
TECHNICAL WORKING PAPER SERIES

USING WEIGHTS TO ADJUST FOR SAMPLE SELECTION WHEN AUXILIARY
INFORMATION IS AVAILABLE

Aviv Nevo

Technical Working Paper 275
http://www.nber.org/papers/T0275

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
November 2001

I wish to thank Josh Angrist, Moshe Buchinsky, Francesco Caselli, Gary Chamberlain, Zvi Eckstein, Zvi
Griliches, Jim Heckman, Kei Hirano, Guido Imbens, Jim Powell, as well as participants in the Econometrics
in Tel-Aviv workshop and  Camp Econometrics for useful discussions and comments on earlier versions and
Geert Ridder for making his data available.  The views expressed in this paper are those of the author and
not necessarily those of the National Bureau of Economic Research.

© 2001 by Aviv Nevo.   All rights reserved.  Short sections of text, not to exceed two paragraphs,  may be
quoted without explicit permission provided that full credit, including © notice, is given to the source.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6894813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Using Weights to Adjust for Sample Selection When Auxiliary Information is Available
Aviv Nevo
NBER Technical Working Paper No. 275
November 2001
JEL No. C23

ABSTRACT

In this paper I analyze GMM estimation when the sample is not a random draw from the

population of interest.  I exploit auxiliary information, in the form of moments from the population of

interest, in order to compute weights that are proportional to the inverse probability of selection. The

essential idea is to construct weights, for each observation in the primary data, such that the moments of

the weighted data are set equal to the additional moments. The estimator is applied to the Dutch

Transportation Panel, in which refreshment draws were taken from the population of interest in order to

deal with heavy attrition of the original panel.  I show how these additional samples can be used to adjust

for sample selection.
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1.  INTRODUCTION

Sample selection arises when the observed sample is not a random draw from the population

of interest. Failure to take this selection into account can potentially lead to inconsistent and biased

estimates of the parameters of interest. This paper develops a method that uses auxiliary information

to inflate the observed data so it will be representative of the population of interest; thus, standard

estimators applied to the weighted data will yield consistent and unbiased estimates.

Suppose, for example, we want to study a panel of individuals in which we believe there is

an unobserved individual-specific effect that is correlated with the independent variables.  Common

solutions include “within” or first difference estimators.  However, in order to implement these types

of estimators we need at least two observations for each individual. If the panel also suffers from

non-random attrition, then the subset of individuals observed for more than one period is no longer

a random draw from the population of interest. Assume we have at our disposal additional samples,

which are representative of each of the cross-sections, but also suffer from attrition and therefore do

not allow consistent estimation of the parameters of interest.  An example of such a data set is the

Dutch Transportation Panel (DTP) considered by Ridder (1992) and used below.  

The procedure proposed in this paper suggests one possible way to use these additional

samples, the refreshment samples.  I use the refreshment samples to attach a weight to each

observation in the balanced sub-panel such that moments in the weighted sample are set equal to

corresponding moments in the refreshment samples.  I propose estimating the parameters of interest

using standard panel estimators and the weighted balanced panel.

The proposed method exploits additional data to adjust for the selection bias by using it to

estimate the selection probability, the propensity score.  Here I use the propensity score to inflate the

observations.  This is not the only way to exploit the additional information. Alternatively, it can be



1See, for example, Heckman (1979, 1987, 1990), Heckman and Robb (1986), Little and Rubin (1987), Newey,
Powell and Walker (1990), Manski (1994), Angrist (1995), Kyriazidou (1997), Heckman, Ichimura, Smith and Todd
(1998) and references therein.
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used to construct a control function (Heckman, 1979; or Ridder, 1992, for the data structure

discussed below), to match observations (Ahn and Powell, 1993) or to impute the missing

observations (Hirano et al, 1998, for the data used below).

The advantage of the weighting method proposed here, over the alternative methods of using

the additional information mentioned above, is its simplicity.  Once the weights have been computed

the researcher can conduct the same analysis, she would perform if the data were randomly drawn

from the population of interest, using the weighted data.  Thus, any estimator can be computed with

little added complexity due to the selection.  The weights can be computed either by setting up the

problem as a standard GMM problem (as below), or by solving a linear programming problem.  The

latter approach connects the method proposed here to information–based alternatives to GMM (see

below).

Although the refreshment samples found in the DTP are not typical of economic data, I claim

that the method proposed here is general.  For example, Census and Annual Survey of Manufacturers

data are sources of random draws from the population of interest and can be matched with smaller

data sets that suffer from attrition, but have information on economic agents over time.  Furthermore,

the use of refreshment samples to adjust for selection bias motivates collection of such samples, a

procedure that is not frequently done.

1.1 Previous Literature

A survey of the literature on sample selection is beyond the scope of this paper.1  However,

I want to relate the method prosed here to previous work.  The use of weights to correct for sample

selection is not new to this paper.  For example, many data collecting agencies provide sampling



2See also Cosslett (1981) and Wooldridge (1999).
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weights to correct for the sampling procedure (the U.S. Census, for example, provides such weights.)

Manski and Lerman (1977) propose a method to compute weights for choice-based samples.2  In

both these examples the selection probability is known, while here I estimate the probability of

selection, and the implied weights, jointly with the parameters of interest.  Methods that estimate the

weights jointly with the parameters of interest also exist.  For example, Cassel, Sarndal and Wretman

(1979), Koul, Susarla and Van Ryzin (1981) and Heckman (1987). 

The method proposed here differs from these methods in two ways. First, the weights are

allowed to be a function of variables that are not fully observed in the main data set, but for which

some information is known through the additional moments.  I also allow the weights to be a

function of the dependent variable. In other words, I deal with a non-ignorable selection mechanism

(Little and Rubin, 1987). Second, the weights are computed by exploiting auxiliary information. This

connects the method proposed here to weighting techniques for contingency tables with known

marginal distributions (Oh and Scheruan, 1983, Section 3; Little and Wu, 1991).  I extend these

methods by examining a logistic selection equation and by looking at regression functions rather than

contingency tables.  

The estimator I use here can be related to information-theoretic alternatives to GMM  (Back

and Brown, 1990; Qin and Lawless, 1994; Imbens, 1997; Kitamura and Stutzer, 1997; Imbens,

Spady and Johnson, 1998; Hellerstein and Imbens, 1999).  Standard GMM methods implicitly

estimate the distribution of the data by the empirical distribution (i.e., giving each observation a

density of 1/N).  The information-theoretic alternatives use over-identifying moment conditions to

improve on the estimates of the data distribution, by estimating the distribution jointly with the

original parameters of interest. The focus of this literature has been on improving efficiency. In a
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related paper (Nevo, forthcoming) I show that the estimator proposed here can be related to these

methods.  I make the difference between the sampled population, from which the sample is drawn,

and the  population of interest explicit. Therefore, I can deal with bias in the estimation of the

distribution.  It turns out that when the sampled population equals the target population the estimator

proposed here is equivalent to the one proposed by Imbens, Spady and Johnson (1998). 

This paper is organized as follows. Section 2 presents the proposed estimator.  Section 3

applies the proposed estimator to the data used by Ridder (1992).  Section 4 concludes.

2.   THE MODEL AND PROPOSED ESTIMATOR

2.1 The Setup

Suppose we observe N independent realizations {z1, z2, ..., zN} of a (multi-variate) random

variable Z, with its support, , a compact subset of UP . In the population Z has a pdf  f(Z).  Let 1
*

denote the true value of the parameters of interest, and 1
*0 1 where 1 is a compact subset of UK.

Assumption A0: 1
* uniquely set .  Furthermore, the moment function,E (Z, (

1) '0

: × 16U
K , is twice continuously differentiable with respect to ,

measurable in Z, and   and   are of fullE (Z, (

1) (Z, (

1)) E M (Z, 1)/M
)

1

rank.

A way of estimating 1
* would be to follow the analogy principle by choosing the estimate

Implicitly, this assumes that the empirical distribution of the data is a consistent estimate of f(Z).

However, if the observed sample is not a random draw from the population of interest then the above

estimate is biased and inconsistent. 



3In a cross-sectional context D=0 could imply, for example, that the covariates are observed while the outcome
variable is not.  In a panel example, D=1 for the balanced sub-sample, while D=0 for individuals who are present only
in some periods.  
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f (Z|D'1)' f (Z)·P(D'1|Z) /P(D'1).

f (Z)' f (Z |D'1)·P(D'1)/P(D'1|Z). (1)

E (Z, (

1) 'm (z, (

1)f(z)dz'm (z, (

1)f (z |D'1)·P(D'1)/P(D'1|z)dz'0

ˆ
1 s.t. P(D'1)

N j
N

i'1

1
P(D'1|zi)

(zi,
ˆ

1)'0. (2)

Let Di=1 if and only if zi is fully observed.3   From Bayes’ Rule the distribution of the

observed zi is

Assumption A1: P(D = 1|Z) is bounded away from zero. 

This assumption requires that any point in the support has a (strictly) positive probability of

being observed, which is not a trivial requirement.  Consider, for example, a truncation problem (a

type 1 Tobit model).  A unit will be observed if and only if the dependent variable, y, exceeds a

certain value.  Since the conditioning vector, Z, includes the dependent variable, the selection

probability,  P(D=1|Z), will equal either zero or one, depending on the value of y.  Our method will

not be operational in such a case.  If the correlation between the selection rule and the variable of

interest is less than one this assumption will be satisfied (for example the model considered by

Heckman, 1974). 

Assumption A1 allows us to recover the pdf,  f(Z), given knowledge of  andf(Z |D'1)

 byP(D'1|Z)

Therefore, 

and the correct analog estimator becomes

The empirical distribution of the selected sample can be used to consistently estimate .f(Z |D'1)



4This is the fundamental idea in using sampling weights to correct for non-random sampling in surveys and
estimation in choice based sampling (Manski and Lerman, 1977; and Cosslett, 1981).  See also Wooldridge (1999). 
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¯(Z, )'

(Z, 1)

P(D'1|Z, 2)

h(Z)
P(D'1|Z, 2)

(3)

E ¯(Z, () |D'1 'm¯(z, )f(z |D'1)dz'0. (4)

Therefore, if we know P(D=1|Z) then equation (2) can be used to consistently estimate 1.
4  

In general the selection probability is unknown and will have to be estimated.  In order to

estimate the selection probability, P(D=1|Z), I assume exact knowledge of the expectation, h*, in the

population, of an R-dimensional function of Z, denoted .  Formally, .h̄(Z) h ('E h̄(Z) 'mh̄(z) f(z)dz

Examples include , where the researcher knows the mean of the dependent variable, orh̄(Z)'Y

, where the researcher knows the (non-centered) covariance between the dependent variableh̄(Z)'Y@X

and some of the independent variables.  In the context of panel data the moments,  h*, can come from

the moments of the marginal (cross-sectional) distributional of the unbalanced panel.  The application

below will demonstrate this.

Denote .  Note, that  For now I assume these moments are knownh(Z)' h̄(Z)&h ( E h(Z) '0.

and defer to later discussion of where they come from and the possibility that they are known with

error.

Assume, , where 2
*0 2  and 2 is a compact subset of UR.  DefineP(D'1|Z)'P(D'1|Z, 2)

where .  Let be the true value of the parameters. Note that by construction ' ( 1, 2)
(' ( (

1, (

2)

2.2 Identification

This section examines under what conditions the additional moments are sufficient to identify

the selection probability.  To see that the identification is not trivial consider the following example.
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Let Zi = (Zi1, Zi2) be a bivariate binary random variable, where Zit measures a characteristic (outcome)

of individual i in time t (t=1, 2). Also let Di=1 if i is observed in both periods.  If the attrition is non-

random, i.e., , analysis based on the individuals that are observed in bothf(Zi1,Zi2 )ú f(Zi1,Zi2 |D1'1)

periods will yield biased and inconsistent estimates. Equation (1) corrects this bias by usingP (Di |Zi)

to weight the observations.  I now ask under what conditions is this probability identified?

In a large sample, the probabilities can be estimatedP(Zi1'z1,Zi2'z2 |Di'1), z1,z20{0,1}

from the sub-sample of individuals that are observed in both periods.  Assuming the original sample

is a random sample from the population then the probability  can be identified.  Suppose weP (Zi1)

have additional information on .  For example, this information can be obtained by taking aP (Zi2)

random draw from the population at t=2.  This additional information in not enough to

identify  in general.  Without information on either the joint probability, , orP (Di |Zi) P (Zi1,Zi2)

additional restrictions, the selection probability is not identified.  

This example demonstrates that even if the additional information comes in the form of the

complete marginal distribution then identification is not trivial.  If the additional information is in the

form of marginal moments this is even more so. Hirano et al. (1998) prove that by assuming a

particular functional form for the selection probability, the probability  is identified (HiranoP (Di |Zi)

et al, 1998, Theorem 2).  Since I assume that the additional information comes in the form of

moments, I require slightly different conditions for identification.

Assumption A2: The matrix  is of full rank.E h(Z)@h(Z)) |D'1

Assumption A3: P(D=1| Z) = g(h(Z)! 2), where  is a known, differentiable, strictlyg:U6U

increasing function such that  and lima6&4g(a)'0, lima64g(a)'1.

Most of the standard probability models satisfy assumption A3. In particular, the logisitic model of

selection used below, i.e., .g(a)'exp(a)/(1%exp(a))
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P(D'1|Z, 2)'
e

g ((Z, 2)

1%e
g ((Z, 2)

(5)

Proposition 1   Under assumptions A0-A3 and assuming the functions h(@) can be constructed, then

the parameters =( 1, 2) are identified using a sample  {z1, z2, ..., zN}, such that zi, for all i, are i.i.d

with the empirical distribution converging to  f(z|D=1).

Proof: Assumptions A2-A3 promise that the equations  have a uniqueE h(Z)/g(h(Z)) 2) |D'1 '0

solution for  such that .  Therefore, under assumptions A0 and A1 the system of2 2'
(

2

equations  has a unique solution for  such that .  This andE (Z, 1)/g(h(Z)) 2) |D'1 '0 1 1'
(

1

standard GMM theory (Hansen, 1982; Newey and McFadden, 1994) proves the proposition.  �

A necessary condition for identification is that the number of (linearly independent) additional

moments is at least as large as the number of parameters governing the selection, i.e., the dimension

of 2.  Assumption A3 requires more than this.  The selection probability depends on the functions

h(Z), for which we know the expectation in the population. 

2.3 Estimation

I propose the following three step procedure for estimating the parameters of interest. In the

first step, the probability of selection is modeled as

where g*(Z, 2) is an unknown function.  At this point no restrictions have been imposed since by

defining g*(Z, 2) appropriately equation (5) can fit any selection model.  I approximate the unknown

function g*(Z, 2) by a polynomial, , with unknown coefficients, 2.  The model of selection ish(Z)) 2

largely driven by data availability, the presence of the functions .  Assuming we have a rich seth(@)

of moments available to create  the model can be derived from economic modeling.  In this caseh(@)

the estimates of 2 might be of independent interest.  

The conditioning vector in equation (5) may include also the dependent variable, in the
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j
N

i'1
wi(zi, 2)'1

(6)

j
N

i'1
w(zi, 2)·h(zi)'j

N

i'1 N·P(D'1|zi, 2)
·h(zi)'j

N

i'1 N
· 1% 1

e
h(zi)

)

2

·h(zi)'0

j
N

i'1
w(zi, 2)'j

N

i'1 N
· 1%

1

e
h(zi)

)

2

'1
(7)

estimation equation. Therefore, this selection model is non-ignorable.  One could write the selection

probability as a function of observed variables as well as an individual specific unobserved effect.

Since the conditioning vector includes the dependent variable in the main estimation equation this

type of selection model is covered by our setup in some cases, depending on the exact assumptions

governing the distribution of the individual-specific effects.

The second step is to estimate weights that are proportional to 1/P(D=1| Z, 2). Formally, the

weights are computed by solving the following set of equations

where wi(zi, 2)'1/P(Di'1|zi, 2).

By solving equation (6) the weighted sample counterpart of E[h(Z)] is set to zero. Thus, we

exploit the additional moments, h*, in order to estimate the parameters of the selection process. An

alternative interpretation of the equation (6) comes from an information-based criterion.  This

interpretation relates the method proposed here to information-theoretic alternatives to GMM (see

references given in Section 1.1), as well as Little and Wu (1991).  See Nevo (forthcoming) for details.

Using and substituting equation (5) into equation (6) we obtain theg ((Z, 2)'h(Z)) 2

following system of equations

where  For some models of selection, the last equation in the system defined by (7) will'P(D'1).

just be a normalization.  Therefore, it can be ignored in the solution and imposed later by dividing all



5Consider, for example, a linear probability model, i.e.,  The weights in such a case willP(D'1|Z, 2)' %Z ) .
be proportional to . Therefore, normalizing the weights to sum up to one will influence only the estimate[ (1% &1)

z )

i )]&1

of the constant, but not the relative weights.  However, if the probability of selection is logistic,
i.e.,  the weights will be proportional to Now aP (D'1|Z, 2)'exp h(Z)) 2 / 1%exp h(Z)) 2 1%exp& %z )

i .

normalization will not be fully absorbed in the constant term, and will influence the relative weights as well as their
absolute value.
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wi (zi,

ˆW
1 )'0 (8)

N (ˆW
1 &

(

1)� 0,Es [M ˜ /M ) ]&1 Es [ ˜ ˜ ) ]&Es [ ˜ h̃ ) ]Es [ h̃ h̃ ) ]&1Es[ h̃ ˜ ) ] Es [ M ˜ /M )]&1
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the weights by their sum.  In such cases the parameter, , will not be identified separately from a scale

parameter.  The logistic selection probability I propose in this paper does not have this property and

this last equation will be more than just a normalization, it will actually change the relative weights.5

In the final step, the weights that solve equation (6) are used to obtain analog estimates of the

parameters of interest, 1
*. Formally, the estimate is given by

and the weights, wi, solve equation (6).  The asymptotic properties of this estimator are given by the

following proposition.

Proposition 2 Suppose that zi (i=1,2,...) are i.i.d with the empirical distribution converging to

f(z|D=1), and (i) Assumptions A0-A3 are satisfied; (ii) 1× 2 is compact; (iii ) the moment functions,

, defined by equation (3)  are twice continuously differentiable in ; (iv) .¯(z, ) E ¯(Z, )) ¯(Z, ) <4

Then  and ˆW
1 6

(

where

and  denotes expectations taken with respect to f(z|D=1).ES[@]



6Given the assumptions and that the set of moments is just-identified solving all the moments jointly or in two
steps yields the same unique solution.
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Proof: The expectation of the stacked moment conditions is set to zero at the true parameter value

(equation (4)).  The assumptions of the proposition and standard GMM theory provide the result

(Newey, 1984, Pagan, 1986 and Newey and McFadden, 1994).�  

The proof of the proposition stacks the moments as in equation (3) and considers them as just-

identified estimation equations.  The actual estimation can be obtained by solving these equations in

one step (therefore combining the second and third steps in the above discussion.)  However, as a

computational issue it is simpler to obtain the solution by first solving equation (6),  and plugging the

solution into equation (8), as proposed in the above algorithm.6  

The standard errors can alternatively be estimated by bootstrapping.  This will work in the

following way.  First, we generate a bootstrap sample by sampling from the original sample.  Next,

we solve for the value of the parameter that sets the moments in equation (3) to zero.  We repeat these

two steps to obtain the bootstrap distribution of the parameters.

The proposition assumes that the value of the population moments is known exactly.  This

seems an adequate assumption if the second data set is much larger than the primary data set.

However, in many interesting problems this will not be the case.  Section 2.5 extends the results to

take account of sampling error in the additional moments. 

2.4  Examples of Data Structures

The proposed procedure assumes knowledge of population moments. A leading example of

a source for these moments is the Dutch Transportation Panel (DTP) used by Ridder (1992) and to

which the proposed estimator is applied below.  The unique design of this data set called for draws

of refreshment samples in order to deal with the heavy (seemingly non-random) attrition of the



7See also MaCurdy, Mroz and Gritz (1998).

8 The main difference is that I explicitly model the selection probability and therefore the weights are computed
to fit this selection model.  The weights Hellerstein and Imbens compute implicitly imply a linear probability selection
model.
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original panel.  These refreshment samples are not characteristic of economic data.  But as the rest

of this section demonstrates, under reasonable assumptions familiar economic data sets can fit into

the proposed framework.

Suppose we have a combination of census data and smaller data sets  (as in Imbens and

Lancaster, 1994;  or Hellerstein and Imbens, 1999.)  We can think of the larger data set as a random

draw from the population, which provides estimates of population moments for certain variables.  The

smaller data set is not a random draw from the population of interest, however, it is much richer.  For

example, Gottschalk and Moffitt (1992) document the differences between the NLS (which is a small

and rich data set, but suffers from attrition) and the CPS (which is not as rich, but is much larger and

representative of the population.)7  Hellerstein and  Imbens (1999) exploit this in order to correct for

ability in the NLS. The method proposed here, which is similar to their approach,8 suggests using the

additional data available from the CPS to treat the attrition in the NLS.  The moments needed for the

second step of the algorithm can be obtained from the CPS.  The computed weights are then attached

to the NLS and the analysis is performed using the weighted data set.  

The data structure which is perhaps best suited for our method is a panel structure. Consider

the setup described in the Introduction.  The required moments, , can be obtained from censush (

data, which does not have a time dimension to it, as in the previous example.  Alternatively, we might

be willing to assume that each cross section is a random draw from the marginal distribution of the

population of interest, yet the balanced sub-sample is not a random draw from the joint distribution.

As long as the probability of selection is a separable function of cross-sectional variables one can use



9See Olley and Pakes (1996) for an example of the importance of accounting for entry and exit and Griliches
and Mairesse (1998) for a survey of the literature dealing with this problem.
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the cross-sections to construct . The parameters of interest can be estimated using standard panelh(Z)

estimators applied to the weighted balanced panel.

An example is the estimation of a production function. The firms we observe at any given

period can be considered a random draw from the population of potential firms.  Yet, due to non-

random exit and entry,  if we restrict analysis to only those firms that existed in more than one period

we can potentially bias the results.9  The proposed method combines the full information contained

in the unbalanced panel, while still controlling for the unobserved individual effects.  

2.5  Taking into Account Sampling Error in the Moment Restrictions

In the previous sections I assumed that the additional information was in the form of exactly

known moments, h*.  This is an adequate setup when the data set providing these moments is much

larger than the primary data set, for example if it is a census.  However, in the example considered

below, as in many other examples, this will not be the case. The results previously given can be

generalized, as shown by Hellerstein and Imbens (1999), to the case where we do not know h* with

certainty.  Instead we have an estimate of h*, based on a random sample of size M, i.e.,ĥ

  This estimate satisfies , with  h = E [h(z)@h(z)].  I assume ĥ'1/Mj h(zi). M (ĥ&h () � (0, h)
ĥ

is independent of the primary sample {z1, z2, ..., zN}.

We can estimate  by the algorithm described above, except now we use  instead of h* toĥ

construct the additional moments.  We have to take this additional step into account when

investigating the properties of the estimator as the number of observations in both data sets, N and

M, goes to infinity.  If N/M converges to zero then in large data sets the variance in the second data

set can be neglected, and we are back in the case considered above.  On the other hand, if M/N
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1 ]&1Es [ ˜ h̃ ) ]Es [ h̃ h̃ ) ]&1Es[w]IR%Es [ M ˜ /M )
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&1Es[ ˜ )

2w],

˜ (Z, )' (Z, 1)@w(Z, 2) , h̃(Z, 2)'
h̄(Z)& ĥ @w(Z, 2)

w(Z, 2)&1
, w(Z, 2)' 1%e

(h̄(Z)& ĥ)) 2

converges to zero than the second data set cannot help us adjust for sample selection.  Therefore, I

consider only the case where the ratio M/N converges to a constant k.    

We can obtain the estimate of  by using the additional moments and standard GMM results.

With out loss of generality, and in order to facilitate comparison with the previous exposition, I

assume that M/N is exactly equal to some integer k.  Let   consist of   {zi, hn1 ,..., hik}.  We can thinkz̃i

of having N observations .  Using the logistic selection probability the estimating equations arez̃

Solving this leads to , while the rest of the estimators are the same as thoseĥ'1/MjN
i'1 jk

j'1 hij

produced by solving (7).  The following proposition describes the asymptotic behavior of the

estimator.

Proposition 3: Suppose the conditions of Proposition 2 hold, then the estimator  for  hasW
1

(

1

the following asymptotic properties:

where:

and  denotes expectations taken with respect to f(z|D=1).ES[@]

Proof: The same as the proof of Proposition 2, for details see Hellerstein and Imbens (1999).



10For the rest of this paper I will assume that the refreshments samples were taken as random samples from
the population.  In reality the refreshment samples were sampled randomly with the same stratification as the original
sample but with different weights in order to compensate for the heavier attrition in some strata.  The methods used here
can easily deal with this case, however, for simplicity of presentation I ignore this aspect.
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3.  AN EMPIRICAL APPLICATION 

In this section I apply the method described in the previous sections to the Dutch

Transportation Panel used by Ridder (1992).   I start by presenting the data and initial analysis, and

continue to present the results based on the procedure proposed here.

3.1 The Data and Preliminary Analysis

The data I use is taken from the Dutch Transportation Panel (DTP).  The purpose of this panel

was to evaluate the change in the use of public transportation over time, as price was increased.  The

first wave of the panel consists of a stratified random sample of households in 20 towns interviewed

in March 1984.  Each member of the household, more than 11 years old, was asked to keep a travel

log of all the trips taken during a particular week.  A trip starts when the household member leaves

the home and ends when she returns. Several questions were asked about each trip, but this

information was not used below.  For a detailed description of the DTP, and a survey of research

conducted with it, see van Wissen and Meurs (1990).  

After the initial interview, in March 1984, each participant, which did not drop out, was

subsequently interviewed twice a year, in September and March.  The September interviews did not

ask the participants to fill out a detailed log and therefore were somewhat different than the March

interviews.  I follow Ridder and examine only the March interviews (thus also avoiding any seasonal

effects).  The original panel suffered from heavy attrition, as seen in Table 1.  In order to keep the

number of participants constant additional refreshment samples were taken from the population.10
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For the purpose of demonstrating the method proposed here I concentrate on explaining the number

of trips taken as a function of household characteristics.

The average number of trips in different sub-samples of the panel is given in Table 1.  By

examining the bottom row we conclude that there is virtually no change in the average number of trips

over the different waves.  However, if we examine any one of the other rows we find a clear

downward trend.  This is not seen in the total because the number of trips increases with the number

of waves of participation.  Surprisingly, these two effects totally offset each other.

The data also contain information on various explanatory variables, described in the

Appendix. From the summary statistics we see that the distribution of the variables is different in the

different waves of the original panel.  These differences in the distribution of the explanatory

variables do not explain the pattern observed in the number of trips (Ridder, 1992 Table 5). This

leaves (a combination of) the following as possible explanations to the pattern in the number of trips

observed in Table 1.  Either there is a real downward trend in mobility or due to non-random attrition

there are (non-random) differences in the distribution of the unobserved determinants of the total

number of trips.  Non-random attrition is a real concern given that the sample means of the variables

in the waves of the original panel differ from the means in the refreshment panel.  The question is

whether this attrition completely explains the patterns of Table 1, or is part of the pattern due to a real

change in mobility.

In order to answer this question I compute a series of regressions presented in Table 2. The

following conclusions can be reached from the results in the table.  First, if we assume no correlation

between the unobserved determinates of the number of trips and the independent variables then we

can conclude that there was no drop in mobility.  We can see this from the results in the first two

columns of the table, which are based on ordinary least squares regressions in the original sample plus



11The three wave dummy variables are jointly statistically significant at a 5% level.  However, the dummy
variables for the third and fourth waves are not jointly significant.  Therefore, we might conclude that there was a drop
in mobility during the second period, but not overall.

12Ridder attributes this failure to an implicit restriction, which forces the covariance of the individual effects
in the selection and regression equations to have the same sign as the covariance of the random shocks in the two
equations (see section 5 in Ridder’s paper for details).  
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the three refreshment samples.11 

Second, using the panel structure we can examine the assumption that unobserved household-

specific effects are not correlated with the independent variables.  The fixed- and random effects

results can be combined to compute the standard Hausman test, which is strongly rejected for both

the balanced and unbalanced panels (85.7 for the unbalanced panel and 28.7 for the balanced panel).

Therefore, it seems that the assumption made by the regression based on the repeated cross-sections

is not valid and the estimates presented in the first two columns are inconsistent.  This also suggests

that the only results in the table that are consistent are the within estimates, which point towards a

large downward trend in mobility.  If we were confident that either the unbalanced or balanced panels

were representative of the population we could conclude that there was a downward trend in mobility.

However, since we have already concluded that the attrition from the sample is non-random we can

not reach this conclusion based on the results presented in any of the columns of Table 2. 

Therefore, in order to answer whether there was a change in mobility we require an estimator

that deals both with the attrition from the sample and the potential correlation between the

explanatory variables and the error terms.  The estimator introduced in the previous sections has these

properties and is used below. An additional estimator that could potentially deal with these issues is

the one suggested by Hausman and Wise (1979).  Ridder explores this estimator and finds that it fails

to alert of non-random attrition, hence, also fails to treat it.12 

3.2  Results Using the Proposed Procedure
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In order to evaluate the performance of the procedure proposed in this paper I examine two

measures.  First, I study out-of-sample prediction of the model.  This is studied by testing the ability

of the weights, computed based on only the first and last cross sections, to match the weighted

balanced panel moments with the moments from the refreshment panel.  Next, I compute estimates

of the regression coefficients, similar to those presented in Table 2, which answer the question of

whether or not there was a real change in mobility in the Netherlands.

In order to test the out-of-sample predictive power of the methods, I compute weights by

solving equation (7) using moments from the first (unbalanced) wave of the panel and the last wave

of the refreshment samples. Table 3 demonstrates the effects of weights on the sample statistics.

Three different sets of weights were computed: First, using moments on only the explanatory

variables.  This assumes a (particular) ignorable, conditional on observable variables, model of

selection.  If selection is a linear function of only the explanatory variables then these weights should

fully control for selection.  The second set of weights were computed using only the first moments

of the dependent variable (TOTRIP).  Finally, all the variables were used.  In all cases I used only the

first moments computed from the first and last waves.  

These weights were attached to the balanced observations and the sample statistics for this

weighted sample were computed.  Table 3 presents the weighted sample averages for the second and

third waves.  Since the weights were computed using only the moments from the first and fourth

waves these can be considered out-of-sample predictions.  These moments can be used to construct

a formal or informal test of the selection model.  Weights that fully control for selection should render

the differences, between the moments of Table 3 and the appropriate moments in Table A2, as

statistically insignificant.  The logic behind this is the same as that of the usual test of over-

identification.
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The results in Table 3 lead to the following conclusions. First, the weighted samples are more

representative of the refreshment population, and therefore the population of interest.  For all three

selection models the fit is much better for the second wave than the third wave.  The ignorable

selection model, which uses only the moments of the explanatory variables, is quite strongly rejected.

The third model that uses both the dependant and independent variables fits the second wave but not

the third, suggesting that the third wave is somewhat different.  

One explanation of this last result can be seen by examining different non-ignorable models

of selection.  Under the model where both the regression and selection equations are a function of

fixed (over time) individual-specific effects, selection should be fully controlled for by conditioning

on the dependant variable.  The difficulty in predicting the moments in the third wave suggest that

this model is wrong.  Therefore, it is not surprising that Ridder (1992) finds that the model of

Hausman and Wise (1978), which makes these assumptions about the individual-specific effects, does

not fit this data set.  In order to deal with the poor fit of the third wave moments I allow the selection

probability to depend also on second and third wave variables.

Table 4 presents the weighted regression coefficients computed using the balanced panel.  For

each model both a fixed-effects and a random-effects estimator is computed.  The models differ in

the selection probability.  Model 1 models the selection probability as a function of the dependent and

independent variables in the first and fourth waves.  It is equivalent to the selection model used to

produce the results in columns 3 and 6 of Table 3. Since the analysis of the results in Table 3 suggests

that this selection model is not fully capturing the selection in the third wave, in Model 2 the weights

are computed as a function of all variables in the third wave and the dependent variable in the other

waves.

The following conclusions can be drawn from the results. First, a Hausman test of the equality
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of the fixed- and random-effects estimates is rejected.  Despite this the coefficients on the wave

dummy variables are similar in both the fixed and random effects models. Second, in general the

weighted coefficients are between the OLS results from the repeated cross-section and the (un-

weighetd) balanced panel results.  Finally, and most importantly, even after controlling for selection

in several different ways the negative trend in mobility is still present.  It is true that attrition makes

this trend seem larger than it really is, however, it still exists.  The drop in mobility is particularly

large during the third wave.  This is especially true in Model 2, which allows for a more general

model of selection in the third wave.

Given the count nature of the data I also repeated the above analysis using a Poisson model

for the number of trips.  The only change is the moments are now non-linear in the parameters.  The

qualitative effects are similar to the above. In particular, the estimates from a fixed effects

(conditional) Poisson model suggest a downward trend in mobility, with a larger drop in the third

wave.  The estimates suggest that, using the second selection model, the probability of taking a trip

is reduced by about 5 percent in the second and fourth waves, relative to the first wave. While this

probability is reduced by 15 percent in the third wave. Since the average number of trips is roughly

fifty this is close to what the results of Table 4 imply.

4.  FINAL REMARKS

This paper proposes a weighting method that takes advantage of additional information to treat

sample selection bias.  I exploit  moments that are available from other sources to adjust for sample

selection in the primary data.  The method is applicable only in cases where these moments are

available or can be estimated.  Using these additional moments I compute the selection probability,

which is used to inflate the data.  The estimator can deal with ignorable as well as non-ignorable
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selection mechanisms.

I outlined a few applications where I believe these additional moments are available. One

application was presented in detail. This application is characterized by refreshment samples from

the target population, which were taken in order to deal with attrition of the original sample.  This is

not typical of economic data. But maybe it should be.  Maybe rather than putting great effort into

maintaining panels that follow individuals or firms over a long period, more attention should be

focused on obtaining additional cross-sectional draws from the population of interest.

An area for future work is a comparison of the method proposed here to alternatives.  A full

comparison, either theoretical or empirical, is beyond the scope of this paper.  However, some idea

can be obtained by building on other work. Ridder (1992) uses the same data as above to report

results from a control function approach, which were discussed above. The conclusions regarding

mobility are similar to those obtained for the above analysis.  The same is true for a different

approach, taken by Hirano et al. (1998), which involves imputing the missing data. The method

proposed here has one advantage over these two alternatives: it is much easier to implement.

Computing the weights involves solving a simple system of equations, or alternatively a linear

programming problem.  It only has to be done once, and not repeatedly each time a new specification

of the main equation is examined.  The actual analysis can be performed with the weighted data,

applying standard methods and using standard software packets.  The last class of alternative methods

are matching methods, in the spirit of Ahn and Powell (1993). This method does not use the auxiliary

information, discussed in this paper, but can be extended to do so.  Such an extension would require

different assumptions than those made in this paper, and is an interesting topic for future work.  

Many public use data sets are accompanied by weights which are treated as known. The

method proposed here allows the researcher to compute weights even if these are not available or to
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compare the weights to the ones provided (since in some cases it is not clear how the provided

weights are computed).  However, even if weights are provided and the researcher is satisfied  with

how they were computed, there still might be an efficiency argument to estimating the weights.

Hirano, Imbens and Ridder (2000) show that in some cases estimators that weight observations by

the inverse estimate of the selection probability are more efficient than estimators that use the true

selection score.  Furthermore, they relate their result to the result in Wooldridge (1999), which shows

that in the context of stratified sampling it is more efficient to use estimated weights rather than

known sampling probabilities.  The Monte Carlo results in Nevo (forthcoming) seem to suggest that

a similar result might be applicable here. 
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TABLE 1
 NUMBER OF HOUSEHOLDS AND AVERAGE NUMBER OF TRIPS 

BY WAVE AND WAVE OF ATTRITION

Drops out in wave:

Wave

1 2 3 4

1
731 45.4

(33.2)
– – – – – –

2
178 57.7

(33.5) 
178 48.2

(27.1)
– – – –

3
185 62.2

(37.2)
185 54.9

(32.4)
185 52.3

(28.5)
– –

4
666 62.8

(34.6)
666 56.7

(31.0)
666 55.9

(30.8)
666 55.1

(31.1)

Total      
1760 55.0

(35.1)
1029 54.9

(30.8)
851 55.1

(30.3)
666 55.1

(31.0)
For each wave the left column presents the number of households, while the left column presents the average number
of trips and the standard deviation in parentheses.

TABLE 2
REGRESSION RESULTS

Variable

Repeated CS Unbalanced Panel Balanced Panel

OLS Total Within RE Total Within RE

Constant 55.02
(0.80)

1.91
(1.39)

3.82
(1.35)

– 4.66
(1.49)

7.35
(1.77)

– 8.93
(2.02)

WAVE 2 -3.72
(1.54)

-2.92
(0.90)

-4.13
(0.79)

-6.57
(0.61)

-5.54
(0.57)

-6.25
(1.07)

-5.87
(0.74)

-6.07
(0.73)

WAVE 3 -8.39
(1.68)

-0.64
(0.98)

-5.29
(0.84)

-8.18
(0.67)

-7.03
(0.61)

-7.81
(1.07)

-7.62
(0.76)

-7.72
(0.73)

WAVE 4 -1.72
(1.66)

-1.14
(0.96)

-5.04
(0.92)

-8.75
(0.75)

-7.41
(0.68)

-8.55
(1.08)

-8.37
(0.80)

-8.45
(0.74)

Demographics
included:

no yes yes yes yes yes yes yes

Dependent variable is total number of trips. White-robust standard errors in parentheses.  Except the first column, all
regressions include as controls the demographic variables described in Table A1.
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TABLE 3
 WEIGHTED SAMPLE AVERAGES

Variable

Second Wave Third Wave

(i) (ii) (iii) (iv) (v) (vi)

TOTRIP
NPER
N1218
N1938
FAMT1
FAMT2
FAMT3
INC1
INC2
INC3
EDLO
EDHI
CITY
NCAR
NLIC

51.63
2.17
0.28
0.95
0.13
0.25
0.14
0.15
0.32
0.29
0.39
0.20
0.06
0.83
1.31

52.36
2.14
0.26
1.04
0.08
0.33
0.12
0.12
0.39
0.26
0.35
0.27
0.06
0.87
1.40

51.95
2.17
0.28
0.95
0.13
0.25
0.14
0.14
0.31
0.30
0.38
0.20
0.07
0.83
1.31

52.47
2.24
0.30
0.97
0.14
0.22
0.15
0.13
0.33
0.31
0.40
0.20
0.06
0.81
1.33

52.62
2.21
0.29
1.00
0.07
0.31
0.13
0.10
0.37
0.30
0.35
0.28
0.06
0.87
1.44

53.64
2.24
0.29
0.96
0.13
0.23
0.15
0.13
0.34
0.30
0.40
0.20
0.07
0.82
1.34

Weights are computed using:
In columns 1 and 4 first moments of explanatory variables in first and fourth waves.
In columns 2 and 5 first moments of TOTRIP in first and fourth waves.
In columns 3 and 6 first moments of TOTRIP and all the explanatory variables in first and fourth waves.

TABLE 4
WEIGHTED REGRESSION RESULTS

Variable

Model 1 Model 2

Within Random Effects Within Random Effects

est se est se est se est se

CONSTANT – 5.17 1.85 – 8.11 1.77

WAVE 2 -2.12 0.69 -2.40 0.69 -3.42 0.72 -2.99 0.71

WAVE 3 -2.10 0.69 -2.11 0.69 -8.01 0.74 -6.85 0.72

WAVE 4 -1.77 0.71 -1.36 0.69 -3.41 0.77 -2.36 0.73
Dependent variable is total number of trips.  In Model 1 the weights are computed as a function of the dependant and
independent variables in first and fourth waves (as in columns 3 and 6 of Table 3).  In Model 2 the weights are
computed as a function of all variables in wave 3 and the dependant variable in the other waves. All regressions
include as controls the demographic variables described in Table A1.
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APPENDIX

This appendix describes, in Table A1, the variables available in the data and provides, in Table
A2, their sample statistics in the different waves and sub-samples.

TABLE A1
 THE EXPLANATORY VARIABLES

Name Description Name Description

NPER
N1218
N1938
INC1
INC2
INC3
CITY
NCAR
NLIC

Number of persons over age of 11 
Number of persons age 12-18
Number of persons age 19-38 
Annual net family income <17,000 guilders
Annual family income 24,000-37,999 
Yearly net family income >38,000
Inhabitant of large city (> 500,000)
Total number of cars in household
Total number of driving licenses in
household

FAMT1

FAMT2

FAMT3
EDLO

EDHI

Household with head under age of
35 and no children
Household with children younger
than 12 years of age
Household with head over age of 65
Highest education of head primary
school or lower
Highest education of head university
or higher

Source: Ridder (1992).

TABLE A2
 SAMPLE AVERAGES OF VARIABLES

Variable

First Wave Second Wave Third Wave Fourth Wave

Unbal Bal Unbal Bal Refr Unbal Bal Refr Bal Refr

N= 1760 666 1029 666 656 851 666 516 666 535

TOTRIP
NPER
N1218
N1938
FAMT1
FAMT2
FAMT3
INC1
INC2
INC3
EDLO
EDHI
CITY
NCAR
NLIC

55.02
 2.19 
0.29
1.00
0.12
0.24
0.14
0.19
0.32
0.27
0.44
0.18
0.10
0.85
1.35

62.80
2.28
0.33
1.12
0.12
0.29
0.09
0.13
0.36
0.29
0.37
0.23
0.06
0.89
1.48

54.90
2.28
0.31
1.05
0.10
0.29
0.10
0.11
0.38
0.30
0.35
0.26
0.07
0.92
1.49

56.70
2.28
0.33
1.05
0.09
0.32
0.11
0.11
0.40
0.28
0.35
0.27
0.05
0.90
1.47

51.80
2.23
0.36
0.85
0.09
0.20
0.15
0.15
0.35
0.25
0.47
0.18
0.27
0.84
1.28

55.12
2.34
0.34
1.03
0.08
0.29
0.11
0.10
0.38
0.33
0.35
0.27
0.06
0.92
1.51

55.90
2.32
0.34
1.02
0.07
0.30
0.11
0.09
0.37
0.33
0.35
0.28
0.05
0.90
1.50

46.63
1.92
0.20
0.85
0.12
0.12
0.16
0.23
0.29
0.21
0.37
0.19
0.09
0.71
1.10

55.13
2.33
0.33
0.97
0.06
0.28
0.12
0.82
0.37
0.35
0.34
0.30
0.05
0.90
1.50

53.30
2.21
0.26
0.97
0.13
0.20
0.16
0.13
0.36
0.29
0.41
0.17
0.19
0.79
1.31

Columns labeled Unbal, Bal, and Refr present, respectively, averages for: the cross-section of the original panel, the
balanced sun panel and the refreshment samples.


