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1. Introduction

It is widely understood that conditional moments of asset returns are time varying.
Understanding this variation is crucial in all areas of asset pricing theory. Accordingly, an
enormous literature has developed on estimating conditional variances and covariances in returns
data. Many techniques have been employed for this purpose, but perhaps the most widely used
are the class of ARCH (autoregressive conditionally heteroskedastic) models introduced by Engle
(1982) and expanded in many ways since. (See the survey papers of Bollersiev, Chou, and
Kroner (1992), Bera and Higgins (1993), and Bollerslev, Engle, and Nelson (1993).)

In practice, researchers using ARCH modeis typically assume that the model is "true”
and that apart from errors in parameter estimates in finite samples, the conditional variances
produced by the model are "true.” Another interpretation of ARCH models (see Nelson (1988,
1992), Foster and Neison (1994), Nelson and Foster (1992,1994), Harvey, Ruiz, and Shephard
(1994), Watanabe (1992)) is that they are not "true” per se, but instead are filrers through which
returns data can be passed to produce estimates of conditional variances and covariances. Under
this interpretation, it is reasonable to ask how well misspecified ARCH models can estimate
conditional variances and covariances, and how ARCH models can be constructed to optimally
carry out this filtering. In particular, Nelson and Foster (1994) develop a continuous record
asymptotic distribution theory for the conditional variance estimates generated by a univariate
ARCH model, and also develop a class of asymptotically optimal ARCH conditional variance
estimarors. This paper extends these results to the multivariate case.

The extension from the univariate to the multivariate case is important for several

reasons. Most obviously, models of asset pricing often involve conditional covariances, which



a univariate model cannot accommodate. Even if we are interested in estimating the volatility
of a single variable, however, the multivariate extension is still important. Suppose, for exampie,
that we are interested in estimating the conditional variance of a particular stock’s return. While
a univariate ARCH model would use only lagged returns and deterministic caiendar effects,
many other sources of information are also relevant: for example, implied volatilities from
options prices, (e.g., Chiras and Manaster (1978), Day and Lewis (1992), trading volume, {e.g.,
Karpoff (1987), Gallant, Rossi, and Tauchen (1992)) high-low spreads, (e.g., Parkinson (1980),
Garman and Klass (1980), Wiggins (1991)) interest rates, (e.g., Christie (1982), Glosten,
Jagannathan, and Runkle (1993)), volatilities of domestic and foreign stock indices, (e.g., Braun,
Nelson, and Sunier (1991) and King and Wadhwani (1990)) and volatilities of other stocks (e.g.,
Cox and Rubinstein (1985, pp. 280-285)). Utilizing such information requires a multivariate
model. Finally, although it is conventional in ARCH modelling to keep the form of the
conditional distribution constant (e.g., conditionally normal or conditionally Student’s ¢ with
fixed degrees of freedom), it may be better to allow the conditional skewness or conditional
kurtosis to be time varying, as has been suggested by Bera and Lee (1992) and Hansen (1992).
If we require more than one unobservable state variable to describe the conditional distribution,
we need a multivariate filtering theory.

The outline for the rest of the paper is as follows: in Section 2, we present and interpret
the main filtering theorems. Section 3 considers the special case in which the data are generated
by a diffusion. Section 4 develops examples of the main theorems. Section 5 is a brief

conclusion.



2. Filtering theory for near-diffusions
The setup which we consider below is a multivariate generalization of the case considered
in Nelson and Foster (1994) (henceforward NF). We will keep similar notation wherever
possible. We refer the reader to NF for further discussion of the assumptions.
As in NF, there are two leading cases for the data generating processes, discrete time
stochastic volatility and discretely observed diffusion. We present the results for near-diffusions
in this section and handle the diffusion case in section 3.

In the stochastic volatility case we assume that fort = 0, h, 2h, ...}

Xl % X KX, Y,,0.h) " Exmhm Q.1
Yroh _Yz K(Xr’ Yr't’ k) EYJ*k
"Exr,.;, Onxl Exm
) = Cov, = Q(X,,7,,1) 2.2)
_EY.!'h OM-(I , Yk

where & equals either 3/4 or 1. We assume that for each h > 0, {X,,Y }.mosn is Markovian,
and that  [&y,,".¢v.']" possess conditional densities f(£y nfy.ien] XoYol),
&y ontExien X Y0, and f(6x on| X, Y1), u(-) and «(-) are continuous, (X,,Y,) may be fixed
or random. X, is an observable nXx 1 process, while Y, is an unobservable mx1 process. Our
interest is in estimating {Y,}.

The analysis is asymptotic, in that h approaches 0. In (2.1)-(2.2), "t" is assumed to be

a discrete multiple of h. To define (X,,Y)) for general t, set (X,,Y,) = (X Yaun), Where [t/h]

' Notice that the scale factor h'* on the ¢ terms in (2.1) and (2.1°) below is missing in the univariate
case presented in NF equations (5.1) and (5.1'). These scale terms are correct here, but were
inadvertently omitied in NF. In addition, the "h'" terms in NF (5.8)-(5.9) should be deleted.
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is the integer part of t/h. As in NF, "E,” and "Cov," denote, respectively, the expectation vector
and covariances matrix conditional on time t information—i.e., the o-algebra generated by
{X..Y.}o<,<: OF, equivalently for our purposes, by (X,,Y,,Y,). (Y, is defined below.)

We call (2.1)-(2.2) a near-diffusion, since when 3 = 1 and some mild regularity
conditions are satisfied (see, e.g., Ethier and Kurtz (1986, Chapter 7, Theorem 4.1) it converges
weakly as h40 to the diffusion process

X

I3

Y

!

1(X,.Y,1,0)
k(X,.Y,.t,0)

dr + Q(X,Y,n"dw, 2.3)

where W, is an (n+m) X1 standard Brownian motion.

As in NF, p and x drop out of the asymptotic distribution of the measurement error as
h40 when é=1. It is possible, however, to keep u and « in the asymptotic, provided we are
willing to take 6§=3/4, which we call the 'fast drift’ case. Unfortunately, 6=3/4 is not, in
general, compatible with a diffusion limit such as (2.3). Nevertheless, we will continue to call
it a near-diffusion.

The Multivariate ARCH Model

We consider ARCH models? which generate estimates ‘;’, (fort = @, h, 2h, 3h, ...) of

the unobservable state variables by the recursion
Yo = Yo+ hP(X, YoLh) + h2G(Ey X, Yoth), (2.4)
Exien = D72[X,, = X, = WX, Yot h)). @2.5)

As in NF, (), u(?), and G(-) are functions selected by the econometrician. G, &, and p are

* We call these ARCH models because the models (considered as data generating processes) make
volatility a function of lagged residuals. A number of multivariate ARCH models take this form (see
section 4 below.) The model in (2.4)-(2.5) also encompasses the extended Kalman filter, and the
Autoregressive Conditional Density models of Hansen (1992).
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continuous in all arguments and G is differentiable in ’i’l, £x.+n and h almost everywhere and
must possess one-sided derivatives everywhere. Just as u and « are the true drifts in X, and Y,,
 and & are the econometrician’s (possibly misspecified) specifications of these drifts. .§x_(,,,, 1s
a residual obtained using g in place of 4. The ARCH model treats this fitted residual §x,”,, as
if it were the true residual £4,.,. In ARCH models (considered for the moment as data
generating processes rather than as filters) ¢,,,, the innovation in Y,,,, is a function of Exiem
X, Y, and t. G(°) is the econometrician’s specification of this function. The ARCH model
treats the fitted Y, as if it were the true Y, Accordingly, we make the normalizing assumption
that for all (X,,Y,.t,h), E[G(¢x, X Yotbh) ] = 0,,.

We present results for the §=3/4, fast-drift case only. Why focus on the fast drift case?
Admittedly, this experiment is a bit unnatural, since 8=3/4 is generally not compatible with a
diffusion limit for {X,,Y} as h40. In the standard drift case, however, the drift terms drop out
of the asymptotic distribution of the ARCH model’s measurement error in estimating Y,.
However, as Lo and Wang (1993) have argued, misspecification in conditional means may have
an economically significant effect on volatility estimates, so it seems useful to develop an
asymptotic in which the drifts do not drop out. This requires rescaling the drifts. By doing so,
we adopt the view that asymptotics needn’t correspond to a natural data experiment to be
useful.® Finally, nothing is lost by using fast drifts, since the results for the §=1 case are

recovered by setting u(9) = 4{") = Oy, and k() = k() = Opx;-

* Others have taken this view: see, e.g., Phillips’ (1988) "near integrated” processes, (e.g., Phillips
(1988)) in which an AR root approaches 1 as the sample size grows, or the analysis of asymptotic local
power, in which a sequence of alternative hypotheses collapse to the null at an appropriate rate as the
sample size grows (see, e.g. Serfling (1980, Chapter 10)).
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The Asymptotic Distribution of the Measurement Error
We now define the vector of normalized measurement errors
Q = h™™[Y, - Y] (2.6)
As in NF, we may substitute from (2.6) for Y, and expand G(fx_lﬂ,x,,\",,t,h) in a Taylor
series in h around h=0. When §=3/4, we obtain*
Qi.n = Qi + hPE[3G(Ex 110, X, Y, 1,00/0Y]Q, + h*2[x(X, Y, ,t.h) —x(X, Y, t,h)]
+ hE[3G{Ex 1on X0 Yiut,00/08] (X, Yo ) — A(X, Y, 1, 1)) 2.7
+ W [G(Ex 0 X Yo L) =yl + O(hY).
In (2.7) 9G(£x 11, X, ¥Y,,1,0)/3Y is an mXm matrix of partial derivatives, with i—j* element
0Gi(Ex.1.n, X, Y,,1,0/8Y), and 3G(Ey,,n. X, Y,,1,0/8¢4 is an mXn matrix with i—j® element
aG.(E,\-_‘,h,x.,Y,,:.O)/ang.

Like the results in NF, we obtain our asymptotic results via passage to a continuous time
(diffusion) limit process. This requires us to make assumptions on the behavior of the conditional
moments of Q, as we pass to continuous time:

Assumption 1: The following functions are well defined, continuous in 1, and twice
differentiable in X, and Y, .

AX.Y1) = lim,,, { (kK.Y 0,h)—x(X,Y,1)]

(2.8)
t EG(Ey . X, Y LRG| (X, Y) =X NI, Y0 —p (X, Y,0,1)] }
BX.Y.t) = — lim,,, E[3G(ty,,, . X, .Y, L, AAY|(X, . Y)=(X, V)] (2.9)
CX, Y1) =
(2.10)

Hmhl() E[(G(Ex.lvh "Xr 'YI 't'h)—z)‘,ﬁ'h )(G(Ex,x+h :X; JYJ J!'h)_E]’,H—h )'I (X’: ,YJ=“, n]

* For more details on the derivation of (2.7), see NF equations (3.7)-(3.9").
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Further,
hPE[Q— Q| (X, .Y, .Q)=X.Y.Q)] = AK.Y.) ~ BXY.1)-Q, (2.11)
h™12Cov(Q,,y~ QI X, . Y,.Q)=(X.Y.0)] » CX,Y.1) (2.12)
as h 0 uniformly on every bounded (X, Y,0,t) set.’
We will often write A, B, and C, for A(X,,Y,,t), B(X,,Y,.t), and C(X,,Y,.1).

Assumption 2. Define the matrix norm |A| = [Trace(AA")]'™. For some § > 0

E(f} n7Y,, -0 &, )= D) (2.13)
Ef} P&, —X)| X, . Y)=&X 1] (2.14)
El| GlExis X Y 0| 29X, .Y, .Q)=(X.Y,Q)] (2.15)

are bounded as hi0, uniformly on every bounded (X,Y,Q,t} set.

The first two conditional momeants of Q,,,—Q, are O(h'?), in contrast to the first two
conditional moments of X,,,—X, and Y,,,~Y, in (2.1) and (2.2) when 6=1,% which are O(h).
{Q/} therefore oscillates much more rapidly as h40 than X, or Y, In fact, {Q} acts like
heteroskedastic white noise (not at all like a diffusion) as hi 0. Our asymptotic results depend
on our being able to derive a diffusion limit for Qv To do this, we must resort to a change in
the time scales. Specifically, we choose a time T, a large positive number M, and a point in the
state space (X,Y,Q), and condition on the event (X;,Y;,Q7) = (X,Y,Q). We then take the

asymptotically vanishing time interval of calendar time {T,T+M - h'?] and stretch it into a time

%i.e., on every set of the form {(X,Y,Q,t): | (X,Y,Q,t} | <A} for some finite, positive A. We could,
for example, write (2.12) more formally as: Forevery A, 0 < A < oo,

(212.) hm SUP uhumcov[Qwh-Q(Kqulth):(xvaQ)] T C(X’Y't)n = 0
he0 J(X.Y.Q0] <A

® When §=3/4 the first conditional moments are O(h**).
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interval [0,M] on a new, "fast™ time scale. On this fast time scale, X, and Y, move more and
more slowly as h+0, becoming constant at the values X; and Y;. Q, on the other hand,
converges to a diffusion limit. Essentially, our asymptotic analysis analyzes the behavior of Q,
in the neighborhood of given values of X, Y,. This change of time scales is described in more
detail and is graphically illustrated in NF figure 1, to which we refer the reader.

Another bit of notation first: we will make frequent use of two different types of matrix
square roots. When we write F'”? for a positive semidefinte d xd matrix F, we mean the unique
positive semidefinite (and therefore symmetric) matrix with F"?F'? = F. When we write F'2,
we mean any d xd matrix satisfying F/?F"?' = F.7

Formally, we define Q, = Q, i, and obtain the multivariate version of the limit
diffusion for Qr, on the "fast” time scale

dQr, = (Ar — BiQ; )7 + C;"dW,, (2.16)
where W] is an mx 1 standard Brownian motion. Qr,, requires two time subscripts because of
the change in the time scale: 7 is the subscript on the fast time scale, while T is the starting
point of the interval [T, T+h'?M], over which the asymptotic analysis is conducted. In NF, the
measurement error process followed an Ornstein-Uhlenbeck process, the continuous time version
of a gaussian AR(1), on the fast time scale. Here, Q. follows the continuous time version of
a gaussian VAR(1) (see, e.g., Karatzas and Shreve (1988, Section 5.6) or Arnold (1973, Section
8.2)). As in NF, we initialize the stochastic differential equation (2.16) by conditioning on X,

Yy, and Q.

T For proof that F'? is unique, see Horn and Johnson (1985, Theorem 7.2.6). F2 need not be
positive definite or symmetric, and is not in general unique: if U is any orthonormal real matrix,
(F2ZUXF'2Uy =F.



Theorem 2.1. Let Assumptions 1-2 be satisfied, and let 0 < T < o, 0 < 7 < . Let
© be a bounded, open subset of R****' on which for some ¢ > 0
The real parts of all the eigenvalues of B(X,Y,T) are bounded below by e, (2.17)
lax.r.D| < 1 [BRY.D] < Ve and [CXED| < /e (2.18)
Then for every (X,Y,Q,T) € O, {Or }4.y (conditional on (X; Yy ,Qn)=(X,Y,Q)) converges
weakly to the diffusion (2.16) as h{ 0, This convergence is uniform on ©.
Proaf: see Appendix.
Corollary. Under the conditions of Theorem 2.1, for every (X5, Yy ,Qr ,T) €O and every
T >0,
(Or, | (X . Y7, Q) =& Y, Q)] = N[by, ., Vp.J 2.19)
where "=" denotes weak convergence as hi0, and
by, = exp[—B; 1]-{Q + | exp[—B;- sJAds] (2.22)
= exp{—B; 7] [Q — B, 'A;] + B; A, and
Vr, = exp[—B; 7] [ | } expfB;- s]Crexp(B;' - s]ds] - exp{—B;' - 1], (2.23)
or equivalently to (2.23)
vec(Vy,) = ~expf—(lnym®@Br+Br®L, , I s n®Br+ B ®1,...J] " 'vec(Cy)] (2.24)
+ [1n®B; + B®I, ] 'vec(Cy),
where "exp” is the matrix exponential, "® " is the Kronecker product and "vec” is the operator
which stacks the columns of a matrix into a column vector. Vy, is positive semidefinite and
symmetric for all v+ > 0.
Proof: see Appendix.

Note that as in NF, the theorem yields weak convergence for {Qr,}om—i-€., for the



time interval [T, T+h'?M] on the standard time scale or [0,M] on the "fast” time scale. Since
this holds uniformly for every finite M, Lemma 5.2 of Helland (1982) guarantees that it also
holds uniformly for M,, where M, — oo sufficiently slowly as h40.* We then have QT.M., =
N(b;,V;)as hi0, where vec(Vy) = [Ime®Br+BT®Iman"vec(CT) and by = B; 'A;. Note that
in general, deviation from zero of any element of either R(X,Y,t,O)—x(X,Y,t,O) or
A(X,Y,6,0)—u(X,Y,t,0) can create asymptotic bias in other elements of Y. V3 has two other
representations which will later prove useful (see Karatzas and Shreve (1988, pp. 355-358)).

B;V: + ViBy = C; (2.25)

Vi = [ Fexp[—B;: s]Crexp[—B;’- slds. (2.26)
Because the matrix exponential in (2.26) is never singular (Bellman (1970 p. 170)) and the sum
or integral of positive definite matrices is positive definite (e.g., Magnus and Neudecker (1988,
Chapter 11, Theorem 9)), Vy is singular if and only if C; is. By and C; are continuous functions
of X,, Y, and t. Since X,, Y,, and t are (asymptotically) constant at their time T values on the
"fast’ time scale, By and C; are asymptotically equivalent to B, and C, for T< t<T+h'?M,. This
local constancy of X,, Y,, and t makes possible the transformation of the filtering problem from
a highly nonlinear (and completely intractable) problem to a solvable problem.

To interpret the Corollary, recall that Q;, = Qg 2, which we combine with (2.22)-
(2.23) 10 obtain
Yramn = Yo pn - h™*Qr+ pyn, where [Qry e | Ve, Y7, Xq] ~ NOT+n2. V4 002) (2.27)

Of course, Y; and Q; are unobservable. If, however, the filter has been running a "long" time

* Helland’s Lemma 5.2 does not specify the rate at which M, - o, only that there is such a rate.
It may be very slow, e. g.. In[in(h™")]. In our example, M, must surely increase at a slower rate than
h='?2 or else (X,,Y,.t) would not be asymptotically constant on [T,T+h"?M,].
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(i.e., it was initialized at some time t-M,h'?, where M, goes to infinity sufficiently slowly as
h40), then we have

Y, = Y, - h'#Q, where Q, ~ N(b,V), (2.28)
where b, and V, can be evaluated at (Xl,\-’,,t), allowing us to characterize the uncertainty in Y,
given the information in X, and Y,. This allows us to draw confidence bands and so forth. Note,
however, that the information on Y, in X, and Y, does not fully summarize all information in the
sample path of {X}oc.cr, since our filter is not an implementation of Bayes' theorem.
Implementing Bayes' theorem analytically seems impossible in our problem—if it were possible,
we would naturally prefer to do so. Even numerical implementation of Bayes’ theorem is rarely
possible with current methods: see, however, the recent work of Jacquier, Polson and Rossi
(1992) for a successful implementation in an important special case.
Optimality

In NF, optimality was defined in terms of minimizing V; while eliminating by. Since
there is no bias-variance tradeoff, this is equivalent to minimizing the asymptotic mean-squared
error. A natural multivariate generalization is to minimize Trace[brb;’ + Vi]. We could just as
easily minimize u’[b;by” + Vilu for an arbitrarily selected mx1 vector u. None of the
optimality results would be affected, because the proofs of the optimality results show that if b,
and V, are the bias vector and error covariance matrix achieved by optimal filters proposed
below and b, and V, are the bias and covariance matrix achieved by any other filter then [b,b,’
+ V,} = [byby' + V] is positive semidefinite.

As in NF, there are two sources of uncertainty at time t in estimating the value of Y,

first, there is uncertainty about the first difference Y,,,—Y,. Second, there is uncertainty about
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the level of Y,. Asymptotically, these two sources of uncertainty are of the sam:e order (O,(h"*).
Correspondingly, the optimal filter turns out to have two terms. The first, which we call P, is
the prediction component which extracts the information in ¢y ., regarding Y,,,—Y,. Formally,

P(§x, X, Y\) = Elfy in] Exin X YD) =(Ex.X, Y] | (2.29)
The second term, which we call S, is the estimation or score component, the mx1 vector

S XY, = aln[f(Ex . [ (X, Y =(X,)))/8Y, (2.30)
where in (2.30) £ ., is evaluated at . This term extracts, in a manner analogous t0 maximum
likelihood estimation with Y, treated as a parameter, information in §x,+p 0N the level of Y,. We
will further interpret these terms in the theorems below.

To simplify notation, we write S,,, for S(¢x,,n.X,Y.t) and Py for P(§x 0. X, Y1),
When we take conditional expectations we will drop more time subscripts and write, for
example, E[SS’] for E[S,.+S,.,'] and E[(§y =P)(¢y—P)'] for E[(Ey,.n—ProaXysn—Pon)'].

Assumption 3. For every h, the conditional densities f(ty ,£,| X, Y,t) and f(t x| X.Y.t,h) are
well defined and continuous in X, t, and h, and f(t,| X, Y,1,h) is continuously differentiable in Y

almost everywhere, with one sided partial derivatives with respect to Y everywhere. Further, for

somed > 0
E[IP.,| "1 X,=X.X,=Y], and (2.31)
Efls.. |1 x=XY,=1] (2.32)

are bounded uniformly on every bounded (X,Y,1) set as h4 0.
Assumption 4. Let there exist a unique, positive semidefinite solution wr 1o the matrix

Riccati equation:

Er[PS'Jar + wrEL[SP'] + wE [SS')w; = Er[(Ey—P)(Ey—P)]. (2.33)
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Perhaps the simplest sufficient condition for a unique positive semidefinite solution to
(2.33) is that E{[SS’] is positive definite (this is easily verified using Ku&era (1972, Condition
3)). This condition can sometimes be weakened—see Kudera (1972) and Lancaster and Rodman
(1980). Using (2.26), the definitions in (2.9)-(2.10), and Theorem 2.2 below, it is also easy (o
check that positive definiteness of E;[SS’] and E{[(§y—P)(¢(y—P)’] implies that w; is positive
definite.

Theorem 2.2. Let Assumptions 1, 3, and 4 be salisfied. A set of sufficient conditions for

Tracefbioy” + V] to be minimized is that

limg,o (X, Y, T.h) - x(X. Y, T,h) = 0, (2.34)
timy, u(X,Y,T.h) - u(X,Y.T,h) = 0, and (2.35)
G(EX 'Xl Kth) = P(Ex -X, KT) + QJ]'S(£X )XJKD: (2.36)

where w, is the positive semidefinite solution to (2.33). The minimized Vi = w; and the
minimized biby' = 0,,,... Let G satisfy the regularity conditions of Theorem 2.1 and let V; be the
asymptotic error covariance matrix delivered by Theorem 2.1 using G in place of the G in
(2.36). Then V; = wy if and only if GEx X.Y.T,h) = G(¢5,X.Y,T,h) almost surely.

Proof: see Appendix.

In NF, the optimal Gy, was equal to P;,, plus w; times S;,,. This might lead one to
expect that for i=1 to m, Gip,, (i.e., the i* element of the vector Gr,,) would be a linear
combination of P+, and §;r,,. Perhaps surprisingly, this is not the case when wy is non-
diagonal: G,;,, equals P, plus a matrix-weighted average of the elements of S;,,.

E[SP'], E[SS'], and E[(£y —P)(&£y—P)’] are matrix functions of X,, Y,, and t.-Through

the matrix Riccati equation, w, is as well. Fort € [T, T+h'?M,], (X, Y,.) = (X;,Y,T) as h{ 0.
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On the diffusion limit on the transformed time scale, (X,,Y,.t) are constants evaluated at
(X1, Y;,T). For our purposes, E[SP’], E[SS'], E[(¢y—P)(¢y—P)'), and w, are asymptotically
equivalent to E;[SP’], E{[SS’], E;[(¢y —P)((y—~P)’), and w; when T < t < T+h"M,.

The assumptions of theorems 2.1 and 2.2 are not as general as we would like. The first-
order Markov structure immediately rules out, for example, fractionally integrafed models (see,
e.g., Baillie, Bollerslev, and Mikkelsen (1993)). As is well-known, finite-order markov models
can written in first order Markov form. This, however, does not usually help in our setup.
Suppose, for example, that X,., is a scalar with conditional variance o, and that In{¢?) is a
linear ARMA(2,1). To write it in first-order markov form, suppose- we are able to decompose
In(o;?) into the sum of two linear AR(1) components yi.and y,,. In{e?) = y,, + y,, appears in
the score term S, but y,, and y,, do not appear individually, and so E[SS’] is singular. In
many cases. this prevents existence (let alone uniqueness) of a solution to the Riccati equation.
The By matrix of theorem 2.1 is generally singular in this case, so both theorems 2.1 and 2.2
break down. Similar problems arise for many higher order markov processes: in general to avoid
singular E(SS’), we need ail the elements of Y, to enter the score S+ directly in a
nondegenerate way. Extending this paper’s results to higher-order models is left for further
research.

An Important Special Case

In NF, a closed form was available for wy. In the multivariate case, unfortunately, there
often is not, though there is a large literature on numerical and other techniques for solving
equations such as (2.33), which arise in linear control and Kalman filtering problems—see, e.g.,

Anderson and Moore (1971, Chapter 15). Theorem 2.3 considers the important special case in
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which E;[SS'] is positive definite and E4{PS’] = Opxp:

Theorem 2.3. (a) Let E{SS'] be positive definite and let E{PS'] = 0,,,,,.. Then the unique
positive semidefinite solution to the Riccati equation of Assumption 4 is’
wr = (E{SS']) " *[(EASS ]V (EA(Ex—P)(ky— P)' I (EASS'])"" ]’”(ET{SS'J)"’Z. (2.37)

(b) In addition to the assumptions of Theorem 2.2, let the joint conditional density of
{£x. £ be elliptically symmetric. Then P,,, = Ef £y TESEE L)) Ex1us (€., given X, and ¥,
the prediction component P, is linear in £y, ,) and E[PS'] = 0,,,.

Proof: see Appendix.

The intuition behind (b) is straightforward. Let the kX1 vector Z ~ N(0,{). As is well
known, E{Z;|Z,...Z,] is computed as a linear regression, and the differential with respect to Q
of the log of the density is % Trace(d)Q~(ZZ'-2)Q~*,° which is, of course, orthogonal to any
linear combination of the Z;'s. While the functional form of the score is different for other
elliptically symmetric distributions, the orthogonality between the Z’s and the score for
parameters of the covariance matrix still holds, as does the linear regression structure of the
conditional expectations—see e.g., Cambanis, Huang, and Simons (1981) and Mitchell (1989).

The elliptically symmetric case includes, for example, the multivariate normal,
multivariate 1, as well as the case in which {X,,Y,} is generated by a discretely observed

diffusion (see Theorem 3.1 below.)

¥ E;[SS’] and E;[(¢{y—P)£y—P)’] can typically be computed analytically as functions of the state
variables. Given numerical values of E;[SS’] and E{{(¢y~P)}£éy—P)’], fast algorithms are available to
compute w; in (2.37)—for example, using the MatrixPower command in version 2.2 of Mathematica
(Wolfram Research, Inc. (1992)). Given access to routines for computing eigenvalues and eigenvectors
(for example the eigrg2 and eigrs2 commands in Gauss (Aptech Systems Inc, (1992))), it is also easy ta
write code to compute matrix square roots of real symmetric matrices.

" see, e.g., Magnus and Neudecker (1988, Section 15.3).
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Fisher Information and Unpredictable Components

To interpret the matrix Riccati equation of Assumption 4, consider first the simplest case,
in which E{[SS’] and E;[{(¢{y—P)((y—P)’] are diagonal and E;[PS’] = 0,.,. (2.37) then
simplifies to

wy = (E{[SS'])™"*(El(§y—P)(§y—P) D™ (2.38)
E([SS'] is the filtering analogue of the Fisher information: the larger the Fisher information, the
smaller wr. E{[(¢§y—P)¥y—P)], on the other hand, is a measure of the variance in the
innovations variance in Y., dafter the predictable component P(ty,.,.X, .Y, .t} has been
removed. Again, the larger this residual variance, the more unpredictably variable {Y,} is, and
consequently the larger the measurement error covariance matrix wy is. This argument can be
extended to the general case in which E[SS’] and E;[({y—PX¢y—P)’] may or may not be
diagenal and E{[PS’] may not be a matrix of zeros:

Theorem 2.4. Let E({SS'] and E{(£y—P}(Ey—P)'] be positive definite. Let A be mxm
with & positive semidefinite and A # 0,,,,. let { be a scalar, and define w,(v) implicitly by
EdPS'Jwr(S) + WrfQEASP'] + wr{QESS Jor(t) = Edf(E,—P)Ey—P)'] + ¢4 (2.33')
Then dwr($)/dt evaluated ar ¢ = 0 equals

fo expl-s(E{PS')+w (O)E,[SS'])]A exp[-s(E[SP’]+E,[58’ 1w 0)))ds (2.39)
which is positive semidefinite and non-null. Similarly, let 8 be mxm with 8 positive semidefinite

and 3 # 0

mxmr

and let b be a scalar. Define w,(8) implicitly by

EdPS'Jor(8) + wilS)Er{SP'] + wrB)ESS']+6-B Jurl®) = Ef(Ey—~P)(Ey—P)'].  (2.33)
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Then dw,(0)/db evaluated ar 6 = 0 equals
e HEPS oADEISS'D g o -HEASP'1-EASS horlOD (2.40)
which is negative semidefinite and non-null. Finally, let & be an mXm matrix, not necessarily
symmetric, and let 7 be a scalar. Define wr(n) implicitly by
(EAPS ]+ a)or(n) + wrf)n- a'+EfSP]) + wrm)ELSS w(n) (2.33'")
= E{(¢,~P)Ey—F)]
Then dw(m)/dy evaluated at n = 0 equals
_ !- ;n e-:(E,(PS’lwy(O)EASS’l) (aw,(O) . 01(0) a/) e-:(ErISP‘l*EJﬁ'lur(O))ds (2.41)
Proof: see Appendix.
dw(n)/dn is less readily interpretable than are dw(})/d{ and dw(8)/dd, since we cannot
easily identify it as positive or negative semidefinite using simple assumptions on «. Clearly
dwy(n)/dn is negative semidefinite if awr + wya' is positive semidefinite, but even if we are
willing to assume, say, that o + «' is positive semidefinite, aw; + wa’ may not be. If o is
positive semidefinite, cwr + wra’ is as well (Taussky (1968, p. 177)). But there is no particular
reason why a should even be symmetric.
Conditional Moment Marching
One important aspect of the NF filtering results which is preserved in the multivariate
setting is moment matching—i.e., for both the true data generating process and the ARCH model
interpreted as a data generating process, the first two conditional moments are functions of the
tume U and the state variables X, and Y,. In NF, efficiency required that these functions be

identical in the ARCH model and the true data generating process. Under mild regularity

conditions, the same is true here. Theorem 2.2 requires matching the first conditional
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moments—i.e., x(X,Y,T.0) = «(X,Y,T,0) and p(X,Y,T,0) = u(X,Y,T,0). It also matches the
second moments:

Theorem 2.5. Let the conditions of Theorem 2.2 be satisfied, and let G(9) be given by
(2.36). Then

EJG(Exyan X Y 800G (Exan » X Y 00)T = EfEy 0y Evina']. (2.42)
In addition, given X and 1, let §,{f(£y|X,Y.1)] be uniformly continuous in Y on (¢, ,Y)ER"™,
Then

EfG(Ex,on X Y, .80 x,00] = Elyn Exinn'] (2.43)
Proof: see Appendix.

In a sense therefore, the asymptotically optimal ARCH model makes itself as much like
the true data generaling process as possible. In filtering, as we have noted, the first moment
terms yu, i, «, and x are only second-order important. Because it matches both of the first two
conditional moments, the optimal filter will perform well at both filtering and forecasting—see
Nelson and Foster (1994).

Moment matching also has a useful practical application as a shortcut in computing the
optimal filter. Once the functional forms of S and P are known, w can often be computed via
the moment matching condition, which is frequently easier than solving the matrix Riccati
equation. The model of Bollerslev, Engle, and Wooldridge (1988) analyzed in section 4 below
provides an example.

Fartially Optimal Filtering and Nuisance State Variables
Consideration of nuisance state variables illustrates a further paralle] between optimal

ARCH filters and maximum likelihood parameter estimation. In particular, suppose that only a
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subset of the unobservable state variables Y,—say the first m, elements of Y,, are of direct
interest—that is, we are interested in minimizing u’[btb;’ + V;]Ju, where u' =
[1 ]. Is it necessary for all of the elements of G(-) to equal the optimal G of

Theorem 2.27 Under what circumstances can we use suboptimal filters to estimate the nuisance

ixml'Ol x(m-m,)

state variables (the last m—m, elements of Y)) while retaining efficiency in estimating the first
m, elements of Y,?
Theorem 2.6. Let wy and G be as in Theorem 2.2. Let E{SS'] and Ef(t,—P)(E,—P)]

be positive definite, and let E{PS’], E{SS'] and E{(£,—P)(Ey—P)'] be block diagonal—i.e.,

h K0 (2.44)
of the form .
e form oy )
where K is m;Xm,, Jis (m—m,) X (m—m,), "0" is an m;X (m~m,) matrix of zeros. Then wy is
block diagonal of the same form. Now define an mx1 function G(E,mh X, .Y, ,1,h) which
satisfies Assumptions 1 and 2, and whose first m; elements equal the corresponding elements of
G. Call Vy the steady state error covariance matrix delivered by Theorem 2.1 using this G. Write
V; and w, in partitioned form as
V. Vv w 0
A A B [ - ] (2.45)
Vie Vs, S )
where V., and wr, are m;xm, V., and "0" are m;x(m-m,), and Vi, and wr, are
(m—m)x(m—m,). Then Vi, = w;,.
Proof: see Appendix.

Note that the conditions (2.44) and (2.45) allow all the elements of P and S to depend
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on any or all of the elements of Y—i.e., we do not require that the first m, elements of Y, be
independent (or conditionally independent) of the last (m—m,) elements.

Theorem 2.6 is closely connected to the familiar result from maximum likelihood
estimation that if the information matrix E[SS'] is block diagonal between the parameters of
interest and the nuisance parameters, then consistent but inefficient estimates of the nuisance
parameters may be employed without preventing asymptotically efficient estimation of the
parameters of interest (see, e.g., Cox and Reid (1987) or the application in Engle (1982, sections
5-6)). Our case, however, is made more complicated by the presence of the terms E{SP’] and
E-[(£y-P)(£y-P)’'], which also must be block diagonal.

Change of Variables
So far, we have considered only optimality given the definitions of the state variables X,
and Y,. Is there an optimal way to define the state variables? Suppose we define the functions
T = TX.Y.0), x, = x(X,0, (2.46)
where T(X,Y,1) and x(X,t) are twice continuously differentiable with 31(X,Y,1)/0Y and
dx(X,1)/0X nonsingular. Given t, there is a one-to-one mapping from x, to X, and, given t and
X,, there is a one-to-one mapping from T, to Y,, so the o-algebra generated by {X..Y,} is the
same as that generated by {x, T}, and the o-algebra generated by {X,} is the same as that
generated by {x,}. Like X, x, is nx1 and observable. Like Y,, T, is mx1 and unobservable.
If we first construct asymptotically optimal estimates of Y, using Theorem 2.2 and then

apply the delta method (e.g., Serfling (1980, Section 3.3 Theorem A)), we derive the asymptotic
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distribution of Z, = h™"[T(X,,¥,,0-T(X.Y,1)] as
ar ar} J

—_— ) —

Y ay’ (2.47)

mx]?

E, - N[O

where the i-j" element of dT/3Y is 8T/3Y,.

Suppose, however, that we change variables first, and then compute the optimal filter for
the {x,,T.} process using Theorem 2.2. Is it possible, by a judicious choice of T(X,Y.t) and
x(X,t) to achieve an asymptotic covariance matrix of h~"[T,~T,] smaller than the matrix in
(2.47)? In yet another parallel to maximum likelihood estimation, the answer is, in general, no.

Theorem 2.7. Define the state variables Y, and x, as in (2.46). In addition, let
Exf(Ex| X, Y.t) be uniformly continuous in Y on (£, Y) ER™™, and let there be a & > 0 such that

E(|n"20 =) | (x, . T)=(x.T)], and (2.48)

E[ A2 ea=xd | 71 (x, . T) = (x. 1] (2.49)
are bounded as hi4 0, uniformly on every bounded (x,T,1) set. Then the asymptoric distribution
of h™'*[,~T,] achieved by the asymptotically optimal filter for this system is given by (2.47).
Proof: see Appendix.

So we are not able to improve the asymptotic performance of the filter via a change of
variables. For nonzero h, however, such transformations may be important. Nelson and
Schwartz (1992) and Schwartz (1994) show that in monte carlo experiments, transformations of
the state variables which reduce or eliminate the dependence of wy on Y, substantially improve
the asymptotic approximation for h > 0. This, of course, has many parallels in the literature
on maximum likelihood going back at least to Fisher (1921).

If the assumptions of Theorem 2.1 are not satisfied, (if, for example, the limit data
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generating process is a jump diffusion rather than a diffusion) transformations may be important
for another reason: the "near-diffusion” assumption guaranteed that the increments in the state
variables {X,,Y,} would be small over small time intervals. This allowed us to approximate the
increments in the transformed process {T,x,} using a two-term Taylor series expansion of the
functions T(*) and x(). If jumps are present asymptotically as hi0 (i.e., if the conditional
distribution of £4 and £y is too thick tailed) such an expansion is invalid, and the global, rather
than just the local, properties of T(-) and x{() become relevant—for example, NF show that
under our regularity conditions, the filtering performance of the EGARCH model of Nelson
(1991) is relatively robust to the presence of thick tailed errors. However, as Engle and Ng
(1993) point out, EGARCH arrives at &, by exponentiating a function of rescaled lagged
residuals, so when the normalized residual is huge (e.g., October 19, 1987) the two term taylor
series approximation may brezk down, and because of the tail behavior of exp(-), the 'robust’
EGARCH model may become highly non-robust.
3. Diffusions
We now consider the case in which the data are generated by a diffusion:

XI
d
Y

f

p(X,.Y,0
x(X,,Y,.0)

RS lde + QX Y, 0" 2dW, (3.1

where X, and u(X,,Y,,t) are nxX1 and Y, and x(X,,Y,,t) are mx1, W, is an (n+m) X1 standard
Brownian motion, and (X,Y,1) is (a+m})xX(n+m). (X;Y, are assumed random but
independent of {W };<,c.. We also assume that (3.1) has a unique weak-sense solution for each
h, 0 < h< 1.

We assume that {X} is observable at discrete intervals of length h. As in the near-
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diffusion case, our interest is in estimating {Y,} using an ARCH model of the form (2.4)-(2.5).
As we will see, the results for the diffusion case are identical to those for the near-diffusion case

when [£x . .Ey,.n') is conditionally multivariate normal, i.e., for the model

X X.,Y.,1
Xroh - I . lu( (R ) hb . Ex,m. hm, where (32)
}’l'h ]’, K X,s Y;vt) E]"ph
E:\.’.r‘h 3.3
IX:'Yz - N[ O(mm)xl’Q(X:'Yr't) ] 3.3
Y,t+h

Theorem 3.1. Foreach h, 0 < h < 1, let the diffusion (3.1) possess a unique weak-sense
solution, and let u(), «{3J, and } be continuous. Define G(), ji, and K as in Theorem 2.1,
where G has rwo partial derivatives with respect to £y and Y almost everywhere, and let the
absolute values of G and these two partial derivatives be bounded above by some polynomial in
&y with the coefficients of the polynomial continuous in X, , Y,, and t. Then all the results of
Section 2 thar are valid for the conditionally normal stochastic volatility model (3.2)-(3.3) hold
for the diffusion model (3.1).

Proof: See Appendix.

Essentially, Theorem 3.1 allows us to treat a discretely observed diffusion as if it were
generated by a conditionally normal stochastic difference equation. For example, since the
multivariate normal is eltiptically symmetric, the results of Theorems 2.3 and 2.5 are satisfied
for diffusions.

The major complication that arises in the Proof of Theorem 3.1 is that the moments
required in Assumptions 1-3 may not exist. Even when these moments do exist, proving so can

be quite tedious (see, e.g., the proofs of Theorems 4.3-4.5 in NF), since most of the stochastic
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volatility diffusion models fail the usual "growth condition” (see, e.g., Arnold (1973, Chapter
6, 6.2.5)) that guarantees the existence of arbitrary finite conditional moments.

A better approach is to use a diffusion approximation result that does not require bounded
conditional moments. In the proof of Theorem 3.1, we adopt this approach, based on Ethier and
Kurtz (1986, Chapter 7, Corollary to Theorem 4.1)) in place of NF, Theorem 2.1. NF’s
conditions are easier to check in the near-diffusion case, while Ethier and Kurtz's conditions are
easier to check in the diffusion case.

4. Examples

We next turn to selected examples of the results of the first three sections.
4.1 Conditional Heterokurticity

ARCH models generally assume a constant shape to the conditional distribution—e.g.,
a conditional Student’s ¢ distribution with constant degrees of freedom. There is evidence,
hdwever, that the shapes of the conditional distributions of asset returns may be time-varying.
This is illustrated in Figure 1, which plots standardized residuals éx_l/&, exceeding four in
absolute value, where the 4,’s are generated by a univariate EGARCH model fit to S&P 500
daily returns from January 1928 through December 1990. If the EGARCH model is correctly
specified (or if is a relatively efficient filter), the standardized residuals should be approximately
iid. Figure 1 captures the outliers. It is quite clear that the large residuals clump together over
time—i.e., there are many more outliers in the 1940’s, 1950’s and late 1980°s than during other

periods. The conditional skewness may also be changing over time."'

"' For evidence of time-varying higher-order conditional moments found using other methodologies,
see Bates (1991,1993) and Turner and Weigel (1992).
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To keep things relatively simple, we will next consider a model with changing conditional
kurtosis but constant (zero) conditional skewness. In particular, we consider a model in which
the (scalar) observable state variable x, exhibits both time varying conditional variance (governed
by the unobservable state variable y,) and time varying conditional tail-thickness (governed by
the unobservable state variable »). In particular, we assume that [X,,,',Y,,,']’ is conditionally

multivariate 1'? with 2 + exp(r) degrees of freedom:

xf‘i: xl p’l(x!‘yl’ v!) Ex,hh 1
Y| = |Y| + ‘u'l(xr‘yl'vf) h + Ey_p’l h? 4.1
vl"l‘ vr 'ul(xt’yl’v;) Ev‘Joh

; ; . e empra emp,Az
1.l

gy-l'h ~ MVT,.,. 8 eyﬂplAl A% oA A, 4.2)
v.f-h_ e’ﬂpzAz p3AlA2 A;

To sausfy the regularity conditions and to ensure that the conditional variances are well defined,
the degrees of freedom are bounded below by 2. To enforce positive semidefiniteness on the
conditional covariance matrix, we also require |p;] < I for j=1,2,3 and
1—pi—pi—03+2p, 010, 20.7

Our interest is in estimating both y, and v,. Without the aid of Theorem 2.2, it is by no
means intuitively clear how to proceed: a GARCH estimate of o2, for example, has an

immediate and intuitive interpretation as a smoothed empirical variance, but how does one

2 There are a number of "multivariate " distributions—here we mean the multivariate t with a
common denominator and common degrees of freedom. See Johnson and Kotz (1972, Sections 37.3-
37.4).

1 Note that this is an ARCH model according to the definition of Bollerslev, Engle and Nelson
(1993), though they did not focus on higher-order moments. Certainly, time varying higher-order
moments are "heteroskedasticity” in the sense of McCulloch (1985). Hansen (1992) would call this an
"autoregressive conditional density” model.
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empirically smooth conditional kurtosis? A straightforward application of Theorem 2.2, however,

yields
Theorem 4.1. The asymptotically optimal filter for (4.1)-(4.2) is:
G

I

w, = (EfSS'])"""[(ELSS' ) (E[f(Ey—P)(Ey—P) IN(ELSS'])'? J(EJSS")" 7,
ron A N
P, s E,[ I:gt:"h:l If,,;.;,] = [‘F;:Anl] 51_,.,,8 y,/2

Gre"Em 1

S, = 2grare™) 2
» . (Bt 1

, 2 P, v wS, ,, where

ev, 3+e A e Y, ev' E
- + )= In(l+ iy
e W ) e e 2

(1-p1)AT  (0,-,p)A A,

E(5,~P)E,~P)] = o
(p3 —plp2)AlA2 (1-p2)A;

2+e" 3
2(5+e”) e + 8e" + 15
E[SS’] = 2 ’ r », r
2 ey Ey- e O
e” +~ 8"+ 15 4 2 2 2(e" + 3)e™ + 5)

V() is the Euler Psi (or Digamma') function y(x) = dfin I'(x)}/dx for x > 0.

Proof: see appendix.

4.3)

(4.4)
(4.5)

(4.6)

4.7

4.8)

It seems clear that (4.3)-(4.8) could not have been arrived at by ad hoc modelling

' For given values of », ¥(9) and its derivative ¥'(*) can be easily computed using, for example,
the PolyGamma function in Mathemarica (Wolfram Research, Inc. (1992)). It is also easy to write code
for computing y() and ¥’() using the asymptotic approximations and recurrence relations given in

Davis (1964, formulas 6.3.6, 6.3.18, 6.4.6, and 6.4.12).
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strategies. Ignoring the existence of conditional heterokurticity can have important consequences.
Suppose, for example, that we ignore », and estimate y, using the filter corresponding to a
conditionally normal distribution. When the conditional degrees of freedom 2 + exp(») exceed
four, the filter will still achieve a h' rate of convergence for (§,-y,), but its efficiency can be
very bad (see NF figure 2 and pp. 27-28), a conclusion reinforced by the monte carlo
experiments reported in Schwartz (1994)). When the conditional degrees of freedom drop below
four, the filter breaks down altogether.

It may seem surprising that higher-order conditional moments can be consistently
estimated in a diffusion limit framework, since distributionally, diffusions are characterized by
their first two conditional moments.' To see why higher-order conditional moments can be
extracted, note that if the conditional degrees of freedom process has a diffusion limit, it has (in
the limit) continuous sample paths almost surely and so is asymptotically constant (as is the
conditional variance process) over a vanishingly small time interval [T, T+M,h"?]. Yet over that
vanishingly small interval we see a growing aumber [Myh~'?] of realizations of h~'(x,,, —x),
each of which is (asymptotically as h ¢ 0) conditionally Student’s ¢ with a constant variance and
constant degrees of freedom. We can estimate the variance and degrees of freedom in this case
just as we can in the iid case. The asymptotically optima! filter carries this estimation out.
4.2 Multivariate GARCH Models

A number of multivariate e:gtensions of GARCH have appeared in the literature. In all

of these models we begin with an nx1 observable process {X}ceon .. and its associated

'* More precisely, diffusions with unique weak-sense solutions are characterized by their first two
conditional moments, sample path continuity, and the distribution of the initial starting point.
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innovations process {£x . }i-on...- We assume that E[£x .] = O, and Cov [y 4n] = 9, where
0, is determined by a vector of unobservable state variables Y,. For simplicity, we assume that
{X,.Y,} is conditionally multivariate normal. We will consider a number of GARCH models,
first considering them as data generating process, and then as filters.
The first model we consider is due to Bollerslev, Engle, and Wooldridge (1988).
Considered as a data generating process, this model sets
Qow = + 6::@91 + ahO(EX.HhEX,Hh’) 4.9)
where "O" is the Hadamard (i.e., element-by-clement) product. If @, v, By o are all
nonnegative definite, then as a consequence of the Schur product theorem (e.g. Horn and
Johnson (1985, Theorem 7.5.3)), Q,,, is nonnegative definite. In this model, the ij* element of
Q. is a function only of the ij* elements of lagged £y £x,. Now sety, = h* v, o, = h'?a, and
B, = 1-h"« - h* 0, where § = 3/4 or 1, § is symmetric (but not necessarily positive
semidefinite) and « and vy are symmetric and nonnegative definite. Let "vech” be the operator
that stacks the upper triangle of a matrix into a vector. Applying this operator to (4.9),'
vech(Q,,,) = vech(Q) + h- vech(y) - h- vech(§)Ovech()
+ h'*vech(a)Ovech(§x i spéxsn - (4.9Y
For simplicity, let E[X,,,-X] = 0,x, for all h > 0. If §=1, we obtain the diffusion limit:
dX, = Q2dw,
(4.10)
dvech(f2) =[vech(y)-vech(8)Ovech(@)1dt + A(0Q)2dWy,,

where W, and W, are independent nx1 and mXx1 brownian motions, and m = n(n+1)/2.

'$ The constant correlations model of Bollerslev (1990) is a variant on this model, obtained by
replacing the vech operator with the operator that stacks the diagonal elements of a square matrix into
a vector. The conditional correlations are assumed constant.

28



A(Q) is the covariance matrix of vech(a)Ovech(ZZ'-(), where Z ~ MVN(0,0). Using subscripts
10 denote matrix or vector elements, we can evaluate the terms in A(f}) using the relation
E[Z,Z,ZZ)=90m + %l + 0 (Anderson (1985, Section 2.6, (26))). Note that the
diffusion limit is on the standard (not the fast) time scale.

We now consider the model as a filter: let us reintroduce the possibility of 'fast’ drift by
replacing (4.10) by
dX, = QMdWy,,

(4.10")

dvech() =[vech(y)-vech(§)Ovech({Q)]h*'dt + A(Q)!2dW,,.
We observe X,, X;, X, ..., and wish to estimate {Y,}, where Y, = vech(Q). Clearly if 6=3/4,
the optimal filter sets i = p = 0,,,, and & = & = vech(y)-vech(§)Ovech(f). (If §=1, it doesn't
matter what i and & are set to.) In the proof of 4.2 below, we show that (4.10°) has a unique

weak-sense solution for every h > 0. The other conditions of Theorem 3.1 are easily checked

as well, so the filtering results will be the same as if the data were generated by the system

X:'h = Xx * hlnEX.lvia
Y., = Y, + [vech(y) - vech(8)oY,]h® + hmﬁn’h, where

S xaeh 00| QYY) O, (4.10"")
| X,Y{ = N

Yieh Omxi . Omxn A(Yt)

Since £y,., and £y,,, are conditionally independent, P,,, = Op.,. To compute the score S,
we follow Magnus and Neudecker (1988, Section 15.4):

dIn(REy,., | X, YD) = %vec(dn(r,»’m(lf,)")en(Y,)*]vec(E,,,,,,E;,.h -Q(Y)) (4.11)

Since the etements of the m = n(n+ 1)/2 dimensional vector Y include all the n? elements of €,

we may write, DY = Vec(Q), where D is the n’xm duplication matrix (see Magnus and
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Neudecker (1988, Section 3.8)). This allows us to write

dIn(RE,, , | X,1)) = -é-(dr,)’o’[o(Y,)")eo(Y,)"]Dvech(EX,,hE;,,.,-Y,) (4.12)
50 S, = .;-D/(Q(Y’)—n)®Q(Y‘)-I]Dvech(ExJ,hE;_“,,—Y,) (4.13)
and szh = m:Suh

Now, invoking the moment matching theorem 2.5, we recognize that the optima! filter is the
GARCH Model (4.9°):

Theorem 4.2. Let the daia be generated by (4.10°) with X, observed at intervals of length
h > 0. X,and Y, are fixed. Let Y, = vech{i}). Then the asymptotically optimal filter is
Y.,=7 +-h‘-‘vech(7) - B - vech(8)OF, + h'"*vech(c) Ofvech(ty, skx,es’)-Tl, (4.14)
where £y, = h™?[X,,,-X].
Proof: see Appendix.

Next, consider the GARCH(1,1) version of the BEKK model of Engle and Kroner

(1994), in which
X / / £ ! ’
Qo =1, + BOQ + ; Akl senbrxomng.* g By QB (4.15)

where v, and B, are nonnegative definite, and the A,, and B,, are arbitrary nxn matrices."
To obtain a diffusion limit (on the standard time scale) for this model, we need to put it in the
form "state variables,,, = state variables, + h-drift + h'? noise.” The only terms on the right

of (4.15) not known at time t are the £y ,,£x,,,’ terms, which we may convert to O(h'?) noise

" For notational convenience, we have added the 8,01, term to the BEKK model as presented in
Engle and Kroner (1994). As Engle and Kroner show, this term can be effectively added to their equation
(2.2) by a suitable choice of the B,,’s.
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terms by subtracting {1, and setting A,, = h'* A
X / / X / /
Q.. = v, + B,OQ, + kE [BixQ2, B, +h PA,0,4,] + hm?:l Ay B Q)A, (4.16)
=] -
To obtain a diffusion limit, we need the terms known at time t to satisfy
K
Yo+ BOR, + Y [B,,Q,B,, + h'P4Q,4,] = Q, + O). (4.16)
ka1

Unforrunately, there is in general no way to do this unless the A, matrices are all diagonal, since
the off-diagonal elements create drift terms of order h*?, not the required order h. "Fast" drift
in the sense of section 2 above won’t help, since this would allow drift of order h**, but not of
order h'. If we are willing to assume diagonal A,, then we may set y, = h-y, 8, = I - ah? -
6, a = L., kAl B,, = h'B,, 6 symmetric, and v positive semidefinite. Note that the term
oh'™ in the drift, induced by the diagonal elements of the A,, does not cause any problem,
since it is dominated by the "I" term in 8y, so 3, is positive definite for sufficiently small h. We

now obtain
X

Qui = Q « by -h80Q +kY B/Q,B, + hPaO(E,, ,E7,4-9) @.17)
k=1

which, apart from the B,’QB, terms, is the same as the Bollerslev, Engle and Wooldridge model
of Theorem 4.2, and has the same diffusion limit, with the addition of the [E, ., «B,'B,]dt term.
The G(-) term of the optimal filter is also the same, though the x term of the optimal filter must
now accommodate the new component of the drift. The analysis of Kroner and Ng’s (1993)
"General Dynamic Covariance Model" is similar.

Finally, consider the Factor ARCH model of Engle, Ng, and Rothschild (1990), in which
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K
Q =Q+ Y B.Brr,. (4.18)
k=1

where the A, terms are the conditional variances of certain linear combinations of the X;'s. The
A, terms follow univariate ARCH models. It is clear that the existence of a diffusion limit for
this process depends completely on the existence of diffusion limits for the A, terms. If such
diffusion limits exist, we have
dX, = Q2dW,,
(4.19)

dfd, = Epoix BB AN,
where 1, = Q-+ Ei=1k B'Bc Mo It should be easy to see that if the data are generated by the
diffusion (4.19) with X, observable at intervals h, solving the optimal filtering problem is
equivalent to solving the univariate optimal filtering problems for each of the {\ } processes.

Finally, it is important to note that the form of the optimal filter would change if we did
not assume conditionally normal errors. For example, a stochastic volatility model without
conditionally normal errors could easily have the diffusion limit (4.10). However, the optimal
filters for the sequence of stochastic volatility models would not, in general, correspond to the
optimal filters for the discretely observed diffusion. For example, if (£x,.p.Ey,,0) are
conditionally student’s ¢ with fixed finite degrees of freedom d > 2, the score term will not
correspond to (4.13). For discussion in the univariate case, see NF, Sections 5-6.

5. Conclusion

While we have made progress in the theory of multivariate ARCH filtering, much

remains to be done, particularly consideration of higher-order markov models and the effect of

estimated parameters. In addition, the importance of matrix Riccati equations in our analysis
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strongly suggests a link between our results and the theory of optimal control and linear filtering,
in which such equations also figure prominently. The exact nature of this connection is not yet
clear: unlike the terms in the linear or the extended Kalman filter (see, e.g., Anderson and
Moore (1979)) the G(*) functions that form the basis of our filters are in general highly
nonlinear in both the state variables X and Y and in the innovations £,. In related work, Nelson
(1994) develops asymptotic smoothing theory for ARCH models, and Nelson and Schwartz
(1992) and Schwariz (1994) present monte carlo evidence on the effect of parameter estimation,
and on ftlter performance for smal] but not infinitesimal h.

Perhaps most importantly, specifying the optimal filter requires specifying an underlying
stochastic volatility model. Even in the context of linear models, parsimonious specification of
multivariate systems is nontrivial. It is not likely to be any easier in the non-linear context.

Appendix

Proof of Theorem 2.1. The proof is substantially identical to the proof.of Theorem 3.1
in NF.

Proof of the Corollary. The results are taken from Karatzas and Shreve (1988, Section
5.6). Their (6.12)-(6.13) give the differential equations for by, and V;

dby /dr = —B:b;, + A, (A.1)

dVy Jdr = =B{V;, — VB + C; (A.2)
with initial conditions by, = Q and Vi, = O,,. The unique solutions are given in (2.22)-
(2.23). (2.22) is their (6.10) and (2.23) is their (6.14"). To go from (A.2) to (2.24), take the vec
of both sides of (A.2) using the rule for evaluating the vec of a product of two matrices (see

Magnus and Neudecker (1988, Chapter 2, Section 4, equation (7)). This yields
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(d/dtyvec(Vy )= —[laxa®@Br+B @I, ) 'vec(Vy,) + vec(Cy), (A.3)
which is a standard linear vector o.d.e. with solution (2.24).

Proof of Theorem 2.2. Since there is no variance-bias tradeoff we may consider brb;’ and
V" separately. Clearly (2.34)-(2.35) are sufficient to eliminate biby’, so we turn our attention
to V. Qur strategy is to guess a solution to the minimization problem and then to verify it. To
arrive at the guess in (2.36), we differentiate Trace[byb;’ +Vy] with respect to G(£y, "), drop the
dfy, d§, terms, (naively) treating G(£x, ") as a separate choice variable for each £y (so there are
an uncountable number of choice variables). This yields (2.36). To verify global optimality of
this G(-), we will need the following lemma, (basically a consequence of the law of iterated
expectations).

Lemma A.1. Let 8(-) be an kX1 integrable vector function of £x, X, Y, and t. Then
E[0'(5.X. Y, DEy'] = E[8'(84, XY, T,0)P’].

Proof of Lemma A. 1.

E[98,) = [ 5§20 0k, fGub,| X V. T,1)dE dE (A.4)
= [ J 0 L] % § B SGE £ XY 0aE] fE,| X, Y0 dE, (A.5)
= %[ ¢ PSRE\XY.DEE, = E[6'P). (A.6)

Now we continue with the proof of Theorem 2.2. We will drop time subscripts when it

should cause no confusion. It will be convenient to have a simplér expression for B than (2.9).

Recall that the ij™ element of B is —E[dG/3Y]]. Integrating by parts and using the fact that
E[G] = 0, yields E[dG/3Y]] = —EJ[GS;], so

B = E[GS']. (A7)

Now consider another choice of G, say G = P + wS + H, where H is a function of £, X, Y,
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T, and t satisfying the conditions Theorem 2.1 put on admissible G functions. If the real parts
of the eigenvalues of B = E[GS'] = E[PS'] + wE[SS'] + E[HS] are all positive {as required
by Theorem 2.1) there will be a bounded V that is the asymptotic covariance matrix of the
measurement error process (see Lancaster and Tismenetsky (1985, Chapter 12.3, Theorem 3)).
If V is unbounded its trace is clearly larger than that of w, so we assume that the real parts of
the eigenvalues of B are strictly positive. By (2.25),

BV + VB' - C =0, (A.8)
where by (2.10), C = E{(P + «S + H — £))(P + «S + H — §y)']. Similarly, w satisfies

Bw + wB’ — C = 0, (A.9)

where B = E[PS'] + w;E[SS] and C = E[(P + wS — £y)(P + wS — £y)’]. Subtracting (A.9)
from (A.8), substituting for B, C, B, and C, and simplifying terms (employing Lemma A.1)
leads to

B(V-w) + (V-w)B' = E[HH'], : (A.10)
which is an equation of the same form as (2.25), and has (see Lancaster and Tismenetsky (1985,
Chapter 12.3, Theorem 3)) a solution of the same form as (2.26):

(V—w) = | Sexp(—B- s]E,[HH']lexp[—B'" s]ds. (A.11)
The right-hand side of (A.11) is clearly positive semidefinite, since a sum or integral of positive
semidefinite matrices is positive semidefinite. V therefore exceeds w by a positive semidefinite
matrix. Because of the non-singularity of exp[—B- s], V= if and only if E[HH'] is a matrix

of zeros. Finally, the matrix Riccati equation follows by substituting for B and C in (A.9).

Proof of Theorem 2.3 (a). (2.33) becomes

E:{{¢y—P)y—P)'] = wiE([SS']eor. (2.32°)
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Pre and post multiplying by E{[SS’]'?, we obtain
E{{SS')'"E;[(§y —P)&y —P)']E;[SS')'? = Ef[SS']"?wiEr[SS']"?E{SS']wrEr[SS]'?. (A.12)
Taking symmetric matrix square roots,
[EZ[SS'Y”Ex{(¢y —P)(§y —P)']EL[SS']'?)'? = Er[SS']"szEr[SS']f”- (A.13)
Pre and post multiplying by E;{SS']~'?, yields (2.37).

(b). That P,y = ExfévExJ(Er[£xéx']) ""Exen is Cambanis, Huang, and Simons (1981,
Corollary 5). E{[PS’] = O, follows from Mitchell (1989, (2.4) and (2.7)).

To prove Theorem 2.4 we need the following lemma:

Lemma A.2. Let Ef{SS’] and E;[(§y —P)}(¢y—P)’] be positive definite. Then the matrix
—(E7[PS’] + wyE;[SS’]) is stable—i.e., the real parts of its eigenvalues are strictly negative.

Proof of Lemma A.2. By Kuéera (1972, Theorem 3), a sufficient condition for —(E,[PS’]

+ wE;[SS’]} to be stable is that there exist real matrices M, and M, such that

—E7[SP'] + E{[SS’]'M, and (A.14)
~Ef[PS] + Er[(4y—P)¢v—P)'1 M, ' (A.15)
are stable. For i=1,2, we choose M; = -I,,,./k;, where k; is a small positive number. (A.14)-

(A.15) are now equivalent to the stability of
—E;[SP'] k, — E;[SS’] and (A.16)
—Ef[PS']k; — Er[(#y—P)}¢y—P)']. (A.17)
—Er{(§y —P)£y—P)’'] and ~E;[SS’] are stable by assumption. Now consider (A.16)-(A.17) as
functions of k. Clearly, these functions are analytic, implying that their eigenvalues are
continuous functions of k; (see Lancaster and Tismenetsky (1985, Chapter 11.7 Theorem 1 and

Exercise 6)). This, in turn, implies the stability of (A.16) and (A.17) for sufficiently small k.
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Proof of Theorem 2.4. To prove (2.39), define wr({) as in (2.33"). Differentiating, we
obtainat { = 0,

(Ef[PS'] + wrQE[SS' Ddwr($)/dS + (dwr($)/AIELISP] + Eq[SS'lw(0)) = A, (A.18)
(2.39) now follows from Lemma A.2 and from Lancaster and Tismenetsky (1985, Chapter 12.3,
Theorem 3). dwi({)/d} is non-negative definite and non-null, since A is, and since matrix
exponentials are non-singular. The proofs of (2.40) and (2.41) are essentially identical.

Proof of Theorem 2.5. We have

E[GG’] = E[(P + «S)P + wS)'] = E[ PP’ + wSS’'w + wSP’ + PS'w]. (A.19)

Subtracting (2.33) from (A.19) and simplifying leads to
E[GG'] = E{PP’] + E[(¢v—P)&y—P)] = Eftvy'], (A.20)

proving (2.42). To prove (2.43), note that

E[GEx'] = EPEx'] + wE[SEy'], but (A.21)
, oL AN(E XD |
Eistd = [ % | 20X D %1 ae, (32)
d XY , - -
- Dy e D e XD b, - 0. (A.20)

The interchange of limits in (A.22) is allowed by uniform convergence. So E[G¢x'] = E,[Px']
= E[ttx'] by Lemma A.1, proving (2.43).
Proof of Theorem 2.6. We adopt the same notation as in the proof of Theorem 2.2. In

the case we now consider, H takes the form [0 . (A.11) becomes

IXm,’nIx(m—m,)]

B B | Onsm Omuimma| |B/(s) Bl(s) & (A.23)
! O By(s) BUS)| |Omemxm Erlnn'l| |B)(s) Bl(s)

B, is m;xm,, B, is m,x{(m-m,), B, is (n—m,)Xm, , and B, is (m—m,)X(m—m,). Carrying
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where I?'(S) 1?2(3) = exp[-B-s]. (A.24)
B,(s) B(s)
out the matrix multiplication in (A.23), we obtain
(Vpi-wr) = [ o ByS) Elnw'] By(s)'ds (A.25)
which is a matrix of zeros if for all s3>0, B,(s) is a matrix of zeros. But
exp[—B-s] = Ejo. [(—s)/j!] B, (A.26)

and it is easy to check that Bl is lower block-triangular for all j whenever B is. Therefore if B
is lower block-triangular, B,(s) is a matrix of zeros and \71-_,=wr.l. Since B = E;[GS’] =
E([PS'] + «E[SS'] + E;[HS’], and E;[HS'] is block lower triangular, B is block lower-
triangular if and only if B is. When E;[PS’] is 2 matrix of zeros and w; and E;[SS'] are block-
diagonal, so is B. All that remains, therefore, is to show that w; is block-diagonal whenever
E.[SS’), E;[PS’], and E{[({y—P)((y—P)’] are. Substituting into (2.33), we obtain [, +

wr Uwr, + wraley’ + Uywrs) = Om,x(m—m.)’ where

u 0 a, O
E[S5'] = o vl E[PS'] = o
2 *;

with "0" an m, X(m—m,) matrix of zeros. Since wr,; , U; , wyy , and U, are positive definite,
the eigenvalues of wr,U; and U,w;; are real and positive (Taussky (1968, p. 177)). Applying
the same reasoning as in the proof of Lemma A.2, we see that the real parts of the eigenvalues
of fa,” + U,wr,} and {o; + wy,U,] are positive. This in turn implies that wr, = 0
, - m, X(m—m,)

(Lancaster and Tismenetsky (1985, Chapter 12.3, Theorem 3)).
Proof of Theorem 2.7. To simplify the presentation of the proof, we take p = 2 = 0,

and x = &k = Q_,,. Since the asymptotically optimal filter eliminates asymptotic bias, these terms
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are not of direct interest. We have

Teen - T, = TX p, Yoot +h) - T(X,, Y, 1), and (A.27)
Xeeh = X0 = X(X|+h’t+h) - X(X'l’t) (A.28)
Expanding (A.27)-(A.28) in Taylor series around X,, Y,, and t, we have
ar
Tow = Lo > %'h + %< X)L Y ¢ Oy XYY D) (A.29)
AL LTSN LR (G S AR ADTS)
(A.30)

d d
xroh = xl * Etx_'h + 'é%o{uh_xr) + O(I(Xnk_xnh)uz)

e Foh e | R B 0 E D

where the partial derivatives are evaluated at {X,Y,,t). Note that by Assumption 2 and (2.48)-
(2.49) and the corollary to Billingsley (1986, Theorem 25.12) the moments of higher-order terms

(normalized by h™'?) vanish to zero as h+0, as do the 3T/3t and dx/at terms.

We can now write £y, and £, ., as:
(A.31)

ar or :
B = | Exren * SpEnpaa| hot, £y = -3;‘—( Ex,n + hoOL
where the higher order terms along with their relevant moments, disappear as hi 0. So

Proa = Elt;,.,] Ex‘hh’xt'Tr] = E[‘E‘r,r-k | Ex.mnxr' Y]

aT aT
X, Y) = St * 5P (A.32)

[ |

aT oT
as h&O, P“r,:-h - E[-a?ExJ,}. + E?EY.rck |EXJ0h’

where as in Theorem 2.2, P,,, = E[fy 4] ¢x.s0. X YJ. We have as h40
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; aT | 8T
E[(§,-P)(¢,-P) ] — l:a—:l E[{({,-P)X¢-P) ] [ay'] (A.33)

Again, the existence of 2+4 absolute conditional moments guarantees the convergence
of the relevant conditional moments. Next, note that since the conditions of the implicit function

theorem are satisfied, we have for fixed t,

or ot KLU N,
[a'r} | oY =X [dy} - [del |y 3y X axX [a'r] (A.34)
x| ax| lax| ax| X y-1 dx

Onxm _X- Onxm (a—X.)

So given t, we may treat (X,,Y,) as implicit functions of (x,,T). Similarly, given (X,,Y,,t) or
(x..T..t) we may treat £y ,, as an implicit function of £_,,,. Call the conditional density of £, ..,

given x, and T, ¢(£, .| x.T). Applying the change of variables formula and the chain rule,

0(E, a1 X0T) = fEu | X0 T) ;%{ "\, so the score is (A.35)
Anlp(, .l 1)) _ 3y InlfE,,., X T _ oy , (A.36)
ar ar’ Y ar’ ' :

where §,,, is as in Theorem 2.2. So the Fisher information matrix for {x,,T,} is

3y ay
2T Erss 2L A.37
o 0 g (A3

where E[SS’] is the Fisher information matrix for the {X,,Y,} system. We also have

9T g (pst ] - 9 pips 8 (A.38)

where the last equality holds since E[£4S’] = Opxm—see the proof of Theorem 2.5. Let w be

the solution to the matrix Riccati equation for the (x,T) systcm.‘ From (A.33), (A.37) and
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(A.38),

aT Y= = 3Y q 0T = 0Y §5! aY-
ap i gre  oqm Bl gy equ P 10
ar ar
= SElE-PE-P ] — A.39
SPEIEP G- (A.39)

The theorem is proved if we can show that w = [dT/dY]w[0T/8Y'] where w is as in Theorem
2.2. By (A.34) [dY/3T]™' = 3T/3Y. Substituting for w in (A.39) and simplifying leads to
aTE{PS,] aT | aT ﬂ ar aT

aT 9T, oT  E[sp’ + 91 JE[S570 3L
Gy AlS oGy v speBISP o + gp@EISSle—
ar

PN -t PV 2T (449
Left multiplying by [8T/8Y]~" = dY/9T and right multiplying by [8T/9Y']~! = aY/3T"' recovers
the Riccati equation of Theorem 2.2. By assumption 4 there is a unique nonnegative definite
solution to this equation, so there is for the transformed system as well.

To prove Theorem 3.1, we first need iwo lemmas:

Lemma A.3 (Ethier and Kurtz (1986, Chapter 7, Corollary to _Theorem 4.1))). Let there
be a unique weak-sense solution to the mx1 stochastic integral equation

Z, = Zy+ [4u@)ds + §,0@Z)"aW,, | (A.41)
where {W} is an nx 1 standard Brownian motion independent of Z,, , u(x) ER" and ¢(x) ER™"
are continuous, and Z, is random with distribution function F. Now consider for each h > 0 a
discrete time nx 1 Markov process {,Y,},., . and define for each A > 0, each h > 0, and each
integer k = 0,

Han) = B2 ElGYe s = Y)Yy — Xl < 1) 1WYe=y), and (4.42)

Qualy) = h™® Cov{(Yeur — AY:)'I(“AY&H - nYtII < 1) | \Y,=yl, (A.43)

41



where I() is the indicator function. The initial value ,Y, is random with cumulative distribution

Junction F,. Let

(@) F,(v)= F()as hi0, and for some A > 0, let

®°) par®) — pb).

(c’) Qu,0) = Q). and for every e, 0 < € < I,

@) h°PLYe, — bl > e LW =31+ 0
as h4 0, uniformly on every bounded y set. For each h > 0, define the process {,Z} by X, =
»Yu.n-8; for each t=0, where "[t- h™]" is the integer part of t-h™. Then forany T, 0 < T
< o, iZ}on= {2} as k40, where (A.41) defines {Z}.

We stated lemma A.3 for the case in which x and I did not depend on t. The lemma
remains true in the time inhomogeneous case, however: simply make t an element of Z,.

We also need the following result, which adapts arguments in Friedman (1975, Chapter
5) and Arnold (1973, section 7.1) to the fast drift case. For notational simplicity, we state and
prove it for the time-homogeneous case, but it too is true for the inhomogeneous case (again,
make t an element of A, —but don’t multiply its drift by h='* in the §=3/4 case!):

Lemma A.4. For every h, 0 < h < 1, let there be a unique weak-sense solution to the
nx1 equation

No= N+ HYf v ds + [ 5o\, (4.44)
where v(') and o(-) are continuous, {W} is an nx 1 standard Brownian motion independent of
Mo For each N > 0, define the stochastic integral equation

Mo = Mo + B[ o uphyJds + 9’N0\N.:)mdwx . (4.4)

where Ny, = N, if [N < Nand Ay, = 0, otherwise, (4.46)
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s =vN i M <N vy =v0-(2-| NN if N[N S2N, vy=0,,, otherwise. (4.47)
en™N =) if [ M| SN, ouN =e\)-(2-IN[/N] if N< | M| <2N, 0y =0,., otherwise(4.48)
Then for every integer j = 1, there is a continuous function M,(\,N) and an h" > 0 such thar
forevery h, 0 < h < 1", E({ Ny idi | ¥\ < MO\, JN)H almost surely.

Proof of Lemma A.4. Note first that for every N > 0 anci every h > O, the drift and
diffusion coefficients of (A.45) are bounded and continuous, so there will be a Ky such that
VADE + oM < Ky + AP (A.49)
Assuming h < I, (A.49) implies
1AMy M + o MR < BTPKR(1 + 1AP) (A.507)
This is the familiar "growth condition (e.g., Amold (1973, Theorem 6.2.2)) which is satisfied
for the {Ay,} process even though it may not be satisfied for the {\} process. We do not need
to assume the usual Lipschitz condition, since weak (as opposed to strong) existence and
uniqueness of solutions to (A.44)-(A.45) is enough for our purposes. Keeping h~'* outside the

integral and carrying out the steps in the proof of Arnold (1973, 7.1.3) leads to _

E[1A,,1%] s (1 + A, 1¥)expl2j@j+DKgh ¥(t-5)], 0ss<t. Now (A.50)

. - +k "I
EMhy =y, = EJRS[ 0@, )ds [ oy, )aW ¥

: (A.51)
w4 [roR A
< Ef 7 vy )ds + 1 ey, )aw, 1Y
By Jensen’s inequality and the convexity of x¥ for positive integer j,
. _; +h . i i .
< 2 REL[" Iy A ) MY+ BN o W (ASD)
By the integral means inequality (Hardy, Littlewood and Pélya (1952, Theorem 192))
i _: +A . . " R
R TE[ v Ay )1 < 23R [ () s (A.53)
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By Jensen’s inequality and (A.49)
< 2¥rpyn-r gy f""‘E‘(pl(Am) 1¥)ds (A.54)

Substituting from (A.50) into the integrand and integrating yields, for sufficiently small h,

R PE ([ o Ry dsWY s BI(L+ 1A, P 29K : (A.55)

bounding the first term on the right-hand side of (A.52). To bound the second term, we first

apply Friedman (1975, Corollary 4.6.4):

. toh : o 453 +h
VN oMy AW, < 29 1[5}{—1 Y[ ElofAy) Pds (A.56)

Just as we did with the first term in on the right side of (A.52), we may bound E,| ¢y, |¥ using

(A .49), substitute into the integrand and integrate, obtaining

- . Py H .3 . -
22j—lEer( hger‘dW, ¥ < 22}-1}‘1]{;![24_'1?]1(3 + 2”'5';'2)) (A.57)
f J—

completing the proof of the lemma.

Proof of Theorem 3.1. We will prove the theorem for 6=3/4 (the §=1 case is similar but
simpler.) As indicated in the text, we will use Lemma A.3 in place of Theorem 2.1 of NF. Note
that the conditional moments are truncated by the I(|,Y,,, — hYkH < 1) term. This implies that
only the local properties of the {,Y,} process enter. Suppose, for example, that Y, = \,,, where
A, is the diffusion in Lemma A.4. Then provided that N > 1 + [ Ay, all the conditional
moments in (b’)-(d") are exactly the same ;15 if we had defined ,Y, = Ay, where {Ay,,} is the
diffusion defined by (A.45)-(A.47). In fact, if | A]] < N, the transition probabilities for {Ay }
and {\} are the same on the interval [0,7,], where the stopping time 7, = inf{ t > 0: I])\‘

> N} (see Stroock and Varadhan (1979, Theorem 10.1.1).) Since the required convergence in



{(b)-(d’) is uniform on compact subsets of R***" (not on all of R**?*™) it will be enough to prove
that the theorem holds for the diffusion {Xy,,Yy,} for all N > 0.
Truncating the coefficients of (3.1) in the manner described in Lemma A.4, and writing

g for p(X,, Y1) and similarly with xy, and @, we have

X c ¢ dw.
i R s P ”} (A.58)
YNJ Ky, Cnaty Swoay sz_,
[ag c
where | " 2l 5o | (A.59)
Cnaty Ca2ayg
- +h t+h
Xypon = Xy v B0 [ Ty ds f' (Cpr1, 4Py, *Cyp W,y ) (A.60)
_ teh teh
YN.nh = YN,;+h Ii4f' KN,sds + fr (chuqu+cN22;dW1") (A.61)

That E, || h-"*(Xy,,,-X) | and E, | h="%(Yy,.,-Y) | % are bounded for j = 1 is immediate from
Lemma A.4. That h™"?P{ | (X .- X)",(Ynss-Y)' | > €] converges to zero uniformly on compact
subsets of R"*™ for every € > 0 now follows from Markov's inequality (e.g., Billingsley (1986,
(5.27)). Next, take [ (X,',Y,)]| < N-1, and define fyx,,p» and Exy.op 25

r - teh - _ ok
Envxen =H 3/4[( (Bys—B)ds + h lﬂf (cN.”;qu+cMu"dW2_') (A.62)

- 1k
Enren = A lﬂf‘ (Cuz1 28V *Cypy (AW ) (A.63)

Now define EN'X.H,, = h™'? [ 1*"Cy,, AW, + Cy12.dW,,). Note that given time t information,

Enxaen i gaussian, since Cy ;. and Cy,. are held constant in the integrand at their time t
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values. Next, expand Q,,,-Q, around fo,+h='$-N Xa+n and Y, =Y.

- - 1+h
Q..h—Q = h”“G(EXJQﬁ’X Y t) - h LA
aG oG i [ivh
S ayQ n 9k, = Gy Exm) + h mf (K, - xy,)ds
+ higher order terms,

" Crz1 Wy, * O W)
(A.64)

where the partial derivatives are evaluated at <Ex,|+h)X1,Y‘,t). As hio,
h=2 § 1 YCy 5, dW, +Cy 1, dW, ) converges weakly to the conditionally gaussian random
variable E‘._Hh = h™'? [ *YC,, dW,,+Cy, dW,,) (NF Lemma (A.1)). By Lemma A.4, for any
N, b2 § *YCy 4, ,dW, ,+Cy 2, ,dW,,) has arbitrary finite moments, so its conditional moments
converge to the corresponding conditional moments of Ev.un (Billingsley (1986, Corollary to
Theorem 25.12)). Similarly, £y x,.» (and its conditional moments) converges to Ex,m. {and its
conditional mom'cnts). This moment boundedness (along with the polynomial bounds on G and
its derivatives) ensures that the expectation and variances of the higher-order terms in the Taylor
series expansion vanish as h40. Finally, this conditional moment boundedness also insures that
h™'E[ § i*"k-xy)ds] and h™'E[ | ©*%(a-uy,)ds] converge, respectively, to (k-x) and (fi-p).
Define the random variable 1,,,, = 1 if (QuyQ)»KiunX) . (Yien-Y)'| > € and = 0

otherwise. We then have

-0)- - (k- -4) + QG—
ElQuy-Q) 4y 1)) = (%) + El aﬁxm*. k) + Elgyle (A.65)

E,[(Q,,A“Q,)(Q,.h_Q,)"Il,,.[.] - E;[(G(Ex‘ph'xp t) Ey,uh)(G(EXgoh' 1 r’t) EYJ*h)’]

and for alt ¢ > 0, E[I,,,,] = 0 by Markov’s inequality. Because the moment bounds delivered
by Lemma A.4 are uniform on compact (X,Y) sets, the convergence of these conditional
moments is uniform on compacts, as required by Lemma A.3, completing the proof.

Proof of Theorem 4. 1. First we need a minor modification of NF Theorem 2.1. Condition
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(d’) required the existence of a A > 0 and § > O such that for every A > 0,

limy,o sup o B ELLY,, - Y 8 Y=2] ~ 0. (A.66)
We can, however, replace this with the condition that there exists a A > 0 such that for every
A > 0 there exists a 8, > 0 such that

lim, ;; Supycs B E[ “kYtol_hYklz’aA!hYk =y] - 0. (A.67)
The proof of NF Theorem 2.1 is unaffected by this change. (This allows us to define the
conditional degrees of freedom as 2 + e’ rather than as, say, 2.01 + e”.)

(4.5)-(4.7) are routinely derived from the multivariate t density. Once the assumptions
of Theorem 2.2 are verified, (4.3)-(4.4) and Assumption 4 follow from Theorem 2;3. To derive
(4.8) we made use of Prudnikov et al (1986, p. 505 formulas 53 and 56) and Davis (1964,
formulas 6.2.1 and 6.3.5). The existence of the conditional densities in Assumption 3 is obvious.
For bounded »,, the conditional degrees of freedom are bounded away from both 2 (assuring that
(2.31) is satisfied) and o (bounding S,,, and so assuring that (2.32) is satisfied). 2+5 moment
boundedness of S,,, and P, in turn assures that (2.15) is satisfied. A in Assumption 1 is
trivially O,.,. B and C are derived for the optimal filter in the proof of Theorem 2.2. (2.11)-
(2.12) follow from carrying out the Taylor series expansion in (2.7) and making use of the 2+4
moment boundedness of P,,, and S,,,.

Proof of Theorem 4.2. Most of the work was done in the text. All remains is to
demonstrate that the conditions of Theorem 3.1 hold. A(2(Y)) and [vech(y)-vech(&)@‘{]h"‘ are
clearly continuous, so we need only demonstrate weak-sense uniqueness of the solution to (4. 10")
for every h > 0. Clearly (Y} and [vech(y)-vech()OY]h®~! are twice differentiable in Y. Since

A(Q) is the covariance matrix of vech{a)Ovech(ZZ'-Q), where Z ~ N(O,,,,0), and
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E(Z,ZZ,Z. = Ol + G, + O, AG(Y)) is twice differentiable in Y as well, thus
satisfying Condition A of Nelson (1990, Appendix A)). Applying Nelson (1990, Theorem A.1),
the proof of weak sense uniqueness is complete if we can show that for each h > 0, there exists
a nonnegative twice differentiable function ¢(X,Y,h) such that

lim o(X,Y,h) = oo, (A.68)
§X.Y)|>e0

and for some A > 0,

n

_ +1 o 29, lyy, e A.69
)j(f miY,) 2220”3):3}{ ZZEAUaYayslqa(XYh) (A.69)

i=1 isl j=1 i=} j=l

where f = vech(y) and m = vech(f). The function we use is

e(X.Y.h) = [1 +z:n -exp(-X, 11 X,| + 2[1 exp(-Y; )] |¥, |1 A~ (A.70)

inl

As required, ¢(X,Y,h) is twice continuously differentiable in X and Y and satisfies (A.68).
3plaXdX;, = 0%p/dYdY; = O for i#j and &*¢/dXdY; = O for all i, j. When |X;| is large,
p/dX; = (21 + OX; K™, Pe/dX? = O(|X;|?), and when |Y;| is large, d¢/3Y; = (£1
+ O(]Y;|)h™", and /0¥ = O(]Y,|)h~'“. Note also that the elements of 0 are linear in
the elements of Y, and that the elements of A are linear in YY; terms. It is easy to see
therefore that (A.69) is satisfied for sufficiently large Y,'s. The constant term in ¢ ensures that
for sufficiently large A, (A.69) is satisfied for small Y;'s.
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