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1. Introduction

Although most empirical research on treatment effects focuses on the estimation of differ-

ences in mean outcomes, analysts have long been interested in methods for estimating the

impact of a treatment on the entire distribution of outcomes. This is especially true in

economics, where social welfare comparisons may require integration of utility functions

under alternative distributions of income. Following Atkinson (1970), consider the class of

symmetric utilitarian social welfare functions:

W (P, u) =
∫
u(y) dP (y),

where P is an income distribution and u : R 7→ R. Let P(1) and P(0) denote the (potential)

distributions that income would follow if the population were exposed to the treatment in

one case, and excluded from the treatment in the other case. For a given u = ū, we rank

P(1) and P(0), by comparing W (P(1), ū) and W (P(0), ū).

Typically, u is not fixed by the analyst but is restricted to belong to some particular

classes of functions. Then, stochastic dominance can be used to establish a partial ordering

on the distributions of income. If two income distributions can be ranked by first order

stochastic dominance, these distributions will be ranked in the same way by any monotonic

utilitarian social welfare function (u′ > 0). If two income distributions can be ranked by

second order stochastic dominance, these distributions will be ranked in the same way by

any concave monotonic utilitarian social welfare function (u′ > 0, u′′ < 0) (see Foster and

Shorrocks (1988) for details). Therefore, stochastic dominance can be used evaluate the

distributional consequences of treatments under mild assumptions about social preferences.

Another possible question is whether the treatment has any effect on the distribution of

the outcome, that is, whether or not the two distributions P(1) and P(0) are the same.

In general, the assessment of the distributional consequences of treatments may be

carried on by estimating P(1) and P(0). Estimation of the potential income distributions,

P(1) and P(0), is straightforward when the treatment is randomly assigned in the popu-

lation. However, this type of analysis becomes difficult in observational studies (or in
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randomized experiments with imperfect compliance) when treatment intake is not ran-

domly determined. Recently, Imbens and Rubin (1997) have shown that, when there is a

binary instrumental variable available for the researcher, the potential distributions of the

outcome variable are identified for the subpopulation potentially affected in their treatment

status by variation in the instrument (the so-called compliers). However, this last feature

has never been used to compare the entire potential outcome distributions under differ-

ent treatments in a statistically rigorous way, that is, by performing hypotheses testing.

This paper proposes a bootstrap strategy to perform this kind of comparisons. In particu-

lar, equality in distributions, first order stochastic dominance and second order stochastic

dominance hypotheses, all important for social welfare comparisons, are considered.

The proposed method is applied to the study of the effects of Vietnam veteran status

on the distribution of civilian earnings. Following Angrist (1990), random variation in

enrollment induced by the Vietnam era draft lottery is used to identify the effects of veteran

status on civilian earnings. However, the focus of the present paper is not restricted to

the average treatment effect for compliers. The entire marginal distributions of potential

earnings for veterans and non-veterans are described for this subgroup of the population.

These distributions differ in a notable way from the corresponding distributions of realized

earnings. Veteran status appears to reduce lower quantiles of the earnings distribution,

leaving higher quantiles unaffected. Although the data show a fair amount of evidence

against equality in potential income distributions for veterans and non-veterans, statistical

testing falls short of rejecting this hypothesis at conventional significance levels. First and

second order stochastic dominance of the potential income distribution for non-veterans

are not rejected by the data.

The rest of the paper is structured as follows. In section 2, I briefly review a framework

for identification of treatment effects in instrumental variable models and show how to

estimate the distributions of potential outcomes for compliers. In contrast with Imbens and

Rubin (1997) who report histogram estimates of these distributions, here a simple method

is shown to estimate the cumulative distribution functions (cdf) of the same variables.
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The estimation of cdfs has some advantages over the histogram estimates. First, there

is no need for making an arbitrary choice of width for the bins of the histogram. The

cdf, estimated by instrumental variable methods, can be evaluated at each observation in

our sample, just as for the conventional empirical distribution function. In addition, this

strategy allows us to implement nonparametric tests based directly on differences in the

cdfs (see Darling (1957) for a review of this class of tests). Often, it is easier to define

and test some distributional hypotheses of interest in economics, such as first or second

order stochastic dominance, using cdfs rather than histograms (see Anderson (1996) for an

approach based on histograms). Finally, a complete description of the bootstrap strategy

is provided along with a proposition which states the asymptotic validity of the bootstrap

for the tests proposed in this paper. Section 3 describes the data and presents the empirical

results. Section 4 concludes.

2. Statistical Methods

Let Yi(0) be the potential outcome for individual i without treatment, and Yi(1) the po-

tential outcome for the same individual under treatment. Define Di to be the treatment

participation indicator (that is, Di equals one when individual i has been exposed to the

treatment, Di equals zero otherwise.) In practice, the analyst does not observe both Yi(0)

and Yi(1) for any individual i, since one of these outcomes is counterfactual. Instead, the

realized outcome, Yi = Yi(1) ·Di + Yi(0) · (1−Di), is observed. Let Zi be a binary variable

that is independent of the responses Yi(0) and Yi(1) but that is correlated with Di in the

population (an instrument). Denote Di(0) the value that Di would have taken if Zi = 0;

Di(1) has the same meaning for Zi = 1. Again, for any particular individual the analyst

does not observe both potential treatment indicators Di(0) and Di(1); instead the realized

treatment Di = Di(1)·Zi+Di(0)·(1−Zi) is observed. In the analysis of randomized experi-

ments with imperfect compliance, Zi usually represents treatment assignment (randomized)

while Di represents treatment intake (non-randomized). In observational studies instru-

ments are often provided by the so-called “natural experiments” or “quasi-experiments”.
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For rest of the paper I will use the following identifying assumption:

Assumption 2.1:

(i) Independence of the Instrument : (Yi(0), Yi(1), Di(0), Di(1)) is independent of Zi.

(ii) First Stage : 0 < P (Zi = 1) < 1 and P (Di(1) = 1) > P (Di(0) = 1).

(iii) Monotonicity : P (Di(1) ≥ Di(0)) = 1.

Assumption 2.1 contains a set of nonparametric restrictions under which instrumental vari-

able models identify the causal effect of the treatment for the subpopulation potentially

affected in their treatment status by variation in the instrument: Di(1) = 1 and Di(0) = 0

(see Imbens and Angrist (1994), Angrist, Imbens and Rubin (1996)). This subpopula-

tion is sometimes called compliers. When the treatment intake, Di, is itself randomized,

Assumption 2.1 holds for Zi = Di and every individual is a complier.

Notice that there are some important exclusion restrictions implicit in the notation.

First, for each individual i, potential outcomes do not depend on other individuals’ treat-

ment intakes. This restriction is called Stable-Unit-Treatment-Value-Assumption (SUTVA)

and is frequently used in statistical models of causal inference (see Rubin (1990)). In ad-

dition, potential outcomes do not depend on Zi. This last restriction, commonly invoked

in instrumental variable models, allows us to attribute correlation between the instrument

and the outcome variables to the effect of the treatment alone.

In this paper, I study distributional effects of possibly non-randomized treatments by

comparing the distributions of potential outcomes Yi(1) and Yi(0) with and without the

treatment. The first step is to show that the identification conditions in Assumption 2.1

allow us to estimate these distributions for the subpopulation of compliers. To estimate

the cdfs of potential outcomes for compliers, the following lemma will be useful.

Lemma 2.1: Let h(.) be a measurable function on the real line such that E|h(Yi)| < ∞. If

Assumption 2.1 holds, then

E[h(Yi)Di|Zi = 1]− E[h(Yi)Di|Zi = 0]
E[Di|Zi = 1]− E[Di|Zi = 0]

= E[h(Yi(1))|Di(0) = 0, Di(1) = 1] (1)
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and,

E[h(Yi)(1−Di)|Zi = 1]− E[h(Yi)(1−Di)|Zi = 0]
E[(1−Di)|Zi = 1]− E[(1−Di)|Zi = 0]

= E[h(Yi(0))|Di(0) = 0, Di(1) = 1].

(2)

Proof: By Lemma 4.2 in Dawid (1979), we have that (h(Yi(0))·Di(0), h(Yi(1))·Di(1), Di(0),

Di(1)) is independent of Zi. Then by Theorem 1 in Imbens and Angrist (1994), we have

that

E[h(Yi(1)) ·Di(1)− h(Yi(0)) ·Di(0)|Di(0) = 0, Di(1) = 1] =
E[h(Yi) ·Di|Zi = 1]− E[h(Yi) ·Di|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
.

Finally, notice that E[h(Yi(1)) ·Di(1)−h(Yi(0)) ·Di(0)|Di(0) = 0, Di(1) = 1] = E[h(Yi(1))|

Di(0) = 0, Di(1) = 1], which proves the first part of the lemma. The second part of the

lemma follows from an analogous argument. 2

Lemma 2.1 provides us with a simple way to estimate the cumulative distribution func-

tions of the potential outcomes for compliers. Define FC1(y) = E[1{Yi(1) ≤ y}|Di(1) =

1, Di(0) = 0] and FC0(y) = E[1{Yi(0) ≤ y}|Di(1) = 1, Di(0) = 0]. Apply Lemma 2.1 with

h(Yi) = 1{Yi ≤ y} to get

FC1(y) =
E[1{Yi ≤ y}Di|Zi = 1]− E[1{Yi ≤ y}Di|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
(3)

and,

FC0(y) =
E[1{Yi ≤ y}(1−Di)|Zi = 1]− E[1{Yi ≤ y}(1−Di)|Zi = 0]

E[(1−Di)|Zi = 1]− E[(1−Di)|Zi = 0]
. (4)

Suppose that we have a random sample, {(Yi, Di, Zi)}ni=1, drawn from the studied popu-

lation. The sample counterparts of equations (3) and (4) can be used to estimate FC1(y)

and FC0(y) for y = {Y1, .., Yn}. We can compare the distributions of potential outcomes by

plotting the estimates of FC1 and FC0 . This comparison tells us how the treatment affects

different parts of the distribution of the outcome variable, at least for the subpopulation

of compliers.
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Researchers often want to formalize this type of comparisons using statistical hypothesis

testing. In particular, a researcher may want to compare FC1 and FC0 by testing the

hypotheses of equality in distributions, first order stochastic dominance and second order

stochastic dominance. For two distributions functions FA and FB, the hypotheses of interest

can be formulated as follows.

Equality of Distributions:

FA(y) = FB(y) ∀y ∈ R (H.1)

First Order Stochastic Dominance: FA dominates FB if

FA(y) ≤ FB(y) ∀y ∈ R (H.2)

Second Order Stochastic Dominance: FA dominates FB if∫ y

−∞
FA(x) dx ≤

∫ y

−∞
FB(x) dx ∀y ∈ R (H.3)

One possible way to carry on these tests for the distributions of potential outcomes for

compliers is to use statistics directly based on the comparison between the estimates for

FC1 and FC0 . However, it is easier to test the implications of these hypotheses on the two

conditional distributions of the outcome variable given Zi = 1 and Zi = 0. Denote F1

the cdf of the outcome variable conditional on Zi = 1, and define F0 in the same way for

Zi = 0. That is, F1(y) = E[1{Yi ≤ y}|Zi = 1] and F0(y) = E[1{Yi ≤ y}|Zi = 0].

Proposition 2.1: Under Assumption 2.1, hypotheses (H.1)-(H.3) hold for (FA, FB) = (FC1 ,

FC0) if and only if they hold for (FA, FB) = (F1, F0).

Proof: From equations (3) and (4), we have

FC1(y)− FC0(y) =
E[1{Yi ≤ y}|Zi = 1]− E[1{Yi ≤ y}|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
.

Therefore FC1 − FC0 = K · (F1 − F0) for K = 1/(E[Di|Zi = 1]− E[Di|Zi = 0]) < ∞, and

the result of the proposition holds. 2

Of course, F1 and F0 can be easily estimated by the empirical distribution of Yi for Zi = 1

and Zi = 0 respectively. Divide (Y1, ..., Yn) into two subsamples given by different values
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for the instrument, (Y1,1, ..., Y1,n1) are those observations with Zi = 1 and (Y0,1, ..., Y0,n0)

are those with Zi = 0. Consider the empirical distribution functions

F1,n1(y) =
1
n1

n1∑
i=1

1{Y1,i ≤ y}, F0,n0(y) =
1
n0

n0∑
j=1

1{Y0,j ≤ y}.

Then, the Kolmogorov-Smirnov statistic provides a natural way to measure the dis-

crepancy in the data from the hypothesis of equality in distributions. A two-sample

Kolmogorov-Smirnov statistic can be defined as

Teq =
(n1n0

n

)1/2
sup
y∈R
|F1,n1(y)− F0,n0(y)| . (5)

Following McFadden (1989), the Kolmogorov-Smirnov statistic can be modified to tests

the hypotheses of first order stochastic dominance (for F1 dominating F0)

Tfsd =
(n1n0

n

)1/2
sup
y∈R

(F1,n1(y)− F0,n0(y)) , (6)

and second order stochastic dominance

Tssd =
(n1n0

n

)1/2
sup
y∈R

∫ y

−∞
(F1,n1(x)− F0,n0(x)) dx. (7)

This kind of nonparametric distance tests have in general good power properties. Un-

fortunately, the asymptotic distributions of the test statistics under the null hypotheses is,

in general, unknown, since it depends on the underlying distribution of the data (see e.g.,

Romano (1988)). In this paper, I use a bootstrap strategy to overcome such a problem.

This strategy is described by the following 4 steps:

Step 1: In what follows, let T be a generic notation for Teq, Tfsd or Tssd. Compute

the statistic T for the original samples (Y1,1, ..., Y1,n1) and (Y0,1, ..., Y0,n0).

Step 2: Resample n observations (Y ∗1 , ..., Y
∗
n ) from (Y1, ..., Yn) with replacement. Di-

vide (Y ∗1 , ..., Y
∗
n ) into two samples: (Y ∗1,1, ..., Y

∗
1,n1

) given by the n1 first elements of

(Y ∗1 , ..., Y
∗
n ), and (Y ∗0,1, ..., Y

∗
0,n0

) given by the n0 last elements of (Y ∗1 , ..., Y
∗
n ). Use

these two generated samples to compute the test statistic T ∗(b).
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Step 3: Repeat Step 2 B times.

Step 4: Calculate the p-values of the tests with p-value = 1
B

∑B
b=1 1{T ∗(b) > T}. Reject

the null hypotheses if p-value is smaller than some significance level α.

By resampling from the pooled data set (Y1, ..., Yn) we approximate the distribution

of our test statistics when F1 = F0. Note that for (H.2) and (H.3), F1 = F0 represents

the least favorable case for the null hypotheses. This strategy allows us to estimate the

supremum of the probability of rejection under the composite null hypotheses, which is the

conventional definition of test size. Justification of the asymptotic validity of this procedure

is provided by the following proposition.

Proposition 2.2: The procedure described in Steps 1 to 4, for T equal to the test statistics

in equations (5)-(7) and hypotheses (H.1)-(H.3), (i) provides correct asymptotic level, (ii)

is consistent against any fixed alternative, (iii) has power (greater or equal to size) against

contiguous alternatives.

This proposition is proven in Appendix A. The results of a simulation study to assess

the small sample performance of the tests proposed in this paper are reported in Appendix

B. This simulation study suggests that the bootstrap distribution of the tests provides a

good approximation to the nominal level even in fairly small samples.

The idea of using resampling techniques to obtain critical values for Kolmogorov-

Smirnov type statistics is probably due to Bickel (1969) and has also be used by Romano

(1988), McFadden (1989), Klecan et al. (1991), Præstgaard (1995) and Andrews (1997)

among others. A related approach based on simulation of p-values can be found in Barrett

and Donald (1999).

Note that Proposition 2.2 naturally applies to tests based on perfectly randomized

experiments (in which Zi = Di for all i).
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3. Empirical Example

The data used in this study consist of a sample of 11,637 white men, born in 1950-1953, from

the March Current Population Surveys of 1979 and 1981 to 1985. Annual labor earnings,

weekly wages, Vietnam veteran status and an indicator of draft-eligibility based on the

Vietnam draft lottery outcome are provided for each individual in the sample. Additional

information about the data can be found in Appendix C.

Figure 1 shows the empirical distribution of realized annual labor earnings (from now

on, annual earnings) for veterans and non-veterans. We can observe that the distribution

of earnings for veterans has higher low quantiles and lower high quantiles than that for non-

veterans. A naive reasoning would lead us to conclude that military service in Vietnam

reduced the probability of extreme earnings without a strong effect on average earnings.

The difference in means is indeed quite small. On average, veterans earn only $264 less

than non-veterans and this difference is not significant at conventional confidence levels.

However, this analysis does not take into account the non-random nature of veteran status.

Veteran status was not assigned randomly in the population. The selection process in

the military service was influenced by variables associated to the potential earnings (like

educational attainment). Therefore, we cannot draw causal inferences by simply comparing

the distributions of realized earnings between veterans and non-veterans.

If draft eligibility is a valid instrument, the marginal distributions of potential outcomes

for compliers are consistently estimated by using equations (3) and (4). Figure 2 is the re-

sult of applying our data to those equations. Note that, in finite samples, the instrumental

variables estimates of the potential cdfs for compliers may not be increasingly monotonic

functions (see Imbens and Rubin (1997) for a related discussion). The most remarkable

feature of Figure 2 is the change in the estimated distributional effect of veteran status

on earnings with respect to the naive analysis. The average effect of military service for

compliers can be easily estimated using the techniques in Imbens and Angrist (1994). On

average, veteran status is estimated to have a negative impact of $1,278 on earnings for

compliers, although this effect is far from being statistically different from zero. Now, vet-
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eran status seems to reduce low quantiles of the income distribution, leaving high quantiles

unaffected. If this characterization is true, the potential outcome for non-veterans would

dominate that for veterans in the first order stochastic sense. The hypothesis of equality

in distributions seems less likely.

Following the strategy described in section 2, hypotheses testing is performed. Table

I reports p-values for the tests of equality in distributions, first order and second order

stochastic dominance. Notice that, for this example, the stochastic dominance tests are for

earnings for non-veterans dominating earnings for veterans, so the signs of the statistics

Tfsd and Tssd are reversed. The first row in Table I contains the results for annual earnings

as the outcome variable. In the second row the analysis is repeated for weekly wages.

Bootstrap resampling was performed 2,000 times (B = 2, 000).

Consider first the results for annual earnings. The Kolmogorov-Smirnov statistic for

equality in distributions is revealed to take an unlikely high value under the null hypothesis.

However, we cannot reject equality in distributions at conventional confidence levels. The

lack of evidence against the null hypothesis increases as we go from equality in distributions

to first order stochastic dominance, and from first order stochastic dominance to second

order stochastic dominance. The results for weekly wages are slightly different. For weekly

wages we fall far from rejecting equality in distributions at conventional confidence levels.

This example illustrates how useful can be to think in terms of distributional effects,

and not merely average effects, when formulating the null hypotheses to test. Once we

consider distributional effects, the belief that military service in Vietnam has a negative

effect on civilian earnings can naturally be incorporated in the null hypothesis by first or

second order stochastic dominance.

4. Conclusions

When treatment intake is not randomized, instrumental variable models allow us to iden-

tify the effects of treatments on some outcome variable, for the group of the population

affected in the treatment status by variation in the instrument. For such a group of the
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population, called compliers, the entire marginal distribution of the outcome under differ-

ent treatments can be estimated. In this paper, a strategy to test for distributional effects

of treatments within the population of compliers has been proposed. In particular, I fo-

cused on the equality in distributions, first order stochastic dominance and second order

stochastic dominance hypotheses. First, it is explained a way to estimate the distribu-

tions of potential outcomes. Then, bootstrap resampling is used to approximate the null

distribution of our test statistics.

This method is illustrated with an application to the study of the effects of veteran

status on civilian earnings. Following Angrist (1990), variation in veteran status induced

by randomly assigned draft eligibility is used to identify the effects of interest. Estimates of

cumulative distribution functions of potential outcomes for compliers show an adverse effect

of military experience on the lower tail of the distribution of annual earnings. However,

equality in distributions cannot be rejected at conventional confidence levels. First and

second order stochastic dominance are not rejected by the data. Results are more favorable

to equality in distributions when we use weekly wages as the outcome variable.
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Appendix A: Asymptotic Validity of the Bootstrap

Proof of Proposition 2.2: Part (i) can be proven by extending the argument in van der Vaart and
Wellner (1996) chapter 3.7 to tests for first and second order stochastic dominance. Let P1, P0 be the
probability laws of Y conditional on Z = 1 and Z = 0 respectively. Let Q be the probability law of Z
which is Bernoulli with parameter π. Define the empirical measures

P1,n1 =
1
n1

n1∑
i=1

δY1,i P0,n0 =
1
n0

n0∑
j=1

δY0,j ,

where δY indicates a probability mass point at Y . Let F = {1{(−∞, y]} : y ∈ R}, that is, the class of
indicators of all lower half lines in R. Since F is known to be universally Donsker, for n0, n1 →∞ we have

G1,n1 = n
1/2
1 (P1,n1 − P1)⇒ GP1 G0,n0 = n

1/2
0 (P0,n0 − P0)⇒ GP0

in l∞(F), where “⇒” denotes weak convergence, l∞(F) is the set of all uniformly bounded real functions
on F and GP is a P-Brownian bridge. Let

Dn =
(n1n0

n

)1/2
(P1,n1 − P0,n0),

where n = n0 + n1. If n → ∞, πn = n1/n → π ∈ (0, 1) almost surely. Then, if P1 = P0 = P ,
Dn ⇒ (1 − π)1/2 · GP − π1/2 · G′P , where GP and G′P are independent versions of a P-Brownian bridge.
Since (1 − π)1/2 · GP − π1/2 · G′P is also a P-Brownian bridge, we have that Dn ⇒ GP (see also Dudley
(1998), Theorem 11.1.1).

For t ∈ R, let h(t) = 1{(−∞, t]} ∈ F and λ the Lebesgue measure on R. For any z ∈ l∞(F), define the fol-
lowing maps: Teq(z) = supf∈F |z(f)|, Tfsd(z) = supf∈F z(f) and Tssd(z) = supf∈F

∫
{g∈F :g≤f} z(g) dµ(g)

where µ = λ ◦ h−1. Our test statistics are Teq(Dn), Tfsd(Dn) and Tssd(Dn). As before, let T be a generic
notation for Teq, Tfsd or Tssd. Notice that, for zn, z ∈ l∞(F), T (zn) ≤ T (z) +T (zn− z). Since Teq is equal
to the norm in l∞(F), trivially Teq is continuous. Tfsd is also continuous because Tfsd(zn−z) ≤ Teq(zn−z).
Finally, if we restrict ourselves to functions zn, z ∈ C(u, l) = {x(f) ∈ l∞(F) : x(h(t)) = 0 for t ∈
(−∞, l) ∪ (u,∞)}, then it is easy to see that, for some finite K, Tssd(zn − z) ≤ K · Tfsd(zn − z), so
Tssd is continuous. This restriction is innocuous if P1 and P0 have bounded support. For the stochastic
dominance tests we will use the least favorable case (P1 = P0) to derive the null asymptotic distribution.
Under the least favorable null hypotheses, by continuity, the tests statistics converge in distribution to
Teq(GP ), Tfsd(GP ) and Tssd(GP ) respectively. Note that, in general, the asymptotic distribution of our
test statistics under the least favorable null hypotheses depends on the underlying probability P . It can
be easily seen that our test statistics tend to infinity under any fixed alternative.

Consider a test that rejects the null hypothesis if T (Dn) > cn. This test has asymptotic level α if
lim inf cn ≥ cP (α) = inf{c : P (T (GP ) > c) ≤ α}.

Since cP (α) depends on P , the sequence {cn} is determined by a resampling method. Consider the pooled
sample (Y1, ..., Yn) = (Y1,1, ..., Y1,n1 , Y0,1, ..., Y0,n0), and define the pooled empirical measure

Hn =
1
n

n∑
i=1

δYi ,

then P1,n1 −Hn = (1− πn)(P1,n1 − P0,n0). Let (Y ∗1 , ...Y
∗
n ) be a random sample from the pooled empirical

measure. Define the bootstrap empirical measures:

P̂1,n1 =
1
n1

n1∑
i=1

δY ∗i P̂0,n0 =
1
n0

n∑
j=n1+1

δY ∗j .

12



By Theorem 3.7.7 in van der Vaart and Wellner (1996), if n → ∞, then n
1/2
1 (P̂1,n1 − Hn) ⇒ GH given

almost every sequence (Y1,1, ..., Y1,n1), (Y0,1, ..., Y0,n0), where H = π · P1 + (1 − π) · P0. The same result
holds for n1/2

0 (P̂0,n0 −Hn). Let

D̂n =
(n1n0

n

)1/2
(P̂1,n1 − P̂0,n0).

Note that T (D̂n) = T ((1 − πn)1/2n
1/2
1 (P̂1,n1 − Hn) − π1/2

n n
1/2
0 (P̂0,n0 − Hn)). Therefore, T (D̂n) converges

in distribution to T ((1 − π)1/2GH − π1/2G′H), where GH and G′H are independent H-Brownian bridges.
Since (1− π)1/2GH − π1/2G′H is also a H-Brownian bridge, we have that, if P1 = P0 = P , then for

cn = inf{c : P (T (D̂n) > c) ≤ α},

lim inf cn ≥ cP (α) = inf{c : P (T (GP ) > c) ≤ α} almost surely. The reason is that we can always
find continuity points of the null distribution of T (GP ) arbitrarily close to cP (α) but smaller than cP (α)
(otherwise the set of discontinuity points would be uncountable which is not possible by Theorem 4.30
in Rudin (1976)). By tightness of the limiting process, cn is bounded in probability and the tests are
consistent against any fixed alternative. This proves (i) and (ii).

To prove (iii), consider sequences {P0,n}, {P1,n} of probability measures approaching a common limit P
in the following sense:∫ [

n1/2(dP 1/2
z,n − dP 1/2)− 1

2
xz dP

1/2
]2

→ 0 for z = 0, 1, (A.1)

where x1, x0 are measurable real functions. It can be shown (van der Vaart and Wellner (1996), Lemma
3.10.11) that the sequences of product measures {Pnz,n} and {Pn} are contiguous, Pxz = 0 and Px2

z <∞
for z = 0, 1 and

Az,n =
n∑
i=1

log
dPz,n
dP

(Yi) = −1
2
Px2

z +
1

n1/2

n∑
i=1

xz(Yi) + op(1) for z = 0, 1

under {P}. In addition, supf∈F |n1/2(Pz,n − P )f − Pxzf | → 0 for z = 0, 1.

To assess the asymptotic power of our tests in this scenario, we first need to study the asymptotic behavior
of n1/2

z (Pz,nz (f) − P (f)) under sequences of local alternatives which follow (A.1). Note that under the
constant sequence {P,Q}, we have

B1,n(f) =
n1

n1/2 (P1,n1(f)− P (f)) =
1

n1/2

n∑
i=1

Zi · (f(Yi)− Pf),

and therefore, (
A1,n

B1,n(f)

)
d→ N

((
− 1

2Px
2
1

0

)
,

(
Px2

1 πPx1f
πPx1f πP (f − Pf)2

))
.

Applying Le Cam’s third lemma, we obtain B1,n(f) d→ N(πPx1f, πP (f − Pf)2) under the sequence

{P1,n, Q}. Since n1/n → π almost surely, then n
1/2
1 (P1,n1 − P )(f) d→ N(π1/2Px1f, P (f − Pf)2). Using

the Donsker property of F , we obtain the uniform version of last result (see van der Vaart and Wellner
(1996), Theorem 3.10.12.) An analogous result holds for z = 0. Therefore,

Dn ⇒ GP + π1/2(1− π)1/2 · (ν1 − ν0)

where νz(f) = Pxzf (this result corrects an error in Præstgaard (1995)). By contiguity arguments we
have that D̂n ⇒ GP and therefore lim inf cn ≥ cP (α) almost surely. Then, using a version of Anderson’s
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lemma for general Banach spaces (see, e.g., van der Vaart and Wellner (1996), Lemma 3.11.4), we obtain
the desired result for the test of equality of distributions.

The same result holds for first and second order dominance tests (note that for these tests the sequence of
contiguous alternatives should be specified such that Tfsd(ν1− ν0) ≥ 0 and Tssd(ν1− ν0) ≥ 0 respectively.)

Appendix B: Small Sample Behavior

To assess the small sample performance of the tests proposed in this paper a Monte Carlo study was con-
ducted. To mimic as closely as possible the actual small sample behavior of these tests in real applications,
the data used for the simulation study comes from the empirical example of section 3. In each Monte Carlo
iteration, a sample of size n was drawn from the empirical distribution of annual earnings in the data.
Each sample was divided into two subsamples following the proportion of draft eligibles / non-eligibles in
the original data set. Then, the test statistics in equations (5) to (7) were computed and the bootstrap
tests were performed using 2,000 bootstrap iterations. This process was repeated for 4,000 Monte Carlo
iteration. Table A.I shows the results of this simulation study for samples sizes equal to 25, 50, 100, 250
and 500 and nominal test levels equal to 0.10, 0.05 and 0.01. Asymptotic standard errors (as the number
of Monte Carlo iterations tends to infinity) are reported in the last row of the table. The table shows a
highly satisfactory performance of the tests, even in fairly small samples (n = 25).

Appendix C: Data Description

The data set was especially prepared for Angrist and Krueger (1995). Both annual earnings and weekly
wages are in real terms. Weekly wages are imputed by dividing annual labor earnings by the number of
weeks worked. The Vietnam era draft lottery is carefully described in Angrist (1990), where the validity
of draft eligibility as an instrument for veteran status is also studied. This lottery was conducted every
year between 1970 and 1974 and it used to assign numbers (from 1 to 365) to dates of birth in the cohorts
being drafted. Men with lowest numbers were called to serve up to a ceiling determined every year by the
Department of Defense. The value of that ceiling varied from 95 to 195 depending on the year. Here, an
indicator for lottery numbers lower than 100 is used as an instrument for veteran status. The fact that
draft eligibility affected the probability of enrollment along with its random nature makes this variable a
good candidate to instrument veteran status.
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Figure 1: Empirical Distributions of Earnings for Veterans and Non-Veterans
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Figure 2: Estimated Distributions of Potential Earnings for Compliers
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Table I: Tests on Distributional Effects of Veteran Status on Civilian Earnings, p-values

Outcome Equality First Order Second Order
variable in Distributions Stochastic Dominance Stochastic Dominance

Annual Earnings .1245 .6260 .7415

Weekly Wages .2330 .6490 .7530
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Table A.I: True Test Size in Small Samples, Monte Carlo Simulation

Sample Nominal Test Level
Size (α)
(n) .10 .05 .01

Equality of Distributions 25 .119 .062 .017
50 .114 .059 .015

100 .114 .055 .012
250 .106 .051 .011
500 .099 .047 .010

First Order Stochastic Dominance 25 .122 .059 .015
50 .109 .055 .012

100 .106 .056 .012
250 .105 .053 .011
500 .091 .049 .010

Second Order Stochastic Dominance 25 .110 .058 .011
50 .101 .050 .012

100 .104 .051 .009
250 .098 .049 .011
500 .100 .048 .011

s.e. .0047 .0034 .0016
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