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1 Introduction

This paper outlines a two-stage techrique for estimation and inference in probit models
with structural group effects. The group effects, linear regression model has become
increasingly popular in applied research. In this class of models, individuals belonging
to a given group, for example, a given ethnic classification or regional location, share a
common component in the specification of a conditional mean. Often, researchers are
interested in the determinants of the group components, and relate them to variables
shared by the individuals in a group.!

The structural group effects specification may be viewed as a member of a broader
class of random components models (Moulton 1986). Consequently, the theory of esti-
mation and inference for the linear regression, group effects model is well established;
in particular, Hsiao (1986) and Judge et al. (1988)), among others, provide surveys of
the relevant literature outlining efficient GLS estimation techniques for linear random
effects models.

There do not exist, to our knowledge, comparable analyses for latent variables models
which are readily applicable to structural group effects specifications. In this paper, we
extend the existing analysis of the linear regression model to the latent variable probit
specification.? We develop and analyze a computationally tractable, two-stage estimator
for individual and group level parameters which parallels Amemiya's (1978) two-stage
estimator for the linear specification. In the first stage, we estimate a probit model which

pools the observations across groups, but accounts for common effects by including

! Recent empirical examples of this framework are provided by such diverse studies as Blanchflower
and Oswald (1990), which analyzes the impact of SMSA-specific unemployment rates on the earnings of
workers; Borjas {1992), which analyzes the factors underlying earnings differentials across ethnic groups;
Case and Katz (1991) which analyzes the impact of neighborhood effects on sociceconomic outcomes;
and Rauch (1992}, which analyzes the impact of the average SMSA level of the human capital stock on
the earnings of workers.

?While we focus our analysis on the probit model, the techniques for applying our results to other
nop-linear models are obvious.



dummy variables to allow for group specific intercepts. Under reasonable regularity
conditions, we avoid the Neyman and Scott (1948) incidental parameters problem and
are able to estimate consistently the coefficients of dummy variables which represent
the group effects. In the second stage, we fit the estimated group specific intercepts to
group level variables, employing GLS techniques to correct for non-spherical errors. We
analyze the asymptotic behavior of the second stage estimator for both the case where
the number of groups is fixed, and the case where the number of groups tends to infinity.

In Section 2, we outline the latent variables group effects regression specification
and discuss existing estimation techniques for these models. Section 3 provides a small
simulation comparing the performance of alternative estimators under both normal and
alternative distributional assumptions for the group error and for various sample sizes.

Section 4 provides some concluding comments.

2 Probit Models with Group Effects

2.1 Model Specification

Consider a latent variables regression specification with random effects resulting from

a group specific error term,
(1) Yi=XB+Zv+e+y

for groups j = 1,...,J and individuals i = 1,...,%j, for a total of 1N, =N
observations. X;; is a A" vector of explanatory variables, Z; is an M-dimensional vector
of explanatory variables common to members of group j, 8 and 7 are conformable
vectors of parameters. The ¢ are i.i.d. normal errors which are independent of the i.i.d.
group errors u; both the ¢ and the u are assumed to be orthogonal to the Z and X.

We begin with the assumption that u; is distributed normally; this assumption will be



relaxed subsequently.® In the case where Y is fully observable, this specification is
analogous to Amemiya’s (1978) specification of the random effects model. The primary
assumption that we make about the sample design is that the number of individuals
per group (N;} approaches infinity along with the total sample N.

Economic theory often generates models which describe how Y;; should vary among
groups as a function of variables Z characterizing the background or the opportunity
set facing each group. Given our specification above, we may define a “group effect”
dummy variable, d; = Z;7+u;, which represents the total effect of membership ir group
7 on the latent ¥;;. Note that our specification of the group effect as a linear function
of group specific variables Z and an error term u provides a structural interpretation of
the dummy variable d in terms of group specific characteristics.

We do not observe Y; directly, but instead observe the indicator variable Y;; =
1(Y;; > 0). The observable data consist of sets of observations on (Vi;, X{;, Z}) for
individuals ¢ and groups j. In a slightly different context, data of this form have been
termed a random effects probit model by Heckman and Willis(1975). Given the usual
normality assumptions for u and ¢, the errors w = u + ¢ are multivariate normal with
mean 0 and block-diagonal covariance matrix .

There are three primary techniques for estimation of random effects probit models:
pooled probit (Maddala (1986, p. 317), Robinson (1982)), random effects (Heckman
and Willis, Butler and Moffitt (1982)), and minimum distance {Chamberlain (1984)).4
Each of these approaches is unsuitable for the groups effects specification. The pooled

probit will generate consistent and asymptotically normal, but inefficient, estimates of

the parameters of interest, with standard statistical packages providing incorrect esti-

31n this formulation of the group effects model, correlation between the group effects and the explana-
tory variables X results from correlation between the X and the Z. See Mundlak (1978), Chamberlain
(1984) and Hausman and Taylor (1981) for alternative specifications.

¢ Alternative assumptions about the error terms may generate additional approaches. For example,
if the ¢ are distributed as a logistic, conditional likelihood estimation (Anderson (1970), Chamberlain
(1980)) is possible.



mates of the standard errors. Computing the correct variance matrix for the parameter
estimates for the pooled specification appears to us to be very difficult.®* The Heck-
man and Willis random effects specification is theoretically appropriate for large J, but
the performance of the estimator may not be satisfactory for large N; since the model
requires numeric integration over a term involving the product of cumulative normals
for all group members. Large group sample sizes are likely to have numerical integrals
which are at best, quite unstable, and at worst, involve integration over values which
are smaller than machine precision.® The Chamberlain two-stage approach simply ap-
pears to be impractical for group effects data for a number of reasons. The first-stage,
consistent estimation procedure requires the estimation of separate probit models for
common observations across groups. In addition to the computational burden and obvi-
ous difficulties in justifying standard asymptotic results, there are conceptual difficulties

since there is no natural ordering of observations for group effects data.”

2.2 A two-step estimator

Our approach takes advantage of the fact that as the number of individuals in each group
increases, we are able to avoid the dimensionality problem associated with estimating
models conditional on group membership. We propose estimating 3 from a fixed effects
probit specification and 7y via a second stage GLS regression of the consistently estimated

fixed effects on the group level variables. This approach is a natural extension of the

3See, for example, the technical appendix in Robinson {1982) which includes formulae for computing
the variance matrix in the case where the residuals in the model follow an AR(1) process.

® For a hypothetical sample of 500 observations per group assuming a generous likelihood contribution
of .5 for each observation in a group, the value of the integrand is ¢30%'08(:3) o (=348 yhich is well
below the capabilities of most existing computer precision. For as few as 30 observations in a group,
the value is on the order of ¢¥"7. As a rough approximation, it would appear that group sizes over 50
may create significant instabilities if the model has low predictive power.

"We consider a modified Chamberlain approach which estimates models stratified by group in Sec-
tion 2.2.3. Avery, Hansen and Hotz (1983) propose a more general, but related generalized method of
moments estimator.



Amemiya (1978) two-step estimator for the linear random effects model. For expository
reasons, we consider a balanced sample with J groups and N/J — oo observations per
group. We begin with the straightforward case of J fixed, and defer consideration of

the case J — oo until Section 2.2.3.

2.2.1 First-stage fixed effects

Suppose that we estimate a standard probit model, conditioning on group membership
by including dummy variables for each of the J groups. We are interested in estimates
of the true K +J dimensional parameter vector 85 = (85, d}). Note that since N/J — oo
and J fixed, all of the components of the parameter vector # are structural in the sense
of Neyman and Scott.

Under appropriate regularity conditions, d, the maximum likelihood estimator is
a consistent root for f, the true parameter vector and VN asymptotically normal dis-
tributed with asymptotic variance given by V = A~! where A = limy o N 7'E(=V?I(6,))
and V2(8) is the ((K + J) x (K + J)) matrix of log likelihood second derivatives. For
the probit model, Amemiya (1985, pp. 270-273) provides sufficient conditions for stan-
dard asymptotic results to obtain. Abstracting from the usual considerations regarding
collinearity of the X, the force of the restriction on the information matrix necessary
for asymptotic results requires N;/V — =x; > 0.2 Put differently, so long as there are
variations in the binary responses within a group and the group sizes all tend to infin-
ity, we can avoid the incidental parameters problem and apply ML to the fixed effects

model.?

8This condition is satisfied trivially for the balanced design since N, = N/J. As is the case for
Berkson’s minimum chi-square methods, if this condition fails for some j, we can respecify by ignoring
the observations corresponding to that group (see, for further discussion, Amemiya (1985, p. 276)).

$See Beckman (1981a) for further discussion and monte carlo evidence that the estimator may be well
behaved for N/J as small as cight. Computationally, large J may pose some difficulties since there is no
approach for removing probit fixed effects via “differencing” or conditional likelihood (Anderson (1970},



2.2.2 Second stage GLS estimation

Using the estimated d, we specify a second stage regression model as d = Zy + w;
w = u+ (d - do) where (d — do) is 0p(1) and VNTI{d = dy) is 0,(1) so that w — u
as N — o0. Then asymptotically, the second stage model which regresses don Zis
a simple linear regression specification with normally distributed spherical errors and
variance matrix o2/, (applying results from Randles (1982) and Pierce (1982)). Thus,
a second stage OLS estimator for 7 employing d will asymptotically be both unbiased
and normally distributed, and will possess the properties of standard QLS estimation.
It is worth emphasizing that because of the non-linearity of the first stage estimator,
Amemiya’s {1978) equivalence results for one and two-stage estimation procedures are
not applicable. Note further the important fact that we may relax the group error
normality assumption with no substantive effect on the asymptotic bias (though (4 —,)
will no longer be asymptotically normally distributed).

In practice, the errors will be non-spherical, with covariances depending upon the
variability of parameter estimates from the first-stage ML model. The variance matrix
for w is approximated in finite samples by Q = o21; + V,,, where V4 is the portion of
the first-stage variance matrix corresponding to the dummy variables. This expression
provides the intuitive result that using the estimated dummy variables in the second
stage adds the estimator variance for the d from the first-stage to the variance matrix
for the residual u. Let A = (8},7,) and define the two stage estimator A’ = (3',7")
where the [3 is derived from the ML estimator of the fixed effects model, and where ¥ are
estimates derived from GLS regression of the d on the Z; ¥ = (Z'Q~1Z)~* Z'Q1='d where
€ is an estimate of the second stage residual variance matrix (see Appendix A). Given

Vap, the covariance matrix for the first-stage estimators d and J, define the matrices

Chamberlain (1984)). For large problems, we recommend a simplification of the usual ML estimation
procedures which employs the recursive updating techniques described by Hall (1978) and Chamberlain
(1980). These updating formulae require only inversion of K dimensional matrices.



T, =(Z2'0712)", T, = —(Z'Q'Z)"1 Z'Q ' Vyy. It follows (from Pierce) that A - A,

has approximate variance matrix X given by

Vos  Zav
Ly Ly

(2) L=

For fixed J, Vi, and Z4, are 0,(1) so that ¥ — yo ~ N(0,02(2'Z)"!) as N — oo.
Note that whether or not the group error u is normally distributed, the second stage
GLS estimator is not in general normally distributed in finite samples since it contains

linear combinations of d — dy which may be far from normally distributed for small N.!°

2.2.3 Large numbers of groups

It is important to emphasize that the asymptotic unbiasedness outlined above and
normality results for the two-stage estimation procedure outlined above require only
that the group sample sizes approach infinity (for normally distributed group errors). If
we also allow the number of groups J to increase with the sample size (such that N/J
increases as well), it is possible to demonstrate consistency and asymptotic normality
for the two-stage estimator of v for alternative group error distributions. The only
theoretical difficulty lies in establishing consistency for the first-stage ML estimates as
both J and N/J approach infinity. Previous authors argue heuristically that asymptotic
results follow so long as N/J increases (for example, see Heckman (1981a) or Hsiao
(1986)), but the results de not follow from standard theorems (e.g. Wald (1949)) since
the parameter space is of variable (increasing) dimension.

The most straightforward way around this difficulty is to stratify the data by group

191t is worth noting by way of comparison that with J fixed, neither the pooled probit, random eflects
probit, Chamberlain's two-stage estimator, nor Avery, Hansen and Hotz's approach are consistent and
asymptotically normal, nor are they uniformly asymptotically unbiased.



(in a “reversal” of the first-stage of Chamberlain’s approach) and to employ standard
VN[J asymptotic results for each group. If efficiency is a concern, the cross-group
restrictions can be imposed on the 3 via minimum distance estimation, or by using the
cf,- as plug-in estimates in ML estimation. While theoretically sound, in practice the
stratified approach is likely to be more cumbersome than ML over a large parameter
space since it requires estimation of a large number of models. Alternatively, it should
be possible to use results from the extensive literature on semi-parametric estimation
(see for example, Wong and Severini (1991) and Ritov (1991)) to establish results for
this problem, but this degree of generality strikes us as overkill. Recently, Sueyoshi
(1992) has extended and adapted Portnoy’s ((1984), (1985), (1987)) asymptotic results
for increasing dimensional linear m-estimators to consider non-linear regression models
with group indicators, and has demonstrated that (in addition to standard assumptions),
(Jlog J)/N — 0 is sufficient for consistency.!!

Given consistency and \/¥/J normality of the first-stage estimates using the strati-
fied model, asymptotic normality for the estimated 4 follows immediately from Randles
and Pierce and standard proofs. Since the term involving (d—d) is 0,(\/J]N), provided
that J grows slowly enough, we may safely ignore it in the second stage v/J asymptotics.
Then if plim (2'Q27'Z)/J = o7? plim {Z'Z)/J = 0% Q, where Q is a finite, positive
definite matrix, and @ % 02, as J — oo, plim 3 = v, and V7 (¥ =) LN N(0,02Q" 1)
as N/J and J approach infinity.

We emphasize that our two-stage approach does not require a distributional choice
for u, only the orthogonality conditions. In contrast to the alternative approaches which
all require correct specification of the distributions of both the individual effects ¢ and
the group effects u (and generally require normality of u for computational tractability),

our procedure requires only that the distribution of ¢ be correctly specified and that d

"' Portnoy (1984) establishes the rate (Jlog J}/N for pure ANOVA models. See also Drost (1988) for
results from a related literature.



be a consistent estimator. We investigate the practical importance of this robustness in

the simulation work below.

3 Simulation results

3.1 Alternative estimators

In this section, we present results for a small, 100 replication, monte carlo simulation
designed to assess the performance of the various estimators for the group effects probit
m.odel. In addition to the pooled probit and Heckman and Willis random effects spec-
ification, we initially consider four two-stage estimation techniques. First, we estimate
the second stage model using ordinary least squares. Under the assumptions of our data
generating process, this specification should asymptotically yield the best linear unbi-
ased estimator for v since Vg4 is 0,(1). Next, we estimate the model performing a simple
heteroskedasticity correction to account for the variability of the first stage estimates
of d, using the asymptotic standard errors for the first stage fixed effects estimator and
the estimator for the variance of the o2 outlined by Borjas (1987) (see Appendix A).
This estimator accounts only for the unequal variances associated with the estimates of
d;, but ignores the off-diagonal covariance terms in V4. Finally, we consider two full
GLS specifications which incorpbrate the off-diagonal terms from V,, into the estimate
of : one estimate uses the ratio of the estimates from the pooled and the fixed effects
specifications as an estimator for 2 (GLS 1), and the second uses the Borjas estimator
for the o2 (GLS 2).

It is worth noting here that in the simulations reported below, the relative variance
of u to the total error variance is chosen to be .20 (¢2 = 25, ¢? = 100). Clearly, the
relative performance of the two-stage estimator will improve with greater degrees of
group heterogeneity, and it is encouraging to note that the results presented below are

obtained for reasonably small (in relative terms) group effects. Further details of the



design of the simulation and of further computational considerations are presented in
the appendices.

We begin with a simulation where the individual and group errors are both normally
distributed. Table 1 reports summary statistics of simulations for the coefficients of the
individual-level X variables. The most striking result is the poor performance of the
Heckman- Willis random effects probit estimator. On average, the estimated coefficients
are off by about 11 percent. More importantly, despite the fact that the Heckman-Willis
approach is the full-information ML estimator, the t-test nulls are rejected well in excess
of the nominal size of the test. We attribute this severe bias to some combination of the
computational difficulties associated with the Heckman and Willis approach as outlined
above.

In contrast, both the pooled and fixed effect probit estimators yield estimated coef-
ficients that are quite close to the true parameter values. The bias for these estimators
is generally on the order of 1 to 2 percent of the parameter value. Note, however, that
the precision of hypothesis testing is improved substantially when using the fixed effect
model. The size of the t-tests is substantially in excess of the nominal size of 5 percent
in the estimates obtained from the pooled probit model. This is not surprising in view of
the result from pooled linear models that the standard errors of the group-level variables
are substantially underestimated (see Moulton (1986)).!? Furthermore, despite the gen-
erally higher biases for the fixed effects model, it is superior to the pooled specification
in terms of a mean-square error criterion.

Table 2 reports similar summary statistics for the intercept and for the coefficients

of the group-level variables. As before, the Heckman-Willis estimator has the poorest

2The pocled probit estimated standard errors for the 8y, fa, f, coefficients are, on average, 21, 9,
and 12 percent too low. In contrast, the fixed effects probit coefficients are 9 percent too high, and 5
and 4 percent too low respectively. For 8, the pooled probit actually does better than the fixed effects
estimator, overstating the standard error by .3 percent in contrast to the 8 percent for the fixed effects
specification. The actual sizes of the asymptotic tests for 3; are roughly comparable, with the pooled
probit rejecting too frequently.

10



Table 1: Summary of monte carlo results for coefficients of individual level variables
(100 replications, 5000 observations, 50 groups).

Specification True Parameter Bi=175 B.=.5 PBa=-10 pB4=15
Pooled Bias .018 -.026 -.010 .020
Probit Std. Dev. .061 .091 .058 .074
Minimum 1.641 206 -1.144 1.326
Median 1.766 473 -1.006 1.527
Maximum 1.904 .696 -.828 1.692
Size (5% Nominal) 17 .07 11 .10
Fixed Effects Bias 032 -.013 -.017 033
Probit Std. Dev. 045 .080 .054 067
Minimum 1.646 287 -1.132 1.337
Median 1.788 492 -1.018 1.536
Maximum 1.869 675 -.852 1.685
Size (5% Nominal) .05 .04 .10 .08
Random Effects Bias -.199 -077 115 -.167
Probit Std. Dev. 061 072 .053 .068
(Heckman-Willis) | Minimum 1.392 .253 -1.017 1.179
Median 1.551 424 -.881 1.331
Maximum 1.692 .598 -.704 1.489
Size (5% Nominal) .95 14 .63 73

11



Table 2: Summary of monte carlo results for coefficients of group level variables (100
replications, 5000 observations, 50 groups).

True Parameters

By = 1.0

T =-20

Yz = -1.25

Pooled Probit
Bo T T2

Two-Stage OLS
Bo T T2

Bias -.031 021 .046 .028 - .018 021
Std. Dev. .820 352 424 766 350 420
Minimum -1.058  -2.837 .2.287 -.762 -2.838 -2.296
Median 897  -1.973  -1.150 990 -1.981 -1.200
Maximum 3.275 -1.061 -.374 3.008 -1.057 - .307
Size (6% Nominal) 47 .50 .60 .28 .32 .32
Heteroskedasticity GLS Method 1

Bo T T2 Bo B! 72
Bias .005 .006 040 -.005 .033 057
Std. Dev. 159 347 411 .746 342 406
Minimum - .823 -2.812 -2.227 -.819 -2.784 -2.201
Median 986  -1.959  -1.184 874 -1.925 -1.155
Maximum 3.097 -1.052 -.311 3.050 -1.038 -.307
Size (5% Nominal) .06 .06 .04 .04 .03 .02

Bias

Std. Dev.
Minimum
Median
Maximum

Size (5% Nominal)

GLS Method 2

Bo TN T2
- .009 037 058
747 341 404

-.807 -2.769  -2.185
972 -1.928  -1.166

3.051 -1.035 - .307
03 .05 .02

Heckman-Willis
Random Effects Probit

Bo T T2
-.131 .256 221
922 .369 .500

-1.545  -2.537  -2.298

819 -1.743  -1.019
2.876 -.939 245
41 .44 46

12



performance: the estimated intercept is 13 percent below its true value, and the esti-
mated coefficients of the group-level variables are overestimated by an average of 13
percent. Furthermore, while standard tests for the 4 perform somewhat better than for
the 4, the specification still rejects the null hypothesis eight times more often than the
nominal size.

It is interesting to note that in terms of bias the pooled probit estimator performs
about as well as any of the various two-stage estimators reported in Table 2. Regardless
of the estimator used, the estimated intercept and coefficients of the group-level variables
are off by about 2t03 percent. However, the pooled probit estimator again performs
poorly in terms of hypothesis testing, with conventional asymptotic t-tests generating
sizes of about 50 percent for a nominal 5 percent value. This poor performance reflects
the fact that the estimated standard errors are, on average, one-third of the monte carlo
standard errors. The sizes of the tests drop significantly if any of the two-step estimators
are used. In particular, the sizes decline to about 30 percent if the second stage is
estimated using ordinary least squares, and decline to 5 percent or less if the second stage
is estimated using generalized least squares.!> Note that neither the extent of the bias
nor the size of the test are particularly responsive to the type of variance correction made
in the second stage. Even a simple heteroskedasticity correction provides estimators
that are as nearly as good as those using the additional information provided by the
* non-spherical covariance matrix.!?

Table 3 reports selected results for the simulation in the case where the group equa-
tion does not have normal errors. Not surprisingly, the pooled probit estimates perform
quite poorly in terms of bias, with the majority of the bias components comprising

close to 90% of the root mean-square-error. The size computations for the model are

"*The OLS estimates understate the standard errors by 45 percent. For comparison purposes, note
that the GLS corrected results overstate the ertors by a few percent.

""The latter are, however better along other dimensions; they slightly more efficient, with lower
standard deviations and tighter ranges than simple heteroskedasticity corrected estimates.

13



Table 3: Summary of monte carlo results for extreme value group errors (100 replica-
tions, 5000 observations, 50 groups).

Pooled Probit Two-stage GLS

True Bias  Std. Dev.  Size® Bias  Std. Dev.  Size
1.0 537 975 - .25 384 .885 15
8 1.75 207 .069 .98 .031 .046 .08
5 .041 .093 .08 -.011 .084 .03
-1.0 -.120 .063 .59 -.020 .055 07
1.5 .182 .085 a7 031 068 .07
¥ -2.0 -.248 .139 48 -.026 .106 .00
-1.25 -.145 187 22 -.004 .165 01

*5% nominal size

correspondingly poor, with, for example, rejections for the §; null occurring over half
of the time at a 5% nominal level. In contrast, the two stage GLS estimator performs
quite well. Ignoring the constant term, estimates of the coefficients are nearly unbiased,
and the size computations, while not quite as well-behaved as when the u are normally
distributed, are still quite close to the nomiral level. If anything, the tests for the v are
too conservative. We attempted to estimate the corresponding Heckman-Willis models

but had difficulty attaining convergence (Appendix B.2).

3.2 Group sizes and numbers of groups

Lastly, to provide practical guidance regarding the application of our two-stage GLS
approach to data, we consider the finite sample behavior of the estimator for alternative
group sizes and numbers of groups. We estimated 100 replications of balanced designs
in which the number of observations per group ranges from 10 to 100 and the number
of groups ranges from 10 to 50 (100 to 5,000 total observations). Table 4 reports biases

and standard errors for the monte carlo simulation, as well as the relative importance of

14



the bias component in the mean-square error (MSE). Lastly, for comparison purposes,
we compute the empirical rejection frequencies under the assumption that our large
sample normality result is applicable.

There are several results of note. First, in contrast to Heckman’s (1981a} influential
simulations suggesting that eight observations per dummy variable may be sufficient
for the fixed effects probit estimator to perform well, we find that both the 8; and the
"1 bias components are quite high for 10 observations per group. Even for 50 groups
(500 total observations), the bias for f; is roughly one-fourth of the parameter size,
and the squared -bias is half of the total MSE. Similar results are obtained for 4,. The
situation improves substantially once we have 25 observations per group, with the bias
components falling to under 10 percent for g3 and 7,.

Second, provided that we have 25 or more observations per group, the performance of
the fixed effects estimator for 3, appears to depend primarily upon the total sample size,
with weak preference given to increasing the number of observations per group relative to
the number of groups. For example, the estimator for 25 groups with 100 observations
per group is marginally better than 50 groups and 50 observations per group; 1000
observations from 10 groups appears to be slightly preferable to 1100 observations from
25 groups (50 per group).

The behavior of the second stage estimator for 4, is poor when there are only 10
~ groups, even for large and increasing within group sizes. For example, ircreasing the
total sample size from 250 to 1000 by fixing the number of groups at 10 and increasing
group sizes from from 25 to 100 observations per group yields only a slight improvement
in the standard deviation of the estimator (.886 to .781), and little improvement in the
bias component (-.191 to -.157). This last result may be compared with the substantive
improvement observed in moving from 250 to 625 observations by holding group size
constant at 25 and increasing the number of groups from 10 to 25,

Overall, our results suggest that having a greater number of groups with smaller

15
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group sizes may improve the performance of the second stage estimator (provided that
the number of observations per group is “large enough”). For our simulations, we
conclude that while 10 observations per group may be too few, once group sizes exceed
25, increasing the number of groups provides greater improvement than increasing the
observations per group. Put differently, having a large number of noisy estimates of d

appears to be preferable to having relatively few, precisely estimated values.

4 Conclusion

In recent years, the group-effects linear regression model has become increasingly pop-
ular in applied research both in economics and in other social sciences. In particular,
individual outcomes are speciﬁed as a function of individual-specific variables, as well as
a function of group-specific (or “environmental” variables). The statistical properties of
(as well as alternative estimation procedures for) these models, which are a particular
formulation of 2 more general class of random-effects models, have been analyzed for
the case of continuous (and observable) dependent variables. This paper extends the
literature to outline a particular estimation procedure for estimation and inference in
probit models with structural group effects.

One key objective guided our analysis: computational tractability. It is well known
that random-effects models may be particularly difficult to estimate in a non-linear
setting, and that the difficulty grows significantly as the number of groups increases.
To avoid these computational problems, we suggest a two-stage estimation procedure.
The first stage estimates a probit with fixed effects; the second stage regresses these
estimated fixed effects on the group-level variables, correcting for the non-spherical
errors. OQur approach is analytically and computationaily simple so that estimates may
be derived using standard econometric software,

Under mild regularity conditions, the second stage estimates are asymptotically un-

17



biased as the number of observations within gl;oups approach infinity; furthermore, the
two-stage estimator is consistent and asymptotically normal as both the both number of
groups and the number of observations within each group go to infinity {which are pre-
cisely the conditions required for consistency by alternative, and much more complex,
estimators). More importantly, the results of our Monte Carlo simulation of alterna-
tive estimating schemes reveal that the two-stage approach is superior to the one-stage

random-effect or pooled probit formulations currently available in the literature.
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A Variance Estimation

The finite sample correction for the second stage GLS variance requires estimation of the
matrix 2. The variance matrix Vy,; may be estimated consistently from the fixed-effects
ML. 02 may be estimated in at least two distinct ways.!®

One approach uses estimates from separate maximum likelihood specifications. The
fixed effects estimator for 3 which consistently estimates 8,/0,, and the problt model on
the pooled sample for N/J, J increasing provides consistent estimates Bp of Bo/ (02 +

a?)'/2. The ratio of coefficients is given by Br/Bp = (62 + )/ /a,. Then an estimator
for the variance is given by 65 = [(Br/Bp)? ~ 1)'/3. The ratio of standard errors is
overidentified since there are K coefficients in 8. This estimator is consistent as the
N approaches infinity. Following Heckman’s (1981b) suggestion we recommend taking
averages over the K estimates.

A second approach follows Borjas (1987). OLS applied to the second stage regression
provides estimates of an error variance which has components from both u/c,, and from
the estimation error associated with d. If 1; is the jth estimated res:dual from the second
stage OLS regression, then the estimate of the residual variance is % = E):l w?/(J -
M). Expanding the definition of w, 5% = 1/(J - M) T}, [a2+(d; —d;)*+24,(d; —d;)),
where i are estimates of the latent residuals. Since the latter term is approximately zero
from the independence of ¢ and u, o2 can be estimated by 42 = 52 - Z:}’=1 & [(J - M)
where the ; is the standard error for the jth dummy variable in the first stage estimation
procedure.!®

B Computational Issues

B.1 Monte Carlo Design

We carry out a variety of estimation procedures for 100 replications of the underlying
. data generation process. The data for each replication consist of observations on binary
responses and observable data for individuals in groups. We cosider both balanced and
unbalanced sampling schemes, with group sizes ranging from 10-50 (for the balanced
case) and from 50 to 150 individual observations (for the unbalanced case). The number
of groups also varies.

!3Note that since the first stage probit identifies coefficients up to a scalc factor, that d provides
estimates of d/o.. The implicit group error variance to be included in N is 03 = (ou/0.)?

'® As is the case for other GLS estimators based upon differences, estimates of ¢4 are not guaranteed
to be positive. Due to the presence of the first stage variance matrix V“, even if the estimates of the
variance are negative, it is possible for the estimated (1 to be positive definite. Our experience is that
the variance will positive for a well-specified model and that negative estimated values may therefore
be evidence of misspecification. )
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For concreteness, let us consider the 5,000 observation, 50 group simulation {unbal-
anced). First, we draw 5,000 independent observations from a 6-dimensional multivari-
ate normal distribution with mean zero, and arbitrarily chosen variance matrix.!” We
assign to each individual a group identifier on the basis of exogenously specified group
sizés. Additionally, the first four variables are treated as individual specific variables
so that we assign to each individual the corresponding values for X; the latter two are
deemed group variables, with all individuals in a group assigned Z values based upon
the data for the first individual in the group.'® All of the subsequent analysis is carried
out conditional on this realization of the observable variables.

Conditional on the observed data, we consider two simulations for the unobserved
components: one in which the group errors are normally distributed, and a second one
in which the group errors are distributed as extreme value variables. For the first simu-
lation, we repeatedly draw sets of 5,000 independent errors ¢, from a normal distribution
with mean B, = 1 and variance 100, and 50 draws of normally distributed » with mean 0
and variance 25, and assign each individual the corresponding individual € value and the
group error u associated with the first draw for the group. The four 8 coefficients are ar-
bitrarily chosen to be (1.75,.5, —1.0, 1.5) and the two corresponding 7 are (2.0, —1.25).
The coefficients were chosen so that the signal to noise for the total model is roughly
2:1. We use these individual and group errors to form Y} = X[;8 + Z{y + u; + «¢; for
each individual, and assign binary outcomes to Y;;, with ¥;; = 1(Y; > 0). The second
simulation generates the u from the extreme value distribution.!® Using the ¢ drawn
previously, the remainder of the steps in the above simulation are then repeated for the
new data generating process.

B.2 Random Effects Probit

Our code for estimating the random effects model is a reimplementation of the Gauss-
Hermite integration algorithms described in Butler and Moffitt.?® We experimented

" Details on the exact design of the simulation are available upon request. Independent, pseudo-
random normal deviates are generated by successive calls to the IMSL double precision function DRN-
NOR {IMSL (1987}). The resulting matrix of independent normal deviates is then multiplied by the
Cholesky factorization of the appropriate variance matrix to generate the desired covariance structure.

18The two-stage procedure for assignment of group characteristics is purely for programming conve-
nience and should not affect our results.

19The pseudo-random variables are obtained from repeated calls to the double precision IMSL routine
DRNEXP which yields standard exponential deviates, and then taking natural logarithms. To reduce
sampling variability, the ¢ are reused from the previous analysis; thus, the only elements that differ across
the two simulations are the u. Because the standard form for the extreme value has E(u) = —.17444
and Var(u) = x2/6, we transform the resulting errors to have mean 0 and variance 25 for more direct
comparability to the standard normal described above.

2We thank Robert Moffitt for providing us with a copy of the original FORTRAN code which we
used as a guide in our programming and which allowed us to verify the accuracy of our results. All of
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with several choices for the number of expansion terms and settled on four as the basis
for the results presented in the text.?! Interestingly enough, larger numbers of expansion
terms began to generate numerical difficulties as the monte carlo estimation began to
experience numerical underflow on a number of replications. This outcome suggests that
it is the errors in the numeric approximation to the likelihood function that are allowing
us to estimate the model; as we add terms so that our approximation becomes finer, the
likelihood contributions for groups approach zero and the model becomes unstable. Any
interpretation of the random effects results reported in the text should bear in mind the
likely inherent problems with the estimates.

We note also that the monte carlo simulation for the Heckman and Willis estimator
exhibited considerable numerical difficulties for the extreme value specification. Out
of the first twenty models, the first replication did not converge, and a number of
subsequent specifications generated double precision, floating point exceptions. We
conclude that non-normal group errors may make the ML random-effects estimator
more difficult to estimate.

our FORTRAN code is available upon request for a nominal handling charge.
! Butler and Moffitt provide simulation results suggesting that two may be sufficient.
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