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ABSTRACT

In this paper I analyze GMM estimation when the sample is not a random draw from the
population of interest. I exploit auxiliary information, in the form of moments from the population of
interest, in order to compute weights that are proportional to the inverse probability of selection. The
essential idea is to construct weights, for each observation in the primary data, such that the moments of
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deal with heavy attrition of the original panel. I show how these additional samples can be used to adjust
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1. INTRODUCTION

Sampl e selection arises when the observed sampleisnot arandom draw from the popul ation
of interest. Failure to take this selection into account can potentially lead to inconsistent and biased
estimates of the parameters of interest. This paper devel opsamethod that uses auxiliary information
to inflate the observed data so it will be representative of the population of interest; thus, standard
estimators applied to the weighted data will yield consistent and unbiased estimates.

Supposg, for example, we want to study a panel of individualsin which we believe thereis
an unobserved individual-specific effect that is correlated with theindependent variables. Common
solutionsinclude “within” or first difference estimators. However, in order to implement these types
of estimators we need at least two observations for each individual. If the panel also suffers from
non-random attrition, then the subset of individuals observed for more than one periashgeno |
a random draw from the population of interest. Assume we have at our disposal additional samples,
which are representative of each of the cross-sections, but also suffer from attrition and therefore do
not allow consistent estimation of the parameters of interest. An example of such a data set is the
Dutch Transportation Panel (DTP) considered by Ridder (1992) and used below.

The procedure proposed in this paper suggests one possible way to use these additional
samples, the refreshment samples. | use the refreshment samples to attach a weight to each
observation in the balanced sub-panel such that moments in the weighted sample are set equal to
corresponding moments in the refreshment samples. | propiosate®s) the parameters of interest
using standard panel estimators and the weighted balanced panel.

The proposed method exploits additional data to adjust for the selection bias by using it to
estimate the selection probability, the propensity score. Here | use the propensity score to inflate the

observations. This is not the only way to exploit the additional information. Alternatively, it can be



used to construct a control function (Heckman, 1979; or Ridder, 1992, for the data structure
discussed below), to match observations (Ahn and Powell, 1993) or to impute the missing
observations (Hirano et al, 1998, for the data used below).

The advantage of the weighting method proposed here, over the alternative methods of using
the additional information mentioned above, isitssimplicity. Oncetheweights have been computed
the researcher can conduct the same analysis, she would perform if the data were randomly drawn
from the popul ation of interest, using the weighted data. Thus, any estimator can be computed with
little added complexity dueto the selection. The weights can be computed either by setting up the
problem asastandard GMM problem (asbelow), or by solving alinear programming problem. The
latter approach connects the method proposed here to information—based alternatives to GMM (see
below).

Although the refreshment samples found in the DTP are not typical of economic data, | claim
that the method proposed here is general. For example, Census and Annual Survey of Manufacturers
data are sources of random draws from the population of interest and can be matched with smaller
data sets that suffer from attrition, but have information on economic agents over time. Furthermore,
the use of refreshment samples to adjust for selection bias motivates collection of such samples, a
procedure that is not frequently done.
1.1Previous Literature

A survey of the literature on sample selection is beyond the scope of this gapeever,
| want to relate the method prosed here to previous work. The use of weights to correct for sample

selection is not new to this paper. For example, many data collecting agencies provide sampling

1See, for example, Heckman (1979, 1987, 1990), Heckman and Robb (1986), Littleand Rubin (1987), Newey,
Powell and Walker (1990), Manski (1994), Angrist (1995), Kyriazidou (1997), Heckman, Ichimura, Smith and Todd
(1998) and references therein.



weightsto correct for the sampling procedure (the U.S. Census, for example, providessuchweights.)
Manski and Lerman (1977) propose a method to compute weights for choice-based samples.? In
both these examples the selection probability is known, while here | estimate the probability of
selection, and theimplied weights, jointly with the parameters of interest. Methodsthat estimatethe
weightsjointly with the parametersof interest also exist. For example, Cassel, Sarndal and Wretman
(1979), Koul, Susarlaand Van Ryzin (1981) and Heckman (1987).

The method proposed here differs from these methods in two ways. First, the weights are
allowed to be afunction of variables that are not fully observed in the main data set, but for which
some information is known through the additional moments. | also alow the weights to be a
function of the dependent variable. In other words, | deal with anon-ignorabl e sel ection mechanism
(Littleand Rubin, 1987). Second, theweightsare computed by exploiting auxiliary information. This
connects the method proposed here to weighting techniques for contingency tables with known
marginal distributions (Oh and Scheruan, 1983, Section 3; Little and Wu, 1991). | extend these
methods by examining alogistic sel ection equation and by |ooking at regression functionsrather than
contingency tables.

Theestimator | use here can berelated to information-theoretic aternativesto GMM (Back
and Brown, 1990; Qin and Lawless, 1994; Imbens, 1997; Kitamura and Stutzer, 1997; Imbens,
Spady and Johnson, 1998; Hellerstein and Imbens, 1999). Standard GMM methods implicitly
estimate the distribution of the data by the empirical distribution (i.e., giving each observation a
density of 1/N). The information-theoretic alternatives use over-identifying moment conditions to
improve on the estimates of the data distribution, by estimating the distribution jointly with the

original parameters of interest. The focus of this literature has been on improving efficiency. In a

*See also Cosslett (1981) and Wooldridge (1999).
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related paper (Nevo, forthcoming) | show that the estimator proposed here can be related to these
methods. | make the difference between the sampled population, from which the sample is drawn,
and the population of interest explicit. Therefore, | can deal with bias in the estimation of the
distribution. It turns out that when the sampled population equals the target population the estimator
proposed here is equivalent to the one proposed by Imbens, Spady and Johnson (1998).

This paper is organized as follows. Section 2 presents the proposed estimator. Section 3

applies the proposed estimator to the data used by Ridder (1992). Section 4 concludes.

2. THE MODEL AND PROPOSED ESTIMATOR
2.1The Setup
Suppose we obserindependent realizationg{ z,, ...,z,} of a (multi-variate) random

variableZ, with its supporty, a compact subset 8. In the populatioZ has a pdff(2). Let 0,

denote the true value of the parameters of interest),an@, where®, is a compact subset &f<.

Assumption AO: 0," uniquely set E[\y(Z, GI)} =0 . Furthermore, the moment function,
viyx@,~-R* | is twice continuously differentiable with respect Gp
measurable iiZ, and E[w(Z,0,)w(Z0;)| andEloy(z,6,)/00}] are of ful
rank.

A way of estimating,” would be to follow the analogy principle by choosing the estimate

N

Y. w(z,0)-0.

_
N iz
Implicitly, this assumes that the empirical distribution of the data is a consistent estiri{Zje of

However, if the observed sample is not a random draw from the population of interest then the above

estimate is biased and inconsistent.



Let D=1 if and only ifz is fully observed. From Bayes’ Rule the distribution of the
observed: is
f(ZID=1) =f(2)-P(D=1|2)/P(D =1).
Assumption Al: P(D = 1|2Z) is bounded away from zero.
This assumption requires that any point in the support has a (strictly) positive probability of
being observed, which is not a trivial requirement. Consider, for example, a truncation problem (a
type 1 Tobit model). A unit will be observed if and only if the dependent varigldeceeds a
certain value. Since the conditioning vector, Z, includes the dependent variable, the selection
probability, P(D=1[), will equal either zero or one, depending on the valye @ur method will
not be operational in such a case. If the correlation between the selection rule and the variable of
interest is less than one this assumption will be satisfied (for example the model considered by
Heckman, 1974).
Assumption Al allows us to recover the pd{Z), given knowledge of(Z|[D=1) and
P(D=1[) by
f(2)=f(Z|D=1)P(D=1)/P(D =1[2). (1)

Therefore,

Eh@ﬁD}fﬂzﬁﬂa&fﬁmumﬂdDJJWD—DﬁﬂL&@W—O

and the correct analog estimator becomes

. PD=1) v 1 AN
0, st == IE; TR 1|4)w(2i,91) 0. 2

The empirical distribution of the selected sample can be used to consistently efiijiatel)

3nacross-sectional context D=0 couldimply, for example, that the covariates are observed while the outcome
variableisnot. In apanel example, D=1 for the balanced sub-sample, while D=0 for individuals who are present only
in some periods.



Therefore, if we know(D=1[Z) then equation (2) can be used to consistently estiméte

In general the selection probability is unknown and will have to be estimated. In order to
estimate the selection probabiliB(D=1[2), | assume exact knowledge of the expectatigrin the
population, of amR-dimensional function &, denotedh(Z) . Formallyy* = E[h(2)] :fﬁ(z) f(z)dz
Examples includeh(Z) =Y , where the researcher knows the mean of the dependent variable, or
rT(Z) =Y-X, where the researcher knows the (non-centered) covariance between the dependent variable
and some of the independent variables. In the context of panel data the mdmeatscome from
the moments of the marginal (cross-sectional) distributional of the unbalanced panel. The application
below will demonstrate this.

Denoteh(Z) =h(Z) -h* . Note, theE[h(2)]=0. For now | assume these moments are known
and defer to later discussion of where they come from and the possibility that they are known with
error.

Assume,P(D =1[Z) =P(D =1[Z,6,) , where, €@, and®, is a compact subset &f*. Define

v(Z,0,)
B P(D=1/|Z6,)
V(Z,0) - ( ? ©)

h(2)
P(D=1/Z,0,)
where6=(0,,0,) . Letd"=(6,,0,) be the true value of the parameters. Note that by construction
Ely(2.0")ID =1 [W(z 0)f(zID - 1)dz=0. (4)
2.2 ldentification

This section examines under what conditions the additional moments are sufficient to identify

the selection probability. To see that the identification is not trivial consider the following example.

“Thisis the fundamental ideain usi ng sampling weights to correct for non-random sampling in surveys and
estimation in choice based sampling (Manski and Lerman, 1977; and Cosdlett, 1981). See also Wooldridge (1999).
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Let Z = (Z,, Z,) beabivariate binary random variable, where Z,, measures a characteristic (outcome)
of individua i intimet (t=1, 2). Alsolet D,=1if i isobserved in both periods. If the attrition isnon-

random, i.e., f(Z,,,Z,,) »f(Z,,,Z,,|D,=1), andlysis based on the individual s that are observed in both

i1
periodswill yield biased and inconsistent estimates. Equation (1) correctsthisbiasby usingP (D, |Z,)
to weight the observations. | now ask under what conditionsis this probability identified?

In alarge sample, the probabilities P(Z,=z,,Z,,=7|D, =1), z,,z,{0, 1} can be estimated
from the sub-sample of individualsthat are observed in both periods. Assuming the origina sample
is arandom sample from the population then the probability P(Z;,) can be identified. Suppose we
have additional information on P(Z,). For example, thisinformation can be obtained by taking a
random draw from the population at t=2. This additional information in not enough to

identify P(D, |Z;) in general. Without information on either the joint probability, P(Z,,,Z;,), or

i1
additional restrictions, the selection probability is not identified.

This example demonstrates that even if the additional information comes in the form of the
completemarginal distributionthenidentificationisnottrivial. If theadditional informationisinthe
form of margina moments this is even more so. Hirano et al. (1998) prove that by assuming a
particular functional form for the selection probability, the probability P (D, |Z;) isidentified (Hirano
et al, 1998, Theorem 2). Since | assume that the additiona information comes in the form of
moments, | require slightly different conditions for identification.

Assumption A2:  Thematrix E[h(Z)-h(2)/|D =1] is of full rank.

Assumption A3: P(D=1| 2) = g(h(2)'0,), where g:R-% is a known, differentiable, strictly
increasing function such thatlim____g(a) =0, and lim___g(a) =1.

Most of the standard probability models satisfy assumption A3. In particular, the logisitic model of

selection used below, i.e., g(a) =exp(a)/(1 +exp(a)).



Proposition 1 Under assumptions AO-A3 and assuming the functions h(-) can be constructed, then
the parameters 9= (0,, 0,) areidentified using a sample {z, z,, ..., z;}, such that z for all i, arei.i.d
with the empirical distribution converging to f(zjD=1).
Proof: Assumptions A2-A3 promise that the equationsE{h(Z)/g(h(Z)’ez) |D = 1] =0 have a unique
solution for6, such that 0,= 0,. Therefore, under assumptions A0 and Al the system of
equationsE[w(Z,el)/g(h(Z)/ez) ID = 1] -0 has a unique solution for 6, such that 6,=6;. This and
standard GMM theory (Hansen, 1982; Newey and M cFadden, 1994) proves the proposition. =

A necessary conditionfor identificationisthat the number of (linearly independent) additional
momentsis at least aslarge as the number of parameters governing the selection, i.e., the dimension
of 0,. Assumption A3 requires more than this. The selection probability depends on the functions
h(2), for which we know the expectation in the popul ation.
2.3 Estimation

| propose the following three step procedure for estimating the parameters of interest. In the
first step, the probability of selection is modeled as

eg (2, 0,)
P(D =1]Z, 92) = )
1+ eg*(Z,ez)

where g'(Z, 0,) is an unknown function. At this point no restrictions have been imposed since by
defining g'(Z, 0,) appropriately equation (5) can fit any selection model. | approximate the unknown
function g'(Z, 6,) by apolynomial ,h(2)'6,, , with unknown coefficients, 6, Themodel of selectionis
largely driven by data availability, the presence of the functions h(-). Assuming we have arich set
of moments availableto createh(-) the model can be derived from economic modeling. Inthiscase
the estimates of 6, might be of independent interest.

The conditioning vector in equation (5) may include also the dependent variable, in the



estimation equation. Therefore, this selection model is non-ignorable. One could write the selection
probability as a function of observed variables as well as an individual specific unobserved effect.
Since the conditioning vector includes the dependent variable in the main estimation equation this
type of selection model is covered by our setup in some cases, depending on the exact assumptions
governing the distribution of the individual-specific effects.

The second step is to estimate weights that are proportion&(=11|Z, 6,). Formally, the

weights are computed by solving the following set of equations

N
2 w,(z,0,)h(z) =0
N (6)
Y w(z,6,)=1
i1

wherew(z,0,) =1/P(D, = 1z,0,).

By solving equation (6) the weighted sample counterparthiZl[is set to zero. Thus, we
exploit the additional moments,, in order to estimate the parameters of the selection process. An
alternative interpretation of the equation (6) comes from an information-based criterion. This
interpretation relates the method proposed here to information-theoretic alternatives to GMM (see
references given in Section 1.1), as well as Little and Wu (1991). See Nevo (forthcoming) for detalils.

Using g7(Z,6,) :h(Z)/ez and substituting equation (5) into equation (6) we obtain the

following system of equations

XN: w(z,6,)-h(z) = Z ! h(z) = XN: ﬁ( 1+ 1 ] ‘h(z) =0
i-1 PD = i

i.i1 N P(D*1|zi,92) i=1 eh(zi)/ez

N T ©
w(z,0,) =) —1 1+ =1

.2:; @0, = N( eh(z)/ez)

wherer =P(D =1). For some models of selection, the last equation in the system defined by (7) will

just be a normalization. Therefore, it can be ignored in the solution and imposed later by dividing all



the weights by their sum. In such cases the paramgteh,not be identified separately from a scale
parameter. The logistic selection probability | propose in this paper does not have this property and
this last equation will be more than just a normalization, it will actually change the relative Wweights.

In the final step, the weights that solve equation (6) are used to obtain analog estimates of the

parameters of interest, . Formally, the estimate is given by
AW A AW
0, st E; Wy (z,0,) =0 )
|:

and the weightsy, solve equation (6). The asymptotic properties of this estimator are given by the
following proposition.

Proposition 2 Suppose that z (i=1,2,...) are i.i.d with the empirical distribution converging to
f(zD=1), and (i) Assumptions AO-A3 are satisfied; (ii) @,x ®,is compact(iii ) the moment functions,
v(z,0), defined by equatio8) are twice continuously differentiablefin(iv) E[ﬁ(z, 0)’ ﬁ(z,e)]<oo.

Thend;"~ 6" and
YN -0,)~N(0,E,[o7/00'] *(E[37] - E[FAIERR'] *EJR§/])E [03400] )

where

h(2)w(Z,0.)

#(Z,0) =w(Z,6)W(Z,6,), h(y,x)=
wW(Z,0,) -1

andEJ‘] denotes expectations taken with respect to f(z|D=1).

®Consider, for example, alinear probability model, i.e., P(D=1|Z,6,) = + Z'B. Theweightsin such acasewill
beproportional to [a(1 + a’l/zi/ B)] 1. Therefore, normalizing theweightsto sum up to onewill influence only the estimate
of the constant, but not the relative weights. However, if the probability of selection is logistic,
i.e.p(D=1/Z,0,) -explh(2)0,)(1 +exph(2)/6,) the weights will be proportional to 1+exp—(a+zi/[3) Now a

normalization will not be fully absorbed in the constant term, and will influence the relative weights as well as their
absolute value.
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Proof: The expectation of the stacked moment conditionsis set to zero at the true parameter value
(equation (4)). The assumptions of the proposition and standard GMM theory provide the result
(Newey, 1984, Pagan, 1986 and Newey and McFadden, 1994).=

The proof of the proposition stacksthe momentsasin equation (3) and considersthem asjust-
identified estimation equations. The actual estimation can be obtained by solving these equationsin
one step (therefore combining the second and third steps in the above discussion.) However, as a
computational issueit issimpler to obtain the solution by first solving equation (6), and plugging the
solution into equation (8), as proposed in the above algorithm.®

The standard errors can alternatively be estimated by bootstrapping. Thiswill work in the
following way. First, we generate a bootstrap sample by sampling from the original sample. Next,
we solvefor the value of the parameter that setsthe momentsin equation (3) to zero. Werepeat these
two steps to obtain the bootstrap distribution of the parameters.

The proposition assumes that the value of the population moments is known exactly. This
seems an adequate assumption if the second data set is much larger than the primary data set.
However, in many interesting problems thiswill not be the case. Section 2.5 extends the results to
take account of sampling error in the additional moments.

2.4 Examples of Data Structures

The proposed procedure assumes knowledge of population moments. A |leading example of
a source for these moments is the Dutch Transportation Panel (DTP) used by Ridder (1992) and to
which the proposed estimator is applied below. The unique design of this data set called for draws

of refreshment samples in order to deal with the heavy (seemingly non-random) attrition of the

®Giventhe assumptions and that the set of momentsisjust-identified solving all the momentsjointly or in two
steps yields the same unique solution.

11



original panel. These refreshment samples are not characteristic of economic data. But as the rest
of this section demonstrates, under reasonable assumptions familiar economic data sets can fit into
the proposed framework.

Suppose we have a combination of census data and smaller data sets (as in Imbens and
Lancaster, 1994; or Hellerstein and Imbens, 1999.) We can think of the larger data set as arandom
draw from the popul ation, which providesestimates of popul ation momentsfor certainvariables. The
smaller dataset isnot arandom draw from the population of interest, however, itismuchricher. For
example, Gottschalk and Moffitt (1992) document the differencesbetweenthe NLS (whichisasmall
and rich data set, but suffersfrom attrition) and the CPS (which is not asrich, but is much larger and
representative of the population.)” Hellerstein and Imbens (1999) exploit thisin order to correct for
ability inthe NLS. The method proposed here, whichis similar to their approach,® suggests using the
additional data availablefrom the CPSto treat the attrition in the NLS. The moments needed for the
second step of the algorithm can be obtained from the CPS. The computed weights are then attached
to the NLS and the analysisis performed using the weighted data set.

The data structure which is perhaps best suited for our method is a panel structure. Consider
the setup described in the Introduction. The required moments, h*, can be obtained from census
data, which does not haveatime dimensionto it, asinthe previousexample. Alternatively, wemight
be willing to assume that each cross section is arandom draw from the marginal distribution of the
population of interest, yet the balanced sub-sampleis not arandom draw from the joint distribution.

Aslong asthe probability of selection isaseparablefunction of cross-sectional variables one can use

See also MaCurdy, Mroz and Gritz (1998).

8 Themain differenceisthat | explicitly model the selection probability and theref orethe wei ghts are computed
tofit thisselection model. Theweights Hellerstein and Imbens compute implicitly imply alinear probability selection
model.
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the cross-sectionsto construct h(Z) . The parameters of interest can be estimated using standard panel
estimators applied to the weighted balanced panel.

An example is the estimation of a production function. The firms we observe at any given
period can be considered a random draw from the population of potential firms. Yet, due to non-
random exit and entry, if werestrict analysisto only thosefirmsthat existed in more than one period
we can potentially bias the results.® The proposed method combines the full information contained
in the unbalanced panel, while still controlling for the unobserved individua effects.

2.5 Taking into Account Sampling Error in the Moment Restrictions

In the previous sections | assumed that the additional information wasin the form of exactly
known moments, h™. Thisis an adequate setup when the data set providing these moments is much
larger than the primary data set, for example if it isacensus. However, in the example considered
below, as in many other examples, this will not be the case. The results previously given can be
generalized, as shown by Hellerstein and Imbens (1999), to the case where we do not know h” with
certainty. Instead we have an estimate hof h", based on a random sample of size M, i.e,
h=1MY h(z). Thisestimate satisfigf(R-h") - N(0,4,) +With =E[n(zyh(@)]. | assume
Is independent of the primary sampig, &, ...,Z}-

We can estimaté by the algorithm described above, except now wetuse  instéadoof
construct the additional moments. We have to take this additional step into account when
iInvestigating the properties of the estimator as the number of observations in both dbitarsets,

M, goes to infinity. IIN/M converges to zero then in large data sets the variance in the second data

set can be neglected, and we are back in the case considered above. On the othdaviidind, if

9See Olley and Pakes (1996) for an example of the importance of accounting for entry and exit and Griliches
and Mairesse (1998) for a survey of the literature dealing with this problem.
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converges to zero than the second data set cannot help us adjust for sample selection. Therefore, |
consider only the case where the ratio M/N converges to a constant k.

We can obtain the estimate of 6 by using the additional moments and standard GMM results.
With out loss of generality, and in order to facilitate comparison with the previous exposition, |
assumethat M/N is exactly equal to someinteger k. Let Z consistof {z,h,,..., h,}. Wecanthink

of havingN observationg . Using the logistic selection probability the estimating equations are
1l 09l
L (z)-H)elre")
-1 1-1 1+eh(Z‘)/62>
1/kzj!(:1 (hij _ﬁ)

0=

(9)

Solving this leads 1‘J6:1/Mzi'\i1 ijl h, , while the rest of the estimators are the same as those
produced by solving (7). The following proposition describes the asymptotic behavior of the
estimator.

Proposition 3: Supposetheconditionsof Proposition 2 hold, thenthe estimator eXV for 0, has

the following asymptotic properties:

~ % ~ -~ ~ ~ ~ ~~ ~. ~ _ A
JN@-07)~N( 0.E,[omo0;] [, 9) -, B, T 2E Ly e [opiao) vy |

where:
V=E_[09/06;] *E [Fh1E[hh'] EJW]I, + E [ 6§/001] E[§0,w],
(h(2) - h)-w(z,0,)

W(Z,0) =w(Z,0)WZ,0,) , h(Z,6,)- . W(Z,0) clL e )
w(Z,0,) -1

andEJ‘] denotes expectations taken with respect to f(z|D=1).

Proof: The same as the proof of Proposition 2, for details see Hellerstein and Imbens (1999).
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3. AN EMPIRICAL APPLICATION

In this section | apply the method described in the previous sections to the Dutch
Transportation Panel used by Ridder (1992). | start by presenting the data and initial analysis, and
continue to present the results based on the procedure proposed here.

3.1 The Data and Preliminary Analysis

Thedatal useistaken from the Dutch Transportation Panel (DTP). The purpose of this panel
wasto evaluate the change in the use of public transportation over time, as price wasincreased. The
first wave of the panel consists of astratified random sample of householdsin 20 towns interviewed
in March 1984. Each member of the household, more than 11 years old, was asked to keep atravel
log of all the trips taken during a particular week. A trip starts when the household member leaves
the home and ends when she returns. Several questions were asked about each trip, but this
information was not used below. For a detailed description of the DTP, and a survey of research
conducted with it, see van Wissen and Meurs (1990).

After the initial interview, in March 1984, each participant, which did not drop out, was
subsequently interviewed twice ayear, in September and March. The September interviews did not
ask the participants to fill out a detailed log and therefore were somewhat different than the March
interviews. | follow Ridder and examine only the March interviews (thus a so avoiding any seasonal
effects). The original panel suffered from heavy attrition, as seen in Table 1. In order to keep the

number of participants constant additional refreshment samples were taken from the population.™

OE0r the rest of this paper | will assume that the refreshments samples were taken as random samples from
the population. In reality the refreshment samples were sampled randomly with the same stratification as the original
sample but with different weightsin order to compensate for the heavier attritionin somestrata. The methods used here
can easily deal with this case, however, for simplicity of presentation | ignore this aspect.
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For the purpose of demonstrating the method proposed here | concentrate on explaining the number
of trips taken as a function of household characteristics.

The average number of trips in different sub-samples of the panel is givenin Table 1. By
examining the bottom row we concludethat thereisvirtually no changein the average number of trips
over the different waves. However, if we examine any one of the other rows we find a clear
downward trend. Thisisnot seenin thetotal because the number of tripsincreases with the number
of waves of participation. Surprisingly, these two effects totally offset each other.

The data also contain information on various explanatory variables, described in the
Appendix. From the summary statistics we seethat the distribution of the variablesisdifferent inthe
different waves of the original panel. These differences in the distribution of the explanatory
variables do not explain the pattern observed in the number of trips (Ridder, 1992 Table 5). This
leaves (acombination of) the following as possible explanations to the pattern in the number of trips
observedin Table 1. Either thereisareal downward trend in mobility or due to non-random attrition
there are (non-random) differences in the distribution of the unobserved determinants of the total
number of trips. Non-random attrition isareal concern given that the sample means of the variables
In the waves of the original panel differ from the means in the refreshment panel. The question is
whether thisattrition completely explainsthe patterns of Table 1, or ispart of the pattern dueto areal
change in mobility.

In order to answer this question | compute a series of regressions presented in Table 2. The
following conclusions can be reached from theresultsin thetable. First, if we assumeno correlation
between the unobserved determinates of the number of trips and the independent variables then we
can conclude that there was no drop in mobility. We can see this from the results in the first two

columnsof thetable, which are based on ordinary |east squaresregressionsintheoriginal sampleplus
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the three refreshment samples.™*

Second, using the panel structurewe can examinethe assumption that unobserved househol d-
specific effects are not correlated with the independent variables. The fixed- and random effects
results can be combined to compute the standard Hausman test, which is strongly rejected for both
the balanced and unbal anced panels (85.7 for the unbalanced panel and 28.7 for the balanced panel).
Therefore, it seems that the assumption made by the regression based on the repeated cross-sections
Isnot valid and the estimates presented in the first two columns are inconsistent. This also suggests
that the only resultsin the table that are consistent are the within estimates, which point towards a
large downward trend in mobility. If wewere confident that either the unbalanced or balanced panels
wererepresentative of the populationwe could concludethat therewasadownward trend in mobility.
However, since we have already concluded that the attrition from the sample is non-random we can
not reach this conclusion based on the results presented in any of the columns of Table 2.

Therefore, in order to answer whether there was achangein mobility we require an estimator
that deals both with the attrition from the sample and the potential correlation between the
explanatory variablesand theerror terms. The estimator introduced in the previous sections hasthese
properties and is used below. An additional estimator that could potentially deal with theseissuesis
the one suggested by Hausman and Wise (1979). Ridder exploresthisestimator and findsthat it fails
to alert of non-random attrition, hence, also failsto treat it.*?

3.2 Results Using the Proposed Procedure

YThe three wave dummy variables are jointly statistically significant at a 5% level. However, the dummy
variablesfor the third and fourth waves are not jointly significant. Therefore, we might conclude that there was adrop
in mobility during the second period, but not overall.

2Ridder attributes this failureto an implicit restriction, which forces the covariance of theindividual effects
in the selection and regression equations to have the same sign as the covariance of the random shocks in the two

equations (see section 5 in Ridder’s paper for details).
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In order to evaluate the performance of the procedure proposed in this paper | examine two
measures. First, | study out-of-sample prediction of themodel. Thisis studied by testing the ability
of the weights, computed based on only the first and last cross sections, to match the weighted
balanced panel moments with the moments from the refreshment panel. Next, | compute estimates
of the regression coefficients, similar to those presented in Table 2, which answer the question of
whether or not there was areal change in mobility in the Netherlands.

In order to test the out-of-sample predictive power of the methods, | compute weights by
solving equation (7) using moments from the first (unbalanced) wave of the panel and the last wave
of the refreshment samples. Table 3 demonstrates the effects of weights on the sample statistics.
Three different sets of weights were computed: First, using moments on only the explanatory
variables. This assumes a (particular) ignorable, conditional on observable variables, model of
selection. If selectionisalinear function of only the explanatory variablesthen these weights should
fully control for selection. The second set of weights were computed using only the first moments
of the dependent variable (TOTRIP). Finally, al the variableswereused. Inall cases| used only the
first moments computed from the first and last waves.

These weights were attached to the balanced observations and the sample statistics for this
weighted sample were computed. Table 3 presentsthe weighted sample averagesfor the second and
third waves. Since the weights were computed using only the moments from the first and fourth
waves these can be considered out-of-sample predictions. These moments can be used to construct
aformal or informal test of the selection model. Weightsthat fully control for selection should render
the differences, between the moments of Table 3 and the appropriate moments in Table A2, as
statistically insignificant. The logic behind this is the same as that of the usual test of over-

identification.
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Theresultsin Table 3 lead to thefollowing conclusions. First, the weighted samplesare more
representative of the refreshnment population, and therefore the population of interest. For al three
selection models the fit is much better for the second wave than the third wave. The ignorable
selection model, which uses only the moments of the explanatory variables, isquite strongly rejected.
Thethird model that uses both the dependant and independent variablesfits the second wave but not
the third, suggesting that the third wave is somewhat different.

One explanation of thislast result can be seen by examining different non-ignorable models
of selection. Under the model where both the regression and selection equations are a function of
fixed (over time) individual-specific effects, selection should be fully controlled for by conditioning
on the dependant variable. The difficulty in predicting the moments in the third wave suggest that
this model is wrong. Therefore, it is not surprising that Ridder (1992) finds that the model of
Hausman and Wise (1978), which makesthese assumptions about theindividual -specific effects, does
not fit thisdataset. In order to deal with the poor fit of the third wave moments| allow the selection
probability to depend also on second and third wave variables.

Table4 presentstheweighted regressi on coefficients computed using the bal anced panel. For
each model both a fixed-effects and a random-effects estimator is computed. The models differ in
the selection probability. Model 1 model sthe selection probability asafunction of the dependent and
independent variables in the first and fourth waves. It is equivalent to the selection model used to
producetheresultsin columns 3 and 6 of Table 3. Sincethe anaysisof theresultsin Table 3 suggests
that this selection model isnot fully capturing the selection in the third wave, in Model 2 the weights
are computed as afunction of all variablesin the third wave and the dependent variable in the other
waves.

Thefollowing conclusionscan bedrawn fromtheresults. First, aHausman test of the equality
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of the fixed- and random-effects estimates is regjected. Despite this the coefficients on the wave
dummy variables are similar in both the fixed and random effects models. Second, in general the
weighted coefficients are between the OLS results from the repeated cross-section and the (un-
weighetd) balanced panel results. Finally, and most importantly, even after controlling for selection
in several different ways the negative trend in mobility is still present. It istrue that attrition makes
this trend seem larger than it really is, however, it still exists. The drop in mobility is particularly
large during the third wave. Thisis especialy true in Model 2, which allows for a more genera
model of selection in the third wave.

Given the count nature of the data | also repeated the above analysis using a Poisson model
for the number of trips. The only change is the moments are now non-linear in the parameters. The
gualitative effects are similar to the above. In particular, the estimates from a fixed effects
(conditional) Poisson model suggest a downward trend in mobility, with alarger drop in the third
wave. The estimates suggest that, using the second selection model, the probability of taking atrip
Is reduced by about 5 percent in the second and fourth waves, relative to the first wave. While this
probability is reduced by 15 percent in the third wave. Since the average number of tripsisroughly

fifty thisis close to what the results of Table 4 imply.

4. FINAL REMARKS

Thispaper proposesaweighting method that takes advantage of additional informationtotreat
sample selection bias. | exploit moments that are available from other sourcesto adjust for sample
selection in the primary data. The method is applicable only in cases where these moments are
available or can be estimated. Using these additional moments | compute the selection probability,

which is used to inflate the data. The estimator can deal with ignorable as well as non-ignorable
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selection mechanisms.

| outlined a few applications where | believe these additional moments are available. One
application was presented in detail. This application is characterized by refreshment samples from
the target population, which were taken in order to deal with attrition of the original sample. Thisis
not typical of economic data. But maybe it should be. Maybe rather than putting great effort into
maintaining panels that follow individuals or firms over a long period, more attention should be
focused on obtaining additional cross-sectional draws from the population of interest.

An areafor future work is a comparison of the method proposed here to alternatives. A full
comparison, either theoretical or empirical, is beyond the scope of this paper. However, someidea
can be obtained by building on other work. Ridder (1992) uses the same data as above to report
results from a control function approach, which were discussed above. The conclusions regarding
mobility are similar to those obtained for the above analysis. The same is true for a different
approach, taken by Hirano et a. (1998), which involves imputing the missing data. The method
proposed here has one advantage over these two alternatives: it is much easier to implement.
Computing the weights involves solving a simple system of equations, or alternatively a linear
programming problem. It only hasto be done once, and not repeatedly each time anew specification
of the main equation is examined. The actual analysis can be performed with the weighted data,
applying standard methodsand using standard software packets. Thelast classof aternative methods
are matching methods, inthe spirit of Ahn and Powell (1993). This method does not usethe auxiliary
information, discussed in this paper, but can be extended to do so. Such an extension would require
different assumptions than those made in this paper, and is an interesting topic for future work.

Many public use data sets are accompanied by weights which are treated as known. The

method proposed here allows the researcher to compute weights even if these are not available or to
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compare the weights to the ones provided (since in some cases it is not clear how the provided
weights are computed). However, even if weights are provided and the researcher is satisfied with
how they were computed, there still might be an efficiency argument to estimating the weights.
Hirano, Imbens and Ridder (2000) show that in some cases estimators that weight observations by
the inverse estimate of the selection probability are more efficient than estimators that use the true
selection score. Furthermore, they relatetheir result to the result in Wooldridge (1999), which shows
that in the context of stratified sampling it is more efficient to use estimated weights rather than
known sampling probabilities. The Monte Carlo resultsin Nevo (forthcoming) seem to suggest that

asimilar result might be applicable here.
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TABLE 1
NUMBER OF HOUSEHOLDS AND AVERAGE NUMBER OF TRIPS
BY WAVE AND WAVE OF ATTRITION

Wave
Drops out in wave: 1 2 3 4
731 45.4 - - - - - -
1 (33.2

178 57.7 178 48.2 - - - -
(33.5) (27.1)

185 62.2 185 549 185 52.3 - -
(37.2) (32.4) (28.5)

666 62.8 666 56.7 666 559 666 55.1
(34.6) (31.0) (30.8) (31.2)

1760 55.0 1029 549 851 55.1 666 55.1

Total (35.1) (30.8) (30.3) (31.0)

For each wave the |eft column presents the number of households, while the left column presents the average number
of trips and the standard deviation in parentheses.

TABLE 2
REGRESSION RESULTS

Repeated CS Unbalanced Panel Balanced Panel

Variable OoLS Total  Within RE Total  Within RE
Constant 55.02 1.91 3.82 - 4.66 7.35 - 8.93
(0.80) (1.39) (1.35) (1.49) ((1.77) (2.02)
WAVE 2 -3.72  -292 -413 -657 -554 -6.25 -587 -6.07
(1.54) (0.90) (0.79) (0.61) (0.57) (1.07) (0.74) (0.73)
WAVE 3 -839 -064 529 -818 -7.03 -781 -762 -7.72
(1.68) (0.98) (0.84) (0.67) (0.61) (1.07) (0.76) (0.73)
WAVE 4 -1.72  -114 504 -875 -741 -855 -837 -8.45
(1.66) (0.96) (0.92) (0.75) (0.68) (1.08) (0.80) (0.74)

Demographics  no yes yes yes yes yes yes yes

included:

Dependent variable is total number of trips. White-robust standard errorsin parentheses. Except the first column, all
regressions include as controls the demographic variables described in Table AL
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TABLE 3

WEIGHTED SAMPLE AVERAGES

Second Wave Third Wave
Variable (i) (i) (iii) (iv) (V) (vi)
TOTRIP 51.63 52.36 51.95 52.47 52.62 53.64
NPER 2.17 2.14 2.17 2.24 2.21 2.24
N1218 0.28 0.26 0.28 0.30 0.29 0.29
N1938 0.95 1.04 0.95 0.97 1.00 0.96
FAMT1 0.13 0.08 0.13 0.14 0.07 0.13
FAMT2 0.25 0.33 0.25 0.22 0.31 0.23
FAMT3 0.14 0.12 0.14 0.15 0.13 0.15
INC1 0.15 0.12 0.14 0.13 0.10 0.13
INC2 0.32 0.39 0.31 0.33 0.37 0.34
INC3 0.29 0.26 0.30 0.31 0.30 0.30
EDLO 0.39 0.35 0.38 0.40 0.35 0.40
EDHI 0.20 0.27 0.20 0.20 0.28 0.20
CITY 0.06 0.06 0.07 0.06 0.06 0.07
NCAR 0.83 0.87 0.83 0.81 0.87 0.82
NLIC 1.31 1.40 1.31 1.33 1.44 1.34

Weights are computed using:
In columns 1 and 4 first moments of explanatory variablesin first and fourth waves.
In columns 2 and 5 first moments of TOTRIP in first and fourth waves.
In columns 3 and 6 first moments of TOTRIP and all the explanatory variablesin first and fourth waves.

TABLE4
WEIGHTED REGRESSION RESULTS

Model 1

Model 2

Within Random Effects Within Random Effects
Variable est se est se est se est se
CONSTANT - 5.17 1.85 - 8.11 1.77
WAVE 2 -2.12 0.69 -2.40 0.69 -3.42 0.72 -2.99 0.71
WAVE 3 -2.10 0.69 -2.11 0.69 -8.01 0.74 -6.85 0.72
WAVE 4 -1.77 0.71 -1.36 0.69 -3.41 0.77 -2.36 0.73

Dependent variable istotal number of trips. In Model 1 the weights are computed as a function of the dependant and

independent variables in first and fourth waves (asin columns 3 and 6 of Table 3). In Model 2 the weights are
computed as afunction of all variablesin wave 3 and the dependant variable in the other waves. All regressions
include as control s the demographic variables described in Table Al.
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APPENDIX

This appendix describes, in Table A1, the variables available in the data and provides, in Table
A2, their sample statistics in the different waves and sub-samples.

TABLEAL
THE EXPLANATORY VARIABLES
Name Description Name Description
NPER  Number of persons over age of 11 FAMT1 Household with head under age of
N1218 Number of persons age 12-18 35 and no children
N1938 Number of persons age 19-38 FAMT2 Household with children younger
INC1  Annua net family income <17,000 guilders than 12 years of age
INC2 Annual family income 24,000-37,999 FAMT3 Household with head over age of 65
INC3 Y early net family income >38,000 EDLO Highest education of head primary
CITY Inhabitant of large city (> 500,000) school or lower
NCAR  Total number of carsin household EDHI Highest education of head university
NLIC  Total number of driving licensesin or higher
household

Source: Ridder (1992).

TABLEA2
SAMPLE AVERAGES OF VARIABLES

First Wave Second Wave Third Wave Fourth Wave

Variable Unbal Ba Unbal Ba Refr Unbal Ba Refr Bal Refr

N= 1760 666 1029 666 65 851 666 516 666 535
TOTRIP 55.02 6280 5490 56.70 51.80 5512 5590 46.63 55.13 53.30
NPER 219 228 228 228 223 234 232 192 233 221
N1218 029 033 031 033 036 034 034 020 033 0.26
N1938 100 112 105 105 08 103 102 08 097 097

FAMT1 012 012 010 009 009 008 007 012 006 0.13
FAMT2 024 029 029 032 020 029 030 012 028 0.20
FAMT3 014 009 010 011 015 011 011 016 012 0.16

INC1 019 013 011 011 015 010 009 023 082 013
INC2 032 03 038 040 03 038 037 029 037 0.36
INC3 027 029 030 028 025 033 033 021 035 029
EDLO 044 037 035 035 047 035 03 037 034 041
EDHI 018 023 026 027 018 027 028 019 030 0.17
CITY 010 006 007 005 027 006 005 0.09 005 019
NCAR 08 089 092 09 084 092 09 071 090 0.79
NLIC 135 148 149 147 128 151 150 110 150 131

Columns labeled Unbal, Bal, and Refr present, respectively, averages for: the cross-section of the origina panel, the
balanced sun panel and the refreshment samples.
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