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Introduction

Multiple-equation cointegrating regressions are frequently encountered in applied re-

search. Many examples are found in the analysis of panel data. When the equilibrium

errors are correlated across cross-sectional units, the idea of seemingly unrelated re-

gressions (SUR) can be applied to cointegrating regressions to obtain asymptotically

efficient estimators. Non-parametric methods for seemingly unrelated cointegrating re-

gressions have previously been proposed by Park and Ogaki (1991), who applied the

SUR method to generalize Park�s (1992) Canonical Cointegrating Regression estimators

and by Moon (1999) who applied the SUR method to generalize Phillips and Hansen�s
1(1990) fully modiÞed estimators. The drawback of these SUR estimators, however, is

that speciÞcation of the estimation problem is not always straightforward in practice.

One particularly troublesome feature of these estimators is that the speciÞc form of

the non-parametric transformation that is required depends on the number of common

regressors in the SUR equations.

In this paper, we propose Dynamic Seemingly Unrelated Regression (DSUR) Estima-

tors for estimating small systems of cointegrating regressions. We study the asymptotic

and small sample properties of the DSUR estimator which can be made fully para-

metric and are computationally straightforward to use. The methodology is feasible

for balanced panels where N is substantially smaller than the number of time-series

observations T . The asymptotic distribution theory that we use is for T → ∞ and

N Þxed. We consider environments where the cointegrating vectors are homogeneous

across equations and where they exhibit heterogeneity.

Cointegration vectors that exhibit cross-sectional heterogeneity can be estimated by

DSUR or by dynamic ordinary least squares (DOLS) techniques. We compare DSUR

to a generalized DOLS estimator developed by Saikkonen (1991) which, following the

terminology of Park and Ogaki (1991), we call system DOLS. System DOLS is distin-

guished from ordinary DOLS proposed by Phillips and Loretan (1991), and Stock and

Watson (1993) in that endogeneity in equation i is corrected by introducing leads and

lags of the Þrst difference not only of the regressors of equation i but also of the regressors

of all other equations in the system. In the multivariate regression framework studied

by Saikkonen (1991), the regressors are common in all regression equations. Therefore,

there is no efficiency gain from the SUR method just as in the stationary case. Saikkonen

(1991) shows that the system DOLS estimator is asymptotically efficient relative to the

ordinary DOLS estimator in his framework.

In our framework, we allow different regressors to appear across the various cointe-

1After the Þrst version of this paper was completed, we discovered that Moon and Perron (2000)
also studied dynamic SUR.
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grating regression equations. As in the stationary case the SUR method can be used

to gain efficiency in our framework: the DSUR estimator achieves asymptotic efficiency

gains over DOLS by incorporating the long-run cross-sectional correlation in the equi-

librium errors in estimation. In addition, Wald statistics with limiting chi-square dis-

tributions can be conveniently constructed to test cross-equation restrictions�such as

homogeneity restrictions�on the cointegration vectors. We also show that the compu-

tational burden can be lightened by focusing on the more convenient but asymptotically

equivalent two-step DSUR estimator. In the Þrst step, the regressand in each equation is

regressed on the leads and lags of the Þrst difference of the regressors from all equations

to control for the endogeneity problem. In the second step, the SUR strategy is applied

to the residuals from the Þrst step regressions.

When the cointegration vector is homogenous across equations, estimation can be

performed using a restricted version of the DSUR estimator. Restricted DSUR is is

a pooled estimator of the cointegration vector that exploits the long-run dependence

across individuals with the homogeneity restrictions across equations imposed in es-

timation. The comparison estimator under cointegration vector homogeneity is panel

DOLS, which has previously been studied in the literature. Extant analyses of panel

DOLS, however, have been conducted under the assumption of independence across

cross-sectional units. We show below that under cross-sectional dependence, the asymp-
2totic distribution of panel DOLS is straightforward to obtain. Here as well, restricted

DSUR achieves asymptotic efficiency gains relative to panel DOLS by incorporating the

cross-equation dependence in the equilibrium errors in estimation.

In any Þnite sample, estimation of long-run covariance matrices can be a thorny task

upon which estimator performance may hinge. It is therefore important to know whether

or not the predictions from asymptotic theory are borne out in small samples. To address

this question, we compare the small sample performance of alternative estimators in a

series of Monte Carlo experiments. We Þnd that the asymptotic distribution theory

developed for all of the estimators work reasonably well and that there are important

and sizable efficiency gains to be enjoyed by using DSUR over the DOLS methods.

We go on to illustrate the usefulness and computational feasibility of the DSUR

method by revisiting two long-standing problems in international economics. The Þrst

application revisits Evans and Lewis�s (1995) cointegrating regressions of the future spot

exchange rate on the current forward exchange rate which asks whether the forward rate

is an unbiased predictor of the future spot rate. Using ordinary DOLS, they report a new

2Mark and Sul (1999) and Kao and Chiang (1998) studied the properties of panel DOLS under the
assumption of independence across cross-sectional units. Pedroni (1997) and Phillips and Moon (1998)
study a panel fully modiÞed OLS estimator also under cross-sectional independence. Moreover, the
asymptotic theory employed in these papers requires both T and N to go to inÞnity.
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anomaly in international Þnance�that the slope coefficient is signiÞcantly different from

1�from which it follows that the expected excess return from forward foreign exchange

speculation is unit-root nonstationary. When we update Evans and Lewis�s sample and

employ DSUR, we Þnd the evidence for a nonstationary expected excess return to be

less compelling.

Our second application revisits the estimation of national saving and investment cor-

relations put forth by Feldstein and Horioka (1980). Their interpretation is that the size

of the estimated slope coefficient in a regression of the national investment to GDP ratio

on the national saving to GDP ratio is inversely related to the degree of capital mobility.

Feldstein and Horioka found that the slope coefficient in their regression was insigniÞ-

cantly different from 1, from which they conclude that the degree of international capital

mobility is low. The original Feldstein�Horioka analysis employed a cross-sectional re-

gression using time-series averages as observations. Coakley et al. (1996) extend this

work to the time-series dimension. These authors show that under a time-series inter-

pretation, a solvency constraint restricts the current account balance to be stationary

irrespective of the degree of capital mobility. Because the current account is saving mi-

nus investment, it is possible that Feldstein and Horioka�s cross-section regression may

just be capturing this long-run relationship when long-run time series averages are used

for the regression. In our panel data application, we regress investment variables onto

saving variables as a system of cointegrating regressions and test the hypothesis that

the slope coefficient is 1. This provides a more direct test of the long-run relationship

implied by the solvency condition than cross-section regressions.

The remainder of the paper is organized as follows. The next section presents and

discusses the asymptotic properties of the alternative estimators that we examine. In

section 2 we conduct a Monte Carlo experiment to examine the small sample performance

of estimators and the accuracy of the asymptotic approximations. In section 3 we apply

the estimators to the spot�forward exchange rate problem and to the investment�saving

puzzle. Section 4 concludes the paper. Proofs of propositions are contained in the

appendix.

1 System Estimators of Cointegration Vectors

We consider N cointegrating regressions where N is Þxed. The data are balanced panels

of individuals indexed by i = 1, . . . , N tracked over time periods t = 1, . . . , T . Our

notational conventions are as follows: Vectors are underlined and matrices appear in

bold face but scalars have no special notation. W (r) is a vector standard Brownian

motion for 0 ≤ r ≤ 1, and [Tr] denotes the largest integer value of Tr for 0 ≤ r ≤ 1. WeR 1will not make the notational dependence on r explicit, so integrals such as W (r)dr0
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R R R1 00are written as W and W (r)dW (r) are written as WdW . Scaled vector Brownian0

motions are denoted by B = ΛW where Λ is a scaling matrix. The regularity conditions

that we impose are given in,

Assumption 1 (Triangular Representation.) Each equation has the triangular repre-

sentation,

�0y = x β + u , (1)it itit i

∆x = e , (2)it it

0� � 0 0where x and e are k×1-dimensional vectors, w = (u , e ) is an N(k+1)-dimensionalt tit it t
� �vector with the orthonomal Wold moving average representation, w = Ψ (L)² , in whicht t

� � �0 0 0² is serially uncorrelated with E(² ) = 0, E(² ² ) = I , u = (u , . . . , u ) , e =k tt t t 1tt NT tP∞0 0 0 mn mn(e , . . . , e ) , r|ψ | <∞, and ψ is the m,n−th element of the matrix Ψ .ir1t NT r=0 ir ir

�It follows from Assumption 1 that w obeys the functional central limit theorem,tP D[Tr] � � � � 0 01 � 0√ w → B (r) = Ψ (1)W (r) where B = (B ,B , . . . , B ) is an N(k + 1)�tt=1 u e e1 NT � � � 0dimensional scaled vector Brownian motion with covariance matrix, Ω = Ψ (1)Ψ (1) =
0P � �∞ E[w w ]0jj=−∞

0P� � �∞= Γ + (Γ + Γ ). The long-run covariance matrix and its components can be0 j jj=1

partitioned as,  � � �Ω Ω · · · Ωuu ue ue1 N " # � � �� �  Ω Ω · · · ΩΩ Ω e u e e e e 1 1 1 1 N� uu ueΩ = =   ,. . ..� �  . . . .Ω Ω .. . .eu ee  
� � �Ω Ω · · · Ωe u e e e e1N N N N � � �Γ Γ · · · Γuu,j ue ,j ue ,j1 N " # � � �� �  Γ Γ · · · ΓΓ Γ e u,j e e ,j e e ,j 1 1 1 1� Nuu,j ue,jΓ = =  . . .� �j . . . . .Γ Γ .. . .eu,j ee,j  
� � �Γ Γ · · · Γe u,j e e ,j e e ,j1N N N N

0� � � � � �0 0where Γ = E(u u ), Γ = E(u e ), and Γ = E(e e ).t t ktuu,j t−j ue ,j e e ,jkt−j st−jsk k � ��Because Ω is the long-run covariance between e and (u , . . . , u ), i = 1, . . . , N ,it 1te u Nti

the endogeneity problem shows up as correlation between the equilibrium error of equa-

tion i and leads and lags of Þrst differences of the regressors of all of the other equations
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j = 1, . . . , N . In system estimation methods, parametric adjustments for endogeneity

in equation i = 1 will in general require inclusion of leads and lags not only of ∆x ,1t
as is the case in the single-equation environment or in the panel environment under

cross-sectional independence, but also leads and lags of ∆x through ∆x as well.2t Nt

The next subsection discusses estimation strategies for heterogeneous cointegration

vectors. Section 1.2 discusses estimation of a homogeneous cointegration vector.

1.1 Estimation of Heterogeneous Cointegration Vectors

The asymptotic distributions that we derive are obtained by letting T →∞ for Þxed N .

For concreteness and without loss of generality, we set N = 2. Section 2.2 introduces

and discusses the properties of the DSUR estimator. An asymptotically equivalent but

computationally more convenient two-step DSUR estimator is discussed in section 1.1.2.

In section 1.1.3, we discuss the joint distribution of system DOLS.

1.1.1 DSUR

�u is potentially correlated with all leads and lags of ∆x = e , (i, j = 1, 2). In anyjt jtit

feasible parametric estimation strategy only a Þnite number p of leads and lags can be

included so in general, a cutoff at p will induce a separate truncation error. To keep

track of the truncation error, let

0 0 0z = (∆x , . . . ,∆x ),pit it−p it+p

0 0 0z = (z , z ),pt p1t p2t³ ´0 0 0 0δ = δ , . . . δ , δ . . . , δ , andp1 11,−p 11,p 12,−p 12,p³ ´0 0 0 0δ = δ , . . . δ , δ . . . , δ ,p2 21,−p 21,p 22,−p 22,p

where δ is a k × 1 vector of coefficients. Under the conditions of Assumption 1, theij,p

equilibrium errors can be represented as

� 0u = z δ + v + u , (3)p1t 1tp11t pt

� 0u = z δ + v + u , (4)p2t 2tp22t pt

where

X X0 0v = δ ∆x + δ ∆x , (5)p1t 1t−j 2,t−j11,j 12,j
j>|p| j>|p|X X0 0v = δ ∆x + δ ∆x , (6)p2t 1t−j 2,t−j21,j 22,j
j>|p| j>|p|
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are the truncation errors induced for given p arising from the dependence of the equilib-
0 0rium errors on (∆x ,∆x ) at distant leads and lags. Substituting (3) and (4) into (1)1t 2t

0 00 0yields the regression y = x β +z δ +v +u . If we let y = (y , y ) , u = (u , u ) ,it pit it 1t 2t 1t 2tpi tit pti t0 0 0 00 0v = (v , v ) , β = (β , β ) , δ = (δ , δ ) , Z = (I ⊗ z ), X = diag (x , x )p1t p2t pt 2 tpt p pt 1t 2tp1 p21 2³ ´00 0andW = X ,Z , the equations can be stacked together in a system as,t t pt ³ ´0 0y = β , δ W + v + u . (7)t pt tpt

The DSUR estimator with known Ω is,uu   −1" # T−p T−p� X Xβ −1 0 −1dsur    = W Ω W W Ω y . (8)t tuu t uu t�δp,dsur t=p+1 t=p+1

�Due to the stationarity of the equilibrium errors, the dependence of u on ∆x atjtit

very distant leads and lags becomes trivial. Under the regularity conditions of Saikko-

nen (1991) it can be shown that by allowing the number of leads and lags of changes

in the regressors to increase at a certain rate with T , the truncation errors will vanish

asymptotically. We follow Saikkonen in

Assumption 2 (Lead and lag dependence.) Let p(T ) be the number of leads and lags

of ∆x , (i = 1, 2) included in the regression (7). We assume thatit

1/3i. p(T )/T → 0 as T →∞, and¯¯ ¯¯0 0¯¯ ¯¯√ X δ δ¯¯ ¯¯11,j 12,jii. T ¯¯ ¯¯→ 0,0 0¯¯ ¯¯δ δ21,j 22,j|j|>p(T )

where || · || is the Euclidian norm.

The second condition in Assumption 2 places an upper bound on the allowable de-
�pendence of u on ∆x at very distant leads and lags, while the Þrst condition controlsjtit

the rate at which additional leads and lags must be included in order for the truncation

induced misspeciÞcation error to vanish. We are now ready to state our Þrst result.
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Proposition 1 (Asymptotic distribution of DSUR). Let T = T − 2p. Under the con-∗
ditions of Assumptions 1 and 2,³ ´ ³ ´√

� �a. T β − β and T δ − δ are asymptotically independent.∗ ∗ p,dsur pdsur PT−p −1 0�b. If B = diag (B ,B ), V = X Ω X , and R is a q × 2k matrix ofe dsur te e t=p+1 uu t1 2

constants such that Rβ = r, then as T →∞,∗

µ ¶Z Z−1
D −1 0 −1�T (β − β)→ B Ω B B Ω dB , (9)∗ e e uuu e uudsur

and h i−1 D0 0 2� ��(Rβ − r) RV R (Rβ − r)→ χ . (10)dsur qdsur dsur

The intuition behind Proposition 1 is that asymptotically, as the effects of the truncation
0 0 0error become trivial, one obtains a newly deÞned vector process w = (u , u , e , e ),1t 2tt 1t 2t

with the moving average representation," # " #
Ψ (L) 0 v11 1tw = ,t 0 Ψ (L) v22 2t

whereΨ (L) andΨ (L) are (2×2) and (2k×2k) matrix polynomials in the lag operator11 22 P D[(T−p)r]1√L, respectively, and which obeys the functional central limit theorem, w →tt=p+1T∗0 0 0(B ,B ) with long-run covariance matrix,Ω = diag (Ω ,Ω ) . By the block diagonalityuu eeu e

of Ω, it is seen that B and B are independent.u e
p�In applications, we replace Ω with a consistent estimator, Ω → Ω . Such anuu uu uu

estimator might be called a �feasible� DSUR estimator. It is easy to see that the asymp-

totic distribution of the feasible DSUR estimator is identical to the DSUR estimator of

Proposition 1. Accordingly, we will in general not make a distinction between estimators

formed with a known Ω or one that is estimated.uu

Finally, we note that the Wald statistic deÞned in (10) provides a convenient test of

homogeneity restrictions on the cointegrating vectors, H : β = β .0 1 2

1.1.2 Two-step DSUR

Some computational economies can be achieved by conducting estimation in two steps.

The Þrst step purges endogeneity by least squares and the second step estimates β by

running SUR on the least squares residuals obtained from the Þrst-step regressions.

This procedure is asymptotically equivalent to the one-step DSUR estimator discussed

above. When the number p of included leads and lags are identical across equations,
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this OLS-SUR two-step estimator is numerically equivalent to a two-step procedure in

which endogeneity is purged by generalized least squares (GLS) in the Þrst step and

then running SUR on these GLS residuals.
y0To form the two-step estimator, let z �γ be the Þtted least-squares regression of yitpt pi

x0onto z and let (I ⊗ z )�γ be the vector of Þtted least-squares regressions of x ontokpt itpt pi
y x0 0 0z . Denote the regression errors by �y = y − z �γ , and �x = x − (I ⊗ z )�γ . Weit it kit itpt pt ptpi pi0can now represent the equation system as �y = �x β + �u , whereit itit ih i

y x0 0�u = z (δ − �γ ) + (I ⊗ z )�γ β + uit k itpi pipt pt pi i³ ´0 �= z δ − δ + u ,itpi pi,olspt

y 0 x�and δ = �γ − β �γ . Now stacking the equations together in the system gives �y =pi,ols pi i pi t
0�X β + �u . The two-step DSUR estimator istt    −1

T−p T−pX X−1 0 −1� � � �   β = X Ω X X Ω �y , (11)t tuu t uu2sdsur t
t=p+1 t=p+1

and its properties are given in

Proposition 2 (Asymptotic equivalence of the two-step estimator.) Under the con-

ditions of Assumptions 1 and 2, the two-step DSUR estimator (11) is asymptotically

equivalent to the one-step DSUR estimator of proposition 1. Moreover, if the same set

of leads and lags z is included in every equation, this OLS-SUR two-step estimator ispt

numerically equivalent to a two-step estimator where endogeneity is purged by GLS and

running SUR on the GLS residuals.

�The asymptotic equivalence obtains due to the consistency of δ and its asymp-pi,ols

totic independence of the estimator of β. Since asymptotic equivalence is achieved in

regressions using least squares residuals from Þrst-step regressions, we will henceforth

assume that endogeneity has been controlled for in this fashion and will work in terms

of these Þrst-step regression residuals.

1.1.3 DOLS

DOLS is a single-equation estimator and may ignore dependence across individuals in
�estimation. Controlling for endogeneity in equation i can be achieved by projecting uit
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0 0 0onto z or onto z = (z , z ) as in DSUR. The Þrst option involves only those timepit pt p1t p2t

series that explicitly appear in equation i and is a member of what Saikkonen (1991) calls

the S class. The second option, which employs auxiliary observations, is an example of2

what he calls the S class. Park and Ogaki (1991) consider a similar distinction in theirC

study of canonical cointegrating regressions (CCR). We conform to Park and Ogaki�s

terminology and refer to the procedure that controls for endogeneity by conditioning

on z as the �system� DOLS estimator. We call the estimator that conditions on zpt pit

�ordinary� DOLS.

While the joint distribution of DOLS across equations depends on the long-run co-

variance matrix, Ω , the estimator itself does not exploit this information. Here, we dis-uu

cuss two-step estimation of system DOLS and compare it to DSUR. In two-step system

DOLS, endogeneity can be purged by least squares and then and then the cointegration

vector estimated by running OLS on the residuals from the Þrst-step regressions.

Let �y be the error obtained from regressing y on z and let �x be the k× 1 vectorit it pt it

of errors obtained from regressing each element of x on z . Stacking the equationsit pt
0�together as the system gives �y = X β + u , where the dimensionality of the matricesttt

3are as deÞned above. The system DOLS estimator is

   −1
T−p T−pX X0� � � �   β = X X X �y , (12)t ttsysdols t
t=p+1 t=p+1

for which we have,

Proposition 3 (Asymptotic distribution of system DOLS). Under the conditions of

Assumptions 1 and 2, as T →∞,∗  ³ ´−1R Rµ ¶ µ ¶Z Z 0−1 B B B dBD e e u e 1 1 10 1� ³ ´T (β − β)→ B B B dB = , (13) ∗ e e −1u R Resysdols 0B B B dBe e ue2 2 22

 0 0�x 01p+1 . .. . . . 0 0 �x 01T−p3  If we let X = , then in the standard matrix notation,0T 0 0 �x2p+1  . .. . . .
000 �x2T−p

0 −1 0 0 −1V = (X X ) X (Ω ⊗ I )X (X X ) .sysdols T uu T T TT T T

9



and h i−1 D0 0 2� ��(Rβ − r) RV R (Rβ − r)→ χ , (14)sysdols qsysdols sysdolsh i h i h i−1 −1P P PT−p T−p T−p0 0 0�where V = X X X Ω X X X and R is a q×2ksysdols t t uu tt=p+1 t=p+1 t=p+1t t t

matrix of constants such that Rβ = r.

Saikkonen showed that within the context of the standard multivariate regression

framework, ordinary DOLS is efficient within the class of S estimators and that the class2

of S estimators are efficient relative to the S class. The reason for this is as follows.C 2
�In ordinary DOLS, endogeneity is purged by projecting u onto z . Substituting thispitit

00 0projection representation into (1) gives y = x β +λ z +ζ , where ζ is the projectionit it itit i iti

error which is by construction orthogonal to included leads and lags of ∆x . Sinceit√ P D 00 00(1/ T ) (ζ , e ) → (B ,B ) with long-run covariance matrix diag (Ω ,Ω ), itit ζi ζ ,ζ e ,eit ei i i i i³ ´−1R 0�follows that conditional on B , avar(β ) = Ω B B . Since Ω is the long-ζ ,ζ ζ ,ζe e ei i i ii i idols
�run variance of the error from projecting u onto z ⊆ z and Ω is the long-runu ,upit ptit i i

�variance of the error from projecting u onto z , it must be the case that Ω ≥ Ω .ζ ,ζ u ,uptit i i i i

� �Thus, avar(β ) ≥ avar(β ).
i,dols i,sysdols

Our representation of the observations (Assumption 1) differs from Saikkonen�s in

that it imposes �zero-restrictions� on the multivariate regression in whereby each equa-

tion contains a different set of regressors. Thus in the context of the model that we study,

DSUR, which exploits the cross-equation correlations, enjoys asymptotic efficiency ad-

vantages over single-equation methods. A comparison of the asymptotic efficiency of

system DOLS and DSUR gives

� �Proposition 4 Under the conditions of Assumptions 1 and 2, avar(β ) ≤ avar(β ).
dsur sysdols

1.2 Estimation of Homogeneous Cointegration Vectors

We now turn to estimation of the cointegration vector under homogeneity, β = β = β.
1 2

We Þrst discuss the restricted DSUR estimator. This is the DSUR estimator discussed

above with homogeneity restrictions imposed and has a generalized least squares inter-

pretation. In section 1.2.2, restricted DSUR is compared to the panel DOLS estimator.

10



1.2.1 Restricted DSUR

As in two-step DSUR, endogeneity can Þrst be purged by regressing y and each elementit

of x on z . Let �y and �x denote the resulting regression errors. The problem is toitit pt it
0estimate β, in the system of equations �y = �x β + �u where β = β = β. Stackingit itit 1 2

these equations together, we have,

0��y = x β + �u (15)ttt

�where x = (x , x ) is a k × 2 matrix.t 1t 2t
0Let Ω = LL be the lower-triangular Choleski decomposition of the long-run erroruu " # " #

11` 0 ` 011 −1 11 22covariance matrix, where L = , L = , ` = 1/` , ` = 1/` ,11 2221 22` ` ` `21 22
0∗ ∗21 −1 ∗�and ` = −` /(` ` ). We pre-multiply (15) by L to get, �y = x β + �u where21 11 22 t tt∗ ∗−1 ∗ −1 0 −1� ��y = L �y , x = x (L ) , and �u = L �u . The restricted DSUR estimator is obtainedt tt tt t

by running OLS on these transformed observations,

       −1 −1
T−p T−p T−p T−p2 2X X X X X X0∗ ∗ ∗ ∗ −1 0 −1�        � � �β = �x �x �x �y = x Ω x x Ω �y .t tit it it uu t uurdsur it t
t=p+1 t=p+1 t=p+1 t=p+1i=1 i=1

4The properties of this estimator are given in the following corollary to proposition 1.

Corollary 1 (Asymptotic distribution of restricted DSUR). Let b = (B ,B ), Re e e1 2PT−p −1 0� �be a q × 2k matrix of constants such that Rβ = r, and V = x Ω x .rdsur tt=p+1 uu trdsur

Then as T →∞,∗ µ ¶ µ ¶Z Z−1
D −1 0 −1�T (β − β)→ b Ω b b Ω dB , (16)∗ e e uuu e uurdsur

and h i−1 D0 0 2� ��(Rβ − r) RV R (Rβ − r)→ χ . (17)rdsur qrdsur rdsur

0 04 0 0 0 0 0� � � � � � � �In matrix notation, let Y = (Y , Y ) where Y = (�y , . . . , �y ) , X = (X ,X ) , X =T i1 2T 1 2 i ip+1 iT−p
0 0 0(�x , . . . , �x ) is the T × k matrix of regressors, and �u = (�u , �u ) , �u = (�u , . . . �u ) . The∗ ip+1 iT−pip+1 iT−p T 1 2 i

0 −1 −1 0 −1� � � � ��stacked system of observations is Y = X β + �u where β = [X (Ω ⊗ I )X ] [X (Ω ⊗T T TT T uu uuT Trdsur
�I )Y ].T T
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1.2.2 Panel DOLS

In panel DOLS, control for cross-equation endogeneity can also be achieved by working

with Þrst-step errors from regressing y and each element of x on z . Using �hats� toit it pt

denote the resulting least-squares residuals, the panel DOLS estimator is,

   −1
T−p T−pX X0�    � � �β = x x x �y , (18)t ttpdols t
t=p+1 t=p+1

�where x = (�x , �x ) is a k × 2 matrix. The asymptotic sampling properties of panelt 1t 2t

DOLS under cross-sectional dependence are given as a corollary to proposition 3.

Corollary 2 (Asymptotic distribution of panel DOLS). Let b = (B ,B ),e e e1 2h i h i h i−1 −1P P PT−p T−p T−p0 0 0�V = x x x Ω x x x , and R be a q × 2k matrixpdols t t uu tt=p+1 t=p+1 t=p+1t t t

of constants such that Rβ = r. Then as T →∞,∗

µ ¶Z Z−1
D 0�T (β − β)→ b b b dB , (19)∗ e e uepdols

and h i−1 D0 0 2� ��(Rβ − r) RV R (Rβ − r)→ χ . (20)pdols qpdols pdols

� �Finally, it should be obvious that avar(β ) ≤ avar(β ).
rdsur pdols

2 Monte Carlo Experiments

In this section, we study the small sample properties of the two-step estimators dis-

cussed above by way of a series of Monte Carlo experiments. Section 2.1 describes the

data generating process and the estimation procedures that we use. Section 2.2 reports

the results. First, we compare the performance of DSUR, feasible DSUR, system and

ordinary DOLS methods in an environment where the cointegration vector exhibits het-

erogeneity across equations. Second, we compare restricted DSUR, feasible restricted

DSUR, and panel DOLS in an environment where the cointegrating vector is identical

across equations.

12



2.1 Experimental Design

The cointegrating regression has a single regressor. The general form of the data gener-

ating process (DGP) is given by,

�y = x β + u , i = 1, 2, (21)it it i it

∆x = e , (22)it it

η = Aη + ² , (23)tt t−1

iid� � 0 0where η = (u , u , e , e ) , ² = (² , ² , ² , ² ) ∼ N(0,Σ) and A is a 4× 4 matrix of1t 2t 1t 2t 3t 4tt1t 2tt

coefficients. Observations are generated under alternative speciÞcations that differ by the

degree of cross-sectional dependence and by the innovation variances of the equilibrium

errors. We consider the following six cases.

Case I builds in �own equation� endogeneity but no cross-sectional endogeneity. That
�is, u is correlated with leads and lags of e for i = j but not for i 6= j. Wejtit

allow only contemporaneous cross-sectional dependence in the equilibrium errors
� �u and u . This is achieved by setting1t 2t    

0.90 0.0 0.05 0.0 1 0.2 0 0      0.0 0.90 0.0 0.05 0.2 1 0 0   A = , Σ = .1 1   0.05 0.0 0.25 0.0 0 0 1 0   
0.00 0.05 0.0 0.25 0 0 0 1

�Case II introduces �cross-equation� endogeneity by making u correlated with leads andit

lags of e , (i, j = 1, 2) by settingjt  
0.90 0.0 0.05 −0.05  0.0 0.90 −0.05 0.05 A = , Σ = Σ .2 2 1 0.05 −0.05 0.25 0.0 
−0.05 0.05 0.0 0.25

Case III intensiÞes the degree of contemporaneous cross-equation correlation of the

equilibrium errors by setting

 
1 0.8 0 0  0.8 1 0 0 A = A , Σ = .3 2 3  0 0 1 0 
0 0 0 1
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The next three cases introduce differences between the innovation variances for the

equilibrium errors. Cases IV, V, and VI are identical to cases I, II, and III respectively
�except the innovation variance of u is 10 times larger than the innovation variance of1t

�u . The original correlation between the innovations is preserved. SpeciÞcally,2t

Case IV.  
10 0.632 0 0  0.632 1 0 0 A = A , Σ = .4 1 4  0 0 1 0 
0 0 0 1

Case V. A = A , and Σ = Σ .5 2 5 4

Case VI.  
10 2.53 0 0  2.53 1 0 0 A = A , Σ = .6 2 6  0 0 1 0 
0 0 0 1

For each experiment, we generate 10,000 random samples of T observations. Under

heterogeneous cointegration, β = 1.4 and β = 0.6. Under homogeneous cointegration,1 2

we set β = β = β = 1.0. To purge the effects of endogeneity in the system estimators,1 2

Þrst-step regressions are run including p leads and lags of∆x and∆x in each equation.1t 2t

For ordinary DOLS, we include p leads and lags only of the �own� ∆x .it
An important problem in applications is how to choose p. Unfortunately, no standard

method has emerged even for time series. Often, the ad hoc rule used by Stock and

Watson (1993) that sets p = 1 for T = 50, p = 2 for T = 100, and p = 3 for T =

300 is adopted in Monte Carlo and empirical studies. While it is desirable to have a

data dependent method, such as an information criterion or general-to-speciÞc rules for

choosing p, such rules quickly become unwieldy as the size of the cross-section grows.

To balance concerns for employing a data dependent method in applications, evaluation

of estimator performance, and manageability of the method, we apply the following
+ −modiÞed BIC rule to choose p: Let p (p ) denote the number of leads (lags) of ∆x injij ij

+ −equation i. First run DOLS and determine (p , p ) by minimizing BIC, then for i 6= j,ii ii
+ − + −set (p , p ) = (p , p ).ij ij ii ii

The DSUR estimators are computed using the known long-run covariance matrix

Ω . Feasible DSUR is computed with a parametrically estimated Ω . To do this,uu uu

we model the residuals from Þrst-step regressions as a restricted vector autoregression

in which the individual residual processes are m-th ordered autoregressions. While an

unrestricted vector autoregression might seem to be a more appropriate choice and is
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feasible in our two-equation example DGP, it quickly becomes too heavily parameterized

in even moderately sized systems. Since the restricted VAR is a popular method for
5achieving model parsimony, we adopt that approach here. Thus, letM = max(m ,m ),1 2

where m is the order of the autoregression for u , which we determine by the general-i it

to-speciÞc t-test method suggested by Hall (1994). For t = 1, . . . , T −M , the restrictedPM 0 0 0VAR is, u = Φ u + ν , where u = (u , u ) , ν = (ν , ν ) , E(ν ν ) = W,j 1t 2t 1t 2tt t−j t t t tj=1 t
6and Φ is a (2× 2) matrix of coefficients with zeros in the off-diagonal elements. Thej

autoregressions are then jointly estimated by iterated SUR and the estimated long-runP Pm m−1 0 −1� � � �covariance matrix is, Ω = [I − Φ ] W[I − Φ ] .uu 2 j 2j=1 j=1 j

2.2 Results

Table 1 reports 5, 50, and 95 percentiles and the mean of the Monte Carlo distribution

for the estimators along with the relative (to DOLS) mean-square error. In case I where

there is no cross-sectional endogeneity and a low degree of cross-sectional correlation,

there is little difference among the estimators. None exhibit substantial bias and for T =

100, 300, are similar in terms of efficiency. The loss of efficiency involved in estimating the

long-run covariance matrix to do feasible DSUR is modest. For example, with T = 100,

the relative mean-square error for feasible DSUR is 1.04. At T = 300, we begin to

see evidence of DSUR efficiency gains with relative mean-square error of 0.99. DSUR

performance under case II, where cross-equation endogeneity is introduced, is slightly

improved in terms of mean square error.

We observe substantial efficiency gains to using DSUR in case III, where there is

a high degree of cross-equation correlation. For T = 50, DSUR achieves a 54 percent

reduction in mean-square error over the system DOLS estimator. Similarly, feasible

DSUR achieves a 31 percent reduction in mean-square error. These efficiency gains

grow when T = 300. All of the estimators exhibit some upward bias in small samples.

The bias is slightly more severe for DSUR. There is little difference in bias between

DSUR and feasible DSUR.

We conclude from Table 1 that substantial efficiency gains can be achieved with

DSUR over DOLS when there is a high degree of cross-equation dependence in the

equilibrium errors. The results for cases IV-VI are nearly identical and are not reported

5This estimator of Ω is consistent if M → ∞ as T → ∞ and M = o(T ). This is true even if theuu

zero-restrictions on the off-diagonal elements of Φ are false [e.g., Andrews and Monahan (1992)].j
6The general-to-speciÞc method proceeds as follows: Start with some maximal lag order ` and

�estimate the autoregression on �u . Let φ be the ii−th element of Φ . If the absolute value of theit i` `
∗�t-ratio for φ is less than some appropriate critical value, c , reset m to `− 1 and reestimate. Repeati` i

the process until the t-ratio of the estimated coefficient with the longest lag exceeds the critical value
∗c .
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to save space.

We now turn to the small-sample properties of Wald test statistics for the test of

homogeneity, β = β in the cointegrating regression slope coefficient. Table 2 displays1 2

the 90, 95, and 99 percentiles of the test statistic and the percentile of the Monte

Carlo distribution that lies to the right of the asymptotic distribution�s 5% critical value

(indicated by size (5%)) for system DOLS and DSUR. It can be seen that the DSUR

test is uniformly and substantially more accurately sized than the system DOLS test.

Moreover, the performance of the DSUR test and its relation to the system DOLS test

is largely invariant to changes in the strength of the cross-sectional dependence or the

relative size of the equilibrium error innovation variances.

Next, we consider test statistic performance in tests of the null hypothesis H : β =0 1

β = 1. Table 3 reports the results for this experiment. Again, it can be seen that the2

DSUR test has better small-sample size properties than the system DOLS test.

We now consider estimation under homogeneity of the cointegration vector across

equations. The small-sample performance of the restricted panel estimators, panel DOLS

and restricted DSUR is reported in table 4. There is little difference in estimator per-

formance in cases I and II while restricted DSUR and feasible restricted DSUR achieve

substantial efficiency gains over panel DOLS in all other cases. The efficiency gain in

restricted DSUR is more dramatic when there are differences in the innovation variance

of the equilibrium errors across equations. In case VI for example, for T = 50, the mean

square error of the restricted DSUR distribution is 73 percent lower than that of the

panel DOLS distribution and the mean-square error the feasible restricted DSUR dis-

tribution lies 59 percent below that of panel DOLS. The rather large gaps in efficiency

between restricted DSUR and panel dynamic OLS remain present even when T = 300.

We conclude that for T = 300, substantial efficiency gains are available for the DSUR

methods, especially when there is moderate to strong cross-sectional dependence. For

T = 50, 100, the tests of homogeneity restrictions are somewhat oversized and use of

the asymptotic theory in applications may lead to over-rejections of the null hypothesis.

With T = 300, the DSUR tests are reasonably sized.

3 Applications

In this section we illustrate the usefulness of DSUR by applying it to two empirical

problems in international economics. Our Þrst application revisits the anomaly reported

by Evans and Lewis (1993) that the expected excess return from forward foreign exchange

rate speculation is unit-root nonstationary. Our second application revisits the Feldstein

and Horioka (1980) problem of estimating the correlation between national saving rates

and national investment rates and the interpretation of this correlation as a measure of
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international capital mobility.

3.1 Spot and Forward Exchange Rates

Let s be the logarithm of the spot exchange rate between the home country and countryit

i, and let f be the associated 1-period forward exchange rate. It is widely agreed thatit

since the move to generalized ßoating in 1973 that both s ∼ I(1) and f ∼ I(1)it it

and that they are cointegrated. Let β be the cointegrating coefficient between si it+1

and f and let p = f − E (s ) be the expected excess return from forward foreignit it it t it+1

exchange speculation. The spot rate can be decomposed as s = f −p + ² whereit+1 it it it+1

² = s − E (s ) is a rational expectations error, and the equilibrium error canit+1 it+1 t it+1

be decomposed as s − β f = (1 − β )f − p + ² . If β 6= 1, it follows that theit+1 i it i it it it+1 i

expected excess return p is nonstationary and is cointegrated with f . Evans and Lewisit it

ask whether p is I(0) or I(1), by estimating the regressionit

�s = α + β f + u , (24)it+1 i i it it+1

by ordinary DOLS and testing the hypothesis H : β = 1. They use monthly obser-o i

vations from January 1975 through December 1989 on the dollar rates of the pound,

deutschemark, and yen, are able to reject that the slope coefficient is 1 at small signiÞ-

cance levels. The implied nonstationarity of the excess return is an anomaly.

We revisit the Evans and Lewis problem using an updated data set. Our data are spot

and 30-day forward exchange rates for the pound, deutschemark, and yen relative to the

U.S. dollar from January 1975 to December 1996. We obtain 286 time-series observations

sampled from every 4th Friday of the Bank of Montreal/Harris Bank Foreign Exchange

Weekly Review. Because all of the currency prices are in terms of a common numeraire

currency, cross-equation error correlation is likely to be important. Under this setting,

the regression errors are forecast errors of investors and will be correlated as long as

information sets of investors in different countries contain common components.

The estimation results are reported in table 5. In light of the moderate size dis-

tortion uncovered in the Monte Carlo analysis, we test hypotheses using the 1 percent

asymptotic signiÞcance level. Our BIC rule recommends including p = 3 leads and lags

of the endogeneity control variables. The DSUR estimates with p = 3 are insigniÞ-

cantly different from 1 for the pound and yen, but is signiÞcantly less than 1 for the

deutschemark. We employ two tests of homogeneity in the cointegration vectors. The

Þrst one tests the null hypothesis H : β = β , β = β . The second is a test of the nullo 1 3 2 3

hypothesis H : β = β = β = 1. These homogeneity restrictions cannot be rejectedo 1 2 3
2 2at the 1 percent level (χ = 7.5, p-value=0.024, χ = 7.6, p-value=0.056). We therefore2 3

proceed to impose the homogeneity restrictions in estimation and obtain a restricted
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DSUR estimate that is insigniÞcantly different from 1.

To investigate the sensitivity of the results to variations in the lead-lag speciÞcation

used to control for endogeneity, we perform estimation with 2 leads and lags, and with

3 leads, and with 2 leads (no contemporaneous nor lagged values). The rationale for

omitting the contemporaneous and lagged values of ∆f is that under rational expecta-t

tions if the forward exchange rate is the optimal predictor of the future spot rate, the
�equilibrium error u is orthogonal to any date t information. As can be seen, theit+1

results are qualitatively similar across the alternative lead-lag speciÞcations. Here, as in

many rational expectations models, it is more important to include leads than lags.

We conclude that the evidence for nonstationarity of the excess return is less com-

pelling according to the DSUR slope coefficient estimates under homogeneity restrictions.

3.2 National Saving and Investment Correlations

Let (I/Y ) be the time-series average of the investment to GDP ratio in country i, andi

(S/Y ) be the analogous time-series average of the saving ratio to GDP ratio. Feldsteini

and Horioka (1980) run the cross-sectional regression,

µ ¶ µ ¶
I S

= α + β + u , (25)i
Y Yi i

to test the hypothesis that capital is perfectly mobile internationally. They Þnd that β

is signiÞcantly greater than 0, and conclude that capital is internationally immobile.

The logic behind the Feldstein and Horioka regression goes as follows. Suppose that

capital is freely mobile internationally. National investment should depend primarily

on country-speciÞc shocks. If the marginal product of capital in country i is high,

it will attract investment. National saving on the other hand will follow investment

opportunities not just at home, but around the world and will tend to ßow towards

projects that offer the highest (risk adjusted) rate of return. The saving rate in country

i then is determined not by country�i speciÞc events but by investment opportunities

around the world. Under perfect capital mobility, the correlation between national

investment and national saving should be low. Following the publication of Feldstein and

Horioka�s cross-sectional study, a number of follow-up cross-sectional and panel studies

have reported that national saving rates are highly correlated with national investment

rates [For surveys of the Feldstein�Horioka literature, see Bayoumi (1997) and Coakley

et al. (1998)].

Theoretical studies, on the other hand, have shown that The Feldstein�Horioka (1980)

logic is not airtight. Obstfeld (1986), Cantor and Mark (1988), Cole and Obstfeld (1991)

Baxter and Crucini (1993) provide counterexamples in which the economic environment
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is characterized by perfect capital mobility but decisions by optimizing agents lead to

highly correlated saving and investment rates. Along with theoretical criticism against

the Feldstein and Horioka hypothesis, more than a dozen empirical studies have criticized

their econometrics by arguing that the saving and investment ratios are non-stationary.

Coakley et al. (1996) suggest an alternative interpretation of the long-run relation-

ship between saving and investment. By the national income accounting identity, the

difference between national investment and national saving is the current account bal-

ance. Coakley et al. argue that the current account must be stationary when the present

value of expected future debt acquisition is bounded. In other words, whether the cur-

rent account balance is stationary depends not on the degree of capital mobility but

on whether the long-run solvency constraint holds. If saving and investment are unit

root nonstationary, they are cointegrated with a cointegrating vector (1,-1). Thus the

long-run relationship between saving and investment studied by time series cointegrating

regressions is best interpreted as a test of the long-run solvency constraint and not of

the degree of capital mobility. Furthermore, Coakley and Kulasi (1997), Hussein (1998),

and Jansen (1996) show that the saving and investment ratios are cointegrated.

We employ DSUR to re-examine the Feldstein�Horioka puzzle using 100 quarterly ob-

servations from the International Financial Statistics CD-ROM on nominal GDP, saving,

and investment from 1970.1 to 1995.4 for Australia, Austria, Canada, Finland, France,

Germany, Italy, Japan, Spain, Switzerland, the U.K., and the U.S. Since our focus is

on the long-run relationship between saving and investment, we follow Coakley et al.�s

interpretation that the long-run solvency constraint implies cointegration. Even though

Coakley et al. do not emphasize this, we note that two versions of their model imply

slightly different forms of cointegration. First, if we assume that saving and investment

are unit root nonstationary, then this version of their model implies that the current

account is stationary and saving and investment are cointegrated with a cointegrating

vector of (1,-1). Second, if we assume that saving-GDP ratio and investment-GDP ratio

are unit root nonstationary, we must interpret saving and investment in their model

to be normalized by GDP. The second version of their model implies that the current

account over GDP is stationary and that saving and investment normalized by GDP are

cointegrated with a cointegrating vector of (1,-1).

For the Þrst version of the model, we run the regression in levels after normalizing

saving and investment by GDP,µ ¶ µ ¶
I S

= α + β + u . (26)i i it
Y Yit it

Presumably, the reason for normalizing investment and saving by GDP in many appli-

cations is to transform the data into stationary observations, as they would be if the
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economy is on a balanced growth path. However, we Þnd very little empirical evidence
7for this implication of the balanced growth in our data set.

For the second version of Coakley et al.�s model, we run the regression should in log

levels,

ln(I ) = α + β ln(S ) + u . (27)it i i it it

In both versions, the cross-equation error correlation is likely to be important because

the error for each country is an inÞnite sum of shocks to saving and investment. There

is an additional reason for the correlation to be important in the second version of the

model because normalizing by GDP can create artiÞcial correlation between the ratios

even when the levels are uncorrelated. An income shock automatically affects both

(I/Y ) and (S/Y ) independently of its effect on investment and saving thus generating

artiÞcial correlation between the ratios.

It was not feasible for us to simultaneously estimate the regressions for all 12 countries

due to the excessive number of parameters that needed to be estimated to implement

DSUR. To proceed, we break the panel into subsamples and estimate separate systems

for European and non European countries.

Table 6 reports our estimates of the regression. We look Þrst at the results in ratio

form. For the European countries, the BIC rule selects p = 3. We obtain DSUR slope

coefficients estimates that lie below 1 for the UK, Spain and Germany, estimates that

are near 1 for France and Austria, and estimates that signiÞcantly exceed 1 for Finland,

Italy, and Switzerland. For non European countries (p = 3), the point estimates are

insigniÞcantly different for 1 for the U.S., Canada, and Japan. Only the estimate for

Australia is signiÞcantly less than 1.

Tests of homogeneity are mixed. In the European system, the asymptotic p-values

for the test of homogeneity and also for the test that all slope coefficients are 1 are

both 0.000. For the non-European system, neither of the tests for homogeneity can

be rejected at the asymptotic 1 percent level. These results suggest that for the non-

European system, it is reasonable to pool and to re-estimate under homogeneity. When

we do so, we obtain a restricted DSUR estimate 0.78 which is signiÞcantly less than 1.

Looking at the estimates from the log-levels regression, the European data set tells

a mixed story. These estimates are associated with p = 3. The point estimates for

7We perform Phillips and Sul�s (2002) panel unit root test which are robust to cross-sectional de-
pendence. Their suggestion is to apply an orthogonalization procedure to the observations under the
assumption that the cross-sectional dependence is generated by a factor structure, and then to apply the
Maddala�Wu (1999) panel unit-root test to the orthogonalized observations. The series tested and as-
sociated p-values from the tests are as follows: S/Y, (0.972), I/Y, (0.999), ln(S), (1.000), ln(I), (1.000).
Since none of the p-values are less than 0.05, the null hypothesis of a unit root is not rejected. In
differences, we obtain for (S− I)/Y, (0.000), and ln(S/I)(0.000) and are able to reject the unit root null
hypothesis for these cases.
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Switzerland and Finland are signiÞcantly less than 1, but the Wald test does not reject

the homogeneity restriction at any reasonable level. As a result, we pool and re-estimate

under homogeneity restrictions on the slope coefficient with restricted DSUR and obtain

a point estimate of 0.97, which is insigniÞcantly different from 1. In the log-levels

regression for the non-European countries, our BIC rule sets p = 2. Here, only the

DSUR estimate for the US of 1.10 is signiÞcantly greater than 1. The homogeneity

restrictions are not rejected so we pool and obtain a restricted DSUR estimate of 1.02

which is insigniÞcant different from 1.

To summarize, the weight of the evidence suggests that the long-run slope coefficients

in the saving�investment regressions are very close to 1 for most countries which is

consistent with the hypothesis that Coakley et al.�s solvency constraint is not violated.

4 Conclusion

In this paper, we proposed the dynamic seemingly unrelated regression estimator for

multiple-equation cointegrating regressions both in situations when the cointegration

vector displays heterogeneity across equations and when it is homogeneous. This esti-

mator exploits the cross-equation correlation in the errors, is asymptotically efficient,

and is computationally more convenient to use than the existing nonparametric versions

of seemingly unrelated cointegrating regression estimators. Our Monte Carlo studies

suggest that the small sample properties conform largely according to the predictions

of the asymptotic theory. In most of the cases that we examined, DSUR estimators are

more efficient than DOLS estimators which do not utilize the cross-equation correla-

tion. The efficiency gain is increasing in the correlation of the equilibrium errors across

equations. In the case of homogenous cointegrating vectors, the efficiency gain is also

increasing in the difference between in the error variance across equations. These re-

sults stand in contrast to Park and Ogaki�s (1991) seemingly unrelated CCR estimators,

which also are asymptotically efficient, but in small samples were found in many cases

to be less efficient than equation-by-equation CCR estimators.

We showed that these estimators can be successfully applied in small to moderate

systems where the number of time periods, T , is substantially larger than the number of

equations, N . DSUR will not be computationally feasible in systems of large N because

the number of free parameters that must be estimated in the error correlation quickly

becomes unwieldy as N grows. In the foreign exchange rate application, N is 3 and

this size condition is satisÞed. However, in the saving-investment regression, we found

it necessary to split up the sample. We did so according to geography so that each

subsample might reasonably exhibit different levels of cross-equation error correlation.

Finally, we have stressed the computational convenience of DSUR for correcting
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endogeneity in small nonstationary panels as an advantage over nonparametric methods

such as those suggested in Park and Ogaki (1991) and Moon (1999). The alternative

approaches involve an age-old tradeoff to the researcher. The lack of computational

transparency of the nonparametric methods may be viewed as the price of ßexibility

whereas the computational tractability of the parametric method creates the possibility

for misspeciÞcation error, which we did not explicitly consider in the paper.
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Table 1: Monte Carlo Performance of DOLS and DSUR Estimators under Cointegration
Vector Heterogeneity, Cases I-III.

β = 1.4 β = 0.61 2

Rel. Rel.
T 5% 50% 95% mean MSE 5% 50% 95% mean MSE

Case I.
DOLS 50 0.818 1.405 1.973 1.401 1.000 0.031 0.603 1.192 0.606 1.000
SDOLS 50 0.768 1.404 2.020 1.400 1.152 -0.010 0.604 1.242 0.607 1.196
DSUR 50 0.772 1.405 2.011 1.401 1.127 -0.004 0.603 1.239 0.608 1.164
FDSUR 50 0.756 1.407 2.033 1.402 1.223 -0.026 0.602 1.254 0.608 1.255
DOLS 100 1.103 1.400 1.701 1.401 1.000 0.294 0.599 0.899 0.600 1.000
SDOLS 100 1.096 1.398 1.707 1.401 1.025 0.291 0.599 0.910 0.600 1.042
DSUR 100 1.101 1.400 1.699 1.401 1.004 0.296 0.599 0.907 0.600 1.018
FDSUR 100 1.099 1.400 1.707 1.402 1.037 0.294 0.598 0.913 0.601 1.057
DOLS 300 1.296 1.399 1.504 1.400 1.000 0.497 0.600 0.703 0.600 1.000
SDOLS 300 1.295 1.400 1.503 1.399 1.004 0.497 0.600 0.704 0.600 1.001
DSUR 300 1.297 1.400 1.504 1.400 0.972 0.500 0.600 0.702 0.601 0.975
FDSUR 300 1.296 1.400 1.504 1.400 0.989 0.499 0.600 0.703 0.601 0.986

Case II.
DOLS 50 0.824 1.407 1.955 1.401 1.000 0.005 0.607 1.196 0.606 1.000
SDOLS 50 0.788 1.408 1.998 1.402 1.171 -0.014 0.608 1.241 0.610 1.163
DSUR 50 0.806 1.407 1.984 1.403 1.115 -0.010 0.605 1.234 0.610 1.113
FDSUR 50 0.779 1.409 1.998 1.403 1.196 -0.024 0.607 1.251 0.609 1.215
DOLS 100 1.111 1.400 1.701 1.404 1.000 0.311 0.600 0.891 0.601 1.000
SDOLS 100 1.115 1.400 1.699 1.403 0.981 0.316 0.599 0.890 0.601 0.987
DSUR 100 1.124 1.402 1.686 1.404 0.931 0.323 0.599 0.883 0.602 0.937
FDSUR 100 1.117 1.401 1.697 1.403 0.968 0.317 0.600 0.887 0.602 0.975
DOLS 300 1.304 1.400 1.500 1.401 1.000 0.505 0.601 0.700 0.602 1.000
SDOLS 300 1.306 1.400 1.496 1.400 0.948 0.507 0.601 0.698 0.601 0.946
DSUR 300 1.309 1.400 1.494 1.401 0.881 0.511 0.601 0.695 0.602 0.878
FDSUR 300 1.307 1.400 1.495 1.400 0.908 0.509 0.601 0.696 0.602 0.905

Case III.
DOLS 50 0.796 1.420 2.035 1.418 1.000 -0.015 0.619 1.235 0.620 1.000
SDOLS 50 0.753 1.420 2.067 1.417 1.159 -0.042 0.617 1.293 0.622 1.146
DSUR 50 0.987 1.430 1.883 1.430 0.536 0.185 0.630 1.083 0.631 0.539
FDSUR 50 0.889 1.427 1.969 1.426 0.796 0.080 0.627 1.173 0.628 0.824
DOLS 100 1.085 1.409 1.737 1.411 1.000 0.286 0.610 0.937 0.613 1.000
SDOLS 100 1.085 1.410 1.734 1.411 1.003 0.290 0.610 0.939 0.613 0.998
DSUR 100 1.210 1.419 1.641 1.421 0.451 0.406 0.618 0.846 0.620 0.454
FDSUR 100 1.185 1.418 1.659 1.421 0.564 0.384 0.617 0.866 0.620 0.569
DOLS 300 1.292 1.404 1.522 1.404 1.000 0.493 0.603 0.717 0.604 1.000
SDOLS 300 1.292 1.403 1.521 1.404 0.993 0.493 0.603 0.717 0.603 0.996
DSUR 300 1.337 1.407 1.485 1.408 0.439 0.536 0.607 0.685 0.608 0.455
FDSUR 300 1.333 1.407 1.488 1.408 0.472 0.533 0.607 0.687 0.608 0.491
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Notes: SDOLS is system DOLS, FDSUR is feasible DSUR, Rel. MSE is relative (to DOLS)

mean square error.



Table 2: Monte Carlo Performance of Tests of the Homogeneity RestrictionH : β = β .0 1 2

SDOLS DSUR
Case T 90% 95% 99% size (5%) 90% 95% 99% size (5%)

50 8.108 15.872 56.751 0.545 13.524 22.221 51.059 0.323
I 100 4.820 8.491 25.572 0.299 5.789 8.793 19.928 0.174

300 3.165 5.562 12.688 0.135 3.587 5.281 10.274 0.089
50 10.451 19.752 66.978 0.557 14.661 23.066 54.308 0.340

II 100 6.721 12.005 33.957 0.310 6.423 10.179 22.492 0.189
300 5.019 8.230 19.430 0.144 4.101 6.112 11.206 0.109
50 10.079 18.049 53.630 0.512 12.592 19.587 47.843 0.305

III 100 5.750 9.702 26.575 0.266 5.621 8.623 18.579 0.159
300 4.507 6.955 14.345 0.115 3.558 5.242 9.768 0.091
50 7.450 15.209 58.422 0.529 13.135 20.853 51.627 0.312

IV 100 4.583 8.880 24.810 0.289 5.704 8.605 18.208 0.169
300 3.098 5.626 14.635 0.132 3.708 5.335 10.065 0.094
50 12.014 23.684 89.429 0.538 14.799 22.897 50.549 0.338

V 100 8.672 16.130 50.511 0.305 7.165 11.200 23.682 0.207
300 7.380 12.264 28.027 0.143 4.888 7.119 14.041 0.141
50 12.258 25.374 96.759 0.515 12.572 19.806 43.528 0.313

VI 100 8.183 15.254 47.253 0.286 5.735 8.529 17.390 0.165
300 6.234 11.472 28.683 0.148 3.717 5.448 10.060 0.095
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Table 3: Monte Carlo Performance of DOLS and DSUR Tests of the Homogeneity
Restriction H : β = β = 10 1 2

DOLS DSUR
Case T 90% 95% 99% size (5%) 90% 95% 99% size (5%)

50 58.249 97.720 244.903 0.541 39.327 60.985 136.225 0.175
I 100 19.569 31.885 70.288 0.338 13.819 20.517 45.418 0.125

300 9.421 13.780 27.021 0.186 7.145 9.796 16.616 0.079
50 66.888 112.760 282.609 0.569 39.360 61.234 133.531 0.219

II 100 24.383 38.798 79.687 0.374 14.517 21.949 41.870 0.168
300 11.890 18.047 35.749 0.236 7.293 9.936 17.006 0.136
50 53.340 90.869 224.586 0.504 34.805 55.553 130.188 0.214

III 100 16.649 26.686 60.757 0.296 12.612 18.255 36.911 0.152
300 8.494 12.471 24.680 0.170 6.475 8.759 15.178 0.121
50 98.368 168.956 499.771 0.584 34.962 55.504 122.012 0.159

IV 100 27.614 45.565 119.298 0.395 13.333 19.040 39.158 0.119
300 11.986 18.400 38.804 0.235 7.037 9.626 16.079 0.080
50 129.155 223.862 581.759 0.630 36.696 57.173 121.274 0.224

V 100 45.633 76.659 157.561 0.490 14.069 21.464 41.884 0.195
300 22.422 33.981 70.126 0.366 7.434 10.280 19.574 0.184
50 142.474 265.100 759.475 0.613 33.616 53.286 118.711 0.233

VI 100 48.326 84.267 207.843 0.459 13.286 19.014 38.011 0.190
300 24.039 38.889 90.725 0.355 7.425 10.503 17.840 0.163
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Table 4: Monte Carlo Performance of PDOLS and RDSUR Estimators under Cointe-
gration Vector Homogeneity.

Rel. Rel.
T 5% 50% 95% mean MSE 5% 50% 95% mean MSE

Case I Case IV
PDOLS 50 0.612 1.006 1.385 1.003 1.000 0.310 0.967 1.585 0.955 1.000
RDSUR 50 0.619 1.007 1.381 1.004 0.974 0.482 0.992 1.480 0.989 0.599
FRDSUR 50 0.584 1.005 1.427 1.004 1.182 0.427 0.986 1.513 0.982 0.733
PDOLS 100 0.807 0.999 1.190 0.999 1.000 0.680 0.974 1.256 0.974 1.000
RDSUR 100 0.810 0.999 1.191 1.000 0.976 0.761 0.991 1.223 0.991 0.640
FRDSUR 100 0.797 0.999 1.206 1.000 1.134 0.740 0.988 1.228 0.986 0.709
PDOLS 300 0.934 1.000 1.067 1.000 1.000 0.901 0.992 1.080 0.991 1.000
RDSUR 300 0.935 0.999 1.067 1.000 0.973 0.919 0.998 1.075 0.998 0.731
FRDSUR 300 0.933 1.000 1.069 1.000 1.044 0.919 0.996 1.073 0.996 0.712

Case II Case V
PDOLS 50 0.643 1.009 1.368 1.007 1.000 0.487 0.981 1.428 0.975 1.000
RDSUR 50 0.654 1.008 1.361 1.007 0.944 0.633 1.009 1.375 1.010 0.623
FRDSUR 50 0.610 1.009 1.402 1.007 1.188 0.578 1.002 1.389 0.998 0.801
PDOLS 100 0.830 1.001 1.179 1.001 1.000 0.785 0.986 1.176 0.984 1.000
RDSUR 100 0.836 1.000 1.172 1.001 0.927 0.837 1.005 1.167 1.004 0.716
FRDSUR 100 0.821 1.001 1.191 1.002 1.130 0.826 0.999 1.160 0.997 0.756
PDOLS 300 0.944 1.001 1.060 1.001 1.000 0.938 0.996 1.050 0.995 1.000
RDSUR 300 0.947 1.001 1.057 1.001 0.902 0.952 1.003 1.055 1.002 0.812
FRDSUR 300 0.944 1.001 1.062 1.001 1.030 0.951 1.000 1.047 0.999 0.700

Case III Case VI
PDOLS 50 0.619 1.022 1.403 1.019 1.000 0.441 0.990 1.503 0.984 1.000
RDSUR 50 0.768 1.026 1.288 1.028 0.460 0.761 1.022 1.290 1.023 0.265
FRDSUR 50 0.676 1.024 1.361 1.024 0.824 0.693 1.019 1.329 1.017 0.414
PDOLS 100 0.813 1.008 1.209 1.010 1.000 0.756 0.991 1.213 0.989 1.000
RDSUR 100 0.895 1.015 1.144 1.017 0.424 0.895 1.012 1.136 1.013 0.292
FRDSUR 100 0.867 1.015 1.170 1.016 0.626 0.884 1.009 1.137 1.010 0.328
PDOLS 300 0.938 1.002 1.074 1.003 1.000 0.928 0.997 1.064 0.996 1.000
RDSUR 300 0.966 1.005 1.051 1.007 0.415 0.970 1.005 1.045 1.006 0.327
FRDSUR 300 0.963 1.005 1.054 1.006 0.464 0.969 1.004 1.043 1.004 0.304

Note: PDOLS is panel DOLS, RDSUR is restricted DSUR and FRDSUR is feasible restricted

DSUR. Rel. MSE is relative (to panel DOLS) mean square error.
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Table 5: DSUR Estimation of Spot and Forward Exchange Rate Cointegrating Regres-
sion, 1975.1-1996.12

A. Leads and lags 3 leads and lags 2 leads and lags
� �β t(β = 1) β t(β = 1)

Germany 0.992 -2.581 0.992 -2.191
Japan 1.000 0.247 1.000 0.199
UK 1.001 0.351 1.001 0.102

2χ 7.459 5.1352

(p-value) (0.024) (0.077)
2χ 7.571 5.3443

(p-value) (0.056) (0.148)

Restricted 0.997 -0.144 0.999 -0.271
B. Leads only 3 leads 2 leads

� �β t(β = 1) β t(β = 1)
Germany 0.992 -1.860 0.992 -1.797
Japan 1.000 0.310 1.001 0.217
UK 1.001 0.271 1.000 0.031

2χ 4.047 3.6632

(p-value) (0.132) (0.160)
2χ 4.064 3.7213

(p-value) (0.254) (0.293)

Restricted 1.000 -0.047 1.000 -0.116

2 2Notes: χ is the test statistic for testing the homogeneity hypothesis β = β = β . χ is the1 2 32 3

test statistic for testing the homogeneity hypothesis β = β = β = 1.1 2 3
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Table 6: Saving-Investment Correlations

Ratios Log-Levels
� �β t(β = 1) β t(β = 1)i i i i

A. European System
Austria 1.071 0.486 1.021 1.050
Finland 1.408 4.636 0.859 -2.431
France 1.013 0.169 0.977 -0.885
Germany 0.762 -1.425 0.992 -0.116
Italy 1.211 3.014 0.965 -1.842
Spain 0.668 -2.024 0.981 -0.559
Switzerland 1.330 2.661 0.909 -3.250
UK 0.559 -2.882 0.986 -0.230

2χ 29.10 4.4877

(p-value) (0.000) (0.722)
2χ 37.45 9.8978

(p-value) (0.000) (0.272)

Restricted � � 0.974 -1.857
B. Non-European System
Australia 0.600 -4.255 0.995 -0.139
Canada 0.818 -1.052 0.989 -0.183
Japan 0.974 -0.191 0.971 -1.208
US 0.878 -1.371 1.095 3.393

2χ 3.771 2.4213

(p-value) (0.287) (0.490)
2χ 11.83 3.5894

(p-value) (0.019) (0.464)

Restricted 0.777 -3.597 1.019 1.357

2 2Note: Statistic for test of homogeneity is χ in panel A and χ in panel B. Statistic for test7 3
2 2that slope coefficients are all equal to 1 is χ in panel A and χ in panel B.8 4
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Appendix

Proof of proposition 1. We note that three regularity conditions assumed by Saikko-
nen (1993) (i) the spectral density matrix of the vector of equilibrium errors is bounded
away from zero, ii) the long-run covariance matrix exists, and iii) the 4-th order cumu-
lants are absolutely sumable) are satisÞed under assumption 1. Let T = T − 2p,∗    µ ¶T−p q³ ´X1 −1 0 −1 0   A = diag X Ω X ,E Z Ω Z , G = diag T I , T It pt T ∗ 2 ∗ 2uu t uu pt2T∗ t=p+1

and  
11 0 12 0 11 0 12 0Ω x x Ω x x Ω x z Ω x z1t 1t1t 2t 1t t 1t t

2 2 3/2 3/2T T ∗ ∗ T T∗ ∗   21 0 22 0 21 0 22 0Ω x x Ω x x Ω x z Ω x z 2t 2t1t 2t 2t t 2t tT−p T−p³ ´X X 2 2 3/2 3/2T T∗ ∗−1 −1 0 −1 T T�  ∗ ∗  A = G W Ω W G = .11 0 12 0 11 0 12 0tT uu t T  Ω z x Ω z x Ω z z Ω z zt t1t 2t t t t t t=p+1 t=p+1 3/2 3/2 T T ∗ ∗T T∗ ∗ 21 0 22 0 21 0 22 0Ω z x Ω z x Ω z z Ω z zt t1t 2t t t t t
3/2 3/2 T T∗ ∗T T∗ ∗

Then" # T−p� XT (β − β)∗ −1 −1 −1�dsur√ = A G W Ω (u + v )t t ptT uu�T (δ − δ )∗ p,dsur p t=p+1

T−p T−pX X−1 −1 −1 −1 −1 −1= A G W Ω u +A G W Ω vt tt ptT uu T uu
t=p+1 t=p+1| {z }

(a)

T−p³ ´ ³ ´X−1 −1 −1 −1�+ A −A G W Ω v + ut pt tT uu
t=p+1| {z }
(b)

PT−p−1 −1From theorem 4.1 of Saikkonen (1993), we have G W Ω v = o (1) andt pptt=p+1T uu
−1 −1�A −A = o (1) so that terms (a) and (b) above are both o (1).p p√−1 � �The block-diagonality of A tells us that T (β −β) and T (δ −δ ) are asymp-∗ ∗ p,dsur pdsur

totically independent. It follows thatÃ !−1 µ ¶X X1 1−1 −1�T (β − β) = X Ω X X Ω u + o (1)∗ t t t ptuu uu2dsur T T∗∗µ ¶ µ ¶Z Z−1
D −1 0 −1 0→ B Ω B B Ω dB (A.1)e euu e uu u

R RD−1 −1 0Conditional on B , B Ω dB → N(0, [ B Ω B ]) [Park and Phillips (1998)].e e euuu uu e
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Let R be a q × 2k restriction matrix. Note that B and B are independent Browniane u

motions. Then conditional on B ,eZ
D0 −1 0 0 −1 2� �(R(β − β) [R( B Ω B )R ] (R(β − β)→ χ . (A.2)e uu e qdsur dsur

R P DT1−1 0 −1 0Since the chi-square distribution does not depend on B Ω B , and X Ω X →e 2 tuu e t uu tTR −1 0 �B Ω B , a test of the null hypothesis H : Rβ = r, can be conducted with thee ouu e dsur
Wald statistic " Ã ! #−1TX0 −1 0� �(Rβ − r) R X Ω X R (Rβ − r) (A.3)t uu tdsur dsur

t=1

2which has a limiting χ distribution. kq

To prove proposition 2, we make use of the following lemma.

Lemma 1 The two-step OLS-SUR estimator is numerically equivalent to the two-step
GLS-SUR estimator.

³ ´ ³ ´00 0 0Proof. Let Y = y , y , y = (y , . . . , y ),X = diag (x ,x ), x = x , . . . , x ,i,p+1 i,T−p 1 2 i i,p+1 i,T−p1 2 i ³ ´ ³ ´ ³ ´0 0 00 0 0 0Z = diag (z , z ) = (I ⊗ z ), z = z , . . . , z , β = β , β , δ = δ , δ ,p p 2 p p p,p+1 p,T−p p p1 p21 2

U = (u , u ), u = (u , . . . , u ). Write (7) in matrix form,i,p+1 i,T−p1 2 i

Y = Xβ + Zδ + U (A.4)p

−10 0 −1 0 0 −1Let M = I − Z (Z Z) Z , Ω = PP,H = P ⊗ I, and V = HH = (Ω ⊗ I) (note:uu
−1P = L in the text). Then MY is the vector of OLS residuals from regressing yit

on z and MX is the corresponding matrix of OLS residuals from regressing x onpt it

z . The two-step OLS-SUR estimator is obtained from applying OLS to HMY =pt

HMXβ +HMU. which gives

−10 0 0 0�β = (XMVMX) (XMVMY ) .
A

To obtain the two-step GLS-SUR estimator, premultiply (A.4) by H to obtain Y =∗−10 0X β + Z δ + U , where Y = HY , Z = HZ, U = HU . Let M = I− Z (Z Z ) Z .∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗
Then M Y is the vector of GLS residuals from regressing y on z , and M X is∗ it ∗ ∗∗ pt

the corresponding matrix of GLS residuals from regressing x on z . The two-stepit pt

GLS-SUR estimator is obtained by applying OLS to M Y = M X β +M U , which∗ ∗ ∗ ∗∗ ∗
gives

−10 0�β = (X M X ) (X M Y ) .∗ ∗ ∗ ∗∗ ∗B
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³ ´
−1 0 0Noting that VZ = (Ω ⊗ z ) and Z Z = I⊗ z z , it is straightforward to see thatp puu p

� �β = β . k
A B

Proof of proposition 2. In addition to the matrix notation developed for lemma 1, let³ ´0 0V = v , v , v = (v , . . . , v ) , and V = HV We have for the two-steppi,p+1 pi,T−pp p1 p2 pi ∗p p

GLS-SUR estimator of β,

 −1    ³ ´ ³ ´ 1 1 0 0�  T β − β = X M X  X M U + V ∗ ∗ ∗ ∗ ∗ ∗p ∗  ∗2  T T  ∗∗ | {z }| {z }
E2E1

For E ,2 ³ ´ ³ ´ ³ ´1 1 −10 0 0 0 0 0X M U + V = XH I−HZ (ZVZ) Z H H U + V∗ ∗ ∗p p∗T T∗ ∗ ³ ´ ³ ´1 0 −1= X Ω ⊗ I U + V puuT∗| {z }
(a) µ ¶³ ´ ³ ´−11 0 −1 0− X Ω ⊗ z z z z U + Vp p p puu pT∗| {z }

(b)

For term (a), " #PT−p 11 12³ ´ ³ ´1 1 x (Ω (u + v ) + Ω (u + v ))1t p1t 2t p2t0 −1 1tt=p+1 uu uuX Ω ⊗ I U + V = Pp T−puu 21 22x (Ω (u + v ) + Ω (u + v ))T T 1t p1t 2t p2t∗ ∗ 2tt=p+1 uu uu" #PT−p 11 121 x (Ω u + Ω u )1t 2t1tt=p+1 uu uu= + o (1)P pT−p 21 22x (Ω u + Ω u )T 1t 2t∗ 2tt=p+1 uu uuZ
D −1 0→ B Ω Be uu e

For term (b),µ ¶³ ´ ³ ´−11 0 −1 0X Ω ⊗ z z z z U + Vp p p puu pT∗  ³ ´ ³ ´−1 −1
11 0 0 12 0 0Ω x z z z z (u + v ) + Ω x z z z z (u + v )1 p p p p p p1 p1 2 p2 uu 1 p uu 1 p ³ ´ ³ ´=  −1 −1
21 0 0 22 0 0T∗ Ω x z z z z (u + v ) + Ω x z z z z (u + v )p p p p p p1 p1 2 p2uu 2 p uu 2 p ³ ´ ³ ´ ³ ´ P P P PT−p T−p T−p2 1 1 11j 0 0Ω x z z z z (u + v )jt pjt1t pt ptt=p+1 t=p+1 t=p+1j=1 uu pt ptT T T∗ ∗ ∗ ³ ´ ³ ´ ³ ´ = P P P PT−p T−p T−p2 1 1 12j 0 0Ω x z z z z (u + v )jt pjt2t pt ptt=p+1 t=p+1 t=p+1j=1 uu pt ptT T T∗ ∗ ∗
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" #
o (1)p=
o (1)p ³ ´ RD1 0 −1It follows that E = X M U + V → B Ω dB .2 ∗ e∗ ∗p u∗ uuT∗

Next, we have for E ,1 µ ¶³ ´−11 1 10 0 0 −1 0 0X M X = XVX− X Ω ⊗ z z z z X∗ ∗ p p∗ uu p p2 2 2T T T∗ ∗ ∗| {z } | {z }
(c) (d)

Expanding term (d) gives " #µ ¶ 11 0 0 −1 12 0 0 −1³ ´−11 1 Ω x z (z z ) z x Ω x z (z z ) z xp p p 1 p p p 20 −1 0 0 uu 1 p uu 1 pX Ω ⊗ z z z z X =p p 21 0 0 −1 22 0 0 −1uu p p2 2 Ω x z (z z ) z x Ω x z (z z ) z xT T p p p 1 p p p 2uu 2 p uu 2 p∗ ∗
= o (1)p µ ¶ µ ¶³ ´P P PT−p T−p T−p1 1 1ij 0 0 0since the ij-th element of the matrix is Ω x z z z z x3/2 3/2it pt ptt=p+1 t=p+1 t=p+1pt pt jtT∗T T∗ ∗

= o (1).p

Expanding term (c) gives" #P P ZT−p T−p11 0 12 01 1 Ω x x Ω x x D0 −11t 1tt=p+1 t=p+1uu 1t uu 2tXVX = → B Ω BP P e eT−p T−p uu21 0 22 02 2T T Ω x x Ω x x2t 2tt=p+1 t=p+1uu 1t uu 2t∗ ∗

RD1 0 −1Thus, it is established that E = X M X → B Ω B . By lemma 1, the equiva-21 ∗ ∗ e e∗ uuT∗
lence of the OLS-SUR two-step estimator and DSUR obtains. k

³ ´ ³ ´ ³ ´−1P PT−p T−p1 10� � � �Proof of proposition 3. T β − β = X X X u . From2∗ t t tt=p+1 t=p+1t TTsysdols ∗∗ ³ ´R R RP DT−p 0 01 0 0� �proposition 1 we have X X → B B = diag B B , B B , and2 t e e et=p+1 t e e e1 21 2T∗ ³ ´ ³ ´0R R RP DT−p 01 0 0 ��X u → B dB = B dB , B dB . Conditional onB , T β − β ∼t e et u ut=p+1 u e e1 2T 1 2 sysdols∗ R R R−1 −10 0 0N(0,V ) where V = ( B B ) ( B Ω B ) ( B B ) . The asymptoticsysdols sysdols e e uu ee e e

chi-square distribution of theWald statistic follows immediately from the mixed-normality
of the estimator.

To prove proposition 4, we make use of the following two lemmas.

Lemma 2 µ ¶Z −1−1 0�avar(β ) = E B Ω Be uu edsur
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µ ¶ µ ¶µ ¶Z Z Z−1 −10 0 0�avar(β ) = E B B B Ω B B B .e e uu ee e esysdols R−1 −1 0�Proof. Conditional on B , avar(β ) = V , where V = B Ω B . It followse 1 e1 uu edsur
that · ¸ µ ¶Z Z

−1 −1 −1 −1 −1 0 −1 −1Var V B Ω dB |B = V B Ω Ω Ω B V = Ve e e uuu1 uu 1 uu uu e 1 1· ¸Z
−1 −1E V B Ω dB |B = 0e euuu

Using the decomposition of the variance for any two random variables Y and X,

Var(Y ) = E [Var(Y |X)] + Var [E(Y |X)] , (A.5)³ ³ ´´R R −1−1 −1 −1 0�it follows that unconditionally, avar(β ) = E Var V B Ω dB = E ( B Ω B ) .e eu1 uu uu edsur³ ´R R R−1 −10 0 0�Similarly, we have avar(β ) = E ( B B ) ( B Ω B ) ( B B ) . ke e uu ee e esysdols

D
Lemma 3 Consider the random matrices A and B . If A ≥ B , A → A andT T T T T

D
B → B, then A ≥ B, almost surely.T

0 0Proof. Given λ (A −B )λ ≥ 0. Assume the converse: P (λ (A−B)λ < 0) > 0. ThenT T
0there exists an ² > 0 such that P (λ (A−B)λ < −²) > 0. There are a countable num-

ber of continuity points within the interval [−², 0]. Let −δ be one such continuity point
0 0where, −² < −δ < 0. Then lim P (λ (A −B )λ < −δ) = P (λ (A−B)λ < −δ) > 0,T T T

which is a contradiction. k

Proof of proposition 4. Let

x = diag (x , x ) : (2k × 2), X = diag (x , . . . ,x ) : (2T k × 2T )t T p+1 T−p ∗ ∗1t 2t Ã !Ã ! Ã !−10 −1 0 0 0X Ω X X X X ΩX X XT T T T∗ ∗ ∗ ∗T T T T∗ ∗ ∗ ∗V = V =1T 2T∗ ∗2 2 2 2T T T T∗ ∗ ∗ ∗
Then Ã !Ã ! Ã !−10 −1 0 0 0X Ω X X X X ΩX X XT T T T∗ ∗ ∗ ∗T T T T∗ ∗ ∗ ∗V −V = −1T 2T∗ ∗ 2 2 2 2T T T T∗ ∗ ∗ ∗Ã !" Ã !Ã !Ã !#Ã !0 −1/2 0 1/2 1/2 0 1/21/2 −1/2X Ω X Ω Ω X X ΩΩ X Ω XTT T∗T T T∗ ∗∗ ∗ ∗= I−

2T T T T T∗ ∗ ∗ ∗∗· ¸³ ´−10 0 0= D I−M M M M DT T T∗ ∗ ∗T T T∗ ∗ ∗
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−1/2 1/2where D = (1/T )Ω X : (2T ×2T ) andM = (1/T )Ω X . This is a systemT ∗ T ∗ ∗ T ∗ T∗ ∗ ∗ ∗
of 2T nonnegative quadratic forms in a symmetric idempotent matrix. For given X∗ T∗−1 −1and T , we have V ≥ V which implies that V ≤ V .∗ 1T 2T∗ ∗ 1T 2T∗ ∗

−1 −1 � �By lemma 3, we have V ≤ V , and lemma 2 gives avar(β ) ≤ avar(β ).1 2 dsur sysdols

k
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