéd.

As noted earlier, the important exception is that expenditures do not cause
revenues. For the sake of completeness, however, we have reported the
coefficients of lagged expenditures in the revenues equation.24 It is
interesting to note that in addition to being statistically insignificant,
they are small in magnitude compared to the other coefficients in the revenues
equation._ From either perspective, they are not an "importént" determinant

of revenues.

4. Analysis of the dynamic behavior of the system as a wﬁole is complicated
by the non-stationarity of the estimated coefficients. For example,
examination of steady state multipliers is not meaningful when the
coefficients are changing over time. Also, we feel that because of the
unreasonable size of the estimated coefficients in the grants equation, it

may be misspecified, and that this misspecification would adversely affect

the analysis of the joint dynamic behavior of revenues, expenditures and grants.

24When expenditures are excluded from the equation, the other i
coefficients barely change. The coefficients on Rt-l’ Rt-2’ Gt-l an £-2°

respectively, are 0.567 (.122), -0.00677 (.0216), -0.156 (.0575), and -0.0833

(.018).
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D. Summary

What have we learned from all of this? The figures from the lag
truncation tests suggest that one or two lags are sufficient to summarize
the dynamic interrelationships. The results of the causality tests suggest

that it is generally inappropriate to regard any of the members of the

- expenditures-revenues-grants nexus as exogenous.25 A proper theory must
take into aécount their joint determination. In addition, the results suggest
the importance of intertemporal linkages that are omitted from conventional
cross sectional regressions. Recognition of such linkages complicates the
interpretations of such regressions. Finally, the results from the
stationarity tests suggest that it is dangerous, as is common, to assume
that all parameter estimates from panel data do not change over time. 26
As we stressed at the beginning of this section,.our numerical results
must be reéérded as tentative. For exampie, it would be useful to estimate a’model

in which relative prices (such as tax rates, as opposed to tax revenues) play a

3

1

rocle. Nevertheless, we think that the results demonstrate the utility of our

technique and its operaticnal feasibility.

V. Coneclusion

We have presented a simple method of executing causality tests using
panel data. The key to its simplicity is the fact that estimation and testing
have straightforward GLS interpretations--no non-linear optimization is
requifed.

| Our empirical'example demonstrates the importance of testing for the
appropriate lag length prior to causality tests; an issue of considerable importance:

in short panels. In the absence of such tests, no inferences concerning causal

relationships may be drawn.

25put see Leamer [1984] for a careful discussion of alternati

- - - ve notions of
exogenelty in this context.

26 See, for example, Craig and Inman {1982].
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