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1 Introduction

Specification testing has become commonplace in econometrics, both as a means of testing
economic theories which predict specific functional forms and as a regression diagnostic.
Early specification tests,! although useful in many settings, are not consistent i.e., there
are alternatives which they will fail to detect regardless of the amount of data available.
Partly in response to this concern a large recent literature has examined the behavior of
specification tests which exploit nonparametric techniques.? The literature considers a
variety of techniques including series estimation, spline estimation, and kernel estimation
to test a null (parametric) model, with some of the tests having been shown to be consistent
against all alternatives.

Our approach to testing a null model y; = f(z;; @) + u; employs test statistics based
on quadratic forms in the model’s residuals, 3~ w;;i;%;. One intuition is straightforward:
quadratic forms can detect a spatial correlation in the residuals which would result from
a functional form misspecification. We provide general conditions sufficient to ensure that
the test statistics will be asymptotically normally distributed under the null and will be
consistent, explore the finite sample performance of specific implementations of the test via
Monte Carlo simulations, and present an application.

Much of the previous literature on nonparametric specification testing has been mo-
tivated as testing the orthogonality between a model’s residuals and an alternative non-
parametric model.> QOur testing framework can also been seen in this light. Consider a
nonparametric estimator § = Wy, e.g., kernel, spline, series, or other linear smoother. A

Davidson-MacKinnon style test of orthogonality with § as the misspecification indicator

!See, for example, Ramsey (1969), Hausman (1978), Davidson and MacKinnon (1981), Newey (1985),
Tauchen (1985), and White (1987).

ZWork in this vein includes Azzalini, Bowman, and Hirdle (1989), Bierens (1982, 1984, 1990), Bierens
and Ploberger (1997), de Jong and Bierens (1994}, Delgado and Stengos (1994), Eubank and Spiegelman
(1990), Fan and Li (1996), Gozalo {1993) Hérdle and Mammen (1993), Hidalgo {1992), Hong and White
(1995), Horowitz and Hirdle (1994), Rodriguez and Stoker (1993), White and Hong (1993), Wooldridge
(1992), Yatchew (1992), and Zheng (1996).

3This, for example, is the approach of Hong and White (1995), Eubank and Spiegelman (1990}, and
Wooldridge (1992).



would be of the form:
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The first term is a quadratic form in the residuals. The second measures the orthogonality
between the residuals and something that is of the form of an estimate of X and should be
small. Hence, we can think of a quadratic form test with a weight matrix W as similar to
an orthogonality test with Wy as the misspecification indicator.*

We hope that our approach may be seen as useful for a few reasons. The construction
is general and transparent, allowing researchers to base tests on a variety of nonparametric
estimation techniques and to easily tailor tests to detect various types of misspecification,
if desired. The tests have good local power and in simulations appear to have reliable size
in small samples. The framework is also well-suited to the application of standard binning
techniques and thus allows for tests which are undemanding computationally.

The remainder of the paper is structured as follows. Section 2 introduces the class of
quadratic form test statistics with which we shall be concerned and establishes their asymp-
totic normality with correct specification in a fairly general environment. Several specific
implementations are then discussed, including one based on a kernel regression estimator
which is similar to the test which was independently proposed by Zheng (1996). Potential
finite sample corrections are also discussed. Section 3 contains a fairly general theorem
establishing the consistency of the tests. With an appropriate kernel implementation the
local power of the tests is equal to that of the best of the prior and contemporaneously
proposed tests, e.g. Eubank and Spiegelman (1990) and Hong and White {1995), and is

superior to that of many other approaches.® Section 4 presents the results of several sets

4A previous version of this paper showed the equivalence between a quadratic form test and an othogo-
nality test in some {but only some) situations.

5The one test we are aware of which has slightly better local power is that of Bierens and Ploberger
(1997} which is consistent not only against local alternatives which shrink at a rate slower than N V2 put
also against local alternatives which shrink at a rate of exactly N™/2,



of Monte Carlo simulations which examine the power of our tests and the reliability of the
asymptotic critical values in finite samples. In a comparison with several other tests, our
tests (with the suggested finite sample corrections) appear to have an advantage in the
finite-sample accuracy of asymptotic critical values, and perform fairly well also in terms of
power. Simulations also suggest that the degradation in performance when one uses a bin
implementation of the test is moderate, so that such a test may be a reasonable choice for
some applications. Section 5 presents an application involving a model of gasoline demand,
which serves to illustrate the performance of the test, the finite sample correction, and

binning in a practical setting.

2 The Test Statistic: Definition and Asymptotic Distribu-
tion

We first introduce a general class of specification tests for a nonlinear regression mode! and
prove that the statistics are asymptotically normal under the null. We then discuss several

special cases in more detail to illustrate the utility of the framework.
2.1 General definition and asymptotic normality

We will be concerned with testing the specification of a nonlinear regression model of the
form E(y:|X) = f(zi;a). We explore procedures consisting of two steps. The null model
is first estimated by some /N-consistent procedure producing residuals @. Test statistics
based on a quadratic form @' W4 are then formed. Large positive values of the test statistic
indicate misspecification.

We begin with a very general proposition which defines a class of test statistics Ty
and gives their asymptotic distribution. Given conditions on the eigenvalues of the weight
matrix, the quadratic form test statistics are asymptotically normal. We would like to
emphasize that Proposition 1 is applicable not only to consistent tests, but also to quadratic
form tests tailored to detect particular forms of misspecification.

To state the proposition, we need a few definitions. The matrix A is said to be nonneg-

ative if each of its elements is nonnegative. For an N x N matrix A, we write r(A4) for the



spectral radius of A defined by

A
r(A)= sup M
VERN v£0 ”U“
When A is symmetric with eigenvalues |y1| > |y2| = ... > |yn], it is well known that

r(A) = |y1]. Define
s(4) = (3 a2
1,3

When A is symmetric, it is easy to see that s(4) = (312

Proposition 1 Suppose y; = f(zi;a0) + wi, where {x;} is a sequence of i.i.d. random
variables having compact support D C R4, and {u;} is a sequence of independent random
variables with u; independent of T; for j # 1, E(uilzi) =0, 0 < a2 < Var(ui|z;) < 7% < oo,
and E(u}|lz;) < m < oo for all i and x;. Assume also that f : D x R — R is twice
continuously differentiable. Let &y be a V/N-consistent estimate for ag. Define iy =
yi — f(xi;@n). Write &V for the N-vector (yn, ..., dnn), and UV for the N x N diagonal
matriz with iith element 4;y. Let Wy : DV — RV? be a Sfunction associating a symmetric
N x N matriz to each realization of (zy...xzn). Suppose that wy; =0 for i =1,2,..., N,
r(Wy)/s(Wy) < 0 as N — oo, and that FSCy - 0 as N — oo. Let

Tu ,&NfWN,&N
N Bs(ONWNUN)

+ FSCp.
Then, Ty = Z ~N(0,1).8

Remarks:

1. Proposition 1 shows that Ty converges to a standard normal when r(Wyx)/s(Wx) =2 0.
We will see in sections 2.3 and 2.4 that this condition is automatically satisfied given
appropriate regularity conditions when W is a matrix of bin or kernel weights. For any

other sequence of weight matrices, one can always try to apply Proposition 1 directly by

®We take this opportunity to explain a few of the notational liberties we will take. First, we will normally
write Wx for the matrix Wi (z,1,. .., zn). Note that Wi is stochastic when {z.} is stochastic. Second, we
will often drop the N subscript or superscript when no confusion will arise. For example, the elements of
the matrix Wy will be written w;, and the vector u” will often be simply u. Finally, to refer to the matrix

of explanatory variables in our models, we will sometimes use the notation zV¥ and sometimes X, depending
on the context.



just computing r(Wy)/s{Wy) and seeing if it approaches zero. In any case, it may be useful
to compute the ratio r(Wy)/s{Wx) and see how close it is to zero to get a rough idea of
how far the statistics may be from normal in the given finite sample. For the particular
implementations of the test reported on in Table 1 of section 4.1, the true size of a test with
5% asymptotic critical values is between 4% and 6% in each of the parameter combinations

for which r(Wx)/s(Wy) is less than 0.4.

2. The term FSCy in the test statistic is a finite-sample correction. The most straight-
forward application of Proposition 1 would be to the development of a consistent test for
misspecification of a linear regression model (with a constant). For such an application
with X the matrix of nonconstant explanatory variables and with Wy being a weight ma-
trix such that Wiy is a consistent estimator of f (such as a matrix of kernel weights) we
recommend and use in our Monte Carlo study the correction

1+ rank(X)

V2s(Wn)

While the use of nonparametric specification tests is often motivated by a desire for

FSCy =

consistency, at other times an applied econometrician might want to use a nonparametric
test designed to detect specific forms of misspecification. For example, one might be partic-
ularly interested in nonlinearity in one variable or in the presence of an omitted variable.”
Qur more general recommendation for such cases would be to use the correction

Theobe

FSCy = ,
N V2s(Wy)

where i is the coefficient on X. (the k' explanatory variable in the null model) in a
regression of Wy X, on X (and a constant) and (o is the constant term from a regression
of Wylxy on X. We provide motivation for our suggested correction in section 2.2 and

discuss its performance in simulations in section 4.1.

3. Several of the restrictions on Wy in the proposition should not in practice limit its

applicability. For example, if one wants to base a test on a matrix W which is asymmetric,

"Chevalier and Ellison (1997), for example, use a quadratic form test to investigate whether a regression
is nonlinear in one of several independent variables.



one can instead base a test on W§ = (Wy + Wy )/2, which is equivalent because #'Wyi
and @' W} @ are numerically equal. If one wants to base a test on a matrix whose diagonal
elements are not all zero, one can set W n equal to zero on the diagonal and equal to Wy off
the diagonal and instead base a test on @'W yii. In either case, of course, applying the the-
orem requires that one check that the appropriate ratio (r(Wg)/s(Wg) or r(Wn)/s(Wx))
converges in probability to 0.

Proof

To begin, we note that an elementary probabilistic argument shows that it suffices to
prove that the result holds whenever {z;} is nonstochastic and r(Wy)/s(Wn) = 0as N —
oo. To see this, apply Lemma 1 (which is presented in the appendix) with ay(z?V) =
r(Wy)/s(Wn) and ty(zV,uV) = Ty.

To show that T L 2N (0,1) when {z;} is nonstochastic and r(Wy)/s(Wn) — 0
we use three additional lemmas which are presented in the appendix. First, a central limit
theorem for quadratic forms, which is similar to a result in de Jong (1987) and is presented

as Lemma 2 in the appendix, implies that

uNIWN,uN
V2s(ENWyEN)

£, Z ~N(0,1),

where £ is an N x N diagonal matrix with the #th element equal to the standard deviation
of u;.
Two additional lemmas then let us conlude that Ty also converges in distribution to a

standard normal. The conclusion of Lemma 3 is that

VWi — VMWV

0,
V(SN WSy
which implies that
ﬂN’WNﬂN c
Z ~N©,1).
VS(EVWREN) ©.1)

Lemma 4 establishes that
272 =2
ij Wi WiNUiN
s(ENWyEN)2

P 1’

which implies that
’&N’WN’&N
V2(UNWATN)

£, Z ~ N(0,1).



We have assumed that FSCy ~ 0 so this implies Tyr Lz N (0,1).

QED.

Intuitively, the reason why a quadratic form in the residuals is asymptotically normal
is that any symmetric matrix A can be written as A = ®'AP with A diagonal and $ the
orthogonal matrix of eigenvectors of A. If u is a vector of independent random variables

we then have

wAu = /& Adu = vAv =D Nt}

where v = Qu is a vector of uncorrelated random variables. We thus have that «'Wu
is a weighted sum of the squares of a set of uncorrelated random variables, and this is
asymptotically normal provided the square of the largest weight (which is equal to 1(A)?)

becomes arbitrarily small compared to the sum of the squares of the weights (which is equal

to s{A)2).
2.2 Motivation for a finite-sample correction

The form of our suggested finite-sample correction, FSCy, is motivated by an analysis of
the finite sample mean of the numerator of the test statistic in the simplest case — the

parametric null being a linear regression with homoskedastic errors estimated by OLS. In

this case we have

E@@Wi) = E@'(I- Px)W(I — Px)u)
= E(uWWu)— E(uWPxWu) — E(W'W Pxu) + E(u' PxW Pxu)

= —a’Tr(PxW) = —a’Tr((X'X)" ' X'WX).

(The last line follows from repeatedly applying the identities E{u’Au) = o2Tr(A) and
Tr(AB) =Tr(BA).)

Writing X for WX, the k™ diagonal element of the matrix (X' X) 1 X'WX is simply the
coefficient on X.; in a regression of X ., on X. This motivates our more general suggested
finite sample correction. When W is the weight matrix corresponding to a consistent
estimator, X. ; will approach X. % as N — co (under appropriate conditions), and hence each

of these regression coefficients should approach one. The simpler finite sample correction we



recommend for such W is motivated by there being 1+ rank(X) such regression coefficents

when X is augmented by a column of ones.
2.3 A special case: the kernel test

The proposition of the previous section identifies the asymptotic distribution of a broad
class of test statistics. Recall that one motivation for looking at a statistic of the form @' Wi
is that it is similar to a test of orthogonality between % and the nonparametric estimate
gy = Wy. A typical application of our framework suggested by this motivation is to take
the matrix W to be the weight matrix from a kernel regression of y on X.

An easy application of Proposition 1 shows that a test statistic formed from kernel
weights is asymptotically normal given very minimal restrictions on the kernel and the rate

at which the window width shrinks to zero.

Corollary 1 Lety, f, {z;}, {w}, &, 1, U,D be as in Proposition 1. Suppose also that
the distribution of x; has a twice continuously differentiable density p(x) > p >0 on D.

Let the kernel K (z) be a nonnegative function satisfying fps K (z)dz = 1 and [, K (z)%dz <
oo, and define Wy by

K(1/hn-(2i—z;)) e g A —
vy = | TRty i 5 and T Ky (m =) > 0
otherwise

Let W§ = (Wn + WY)/2. If Ay — 0 and Nh% — oo then

YWy 1+d
VE(ONWEONY * /2s(W5)

Tn = £, 2~ N{(0,1).

Proof
Clearly w§; = 0, so it suffices to show that r(W})/s(W%) —— 0and (1+d)/v2s(W§,) -

0. Note first that because W and W’ have the same eigenvalues,

LW +Whioll 1 [Wae| (1 [Whe| 1 /
r(W§) =sup = N~ < —sup = sup L = (W )+e(Wh)) = t(Way).
W= Tl TSRl Tl o 2tV
Also, because K is nonnegative
i .\ 2 1
(VR = 50 (L) = oWy + 5 S wiguns 2 oW
i ij

8



Hence it suffices to show that r(Wx)/s(Wx) -2+ 0 and 1/s(Wx) <= 0. Let W} be the
N x N matrix with w} = 1 if the i row of Wy is identically zero and wj; = w;; for all
other 4, j. W is a Markov transition matrix so r(Wy)} < r(Wy) = 1. Hence, we need only
show s(Wy) - oo.

We show more precisely that s(Wy) = Op(h~%2).

d 2 _ 1~ Ep K ((mi - z5)/k)?
h S(WN) N zl: [Ej;éi N_lhch((-'Et —Iﬂj)/h)]2

1 _ 1 -
= NZP(I;) lj;ed K(S)2ds+ﬁZZiN

where Zjy = %’,ﬁ — p(z:) 7! fpa K(s)%ds with a;nv = D F%K((mi —z;)/h)? and by =
2 it ﬁ;K((m,— —z;)/h). The first term on the RHS of the equation for h%(Wy)? has plim
Tpp(x)p(x)ldz fge K{s)?ds = p(D) fpa K(s)?ds (where p(D) is the Lesbegue measure
of D). This is finite and nonzero, so it will suffice to complete the proof to show that
% Ei ZiN - 0.

To see this, note first that Z;n,..., Zyy are (nonindependent) identically distributed
random variables. Hence, E (,—1,— ¥, z,-N) = E(31n) and Var (% ¥, z,-N) < Var(sy). It
thus suffices to show that E(Z;5) — 0 and Var(Zy}) — 0 as N — oco. Next, observe
that byy is (N —1)/N times a standard kernel density estimate of p evaluated at 1. Given
that K is nonnegative and fp. K(r)dz = 1 it is a standard result (c.f. Theorem 3.1 in
Devroye (1987)) that [}, [bin(z1) — p(z1)|dzy; 2 0. Similarly, @, is like a kernel density
estimate, but with the function K? playing the role of the kernel integrating to fa K(s)?ds
instead of to one. The assumption that this integral is finite thus allows us to conclude that
[plain{z1) = p(z1) Jga K (s)%ds|dz; -2 0. Because p(z;) is bounded above and bounded
away from zero on D, these two conditions clearly imply that Zjy —— 0. (Given an € we
can choose N so that on a set of z;’s of high Lesbegue measure, there is a high probability
both that @y (z1) is close enough to p(z1) fra K(s)ds and that bin(z1)? is close enough to
p(z1)? to make #1x close to zero.) Finally, observe that by construction %,y is bounded by
—p ! fpe K(s)%ds < Z15 < 1. Hence 31y -2~ 0 implies E(z1x) — 0 and Var(Zin) — 0
as desired.

QED.



Remarks:

1. The test described in Corollary 1 is quite similar to the test which was independently
proposed in Zheng (1996). The principal difference is that the density weighting of the
various terms in the quadratic form differs because we have made each row of the weight

matrix sum to one rather than using raw kernel weights.

2. The form of Corollary 1 reflects a desire to provide a straightforward example of how
Proposition 1 might be applied to establish the asymptotic normality of a class of test
statistics and thereby eliminate the need to examine the weight matrices directly. Some
assumptions have been made purely for convenience. For example, the assumption that the
kernel is nonnegative is used only because it makes it easy to conclude that Xoij WiWii >
0 and that r{Wy) remains bounded as N — oo. If one wanted to use a kernel which

was sometimes negative, a variety of other assumptions could be added to obtain these

conclusions.®

3. The calculations in the proof illustrate our earlier comment that nonparametric test
statistics may converge to their asymptotic distributions very slowly. The fact that s(Wy) =
Op(h_d/ 2) implies that our recommended finite-sample correction only tends to zero like
h%/2. 1f, for example, one is testing a model with one explanatory variable and chooses
hy = hoN‘lfs, our finite sample correction term will only vanish at the rate of N_I/m;
with two explanatory variables and hy = hoN~=1% it tends to zero like N=1/6.% Finite

sample corrections may thus be important not only when working with small datasets, but

even when hundreds of thousands of observations are available.
2.4 “Binning” and other tests

The testing framework can accomodate a wide variety of weight matrices. The orthogonal-
ity test motivation points to a number of possible choices: W could be the weight matrix

corresponding to any smoother of the form Wyy. This includes kernel regression estima-

SWithout the assumption that the kernel is nonnegative, an additional assumption, e.g. fnd | K (z)]dz <
oo, would also be needed to ensure that the kernel density estimates used in the proof are consistent.

®Local power calculations presented later will suggest using window widths which shrink even more
slowly.

10



tors, as well as k-nearest neighbor estimators, splines, orthogonal series estimators, and
convolution smoothing.!® The notion of a quadratic form test detecting spatial correlation
in the residuals suggests other possibilities. For instance, if one suspects nonlinearity in one
of several X variables, one could choose weights which depend only on differences in that
one variable. Such a test is not consistent of course—misspecifications in other X variables
could go undetected—but it may have better power in detecting that particular form of
misspecification.

One simple alternate implementation is a “bin” version of the test.!! It may be obtained
by dividing the data into m(/V) bins and setting all nondiagonal weights equal to each other
inside the bins and equal to zero outside the bins. In contrast to a kernel test statistic, which
requires O(N2h) computations, a bin test statistic requires O(N) computations. An O(N)
computation of the test statistic and general conditions sufficient to ensure its asymptotic

normality are described by the following corollary.

Corollary 2 Lety, f, {z;}, {wi}, &, i, D be as in Proposition 1. Suppose also that each
z; is drawn from a distribution with measure v on D.
Consider a sequence of partitions { Pew } with D = PiyUPnU. . VP NNy PenNPin =
@, k# j, m(N) — oo, and N infg v(Pyn) — co. Write Cyy for the random variable giving
. . C
the number of elements of {z1,...,zn} which lie in Pen, SN for (Crotoon>2 a{‘f_ﬁ)l/z,

and Vyn(n) for 3; stzicPy Uin- Define
Vin (1)2—Vin(2)
TN — ZkS‘E.GkNZ2 AN CkN—lICN 1 + d

-+ .
(2)2_ ( 2 1/2 2
(2 Zka.t.CkN_>_2 VkAECkN—‘ﬁN : ) \/_SN

Then Ty £+ Z ~ N(0,1).

The proof of Corollary 2 is presented in the appendix.!?

19See Hirdle (1990) for a discussion of the weight matrices corresponding to the estimators mentioned
above and others.
'1See Tukey (1961) and Loftsgaarden and Quesenberry (1965) for early discussions of computationally

simpler smoothing estimators, such as the regressogram. These estimators would result in a weight matrix
similar to that which we suggest for the bin test.

2Tf one wishes to use bins which are based on finer and finer divisions of only one, or more generally z,
of the X variables, the (1 4+ d) term in the finite sample correction could be replaced by (1 + 2).

11



3 Consistency and Local Power

An important motivation for nonparametric specification testing is that parametric tests
will fail to detect departures from the null in certain directions. In this section we verify
that, given fairly general conditions on the choice of a weight matrix, the tests described
in the previous chapter are indeed consistent.

As is standard, we consider whether the test can detect alternatives gy(x) which ap-
proach f(x;ag) as N — o0, e.g., gn(z) = f(z;a0)+N"%e(x) with £ > 0 and e(x) orthogonal
to the space of null functions f. The proposition shows that if the alternatives do not ap-
proach the null too quickly, i.e., if £ < £, then the test will detect the alternative with
probability one. Only two fairly weak conditions on the weight matrix are required: that
the eigenvalues satisfy r(Wy) = 1 and s(Wy) - oo, and that the nonparametric estimator
én(z) = Wye(z) have a mean squared error smaller than the function being estimated.

These conditions are satisfied for bin and kernel weight matrices, among others.

Proposition 2 Suppose y; = gn(2:) +w; with {x;}, {w}, %, U, D as in Corollary 1, and
gN : D — R a sequence of functions. Write X for the matriz (z1...xxn). Let &(y, X) be
an estimator for which there exists a sequence a}; such that VN(&(y, X) — a%) Lz
N(0,92) and oy — ap as N — co for some ag. Let Wi (X) be a sequence of matrices with
wi = 0 Vi, t(Wn) == 1, and 1/s(W}) = 0 as N — co. Suppose FSCxn 250 as N —
oo, Let f be the vector whose it" element is f(x;; &) and similarly for other functions of x;.
Let £ be defined by & = sup{¢|N%1s(EVWEEN) 25 0}, and suppose there ezists a
constant £, 0 < £ < £ and a bounded function e(z) with [,e(z)?p(z)dr # 0 such that
Né(gn(z) — f(z;a%)) — e(z) uniformly in x. Suppose also that Wy is such that

Pr{jjWne—e|| < (1 —8)|le||} — 1 as N — oo for some § > 0.

Let
T — W' Wyt
N V2s(UNW3UN)

Then, Ty —— oo as N — oo,

+ FSCh.

12



Proof
Given the bounds on the error moments and on e(z), N%~1s(E¥ W3 £V) £, 0 implies
that N%~1s(UNWEUYN) - 0. Hence, to show that Ty -2 oo it suffices to show that
NE-13'Wni is bounded away from zero (in probability) as N — co. To see this note that
U = yi — f(#5,6) = wi + gy(@:) — f(zisay) + fziay) — flai;8).
Writing ey for gy — f* we have
NEL@'Whi = NEYo!'Whu + 2u'Wh(f* = ) + 2u'When
HI = HWal(f* = )
+2(f* ~ fYWnew + exWen]

From the proof of Lemma 3 and N¥~1s(TVW5EN) 25 0, we know that N%~1u/Wyu,
NE-ISWN(f* - f), and NE-1(f* — FYWn(F* ~ f) each have plim zero.

To see that N2%-1(f*— /Y Wiey = 0 we write (f*—f)' = (&—aj Y v]+7) as in the proof
of Lemma 3, and first note that N25_1(&—a}‘v)’viWNeN = \/ﬁ(&—a},)’v’lWNNfeNNE_B/Q,

which has plim zero because v N (& — ajy) has an asymptotic distribution and
o4 W Neen N2 < B [ Néen [PV %,
N#-13Wyen has plim zero because
[esWaen N < NETglllen | = N%10,(1/VRIOL(VF - N~)

Finally,
N%_IC’NWNCN = N2€_1”EN“2 + Nze_le'}v(WNeN —eN).

The first term is
_ 1
N®ey||* = ~ D (Neen(z))® — /;) e(x)’p(z)dz.

The second term has magnitude at most N%~Yey|||Wnen — enl| < N%-1(1 = &)|lenll?

with probability approaching one. Hence,

Pr{N%13'Wq > §/2 /D e(z)?p(z)dz} — 1

13



as desired.

QED.

It is instructive here to comment on the rate at which the local alternatives may ap-
proach the null. Recall that in the case of the kernel test we saw (in the proof of Corollary
1) that s(W§) = Op(h;m). Hence, the definition of £ gives £ = % +limy oo %logN hn.
For example, if d = 1 and the kernel is chosen to be the standard “optimal”!3 kernel with
hy = O(N~1/3) then the test is consistent against alternatives of order N~¢ for £ < % With
a more slowly shrinking window width, e.g., hy = hg/log NV, the test has power against
local alternatives of order N—¢ for all £ < % Similarly, the bin test has s(Wg) = Op(m(N))
so £ = % + limpy o0 —%logNm(N). We again get £ = % if we let the number of bins grow
slowly, e.g., m(N) = O(log(N)).

This local power is equal to that of the best of the prior and contemporaneously proposed
nonparametric tests, such as Eubank and Spiegelman (1990) and Hong and White (1995),
and is superior to that of many other approaches. The only test of which we are aware that
obtains slightly superior local power is the test of Bierens and Ploberger (1997) which is

consistent against local alternatives which shrink at a rate of exactly N =% as well.
4 Simulation Results

Here we present Monte Carlo studies of the finite sample power of our tests and the relia-
bility of asymptotic critical values. The first two subsections explore the size and power of
a kernel implementation of our test in a variety of settings, with the benchmark of “good”
performance being judged by looking numerically at the accuracy of the asymptotic critical
values, and by comparing the power of the nonparametric test to the power of an optimal
parametric test for each particular form of misspecification. The third subsection attempts
to evaluate whether the performance of our test is “good” by comparing its size and power
in finite samples with those of several other nonparametric test statistics. In a fourth
subsection, we discuss also the extent to which one can maintain adequate performance

while reducing the computational burden of performing a nonparametric test by using a

13Here, again, we mean optimal kernel in the context of estimation, not testing.
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bin weight matrix.
4.1 Distribution

To examine the degree to which the asymptotic critical values may be considered reliable in
small samples, we first examined the null distribution of a kernel version of our test statistic
when applied to datasets containing 100 observations on one, two, and three independent
variables. In each case, x was taken to consist of independent draws from a uniform
distribution on [—1,1]9, and y was generated from a linear null y=z-1+wu, with 1 a vector
of ones and u a vector of independent draws from a standard normal distribution.!4 A
linear model (with a constant term) was estimated on the data by OLS, and the residuals
were used to form the kernel test statistic like that described in Corollary 1 using the
finite sample correction FSCy = (1 + d)/ V2s(W§). The weight matrices are generated
using the Epanechnikov kernel with window widths of the form Ay = hioo(N/100)~1/(4+d)
for various hygo.'> Table 1 presents descriptive statistics from 10,000 simulations each
with several window widths. We report estimates of each test statistic’s mean, standard
deviation, and 5% critical value, and the size of a test performed with the asymptotic
critical values (ACV). The standard errors on the critical values are approximately 0.02.
The true critical values of our test statistics are well approximated by their asymptotic
values in the simulations. Our power simulations with 100 observations will suggest the
use of kernel window widths near 0.2 in one dimension and 0.4 in two dimensions. For
each of these window widths the estimated critical value is about 1.61, and a test relying
on 5% asymptotic critical values would falsely reject the null about 4.7% of the time.
Such values will be regarded by practitioners as being very good approximations. The null

distributions are somewhat skewed to the right — in one dimension with a window width

“Note that under a linear null the distribution of our test statistic is independent of the variance of a
normally distributed error. Note also that the asymptotic normality in Lemma 1 comes not from a weighted
sum of the u’s but instead from a weighted sum of squared residuals. Hence, using nonnormal errors would
not be expected to increase the departure from normality of the test statistic.

1®We base window widths for different N on hyoo in this way in order to compare power across different
size data sets. As we have noted, there is no compelling argument for this choice of hx. In fact, given
that these simulation results will suggest that one does not need to use small window widths to obtain tests
with an appropriate size while our theoretical results show power to be greater with more slowly shrinking
window widths, we would recommend using window widths which shrink more slowly.
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of 0.2 we estimate the coefficient of skewness to be 0.87.

Recall that the proof of Proposition 1 shows that the distribution of 7y converges
in distribution to a standard normal whenever r{Wy)/s(Wyx) approaches 0. While one
should not generalize too far from our simulations given that magnitudes of departures
from normality in finite samples depend on the form of heteroskedasticity, higher moments
of the error distribution, etc., it may be useful to note that r(Wg)/s(W3) is usually about
0.4 when N = 100 and h = 0.2 in our one dimensional simulations and is also about 0.4

when N = 100 and & = 0.6 in our two dimensional simulations.
4.2 Power

We have already seen that our test like some others is capable asymptotically of detecting
local alternatives which shrink at a rate slower than N~2. In this subsection we try to
provide some rough intuition for how our test will work in finite samples by looking at
its performance in a variety of situations and judging how well it does by comparing its
power to that of the optimal Lagrange multiplier tests which one could use to detect each
particular misspecifications if one knew which misspecification to look for.

To assess the power of our test in each of the situations described below, we constructed
1000 simulated datasets, with the z’s consisting of between 50 and 200 draws from an
uniform distribution on [~1,1]%. y was generated from a model y; = x; - 1 + 0.5e{z:1) + wi,
with e(x) a nonlinear function, and « a vector of independent draws from a standard
normal distribution. A misspecified linear nuil (with a constant term) was estimated on
the data by OLS, and the residuals were used to form the kernel.test statistics described in
Corollary 1. The performance of the nonparametric tests was measured by their ability to
detect eight different forms of misspecification e(z}, the second through seventh Legendre
polynomials (denoted py(z)), sin(2rz), and sin(10wz}). In each case, e(z) is normalized so
that inf,p fll(e(z) — {az + b))?dzr = 1. To assess the true power of the tests, we used

estimated critical values obtained from separate simulations (some of which are reported

in Table 1).16

'5Note that because the estimated critical values are very close to their asymptotic levels (except perhaps
for the largest window width) the apparent power of a test using asymptotic critical values would be quite
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Table 2 presents the results. The rows of the table give the performance of kernel tests
with a window width of higo(N/100)"1/5. The numbers in the body of the tables are the
proportion of the 1000 simulations which reject the null at the five percent level. The
last row of the table includes for comparison the performance of the separate Lagrange
multiplier tests designed to detect each misspecification.

While the nonparametric tests are, of course, less powerful than the alternative-specific
Lagrange multiplier tests, the results are encouraging. For the less wavy quadratic and
cubic alternatives the nonparametric tests can be nearly as powerful. For the more wavy
alternatives the nonparametric tests may require more than twice as many data points
to obtain the same power as the optimal fests, but can still be reasonably regarded as
being able to detect alternatives of a similar magnitude. Of course, the great advantage
of nonparametric tests is their flexibility. While the optimal test against one Legendre
polynomial would have zero power against the other alternatives (i.e. would have a 5%
rejection rate) the nonparametric tests show power against a variety of alternatives. This
is particularly striking for the tests with the smallest window widths, where the power is
nearly identical for the various alternatives.

The nonparametric tests show good power for a range of window widths. For the
particular set of alternatives considered, it appears that a window width h;gg of about 0.2
(perhaps more generally about one tenth the range over which the data have a nontrivial
density?) gives a good mix of performance. Larger window widths are more successful
in detecting the quadratic and cubic alternatives, while smaller window widths are more
successful in detecting the high frequency sin(107x) misspecification.

Table 3 compares the power of the tests with one, two, and three dimensional X's (d=
1,2,3). The true model in two and three dimensions is of the form yi = ;- 140.5e(zi1) + 4
so that it depends only on the first component of x;. We should expect a significant
diminution in the power of the nonparametric tests, because there is a much richer set
of possible misspecifications in higher dimensions. In comparing the one, two, and three

dimensional results, this loss of power is evident. It is most severe for the high frequency

similar.
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alternatives, because the sparseness of the data in higher dimensions forces one to use a

larger window width.

4.3 Comparison with other nonparametric tests

In this subsection, we present simulation results which compare the finite sample perfor-
mance of our tests to others, both in terms of size and power.

For easy comparison {and to convince the reader that we had not designed the simula-
tions to highlight our tests’ attributes), we have chosen to piggyback on the work done by
Hong and White (1995) by simply adding statistics on the performance of our tests to tables
containing the results of their Monte Carlo study. By doing so we are able to compare our
tests with those of Bierens (1990), Eubank and Spiegelman (1990) and Jayasuriya (1996),
Hong and White {1995), Wooldridge (1992), and Yatchew (1988).

Our first comparative table, Table 4, speaks to the ability of applied researchers to rely
on the asymptotic critical values of the various tests. For this table, we computed the size
of two kernel implementations of our tests when they are performed using 5% asymptotic
critical values on the null specification used in Hong and White (1995). The specification
involves a linear model with two explanatory variables y; = 1 + x7; + z9; + €;, with x1; and
x2; being generated by setting z1; = (vi +v1:)/2 and x9; = (v; +v9;)/2 with {v;}, {v1:i}, and
{v2:} being sequences of i.i.d. uniform [0, 27] random variables and errors being independent
standard normal random variables. The table compares the size of two particular versions
of our test as computed from 10,000 simulations with the sizes of other tests as reported
in Hong and White (1995).17 The test labelled Ellison-Ellison1 is based on a kernel weight
matrix with hipo = 1.0, and that labelled Ellison-Ellison2 is a kernel test with higg = 1.5.
The tests labelled Bierensi, ES&Ji, Hong-Whitei, Wooldridgei, and Yatchewi are versions
of the tests of Bierens (1990), Eubank and Spiegelman (1990) and Jayasuriya (1996), Hong
and White {1995), Wooldridge (1992), and Yatchew (1992), respectively, with the particular
smoothing parameters, series expansions, etc. described in Hong and White (1995).

From the results in the table, we would argue that our test performs extremely well.

17We would like to stress that for all tests other than our own we are merely reprinting here numbers
which appeared in Hong and White's tables. We did not repeat their simulations.
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The true sizes of our tests in the six sample size-window width combinations are 3.8, 4.1,
4.4, 4.8, 4.9, and 4.9 percent, figures which are much closer to 5% than are those for
any of the other tests. Several of the other tests often have an ACV size subtantially in
excess of 5%. We noted earlier that nonparametric test statistics tend to converge to their
asymptotic distributions relatively slowly. This is apparent in the table in that many of
the test statistics do no better with 500 observations than they do with 100 observations.!®
Because ACV sizes improve so slowly, finite sample performance is of great importance.

As an extreme demonstration of the degree to which our critical values are reliable
in small samples, we also computed the ACV size of our test when applied to this null
hypothesis on datasets containing 30 observations. In doing so we find the sizes for the two
window widths to be 3.0 and 4.7 percent, which looks quite good in comparison with the
performance of the other tests on the much larger datasets.

Duncan and Jones (1994) have in the course of their empirical work on labor supply
also performed a Monte Carlo study which compares our test with those of Gozalo (1993)
and Delgado and Stengos (1994). Their results also indicate that the asymptotic critical
values of our test are more reliable than those of the other two tests in finite samples.

Table 5 again piggybacks on the work of Hong and White (1995) to compare the finite
sample power of our test with that of the other nonparametric tests mentioned above. The
table reports the rejection rates of our and other tests (using empirically estimated critical
values) against the three other alternatives mentioned in Hong and White (1995). Each has
the same distribution of the X's as above, with 3 = 1+ z1; +x9; + 0.1(vy; — 7)(ve; — ) + &
in alternative 1, ¥ = (1 + z1; + 22;)(1 + exp(—0.01(1 + 21; + x2;)?) + €; in alternative 2,
and y; = (1 +x3; +2) %% +¢; in alternative 3.1° For each alternative we report rejection
rates from simulations involving 100 and 300 observations.20

Our test performs relatively well in the simulations. Looking at each of the alternatives

¥ We would guess that they would probably show little improvement even with ten thousand observations.

“In each case the ¢; are again normally distributed. We have chosen to use the set of simulations with
o? = 1 for alternatives 1 and 3, and those with o2 = 4 for alternative 2 so as to make the power of the tests
against the three alternatives more comparable. Note that in the case of alternative 2 the exponent within
the exponential term is 2 not -2, which we believe is the proper correction to a misprint in the text of Hong
and White (1995).

2®The rejection rates for the tests other than ours are drawn from Hong and White’s tables 3, 4, and 5.

19



in turn, it appears that the Hong-White test, Eubank-Spiegelman-Jayasuriya test, and our
test do much better than the others against alternative 1. Bierens’ test appears to be most
powerful against alternative 2, followed by our test, Hong and White’s, and Eubank and
Spiegelman and Jayasuriya’s. Only Wooldridge’s test does at all well against alternative
3. It should be noted, of course, that assessing power from performance against so few
alternatives may be misleading. This is particularly true here because the power of the
tests based on series expansions is greatly affected by the degree to which the alternatives
and the included series terms are collinear and because all of the alternatives in Hong and

White’s study are similar in that they involve low frequency misspecifications.
4.4 Bin tests

We have previously noted that it is possible to greatly reduce the computational burden
of carrying out our test by using a bin weight matrix. To help assess the degree to which
performance is degraded when one uses a bin rather than a kernel weight matrix Table
6 reports rejection rates of bin tests for the same set of alternatives as in Table 3. A
comparison of the tables reveals that the power of the bin tests is somewhat less than
that of the kernel tests, but is still of a comparable magnitude. For example, with 100
observations the rejection rates of a bin test with a bin width of 0.3 are 0.67, 0.57, 0.43,
0.30, 0.23, and 0.26 against the 2" through 7** Legendre Polynomials, while those of
a kernel test with a window width of 0.3 are 0.82, 0.73, 0.61, 0.49, 0.36, and 0.28.21 We
would conclude that the bin tests are clearly less powerful than kernel tests with comparable
window widths, but not so much so as to make performing bin tests an unreasonable choice

if computational concerns are important.
5 Application

Broadly speaking, there are two main ways in which this and other consistent tests could
be fruitfully used: as a direct omnibus test of an economic theory and as a regression

diagnostic. Demand analysis provides a rich empirical setting both for testing theories and

*1These bin and window widths are those which appear to do best against the lower order polynomials
in our tests.
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for the use of regression diagnostics. There is a long history of empirical demand studies
where specifications are guided by the theory and theoretical implications are then tested
empirically. See, for example, Deaton and Muellbauer (1980) for a summary. We will focus
here instead on using this test as a regression diagnostic.

In practice, ease of computation and interpretation have most often led to use of models

like our (first) model of gasoline demand.

log(gi} = Bo + B1log(y:) + B2 log(ps) + e,

where g; is the quantity of gasoline demanded, y; is the income (or expenditure) of the
consumer, and p; is the price of the gasoline. This specification dates back as early as
Schultz (1938), Wold (1953), and Stone {1954), and perhaps earlier. Its primary appeal
is probably that it can be estimated using simple linear regression techniques, and that
elasticity estimates can be read off from the parameter estimates.

In testing this and other specifications, the datasets we use are the U.S. Department of
Energy’s Residential Energy Consumption Survey from 1979-81 and its Residential Trans-
portation Energy Consumption Survey from 1983, 1985, and 1988. We use them as a cross
section with indicator variables for the years, yielding 18113 observations. The data are
treated as in Hausman and Newey (1995), including the nonparametric “partialling out” of
the demographic variables. We are thus left with a data set with price and income as the
explanatory variables and gasoline demand as the dependent variable, all with the effect of
the demographic variables taken out.

To test the logarithmic specification of demand, we estimated the model by OLS and
computed a version of our test with a kernel weight matrix with the window width set
to 0.2 after the data had been normalized so that each explanatory variable had unit
variance (and with the general finite sample correction). Such a test very clearly rejects the
logarithmic specification, with the value of the test statistic being 11.00. Upon rejecting a

null specification, a practitioner will often add higher order terms to improve the fit, which

leads us to our second and third null models:

d d-m

log(gi) = Z Z Brmn log(yi)™ log(pi}™ + €

m=0 n=0
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for d = 2,3. Constructing similar kernel tests of these specifications (with the weight
matrices being based simply on differences in y; and p;) we obtain test statistics of 10.14
and 5.12 for the quadratic and cubic specifications, respectively. We would interpret these
results as indicating again that enough data are available to use semiparametric techniques
and that such an approach should be considered if the shape of the demand functions is
potentially relevant to questions in which one is interested.??

This application is also a good example of one of the situations (involving a very large
number of datapoints and multiple regressors) in which there may be practical reasons to
choose to perform a bin test. For comparison with the results above, we computed also
versions of our test based on a bin weight matrix with the bin width equal to 0.3. The
test statistics we obtained for the logarithmic, quadratic-logarithmic, and cubic-logarithmic
specifications are 9.95, 10.92, and 6.79, respectively. Note that these statistics are of com-
parable magnitudes to the ones obtained from the kernel tests (which have the same asymp-
totic distribution under the null), and that the test is still easily sufficiently powerful to
reject all of the parametric specifications. In this example the convenience of the bin test
is a great advantage—running the regressions and performing all three tests tock a total
of 44 seconds on our Pentium PC, compared with many hours for our (not very efficiently
programmed) kernel test.

Because it is so easy to compute, we were also able to conduct Monte Carlo simulations
to analyze the null distribution of the bin test. While such simulations are clearly not
necessary for the application given the values of the test statistics, they provide a nice
illustration of the importance of finite-sample corrections even in what would ordinarily be
regarded as a “large” sample. With the bin width we chose, the finite sample correction
terms in the test statistics for the three null hypotheses were 0.17, 0.33, and 0.54. In 10000
simulations we estimated the true 5% critical values (when the corrections are used) to be
1.66, 1.56, and 1.44. The finite-sample corrections are thus making the true critical values

much closer to the asymptotic prediction of 1.64 than they otherwise would be.

22This point is made forcefully in Hausman and Newey (1995), who argue that the choice of functional
form can have a great effect on estimates of consumer surplus and deadweight loss, and hence that one must
be very cautious in relying on parametric models in addressing such policy-relevant issues as the potential
welfare losses which would result from a gasoline tax increase.
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6 Conclusion

In this paper, we have presented a framework for specification testing which involves working
directly with quadratic forms in a model’s residuals. The framework allows one to construct
asymptotically normal test statistics exploiting a variety of nonparametric techniques, and
we have seen that these tests can be consistent and have good local power.

We hope that several factors may make our tests attractive to applied researchers. First,
the tests are very intuitive, which we feel is important not only because one is always more
comfortable with a test which one understands well, but because this understanding makes
it easy to adapt the test to the particular situation one is facing. Second, because the null
distributions of nonparametric tests tend to converge slowly to their asymptotic limits, and
computational concerns make simulating null distributions undesirable, it is particularly
important that the asymptotic approximation to the null distribution of a nonparametric
test be accurate in small samples. Using the finite sample correction we suggest, our test
does substantially better on this count than other tests in our Monte Carlo simulation, and
in the application the finite sample corrections are of great practical importance despite
the large sample sizes. Finally, while a version of our test exploiting standard “binning”
techniques is not as strong a performer as the kernel version, the fact that such a test can
be performed in a matter of seconds even on a large multidimensional dataset makes it
attractive in certain circumstances.

As for future extensions, we see the greatest loose end in the current formulation as
being the need for a choice of a smoothing parameter. While the simulations provide some
guidance, it would be interesting to explore criteria for choosing the smoothing parameter
automatically. A preliminary idea is to base a test on choosing the smoothing parameter
to maximize a quadratic form test statistic. Given the success of Bierens and Ploberger

(1997), we hope that such a construction might both eliminate an arbitrary choice and

improve local power.
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Appendix

Lemma 1 Let {u;} and {z;} be as above. Write u¥ for (ul, cun), T for {z...xN)
and zV for a realization of z™. Let an(z™) and ty(zV,u™) be measurable functions. If

an(z¥) - 0= tN(gN,uN) — Z ~N(0,1),

and

then ty(zV,ul) <4 Z ~ N(0,1).

Proof of Lemma 1
As a first step we note that the result follows easily from the first condition in the lemma
and an(z™) 23 0 using the Dominated Convergence Theorem. Under those assumptions

b}im Prob{tn(zV, V) < 2} = hm /Prob{tN 2N wN) < 2}du(z)
—00

= lim Prob{ty(z",+") < 2}du(x)
N-—oc

= [ 2@dux) = 2(2)

with the last line following from the almost sure convergence of an(x™).

Next we show that only convergence in probability of ay(zV ), not almost sure conver-
gence, is necessary. To see this, let Gn(2z) = Prob{tn(zV,u") < 2}. Note that Gn(z)
depends on the Jo1nt distribution of the sequence of matnces {zNu"} only through the
distribution of zNuN. Hence the sequence {Gn/(z) )} is unchanged if we choose any other
joint dlstrlbutlon on the sequence {zVul } with the same marginal dlstrlbutlon on each

zNulV. It is always possible to choose such a joint distribution so that ayx(z") 2% 0 and
hence we know Gy (z) — ®(2).

(To see that such a joint distribution exists, write Hx for the cumulative distribution
function of ay(x™), let by : DV — DN+1 pe 3 sequence of mappings with

Hyy1(hn(2™)) = Hy(zV),

and let the JOlIlt distribution on {:r:N} be the distribution of {z!, h1(z!), h2(h1(z!)),...},
with the u) being related to the z in the obvious way. With this construction, any
realization gl z?,2%,... , has ay(zN ) Hy (H (21)) —0.)

QED.

Lemma 2 Let {ut} be a sequence of independent random variables with E(u,) =0,0<
g® < Var(u;) < 7% < oo, and E(u}) < m < co. Write u™ for (uy,...,un) and EN be
the N x N diagonal matriz with &Y = Var(w;)/2. Let {Wy} be a sequence of symmetric
matrices with 1(Wy)/s(Wn) — 0 as N — oco. Then

UN'WN’U.N

L
— Z e~ 1).
V25(ZN W EN) NOD)
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Proof of Lemma 2
Given a sequence {v;} of independent random variables with F(v;) = 0 and Var(v) =1,

and a sequence of symmetric matrices {Ay} (with Ay being N x N), Theorem 5.2 of deJ ong
(1987) states that

vV A NUN
V2s(An)
if there exists a function k() such that three conditions hold:

£, 2~ N(0,1)

- k(N) AN
. 0 S0

(31) max Ev,-21|v‘.|>k(N) —0as N — o0

r(An)
i
(444) S(An)
Let @ = 2N, We then have

uNIWNuN B EN'(ENWNEN)EN

VI(ENWNEN)  25(ENWNEN)
so it will suffice to show that %; and EVNWEN satisfy the conditions on v; and Ay in the
theorem.
Condition (iii) clearly holds whenever r(Wy)/s(Wy) — 0 as t(ENWyEN) < a2r(Wy)
and s(EVWNEN) > g2s(Wy).
Condition (ii) holds for any function k() with k(N) — co as N — oo because
_ E(u}) E(u}) m
2 4 i
1 < = < .
B Lmok0) < FRYE = Var(u, PRV S 2RV

Finally, note that Ef‘;l a?jN = Zf{___l al,ny = |Anei|® < r(An)®. Hence,

~0as N — oo

EV)E g2 o HAN)ZR(N)
25(An)? 1<i<N o UN = S(An)? 2

Therefore, if we choose k(N) = :—é%, we will have both that k() — oo (so that

condition (if) holds) and that SZr2B7h k(N)* — 0 (so condition (i) holds).
QED.

Lemma 3 Let (W} be a sequence of symmetric matrices (with Wy being N x N ) such
that t(Wy)/s(Wn) — 0 as N — oo. Let v and @V be as in Proposition 1 for a given
sequence {x;}. Then,
ﬁN’WNﬁN _ 'U,N’WN‘U.N
\/iS(ENWNEN)

e
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Proof of Lemma 3
To begin, note that

~ af ¢ o2 f
U — U = aa(x‘l, 050)(0 - a() Y Z aakan (331, (J’J:, ))(ak - a()k)( 0'0_7)
for some @(z;, &) between ag and G. Let
B = sl zia0)
a2f g?
Bala) = su ———(z; a0t + a{l — t))|=
2() t€[0,1], zgp ki l@akaa_, (3 a0 ( ] 5

Because f has two continuous derivatives and D is compact, B; and Ba(a) exist, and Bg(a)
is continuous. If we write

i — u; = v1(& — ag) + Ty,
we immediately have |vy;| < B; and |6y;| < Ba(&)(a@ — ap) (& — ap).
Now, consider the expansion,
Wyt — W' Wryu = (uWWru+2(G ~ u) Wyu + (@ — ) Wi (@ — u)) — o' Wyu
2((& — ag) vy Whu) + 2(55 W) + (& — ag)'v) Wvv (& — ap)
+ 2(& — ao)"UiWN'ﬁz + ﬁéWNﬁg
We now show that (@'Wyni —uw'Wyu)/s(E¥NWNEN) 25 0 by showing that each of the

five terms on the right hand side of the expression above have plim zero when divided by
s{Wy) (which suffices because s(ENWyEN) > g2s(Wy).)

& — o) i Wyu = VN (& — ag)’ viWhu.

1
\/WS(WN)

VN(& — ap) has an asymptotic distribution. The vector it is multiplied by has

S(WN)(

1 72
Var(—————v\Wxu) < ———— v, Wy Wy,
st ) S W e

Each column of v; is an N x 1 vector of norm < vNBj, so each column of Wyv; has a
norm of at most (W )+ NB). Each element of v{WyWyuv; is then at most Nt(Wy)2B%,
and the variance-covariance matrix thus goes to the zero matrix.

1 1y oy w2 o TWN)2, o0 o
. W, W <
2 Sy 72 vul? < S 1PN Pl < S il

Var(u;) <&* and E(u!) < m implies that ||ju||/N = Op(1). Also,

N|52|? < N NBy(&)*(& — o) (@ — ao) - (& — o)/ (& — axg)
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As N - 00, Ba(a)? % Ba(ap)? and (& — ag)'(&@ — ao)N is bounded in probability so
N||72||2 = Op(1). Hence, r(Wx)/s(Wn) — 0 implies that term 2 has plim 0.

3. —S(I/‘I/N) (& — Ol())’uiWN'Ul (51 — ao) = \/ﬁ(d _ 00)1#\/_ )

The middle term is a £ x £ matrix, and as in 1., each term is bounded by B2r(Wy)/s(Wn)
so the matrix converges in probability to zero.
4. The fourth term has

]. - - 12 2 1
s @ WP < VNG~ o) Pl Wl s
~ 112
< |IVWN{& - ag) ||2 ENBEr(Wy )QN—”UEIL
( N)? N

2, 0.

5 — L Wl < e [[5] N (Wi Nl -2 0

‘ s(Wn)2' 2 = N2s(Wy)2 2

QED.

Lemma 4 Let {Wy} be a sequence of symmetric matrices (with Wy being N x N ) such
that t(Wn)/s(Wn) — 0 as N — oo. Let u™N and @ be as in Proposition 1 for a given
sequence {z;}. Then,
PAED I Wi Ny iy Y
s(ENWxEN)2

Proof of Lemma 4
We show this in two steps: showing first that

>ij w?]ufuf —s(EVWEN)? 0
S(ENWxEN)2 —

and then that 2 9 2
¥ wt]u‘lNujN E“J ’U.) ij Uy j

s(ENWHLN)2
For the first step, let 2 be a vector with ith element z; = u? — Var(w;). Note that

E(z) = 0 and Var(z) = E(u}) — Var(u;)? < m. Let W be a matrix with ijth element
equal to w?J Let v be a vector with ith element Var(u;). We then have

2,0

sz 2 2 _ S(ENWNEN) = (z + ’U)’WQ(Z + ’U) — vWav
= ZWoz+ 2Wyo
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We now show that each of the terms on the right hand side of this expression has plim zero
when divided by s(ZN¥ WyEN)2,

First, note that z,...,zy are independent random variables with E(z;) = 0 and
Var(z;) < m.22 For any symmetric nonnegative matrix with zeros on the diagonal we
then have E(2'Az) =0 and

VCI'I‘(Z’AZ) = Va'r(z a,-jz,-zj) = Z aijakgC'ov(zizj, Zkzg) =2 Za?jVar(z,-zj) S 2m25(A)2.

ij ijke ij
Hence, E(2'W;2) = 0 and Var(z'Waz) < 2m? ¥;; w};, and
4. a2 2
ver (sm;-x@;mz) 2”;2 Sl S 27’;2 (s w3 g
o
" T (Souh) T (Syui)
2m? r(WN) 0
0‘8 S(WN) )

Second, we similarly have E(2v'Wsz) = 0 and

20'Wy2 4 2 474m 2 :
— et ) <« 2 012 " 2
Var (S{ENWNEN)Q) S EWa) Var (g wuv;z_,) < s )? z]: ;ww

471
sy () X (o)
ﬂ-—-—r(W )2s(Wn)% — 0
g_ss(WN)“ N N .

Turning now to the second main step, note that

G WhENE Y — Ty wiuiul  a2Waa? — u¥Wou? | 2@ — ud)Waul (a2 — ulYWa(@? — u?)
s(ENWyNEN)2 ~ s(ENWNEN)Z T s(TNWHEN)2 s(ZNWyEN2

where we ve written 42 for the vector with ith element 42 and u? for the vector with ith
element u?. To show that both of the terms on the rlght hand side of this expression have
plim 0 it w1ll sufﬁce to show that (i} ||@2 — u2|| = Op(1), (i) r(Wa)/s(Wn)? — 0, and (iii)
| Wanu?/s(Wa)2|| -2 0.

Result (i) is standard: ||@? — u?|| is just the difference between the sum of squared
residuals and the sum of squared errors.

To derive result (ii) note that for any symmetric matrix A, r(4) < s(A). Hence,
r(W2)/s(Wn)? < s(Ws)/s(Wy)?, and (ii) follows from

s(Wa)® _ 1 W < (max;; w}) ¥y wl < r(Wn)2s(Wy)?
s(Wn)t S(WN)4 B s(Wn )4 = s(Wn)t

*Here as in Lemma 3 the sequence {x;} is taken to be fixed and thus we write E{z) rather than E(z|z;)
and similarly for other expectations and variances.

— Q.
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Finally, to derive result (iii) note that
IWa?/s(Wi)?|| < IWav/s(Wn )| + [Waz/s(Wn)?,

where again we’ve written v for the vector with 7th element v; = Var(y;) and z for u? — v.
Using calculations similar to those above it is easy to see that the first of these terms
converges to zero.

2
Wzv < 7% (5, w) < Ts(Wn) r(W)?
Wi )? s(Ww)t = s(Wa)!

To see that the second term has plim 0 also we write

— 0,

N
|Waz/s(Wn)?|? = s(Wn) 2’ WiWaz = s(Wn) "4 Bnz + Z ciNzZ,
i=1
where By is the N x N matrix with by = 0 and b;;n = (W3W3)ij; for i # 7 and ¢;n is the
iith element of WjWa/s(Wn}t. To see that s(Wy) %2’Byz -2 0 we note as before that
E(2’Bynz) =0 and

Var ( 2Bz ) < 2m?s(By)? < 2m2s(WiW,)? < 2m2s(Wo)*
s(Wn )4 s(Wnh)B = s(Wy)8  — s(Wn)B

with the second to last conclusion following from the fact that for any symmetric matrix
A, s(A'A)? = 3, M < (5, 03)% = s(A)*. Finally, to see that YN einzt 2 0as N >0
we note that Theorem 3.4.9 of Taylor (1978) concludes that a weighted sum of independent
random variables of the form Ez—l cinve; has plim zero provided that five conditions hold:
(1) E(es) = 0; (2) E{les]) < o0; (3) max;|eiv| — 0 as N — oo; (4) there exists a C
such that 3" |e;v| < C for all N; and (5) there exists a random variable e such that
Prob(le;| > t) < Prob(le] > t) for all ¢ > 0 and all N. Each of these hypotheses holds
for e; = 27 — E(2?): the first, second and fifth are immediate consequences of 22 being
nonnegative and the assumed uniform bounds on the second and fourth moments of the w;
conditional on x;; the third and fourth follow from the facts that ¢;y = s(Wp)™* ; w,J N 18

nonnegative and Ez—l cin = s(Wn)"4s(W2)2 — 0 as N — 0. Applying the theorem gives
that

— 0,

EC.,N(Z - ))——»O

and the desired result follows from noting that 3N, e;nE(22) < m T, civ — 0 as well.
QED.

Proof of Corollary 2

Note that Ty is of the same form as the test statistic in Proposition 1 where Wy is the
symmetric matrix given by

wi = | Tt Hi# 5 55 € P
J 0 otherwise.
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Again Wy is non-negative with all rows summing to at most one, so r(Wy) < 1 with equality
holding provided that not all bins are empty. Hence, we need only show 1/s{Wx) -2 0.

To see this, note that s(Wy)? > 3, axn, where exy is a random variable given by
akN=0ikaN§1, akN=1ikaN22.

E(Zk akN) 5 M)

() ) 2 m(N)inka(akN) =infx(1 — ((1 — )™ + N1 — )V 1)) - 1,

where we have written vy, for v{Pgy).

Var ( %&;{ )

IA

supg Var(axy) < sup E[(ary — 1)2]
= supg{(1— uk)N + Nug(l — uk)N"l) — 0.

Therefore, r(Wx)/s(Wy) = Op(1//m(N)), as desired.
QED.
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One Dimension

Table 1: Null Distributions of Kernel Tests: 100 observations, 10,000 simulations

standard 95th
Window width [ mean | deviation | percentile | ACV size
h100=0.05 0.00 0.98 1.68 5.4
hi00=0.1 0.00 0.94 1.70 5.4
h100=0.2 0.00 0.86 1.61 4.7
h10p=0.3 0.00 0.77 1.48 3.8
h100=0.4 0.01 0.68 1.34 2.9

Two Dimensions

standard 95th
Window width || mean | deviation | percentile | ACV size
h100=0.2 0.01 0.98 1.68 5.5
h100=0.4 0.00 0.92 1.62 4.8
h100=0.6 0.04 0.79 1.49 4.0
h100=0.8 0.10 0.64 1.32 2.4

Three Dimensions

standard 95tk
Window width || mean | deviation | percentile | ACV size
h100=0.4 0.06 1.00 1.75 6.1
h100=0.6 0.03 0.94 1.67 5.2
h100=0.8 0.08 0.84 1.58 4.3
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Table 2: Power in One Dimension: y; = x; + 0.5e(x;) + ¢;, 1000 simulations

50 observations

Alternative e(x)

Test p2(x) | pa(x) | palz) | ps(x) | pe(z) | pr(z) | sin(2nz) | sin(107x)
kernel h100=0.05 || 0.19 | 0.18 | 0.18 | 0.17 | 0.19 | 0.16 0.19 0.12
h100=0.1 0.26 | 0.26 | 0.24 | 0.20 | 0.19 | 0.18 0.26 0.05
h100=0.2 042 | 036 | 0.29 | 0.24 | 0.19 | 0.8 0.33 0.05
h100=0.3 049 | 0.36 | 027 | 0.20 | 0.14 | 0.10 0.34 0.05
h1go=0.4 0.53 | 0.36 | 0.23 | 0.15 | 0.10 | 0.06 0.30 0.05
optimal 066 | 0.64 | 065 | 0.65 | 0.65 [ 0.69 0.60 0.69
100 observations
Alternative e{x)
Test p2(x) | pal(x) | palx) | ps(z) | pe(z) | pr(x) | sin(2nx) | sin(107z)
kernel  hjgo=0.05 || 0.42 { 0.42 [ 0.41 | 0.39 | 0.38 | 0.36 0.38 0.29
h100=0.1 0.60 | 0.59 | 0.54 | 050 | 047 | 0.43 0.51 0.13
h100=0.2 0.76 | 0.71 | 0.65 | 0.56 | 0.47 | 0.38 0.63 0.04
h100=0.3 082 | 0.73 | 061 | 0.49 | 0.36 | 0.23 0.65 (.06
hi00=0.4 084 | 0.72 | 0.55 | 037 | 0.22 | 0.12 0.62 (.04
optimal 094 | 092 | 093 | 093 | 0.92 | 0.94 0.88 0.96
200 observations
Alternative e(z)
Test p2(x) | pa(x) | palx) | ps(x) | pe(z) | pr(z) | sin(2rz) | sin(107z)
kernel h100=0.05 || 0.77 | 0.76 | 0.76 | 0.76 | 0.76 | 0.72 0.69 0.66
hi100=0.1 0.92 | 0.89 | 091 | 0.87 | 0.86 | 0.81 0.85 0.47
h100=0.2 0.98 | 095 | 095 | 092 | 0.88 | 0.81 0.93 0.02
h100=0.3 0.99 | 0.97 | 095 | 0.89 | 0.81 | 0.68 0.95 0.06
hi100=0.4 099 [ 097 | 0.93 | 0.81 | 0.64 | 0.42 0.94 0.04
optimal 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 1.00 1.00
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Table 3: Power in Higher Dimensions: y; = z; - 1 4 0.5¢(zi1) + €;, 100 observations, 1000
simulations

One Dimension

Alternative e(z)
Test p2(z) | p3(z) | palz) | ps(z) | ps(z) | pr(z) | sin(2rz) | sin(107z)
kernel  hyp0=0.05 | 0.42 | 0.42 | 041 | 0.39 | 0.38 | 0.36 0.38 0.29
h100=0.1 0.60 [ 0.59 | 0.54 | 0.50 | 0.47 | 0.43 0.51 0.13
h100=0.2 0.76 | 0.71 | 0.65 | 0.56 | 0.47 | 0.38 0.63 0.04
h100=0.3 0.82 | 0.73 | 0.61 | 0.49 | 0.36 | 0.23 0.65 0.06
h100=0.4 0.84 [ 0.72 | 0.55 | 0.37 | 0.22 | 0.12 0.62 0.04
optimal 0.4 [ 0.92 | 093 | 093 | 092 | 0.94 0.88 0.96

Two Dimensions

Alternative e(z)
Test p2(x) | p3(z) | palz) | ps(=) | pe(x) [ pr(x) | sin(2nz) | sin(107z)
kernel h100=0.2 0.26 | 0.21 | 0.21 | 0.16 | 0.16 | 0.15 0.20 0.05
h100=0.4 0.48 | 0.33 | 0.24 | 0.18 | 0.14 | 0.09 0.27 0.05
h100=0.6 0.60 | 0.33 | 0.17 | 0.11 | 0.07 | 0.05 0.20 0.05
h100=0.8 0.64 | 0.25 | 0.09 | 0.04 | 0.04 | 0.05 0.09 0.05
optimal 0.92 | 092 | 093 | 093 | 0.92 | 0.94 0.88 0.91

Three Dimensions

Alternative e(x)
Test P2(@) | 73(@) [ pa@) | 7e() | po(@) | o(e) | sin@na) | s(i0nz)
kernel h100=0.4 0.20 | 0.15 | 0.13 | 0.16 | 0.08 | 0.07 0.14 0.04
h100=0.6 0.31 | 0.16 | 0.12 | 0.09 | 0.06 | 0.05 0.12 0.05
h100=0.8 || 0.38 | 0.15 | 0.10 | 0.06 | 0.06 | 0.04 0.08 0.05
optimal 093 { 092 | 093 | 0.92 | 0.93 | 0.91 0.89 0.92
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Table 4: Comparison of Finite-sample ACV size

Rejection rates with 5% ACV under null
Test statistic N=100 N =300 N =500
Ellison-Ellison1 4.9 4.9 4.8
Ellison-Ellison?2 3.8 4.1 4.4
Bierensl 4.8 3.6 6.1
Bierens2 6.7 7.5 10.7
ES & J1 2.0 1.3 2.2
ES & J2 2.7 3.2 3.0
Hong-Whitel 1.6 2.0 2.0
Hong-White2 2.8 2.8 2.7
Wooldridgel 8.7 5.3 7.5
Wooldridge2 10.0 9.7 10.5
Yatchewl 7.2 6.2 8.5
Yatchew?2 104 9.9 13.1

Source: Figures for Ellison-Ellison tests computed from 10,000 simulations. Figures for other tests
taken from Table 2 of Hong and White (1995).

Table 5: Comparison of Power

Rejection rates with 5% empirical critical values
Alternative 1 Alternative 2 Alternative 3
Test statistic N=100 N=300|N=100 N=300| N=100 N =300
Ellison-Ellisonl 31.2 81.2 21.8 59.0 5.5 5.1
Ellison-Ellison2 37.2 89.4 34.3 75.7 4.3 6.0
Bierensl 12.1 31.6 38.6 83.7 4.8 4.6
Bierens?2 10.5 31.3 43.0 88.9 5.1 4.7
ES & J1 43.8 88.9 22.8 61.3 5.3 4.6
ES & J2 36.2 79.1 20.0 54.9 5.7 5.3
Hong-Whitel 46.5 91.6 28.0 71.1 5.4 5.0
Hong-White?2 36.8 81.5 21.4 59.5 5.4 5.2
Wooldridgel 6.2 2.8 19.5 29.3 19.8 30.8
Wooldridge2 4.7 4.1 15.4 384 22.9 43.6
Yatchewl B.6 9.3 7.5 8.2 6.5 5.0
Yatchew2 8.4 10.4 7.7 7.8 6.2 5.2

Source: Figures for Ellison-Ellison tests computed from 1000 simulations. Figures for other tests
taken from Tables 3, 4, and 5 of Hong and White (1995).
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Table 6: Power of Bin Tests y; = x; - 1 + 0.5e{x1) + ¢;, 100 observations, 1000 simulations

One dimension

Test p2(z) | p3(z) | palz) | ps(z) | ps(x) | pr(z) | sin(272) [ sin(107z)
bin  h10=0.05 || 0.28 | 0.27 | 0.27 | 0.26 | 0.26 | 0.24 0.26 0.22
R100=0.1 044 | 0.43 | 038 | 0.38 | 0.32 | 0.29 0.37 0.33
R100=0.2 0.61 | 0.57 | 0.44 | 036 | 0.26 | 0.25 0.48 0.05
R100=0.3 0.67 | 0.57 | 0.43 | 0.30 | 0.23 | 0.26 0.47 0.07
R100=0.4 072 | 0.50 [ 0.21 | 0.26 | 0.39 | 0.05 0.42 0.06
Two Dimensions
Tost P2(@) | pal@) | pa(a) | 7o@) | pe@) | ele) | smi@ma) | sin(i0mz)
bin  hy0p=0.2 0.19 } 0.14 | 0.14 | 0.10 | 0.09 | 0.11 0.13 0.06
hipp=0.4 032 | 019 | 0.10 | 0.11 | 0.15 | 0.06 0.15 0.06
h100=0.6 033 | 019 | 0.17 | 0.05 | 0.06 | 0.08 0.07 0.04
h100=0.8 0.41 | 0.15 [ 0.09 | 0.08 | 0.06 | 0.05 0.11 0.06
Three Dimensions
Test p2(x) | p3(z) | pa(x) | ps(x) | ps(x) | pr(z) | sin(2nz) | sin(107z)
bin  higp=0.4 013 | 0.12 | 0.07 ; G.07 | 0.10 | 0.05 0.09 0.05
h100=0.6 0.15 | 0.13 | 0.11 | 0.06 | 0.07 | 0.05 0.06 0.04
h1p0=0.8 0.1 | 0.12 | 0.08 | 0.08 | 0.07 | 0.07 0.09 0.08
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