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1 Introduction

This paper develops a model for the pricing of American-type interest rate options when
interest rates follow Poisson-Gaussian processes.! This model incorporates the effects of
skewness and kurtosis in the distribution of interest rates on bond option prices. The paper
advances the existing literature on hond option pricing in two broad ways. First, it extends
existing pure-Gaussian models for American-type bond options to pricing under Poisson-
Gaussian processes in the Heath-Jarrow-Morton {23] framework. Second, it enables skewness
and kurtosis effects to be captured in the pricing of interest rate derivative securities.

The term structure of interest rates has been modelled extensively using primarily pure
Gaussian models.?2 Recent empirical work® shows that models which accommodate skewness
and kurtosis (such as stochastic volatility models and jump diffusion models) appear to fit
the time series of interest rates better than pure Gaussian-type models. Changes in interest
rates empirically evidence reasonable levels of skewness and kurtosis. Table 1 presents de-
scriptive statistics for the one-month Treasury bill sampled at different frequencies. Clearly,
a reasonable amount of skewness and kurtosis exists.

Skewness and kurtosis affect option values and the shape of the term structure (see Das
[15]). Kurtosis results in fat-tailed distributions, which produce the well known ‘smile’ effect,
where options which are away from the money trade at higher prices than those which are at
the money.* Skewness results in an asymmetric interest rate distribution, which often makes
it difficult for symmetric stochastic processes to fit both out-of-the-money calls and puts. If
one is fit well, then the other will usually not match existing parameter choices, producing
a one-sided ‘smile’ or a ‘smirk’. In this paper, using two additional parameters, options
can be priced to be consistent with an arbitrary range of distributional shapes providing for
consistency with both skewness and kurtosis.

In recent times, lattice based models have been developed to accommodate the smile

1We employ the term ‘Poisson-Gaussian” here to denote the discrete time analog to continucus time jump
diffusion processes.

2See for example. the papers by Vasicek. [35]. Cox-Ingersoli-Ross [13], and Heath-Jarrow-Morton {23},
Amin and Jarrow [3], and Amin and Bodurtha [6] amongst several others.

3See Chan, Karolyi, Longstaff and Sanders [12], Brenner, Harjes and Kroner [10], Das [15], Heston [24]
and Ait-Sahalia (1].

4The “smile” is the plot of implied volatilities from a range of options of the same maturity across different
strike prices. It is noticed that the options at-the-money seem to trade at the lowest implied volatilities, and
the in-the-money and out-of-the-money options trade at higher volatilities. Since the options are all wrilten
on the same underlying variable, there should be no plausible reason for this, other than the fact that the
moxlel is inexact. Since the observed distribution of interest rates has fatter tails than that assumed by a
pure-Gaussian model. such an effect is intuitively obvious. When plotted against the strike price, the graph
of implied volatilities appears u-shaped as a ‘smile’. Hence the terminology. Using the same visual logic, a
one-sided smile is called a ‘smirk’!



(Dupire [20], Derman and Kani. [17] and Rubinstein [33]). These models adjust the drift
of the stochastic process on the lattice so as to exactly fit option prices for a range of
moneyness and maturity characteristics. In contrast, this paper does not ‘fit the smile’;
instead, it introduces explicit parameters for skewness and kurtosis which can be tuned to
capture the smile effect. This has the advantage of (i) being parsimonious, and (ii) has fewer
computational complexities than algorithms which fit the smile.®

Apart from smile fitting methods, two alternative modelling approaches have been pur-
sued: generalized volatility models. and Poisson-Gaussian models. This paper provides a
model encompassing both approaches. Generalized volatility models allow volatility to take
on some general form {deterministic in time or even stochastic), thus providing the desired
jevels of skewness and kurtosis. {Amin and Morton [5]) undertake an extensive empirical
investigation of a class of these models). While these generalized volatility models are more
malleable from the modelling standpoint, Poisson-Gaussian models reflect better the fact
that kurtosis in the data increases as the sampling interval decreases. The manner in which
kurtosis changes with the time interval between two observed interest rates distinguishes
generalized volatility models from Poisson-Gaussian models. With diffusion based Markov-
ian models (see Carverhill [11]. and Ritchken and Sankarasubramanian [32]), leptokurtosis
is achieved, but usually decreases with the sampling interval, since the volatility of volatility
has less effect as the time interval shrinks, which is contrary to empirical features of the data.t
In Table 1, the kurtosis of changes in interest rates increases when the data is sampled daily
instead of monthly. Moreover, interest rates often display discontinuous behavior, partly on
account of the discrete changes the Federal Reserve makes in the short term interest rate.
Modelling of the term structure using a Poisson-Gaussian process captures these market
features better, because with these processes, the variance shrinks with the time interval,
vet the size of the jumps remains the same, enhancing kurtosis, which is the relative size of
the outliers to the variance of the process. Empirical evidence in Das [15] strongly supports
the Poisson-Gaussian set of processes over stochastic volatility forms.

Previous work has attempted to handle skewness and kurtosis effects. Models of the
interest rate where Poisson-Gaussian processes are employed have resulted in closed-form
expressions for bond prices. as in Ahn & Thompson [7], Shirakawa [34], and Naik & Lee [31].
Other approaches using gamma processes were initiated by Heston [24]. Analytical solutions
for European bond options under Poisson-Gaussian processes have also been developed by
Shirakawa [34] and Naik & Lee [31]. As such, no closed form expressions for interest rate
options of an American-type exist, and these have to be solved numerically. While several

5 . . - . - R - - 3 3 M 1
Fitting the smile is numerically intensive for equity options and is likely to be more so for interest rate
options.
®Practitioners demonstrate evidence of this all the time when they assume that volatility is effectively
constant for short maturity options.



approaches exist for the numerical solution of the American bond option pricing problem in
the case of pure Gaussian processes (Ho & Lee [25], Heath-Jarrow-Morton (23], Brennan &
Schwartz [9]), no solution has yet been available for the numerical solution of the American
bond option pricing problem under Poisson-Gaussian processes. Das [16] offers one such
approach using a modified finite-differencing scheme. In contrast, in this paper, a tree based
scheme for the pricing of American options is provided. This paper presents a simple and
efficient approach to pricing American-type interest rate derivatives when the underlying
term structure of interest rates undergoes changes that are of both the continuous and
discontinuous type ,i.e., a Poisson-Gaussian process.

The model employs a new lattice approach for the pricing of Poisson-Gaussian process
based interest rate derivatives. Unlike pure-Gaussian processes, Poisson-Gaussian processes
are not easily represented on a tree. In this paper, I provide a scheme using hexanomial
trees (nodes with six branches) which are recombining. This makes the entire scheme highly
tractable and accurate.” This model achieves the following objectives, contrasting it with
existing models:

1. It accommodates a choice of two parameters for varied degrees of skewness and kurtosis.

2. It extends the pricing of interest rate options in the Heath-Jarrow-Morton framework
to Poisson-Gaussian processes.

3. The entire lattice used for pricing term structure derivatives can be generated analyt-
ically, even in the more complicated Poisson-Gaussian case. This enhances computa-
tional speed.

4. The scheme used is shown to be recombining, which results in a high degree of com-
putational economy. This feature is found to be retained even when interest rates are
mean-reverting. This enables a finer lattice which improves numerical accuracy.

5. The discrete-time scheme converges to a continuous-time limit.

The model generalizes existing Heath-Jarrow-Morton models in two ways. It generalizes
(i) the volatility specification and (ii) adds a jump component without losing the lattice
recombination feature. The volatility specification extends the Amin-Morton (5] two para-
meter form with a four parameter model. The jump specification accounts for both skewness

"In discrete-time interest rate models based on trees. when path recombination is not achieved, the
number of nodes is of the order of p”, where p is the number of branches from each node, and n is the
number of time steps used in the lattice (tree). In this case, if the number of steps in a binomial (p = 2)
tree were 30, the number of final nodes would be 23 or approximately 1 trillion nodes. In the recombining
hexanomial (p = 6) tree here, for 30 time steps, the number of terminal nodes is only 15,376. Of course, for
a non- recombining hexanomial tree the number of nodes would be extremely large.



and kurtosis. This fully general form is then taken to gilt market data to demonstrate that
both. the Amin-Morton generalized volatility and the jump are incremental features which
improve the model fit.

A solution to the Poisson-Gaussian based American-type option pricing problem for
stocks was provided by Amin [2]. His model is an extension of the Cox-Ross-Rubinstein
[14] approach to pricing stock options. While our paper is analogous in spirit to Amin’s
work, it represents the solution to a very different problem for the following reasons: (i)
Unlike processes used for stocks. interest rate processes assume mean reversion which needs
to be accounted for and this complicates the attainment of path-recombination. (ii) With
stocks, the drift term does not matter as the mean of the stock price process does not enter
the option valuation formula. However, for bonds, the drift terms in the Ito process need
to be solved for, such that the prices of bonds in the model match those observed in the
market. In this paper, a model of the Poisson-Gaussian process is chosen which permits
the computation of the drift terms analytically, whereas they often can only be attained
numerically. (iii) Most importantly, while spanning is unachievable in equity option models
(Merton [29}, Amin [2}), and requires asssuming that jump risk is diversifiable or that a price
of risk be used, in our model of the term structure spanning is possible, in discrete-time and
in the continucus limit.

Our model is the Poisson-Gaussian successor to the pure-Gaussian models of Ho-Lee [25],
Heath-Jarrow-Morton {23] and Amin-Bodurtha [6]. These models are of the ‘no-arbitrage’
family of models, which match the existing term structure of interest rates. Our model uses
a discrete-time approach. Convergence of the model to a continuous-time, jump-diffusion
limit s demonstrated.

The rest of the paper is as follows:- Section Two deals with the theoretical framework
for pricing, and Section Three proceeds to provide the computer code and some numerical
examples of the implementation of the model. The effects of skewness and kurtosis on bond
option prices is analyzed. The model is also applied to gilt bond and option prices and shown
Lo fit better than simple diffusion models. Section Four concludes.

2 The Model

2.1 Discrete-Time Process

Since the model is developed in discrete-time, it is essential to stipulate a discrete time
interval, which we denote as h. Whereas it is also possible to index A such that we employ
time intervals of varying length. we shall assume without loss of generality that the intervals



are all of equal length. In the model, we will be using risk-neutral pricing methods (a la
Harrison & Pliska [22]), and therefore we assume the existence of a probability measure Q.
under which the prices of all interest-sensitive assets will follow a martingale.

Assumption 1 Forward Rate Process: Al each trading date t, the forward rates for all
future maturities T > t follow the stochastic difference equation:

St +h,T) = f(t,T) + a(t, T + o(T)Xa(t + h)Vh + Xot + h)N3p, VT >t (1)

f(1,T) is the one period forward rate at time T, as observed at time t. The drift coefficient
of the process is a(.), and the Gaussian coefficient is 0(.). We assume that they are bounded.
X1(.) and X;3(.) are random shocks to the process and are assumed to be distributed as follows:

X, ~ N(0,1)

X, = g+ w/prob
2T L w—7 w/prob

NSl

X1 and X; are independent random variables. The discrete process above mimics the behavior
of a continuous-time jump-diffusion process. Hence, the first noise term above represents the
diffusion component, and the second term represents the jump, which takes values {u+1)
or (4 — ). Therefore, the jump has mean u and variance v°. Ny 4 ts an indicalor function
(representing a point process) taking on the value I on rare occasions with probability driven
by the parameter X. X is the probability parameter of a jump in unit time, and hence the
probability of a jump in any time interval == MAh. We assume an infinite number of forward
rates in the interval [0, 7).

The point process N takes on the value 1 with probability 1 — e=**. Therefore, we can
write the following: _
0 w/prob 1—Ah+o(h)
N=4¢ 1 w/prob Xk +ofh)
>1 w/prob o(h)

For notational convenience. let A = Ak. In the process above, jumps occur rarely, which we
achieve by choosing a low value for A € (0,1), and then we may choose the parameters y

and 7 to provide the necessary skewness and kurtosis required. (See the Appendix for the

expressions for skewness and kurtosis.) The parameter g will govern skewness in the model

and the parameter 4 will drive kurtosis. A is the jump frequency parameter, which also acts

as the mixing parameter providing the composite distribution of (X, -X;). Finally, note that

the volatility of the diffusion may be different for forward rates of different maturities, i.e., for

different T, but the jump component is common across all forward rates. This assumptlion

is made without loss of generality to depict the fact that shocks {rom jumps affect rates of

all maturities.



2.2 Bond Prices

Assuming a continuous compounding convention, we can write out the expressions for the
bond price as follows:

[ T

-1
P(t,T) = exp —TZ:f(t,-ih)h
i=t
[ £ i-1
= exp L_ > (f(O,z'h)+Z
i=% j=0

(a(jh,ih)h + a(iR)Xy((G + DAWVE + Xo((G + DRYN(G + DAY A (2)
Define the spot rate of interest r(t) as

r(t) = f(t,0)

Following Harrison & Pliska [22], we define a money market account (numeraire) and assume
it is traded. This account is the balance of a reinvested dollar at the spot rate over time.

£-1

B(t) = exp {Z r(ih)h] = exp [EZ_: f(ih,ih)h}

=0

These definitions will be used later in the model.

2.3 Diffusion (Gaussian Shock) Space

The stochastic term representing the diffusion in equation (1) is X;(t), and it was assumed
to be a standard Normal variate. Therefore, it may be approximated in discrete-time by
a binomial tree where the node structure appears as in Figure 1. Thus, the value of X,
is either +1 or -1 with equal probability. Of course, the entire shock to the forward rate
term structure from the Gaussian component is scaled by the appropriate variance term,
o(T).¥T > t. The shock X,{t) applies uniformly to all forward rates, i.e., all rates either
move up or down together. This is a natural consequence of the modelling of the diffusion
space in this paper as a one-factor model.

2.4 Jump (Poisson Shock) Space

The stochastic terin representing the jump in equation (1) is X,(¢{)N (), and it is assumed to
be a two-valued random variable activated by a point process. Therefore, if a jump occurs,
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it may be represented in discrete-time by a binomial tree where the node structure appears
as in Figure 2. It is easily checked that this represents a random variable with mean g and
variance 2.

2.5 Poisson-Gaussian Space

The joint effects of the jump and diffusion will be represented by the convolution of the
diffusion space and jump space. The diffusion space with the correct noise terms is rep-
resented (with attendant probabilities) in Figure 3. The entire jump process X;(t)N(t)
can be represented on a trinomial tree which is as shown in Figure 4, with the necessary
probabilities.

The convolution of the two processes provides the outcome for representing the evolution
of the entire term structure. This is simply the product space of Figures 3 and 4, which
results in a hexanomial tree (i.e., each node leads to six other nodes). This is depicted in
Figure 5.

2.6 Risk-Neutral Pricing

In discrete-time, it is easy to describe the replication necessary to mimic the payoffs on any
contingent claim in this Poisson-Gaussian framework. At all nodes there are six available
bonds of different maturities which permit the replication of all possible payoffs under the
six outcomes in the state space in the next period. Given an entire available term structure
of bonds, this is easily achieved. A similar complete markets replication argument was first
employed by Jarrow and Madan {26} in a recent paper on the use of the term structure to
hedge jumps in the pricing of derivatives on risky assets.

Since the payoffs are replicable, the state space is spanned. This means that, as delineated
in Harrison and Pliska [22]. there exists a risk-neutral probability measure @, under which
the prices of all interest-sensitive securities follow 2 martingale. It is also well-known (see
Harrison and Kreps [21]) that the existence of this martingale measure is equivalent to the
existence of no-arbitrage, and therefore the prices we will compute will be arbitrage free.

An exact set of six bonds can be used to span the uncertainty at each node, and thus
a unique replication is also achieved. The unique spanning of the state space ensures that
markets are complete. Therefore, completeness of markets ensures a unique martingale
measure for the pricing of securities. Utilizing this specification allows us to compute the
drift terms a(t, T') consistent with the martingale condition. Define the process for discounted



bonds as follows. using the numeraire B(1):
P(t,T)
Z(t,T)=
(1) = g

In the absence of arbitrage, the prices of discounted assets follows a martingale under the

measure @, i.e.,
Z{t+hT)
Q )
b [ 2T ] :

Proceeding as in Amin & Bodurtha [6], we can write

Bt + h) = exp['r(t)ﬁ] = exp[f(i, t)h]

B(t)
and T
p(t+h,T) opl-Li., [+ k,jh)h]
PLT) exp(~ .57 (¢, ih)A]
I
= exp[f(t,t}h — 3 (St +h,jh) — f(t,jh))h]
=g+

Combining the equations above, we arrive at the following expression

Z(t+h,T)

Z,T)
I
VA + (T = (G + DRN(G+ D)l

- 2 la(t jk)h + o(iA)Xi((F + 1)h)
=5+l

Taking expectations under the risk-neutral measure on both sides and equating to 1 (i.e.,

using the martingale condition, E,Q[%%ﬁ%l) = 1) results in the following Lemma:

= exp[

Lemma 1 Risk-Neutral Drifts The following expression for the drift ot,.) ensures that

the prices of interest rate securities follows a marlingale:

i all.JhYh} h
j:%-}-l
= log I:L‘,Qe\'p([ Zh: a(jh)Xl(t-i-h)\/l—!—{-;;(T——t)X;(i+h)N(t+h) h)} ()]
J=i+]



When expanded out, the above expression appears as follows:

T
h
3 alt.jh)k| h = log(A)
]:%-i-l
where
3 1 A
A =epl|- Y a(jh)\/f?+;l-(Tmt)(_;t—7) b3
=g+ .

1-2x
2

- i a(jh)Vh| k| x

| b

j=ﬁ+1
-

—

z
3 o(iRWVER + (T = t)(—u — )| h x%

&

_j.—. +1

b I

2

F g
+exp( -3 a(jh)\/l;+%(T~—t)(—# +7) h) X

o(jh)Vh h) « 1A

=41

+exp( > U(jh)\/’;'{-;—?(T—t)(-—ﬂ*l-’Y) h| x

=i

Fpy ol
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This equation for the drift can be elucidated with a perusal of Figure 5. Since we can
represent the evolution of the process using a hexanomial tree, the drift term contains six
terms as is shown above. Once the drifts have been solved for, it is easy to draw the risk-
neutral hexanomial tree for the evolution of the term structure of forward rates. Note that
here the drifts are computed analytically, making the computer implementation of the model
fast and efficient.

2.7 Tree Recombination and Tree Size

Since none of the terms in the analytical expression for the drifts is a function of the state
variable f(1.T).Vi < T, the drifts, which are additive across time, are not a function of the
nodal position on the tree. This makes the tree recombining.

Recombination is a valuable property for a numerical scheme of this sort as it enables
numerical tractability, since computations are kept at an economical number. In the absence
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of recombination. each node on the hexanomial tree would branch out into six new nodes, and
\his would lead to a tree that would rapidly prove to be numerically unmanageable. With
recombination, it is easy to demonstrate that this problem does not arise, and in the following
paragraphs we shall actually compute exactly the number of nodes based on the number of
time steps established on the tree. Increasing the number of time steps economically (because
of recombination) enhances the convergence and accuracy of the numerical scheme employed.

Understanding the features of the hexanomial tree is essential to its numerical implemen-
tation, as well as being required to assess the number of nodes. To do so, we refer to Figure
6. which depicts the diffusion space drawn out two periods. It is quite clear that the number
of nodes in diffusion space grows exactly as the number of time periods on the lattice. After
one period, there are two nodes, and after two periods there are three nodes. Therefore,

No. of nodes in diffusion space after n periods =n +1

A similar diagram is drawn for the jump space, and presents a different type of series.
Turning to Figure 7, we see the evolution of the tree in jump space. Here we can see that
the first node leads to three new nodes. However, after two periods, instead of nine nodes,
we obtain only six. In fact, the number of nodes grows as per the following formula:

o . 1
No. of nodes in jump space after n periods = ;(n + (n+2)

As we have already seen. the risk neutral drifts are not functions of the forward rates, thus
enabling a recombining lattice. Since this tree is necessarily recombining, it is therefore
formed by the product space made up of the diffusion and jump spaces. Analogously, the
number of nodes will also be the product of the number of nodes in diffusion and jump space,
ie.

. . ) . 1
No. of nodes in Poisson-Gaussian space after n periods = §(n +1)%(n +2)

Table 2 provides the number of nodes for several values of n. It is easy to see that even
with a large number of time steps, the number of nodes does not grow too large. Thus
the economical number of nodes allows more time steps and therefore accurate evaluation of
interest rate derivative securities when the term structure follows a Poisson-Gaussian process.

2.8 Mean Reversion & Path-Recombination

As shown in Heath-Jarrow-Morton [23], the appropriate choice of the volatility function
o(T),Vt < T allows a tree to be established which is consistent with a mean-reverting
process for the spot rate. In particular, the following choice of the volatility specification
enables mean reversion and yet retains the feature of path-recombination:

o(T) = o exp[8(T)]
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where the coefficient of mean reversion B(T') is decreasing in T'. A simple specification that
is often used is

a(T) = oexp|-3(T)], VT >t

Since this specification does not contain the state variable, i.e., the forward rates, it retains
the feature of path-recombination. The analytic expression for the risk-neutral drifts in
equation (3) is modified to contain the exact form of the volatility function chosen. While
this feature was routinely employed in pure-Gaussian models (see HIM [23]), it has now
been extended to the realm of Poisson-Gaussian models.

One criticism of some generalized volatility models. and the generalized Vasicek model in
this paper is that interest rates can become negative. The model approach in this paper may
be extended to include proportional models. Of course, the injection of the mean reversion
feature reduces the possibility of negative rates on the lattice.

2.9 Convergence to the Continuous-Time Limit

In this section, we shall derive the continuous-time form of the discrete-time stochastic
difference equation (1). Let D be the metric space of RCLL (right continuous functions with
left limits) real-valued functions on [0,T]. Let the sequence of forward rate processes be
defined on the path space D[0,T]. Let C[0,T] be the subspace of D{0,T] of all real-valued
continuous functions on [0, T]. The space D is restricted to the Skorokhod topology, which
when restricted to the space C[0,T)] is the topology of uniform convergence.

First, we prove that the discrete point process N3, converges to a Poission process.
Consider the time interval k. Let the random variable ¢ denote the number of jumnps in the
interval. Divide A into n intervals of length m each, i.e., m = f‘—l Let y, be the number of

jumps in subinterval j. Then ¢ = ¥}, y; and the following probability set up is true in each
subinterval:

Prob(y; =0) = 1 — Am + O(m)
Prob(y; = 1) = Am + O(m), V;

Therefore, for large n, y; follows a Bernoulli distribution as the probability of y;, > 1 = O(m).
This Bernoulli distribution has parameter Am = Ah/n. Then ¢, which is the sum of Bernoulli
random variables, must be distributed Binomial. such that

VAN VAN
Prob(¢ = ) = (7) (—”—') (]—Tl’i) ,1=0,1,2...n



Taking the limit, the process ¢ has the density:

: ( n ) (Xh)’ ( ih)"“ (e h)(Ah)
lim 2y h-2) =t————+~
n-oo \ [ n n I

which is clearly Poisson in the limit. Therefore the process /Ny, converges to a Poisson
process. Let us denote this limiting process as G(t).

Rewriting equation (1), we obtain

-1 -1 -1
H6TY = £O,T)+ X alih, T)h+ 32 oD Xa(ik)Vh + 32 Xa(GRNGR)

Taking limits (h | 0), and applying Donsker’s Theorem (Duffie, {18}, pg 248) to the diffusion
part and recognizing that the jump component is simply a compound Poisson process (see
Karlin & Taylor, [27], pg 426), we obtain

6Ty = F0.1)+ [ als. T ds + [ oD aWils)+ [ TG )

where W,(t) is a standard Brownian Motion, and J(1,4?) is a two-state random variable with
mean g and variance 42. Finally, taking the differential provides the stochastic differential
equation

df (1, T) = a(t, T)dt + o(T) dWA(t) + J(£) dG(2) (5)
which is the continuous-time limit of the stochastic difference equation (1).

While it is clear that spanning, and hence market completeness is easily achieved in the
discrete hexanomial model, we need to be sure that it is also obtained in the continuous-
time limit. This is certainly the case, as a wide spectrum of bonds is available on the term
structure, and similar arguments to that of Jarrow and Madan [26] apply, i.e. a finite risk
space may be spanned using the term structure. In the model in this paper, in continuous-

time, spanning is implementable with a finite set of securities {bonds). To see this, note that
we can write equation (5) in an alternate fashion as follows:

df (1. T) = a(t, T) dt + o(T)dWy(t) + Jy(t) dGy{t) + Ja(t) dGa(2), VT 2t

with the Poisson frequency parameter for processes Gy and (7 being ;‘ each, and the jumps
being of constant size such that Jy{t) = u+7, J2(t) = p—~7v, Yt (proof in Appendix). Following
from the boundedness of a{.) and o(.) in Assumption 1, we assume that

T
j | a(t,T)| dt < 400 a.e.Q
1}

T
/ o} T)dt < +00 a.e.Q
[1}
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which are the usual integrability conditions.

Our bond prices are simply the exponential integral over the forward rates: P(t,T) =
exp[— T f(t, s)ds]. Using an extension of Heath-Jarrow-Morton [23] pg 82, it can be shown
that with jump-diffusions, the bond price process is as follows:

d}f((:’;) la(t, T) + éb(t,T)’] dt + (¢, T)dWi(t)
+[C—J1(T—!) _ 1] dG](t) + [e-J'z(T—l) — ]_] ng(t)
«t,7) = - [ alt)d
tT
e, T) = “/, o(v)dv (©)

A proof of this result follows in the Appendix. For each T, and fixing ¢, we can write equation
(6) in a more economical form as follows:

dP(T) _

By = M(T)dt+ V(T)dWa + B(T) dGy + Hy(T) 4G,

This follows from equation {6) since for a given T', the coefficients are deterministic constants.
By splitting the initial Poisson process with a random jump into two Poisson processes with
constant jumps, we achieve a process with three sources of noise, a diffusion element and
two jump elements.

In order to price derivative securities, we need to show spanning and market completeness.
Spanning arguments in the case of jump-diffusion processes have been developed by both
Shirakawa [34) and Jarrow and Madan [26], and they are outlined in brief here. Assume that
there are three avaijlable bonds on the term structure, with maturities Ty, T3, T3 such that

the risk matrix
V(L) Hi(Ty) Hi(Th)

V(T2) H\(T2) HiT3) (7)
V(I3) H(T3) HaT3)
is non-singular. Given this the matrix is invertible and we are able to span the state space
with our three securities. Following theorem 2.1 of Shirakawa [34], we then assume that there
are no arbitrage opportunities in the market. This implies that the expected drift functions
for the forward rate processes take the following form:

2
M(T)=b(t,T)6 = 3 _[e7* T8 — 1]y,
=1

where ¢, 4,1, are risk premiums for the three sources of risk in the model. Given the
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non-singularity of {7), we can express these risk premiums as follows:

é1t) VITy) H(T) Hao(T) |7 M(T) - T, (T3
() | = | V() Hi(T:) HaTo) M{Ty) — T, H(T2)3
Pa(t) V(T3) Hi(Ts) HaTs) M(Ty) — L, Hi{T3)3

Since the RHS of the equation must hold for any ¢, the LHS is independent of ¢, and can
be written as [0, ¥1,%2)'. Further, in addition to spanning, the existence an equivalent mar-
tingale measure and unique risk-premia imply market-completeness (see Shirakawa, theorem
2.2). This allows the creation of a replicating self-financing strategy to mimic the value of
an American option. Arbitrage-free pricing is thus achieved in the continuous-time limit.
Unlike pricing with jumps for equities, where spanning is nol achievable, the term structure
application permits spanning. Thus, we do not require to resort to assumptions that jump
risk is unsystematic (Merton [29]) nor to a version of the model where incompleteness is
priced (Amin [2]).

Since we have shown that the discrete process converges weakly in D to the continu-
ous process in equation (5), and that simple assumptions assure that spanning is attained,
we know that in continuous-time arbitrage free pricing is possible. The definition of weak
convergence assures us that the prices of European options will converge to their continuous-
time limits under mild regularity conditions, such as assuming that the option payoffs are
continuous and uniformly integrable (see Duffie [19], pgs 198-199). For American-type op-
tions, we also need to show that the sequence of value functions obtained from the optimal
stopping problem in discrete-time converges to a continuous-time limit. Once again, Amin
and Khanna [4] have shown that in general, by assuming simple uniform integrability con-
ditions, the convergence to the limit is assured, and in particular, if spanning is achieved
(i.e. complete markets), one can replicate the American option by trading in the underlying
securities (see Amin and Jarrow [3]). In a similar vein, Kushner and DiMasi [28] show that
in a jump-diffusion optimal control problem, convergence is attained with boundedness con-
ditions on the coefficients of the underlying process, which are also met. Therefore, assuming
bounded coefficients, that the option payoff is continuous, and is uniformly integrable, ap-
plication of the continuous mapping theorem (Duffie {19] pg 199) provides convergence of
derivative security prices to continuous-time limits.

3 Numerical Implementation of the Model

Whereas the theoretical development of the model has been cartied out within a simple di-
agrammatic framework, and most of the working pieces of the model have been analytically
derived, in such models the computer implementation can potentially prove to be complex.
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In fact, compared to lattice methods which fit the smile, the computer program is extremely
economical. This feature follows directly from the simple theoretical approach employed.
Two modelling features are particularly useful: (i) the fact that the drift terms are ana-
lytically expressed (equation 3) eliminates the need for costly code to solve for the drifts
numerically; (ii) the path-recombination feature of the scheme used which ensures a parsi-
monious implementation. Usually, ‘fitting the smile’ methods require the solution of systems
of equations while setting up the lattice. Our tree, despite its hexanomial form, requires no
such computations. In fact. the computer code for the model is extremely economical, given
the closed-form derivation of the model drift terms (see the Appendix for the program code).

3.1 Examples

In this section, we shall compare option values from a Poisson-Gaussian model versus those
from a pure-Gaussian model, in environments where we allow skewness and kurtosis to vary.
This is simple to implement as in order to obtain a pure-Gaussian model from our Poisson-
Gaussian program, all we need to do is to set the parameter for jump arrival, A, to zero.

In order to illustrate the operation of the model, I have priced options for varving skewness
and kurtosis coefficients, and Figures 8-12 depict option prices. In Figure 8, we price a
2.5-year European option on a 5-year default free $100 zero coupon bond. The exercise
price of the option is computed to be the at-the-money forward price of the bond 2.5 years
forward. The plot provides call option prices for three choices of skewness: positive skewness
(1 = 0.003)(50 basis points), zero skewness (¢ = 0) and negative skewness (u = —0.005).
For each skewness level, we plot the value of the option for a range of short interest rates
from 5% to 15%. The exercise prices are also adjusted so as to remain at-the-money forward.
(In Figures 9 and 10, we shall explore the effects of skewness when the exercise price is held
constant.) The option values are higher when interest rates are skewed, either positively or
negatively. Option values are lower when interest rates display no skewness. While this may
appear counterintuitive, it is easily explained. When skewness is positive, interest rates move
upwards and this reduces bond prices, but the present value of the exercise price declines,
adding value to the option. The trade-off between the time value and intrinsic value is such
that while intrinsic value falls. time value more than compensales for Lhis eflect and the
overall value of the option increases. Since the option is at-the-money forward, intrinsic
value falls to a floor of zero, and time value has an unlimited upside, adding a net positive
effect to the value of the option. When skewness is negative, interest rates move down and
the intrinsic value of the call option moves up; on the other hand, the time value reduces but
now the net effect is positive as well, since intrinsic value is no longer capped and its effect
outweighs that of time value. Therefore skewness appears to have a symmetric effect on
the pricing of bond options, struck at-the-money forward. This is in contrast to the eflects
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noticed in the pricing of stock options where skewness clearly operates asymmetrically.

The analysis in Figure § dealt with options that were purely at-the-money forward. 8 In
Figures 9 and 10, we analyze the effects of skewness for options that are priced at varying
degrees of moneyness. This is done by keeping the exercise price fixed at the at-the-money
forward price corresponding to a short rate level of 10%. In Figure 9, a plot of the difference
in call option prices between the skewness models and zero skewness models is shown. There
are two plots: one for the difference in option value between the negative skewness model
and zero skewness model, and one for the difference between the positive skewness model
and the zero skewness model. Interest rates are varied from 5% to 15%. In Figure 9,
the plots relate to a 3-year option on a 6-year zero coupon bond. As can be seen, with
positively skewed interest rates, the in-the-money options tend to be priced higher (time
value effects dominate the intrinsic value effects), and with negative skewness, the out-of-
the-money options are priced higher (intrinsic value effects dominate the time value effects)
relative to the the zero skewness case. In Figure 10, a similar exercise is undertaken for the
5.year option on a 10-year zero-coupon bond. Results are similar.

To illustrate the effect of kurtosis, option pricing results are portrayed in Figures 11 and
12. In Figure 11, we plot the difference between the prices of bond options priced using
the Poisson-Gaussian model, and prices from a pure-Gaussian model in which the diffusion
volatility is adjusted upwards in order to ensure the same level of total volatility per unit
time as the Poisson-Gaussian model. The plot is made for three different choices of the
standard deviation of the jump: 10, 60 and 100 basis points. Skewness is set to zero. Prices
are presented for a 3-year European call option on a 6-year $100 zero coupon bond. The
exercise price is the at-the-money forward price for a 10% short rate, which is $72.33. The
interest rate is varied from 5% to 15%. Thus we obtain a range of option prices varying
from deep in-the-money to deep out-of-the-money values. As is to be expected, when the
variance of the jump is very low (10 basis points), there is little difference between the
Poisson-Gaussian and pure-Gaussian models. However, as the variance of the jump effect
rises, at-the-money option values from the Poisson-Gaussian model drop below those from a
pure-Gaussian model. The opposite effect is noticed for out-of-the-money and in-the-money
options which are priced higher relative to the pure-Gaussian model. This is because when
interest rates follow a Poisson-Gaussian process, the distribution of interest rates becomes
fat-tailed, and peaked around the mean. The greater the jump variance, the more marked

8Reasonable parameter values are used. For example the short rate rg is varied from 5% to 15%. The
functional form used for the forward rate term structure is a simple one, rising steeply at first and then
flattening out, which is quite often observed (f{t) = ro + In(t)/200). Skewness {u) is varied from +100 to
-100 basis points. Kurtosis (1) is assumed Lo be about 100 basis points. Volatility decay is at the rate of
{i?= 0.1 which translates into a mean reversion rate of the same magnitude. And finally the jump [requency
is taken to be A = 0.1 which provides a 10% probability of a jump per time period.
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this effect. In Figure 12, an identical exercise is undertaken for the 5-year option on the 10-
vear bond, and a similar effect is noticed. These results in the case of bond options are very
similar to those evidenced in the case of equity options. These effects were first documented
by Merton, who arrived at similar figures in an early paper [30].

3.2 A Brief Empirical Examination

In this section, we report the performance of the model on options in the U.K, bond markets.
The term structure of U.I. gilt interest rates and cap options with maturities out to 10 years
are used to fit the model and compare it to a model which does not employ the jump feature.

The model has been fit using a genetic algorithm which minimizes the percentage error
in prices. Data for 3 days, 1-Feb-95 to 3-Feb-95, is used to calibrate the model. The yield
curve each day goes out to a maturity of 11 years, and the tree is drawn with a timestep of
0.25 years. Market prices for caps go out to 10 years, and have individual caplets every half
year.

The first model that was fitted was one with constant volatility (o) for the diffusion
process. This provides a simple model which is analogous to enhancing the Ho-Lee model
[25] with the jump process in this paper. Thus the numerical procedure fits the prices of
bonds and caps on this tree by finding the optimal values of the parameters [0, A, y,7]. Of
course, the drift terms are computed during the implementation on the tree as well.

Table 3 presents the results of the fitting procedure. For each of the three days examined,
the table reports parameter values, and the average percentage pricing error. The value of
o is reported in basis points per annum, and g, are reported in basis points. With the
constant volatility model the parameter estimates are quite unstable from day to day. Also
notice that the size of the jump given by the parameter 4 is quite small. This implementation
of the model, with constant volatility, behaves more like a mixture of distributions than a
jump-diffusion model, as the probability of a jump is often close to fifty percent. There is
positive skewness injected by the jump feature, i.e. parameter . However, the model does
not fit very well, since for long maturities, it is well known that constant volatility models
do not do very well. The additional jump feature does little to capture long dated effects. In
fact, the effect of jumps is more likely to provide a better fit for short dated options which
are affected by kurtosis.

The poor fit of the model can be ascribed to the fact that the volatility term structure
is not flat. In fact, it is humped, which is a usual occurence in the markets. Table 4 reports
the raw term structure of volatilities rounded to 25 basis points extracted from fitting the
cap prices to a simple Black [8] model which assumes a lognormal process for zero coupon
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forward bond prices. It is apparent that the term structure of volatility rises and then falls.
The model will pot fit this well with a constant volatihty parameter. Therefore, the use
of generalized volatility models such as those chosen in Amin and Morton [5] is posited.
However, the 2 parameter models used there do not provide for a humped term structure
of volatilities. Instead. here we develop a more generalized model which is a four parameter

form, as follows:

o(T)= A+ Bexp(-T/D) + C% exp(—T/D)

which requires parameters [A, B,C, D]. This model captures the level, slope and curvature
of the term structure of volatilities. Parameter A governs the level of the term structure,
parameter B controls the slope, and finally, parameter C controls the curvature. The last
parameter D, is a damping or fitting parameter. For each T, the volatility of forward rates
is provided by the model above, giving a complete term structure of volatilities.

Table 5 reports the fit of the Poisson Gaussian model with the generalized volatility
structure. The model now possesses 7 parameters: [A,B,C,D, A\, p,7]. The fit improves
drastically with the new volatility model. The percentage pricing error is reduced by about
5 times. Once again positive skewness is evidenced, and kurtosis varies a lot from day to
day. However, the jump feature is now seen to be a rarer event, with the probability of a
jump ranging from approximately 5% to 10%. Therefore, jumps are now parametrically rare
events. This suggests that the simple addition of a volatility term structure is essential in
capturing the prices of options.

In order to examine the effect of the jump feature, the generalized volatility model was
calibrated without the jump feature. The results are presented in Table 6. The model
does not fit as well as the full generalized volatility jump diffusion model. Hence, clearly
the additional jump parameters do capture the prices of options better. The presence of
skewness and kurtosis in the data suggests the use of the additional jump feature.

4 Conclusion

This paper extends the literature on the pricing of American-type bond options for pure-
Gaussian processes to Poisson-Gaussian processes. The effects of skewness and kurtosis in
the HIM model have been injected before with stochastic volatility models. This paper
provides for this feature by adding a jump component, in addition to generalized volatility.
We provide a simple. tractable, accurate and convergent Poisson-Gaussian model for the
pricing of interest rate derivatives, which provides the user a means to inject the necessary
amount of skewness and kurtosis desired into pricing models. Numerical examples illustrate
the implementation of the model, and proﬁde intuition regarding the effects of skewness
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and kurtosis on the term structure on the values of option prices. In summary. the paper
generalizes the Amin-Morton [5] class of models by adding (i) a more flexible volatility
specification, and {ii) a jump component, yet retaining the lattice recombination feature,
which is extremely useful for practical applications.

The Poisson-Gaussian process is specified using a hexanomial tree (six nodes emanating
from each node), and the tree is shown to be recombining. This feature of the tree ensures
path-recombination. A fairly general class of volatilities preserving path-recombination and
providing mean reversion is attainable even under this enhanced Poisson-Gaussian frame-
work. The features of the mode! are examined with numerical simulations, and the model is
also taken to gilt market data. It is seen that the introduction of generalized volatility and
jumps plays a key role in better fitting options prices.
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A

Proofs

A.1 Moments of the Discrete Process

The moments of the discrete process provide the intuition for why the choice of jump form
injects the necessary skewness and kurtosis into the model. The first four moments are as

follows:

(8

AMean:

E[ft+ b, T)) = fIt, T) + a(t, T) + My

Variance:

VIFE+ A, T)) = Ap? + %) = A2u? + ho?

. Skewness:

SE[f(t+h,T) = (1 = M)Au(37y + p? — 2)47)
the sign of which clearly depends on the sign of p.

. Kurtosis: This is expressed for ¢ =0 and g = 0, to keep the expression simple and to

observe the effect of «.
Kulf(t + h, )] = My*

which demonstrates that the magnitude of kurtosis depends on the size of v. When
p # 0. kurtosis is equal to (1 — M)At + Hu—7 - Ap)' + %(,u + 7 — Ap)*, which means
the sign and size of g also affects the degree of kurtosis. However, here too, the degree
of kurtosis increases with ~.

A.2 Sphtting the Jump Process

We need to show that JdG(}) = J1dGi(3) + J2 (IGQ(%). where

jo{ w/prob 1
p—7 wiprob 1
We can also see that
i+ w/prob A
JdG = 0 w/prob 1-Adt (8)
Adt

=9 w/prob 2

Now dealing with J, dG, + J2 dG, we can work out the probabilities as follows. The prob-
ability of both dG) and dG; occuring is 55’-5 X —‘5"—' = 0, because dt? = 0. The probability
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that dG, occurs but dG, does not is 1‘—245 x (1 - izi’-) = 55‘-"—5, and the value of the jump is
y + 7. The probability that dG; occurs but dG; does not is {1 — %) x % = %, and the
value of the jump is ¢ — 7. The probability that both dG, and dG do not occur not is
(1— l,f—') x (1 — l,f,'—‘) =1 — Adt, and the value of the jump is 0. Notice that this gives the
same values and probabilities as in (8) and so the two jump forms are equivalent. This is a
useful means of transforming a Poisson process with a finite state-space random jump size

into a set of constant jump Poisson processes.

A.3 Heuristic Derwation of the dP process
Taking a simple case (one period)
df = adt + odw + Jy dGy + S, dG,

and

P(fy=¢"!

Then, using the jump-diffusion version of Ito’s Lemma,
dP = —Pladil + ocdw) + %azp dt + P[c"" - 1dGy + Ple™" — 114G,

Therefore,
_c_l_}_’_

P
Note the similarity with HIM [23] pg 82.

=[~a+ %ag] dt — o dw + [e™ = 1]dG, + [e7? — 1}dG,

Extending the example to two periods

dfy, = oydt +oydw + "hdG, + JdGo
df2 = ngt -+ Ugdw + J]dGl + szGz

and

P(fi.fa) = e h-
Then

dP = —P([aq + 03] dt + [0y + 03] dw) + %[al +aPPdt+ Pl —1]dG, + Ple™*2 - 1]dG,
Therefore,

dP 2 1,2 2 2 2
F =2 ait (X e dt -3 oidw + e~ Lo — 1]dGy + [¢” Zim? = 1]dG,
= =1 i=1

=1
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Taking the limiting case where we get a series of instantaneous forward rates f(t,s) for
s € [t,T] we get the expression (6) in the paper:

dP(t,T) 1
Py = [etT)+ b TY]d+ L T) ()
+{e™ T _1}1dGy(t) 4 [¢727Y — 1]dG, (1)
a(t,T) = —/Ta(t,v)dv
HT) = - [ ow)dv



A.4 Programming Code for the Poisson-Gaussian Model

The program below is written in Mathemaltica.

(K kkm = m—mmm o e e e o— oo oo oS Ss oo *xk)
(**x* HIM Model for Jump-diffusions - With Mean Reversion ok )
(wxx Sanjiv Das, Harvard Business School koK)
(ex* copyright, April 1998 *kk)
(B = mmm o o e e oo oo Sss s *kok)

Step[x_] :=Block[{s},
s=1; While[x>s*(s+1)/2,s=5+1]; Return[s];
]

T=3; h=0.5;

£0=Table[0.05+0.01%i,{i,T}];

beta=0.1; basesig=0.005;
sigma=Table[basesig*Exp[-beta*(t-1)],{t,T}]; sigma=sigma*Sqrt[h];
mu=0.0;

gamma=0.01;

lambda=0.1; lambda=lambda*h;

jumpshft=Table[0,{t,T},{i,t*(t+1)/2}];
For[t=2,t<=T,t++,

For[i=1,i<=t*(t+1)/2,i++,
If[i<=(t-1)*t/2, jumpshft [[t,i}]=jumpshft[[t-1,1]]+mu+gamma];
If[i==(t-1)*t/2+1,jumpshft [[t,1]]=0];
1£[i>(t-1)*t/2+1, jumpshft [[t,i]]=(i- (t-1)*»t/2-1) *(mu-gamma}] ;
1;

1

(*xxx* Risk Neutral Drifts ***#*#)
alpha=Table[0,{t,T},{i,T-t+1}];
For[t=2,t<=T,t++,
For[k=1,k<=T-t+1,k++,
If[k==1,
alpha[[t,k]]=Longxp[h*(-sigma[[t]]-mu-gamma)]*lambda/4+
Explh*(-sigma[[t]])]*(1-lambda)/2+
Exp[h*(-sigma[[t]]-mu+gamma)]*lambda/4+
Exp(h*(sigma{[t]]-mu-gamma)]*lambda/4+
Exp[h*(sigma{[t]])]*(1-1lambda)/2+
Exp[h*(sigma[[t]]-mu+gamma)]+lambda/4 1/h,
alpha[[t,k]]=Logl



Exp[(-Sum[sigmal{[t+j-1]],{j,k}]}/k-mu-gamma)*h*k]*lambda/4+
Exp[(-Sum[sigma[[t+j-1]],{j,k}]}/k)*h*k]*(1-1lambda)/2+
Exp[(-Sum[sigma[[t+j-1]],{j,k}]/k-mu+tgamma)*h*k] *1ambda/4+
Exp[(Sum[sigmal[[t+j-11],{j,k}]/k-mu-gamma)*h*k] *lambda/4+
Exp[(Sum[sigma{[t+j-1]],{j,k}]/k)*h*k]*(1-1lambda)/2+
Expl(Sur[sigma{[t+j-1]],{j,k}]/k-mu+gamma)*h*k]*lambda/4]/h
- Sumfalphal[t,i]],{i,k-1}] 1;
1;
1

(*xx+* Forward Rate Tree **#*%)
f=Table[Table[0,{k,T-t+1}],{t,T},{i,t 2% (t+1)/2}];
f[[1,1]]1=f0;
Forft=2,t<=T,t++,
For[ni=1,n1<=t,ni++,
Forfn2=1,n2<=t*(t+1}/2,n2++,
For[k=1,k<=T-t+1,k++,
f{{t,(n1-1)*t*(t+1)/2+n2,k]]
=f0[[t+k-1]]1+Sum(alpha[[j,t+k-j1]1,{j,2,t}]
+sigma[[t+k-1]]*(t-1-(n1-1)*2)+jumpshft[[t,n2]];

1;
1;
1;
r=Tablel[f[[t,i,1]],{t,T}.{i,t 2+%(t+1)/2}];

(*%*%x* Bond Pricing ****)

B=r; mat=T;

Do[BL{T,i])=Expl[-b*r[[T,i1]],{i,T"2*(T+1)/2}];

For[t=mat-1,t>=1,t--,

For[ni=1,n1<=t,nl++,
For[n2=1,n2<=t*(t+1)/2,n2++,
BL[t,(n1-1)*t*(t+1)/2+n2])=Exp[-h*r[[t,(n1-1)*t*(t+1)/2+n2]]]*(

B{{t+1,(n1-1)*(t+1)*(t+2)/2+n2]]}*1ambda/4+
Bl{t+1, (n1-1)*(t+1)*(t+2)/2+4n2+Step{n2]]]*(1-1ambda) /2+
BL[t+1, (n1-1)*(t+1)*(t+2)/2+n2+Step{n2]+1]]*1ambda/4+
B({t+1,n1*(t+1)*(t+2)/2+n2]]*1ambda/a+
B{{t+1,n1*(t+1)*(t+2)/2+n2+Step[n2]]1] *(1-1lambda)/2+
B[[t+1,n1*(t+1)*(t+2)/2+4n2+Step[n2]+1]]*1ambda/4) ;
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Table 1: The Short Rate: Descriptive Statistics

This table provides descriptive statistics on interest rate data at dif-
ferent frequencies. The data is the one-month T-bill rate. US dollar
Monthly data spans the period January 1960 to December 1992.
Weekly and Monthly data span the period January 1987 to Decem-
ber 1992. Weekly data is as of the last trading day of the week.
Data have been obtained from Salomon Brothers and CRSP. Yen
and Pound rates were obtained from Reuters. and are for a period
of six years from 1989-04. Statistics are provided on the interest
rates (r) as well as the changes in interest rates (dr). Raw data is in

percentage terms.

Data Frequency Mean  Variance Skewness Excess Kurtosis No. of Obs
US$ Daily 1264
r 6.3615 1.5886  0.03474 -0.94064
dr -0.00057 0.072291 0.57903 17.3382
US$ Monthly 396
r 5.9153 7.5614 1.0614 1.3207
dr -0.00169  0.6530 -0.8620 8.64524
Yen Monthily 72
r 5.0167 4.4914 0.0950 -1.3985
dr -0.0291 0.0792 -0.0193 0.3209
GB-Pound Monthly 72
r 10.0984 14.0039  -0.0980 -1.5600
dr -0.1007  0.1252 -0.6953 4.4023

Table 2: Number of Nodes in the Hexanomial Tree

Number of Nodes

Number of Periods

100

6
18
40
73
126
726
2,176
4,831
15.376
67.626
520,251




Table 3:

Table 4:

Empirical Fit of the Constant Volatility Jump diffusion Model
This table reports the fit of the Ho-Lee [25} jump diffusion enhanced

model to U.K. gilt term structures and caps data. The term struc-
ture and caps go out to a maturity of 11 years and 10 years respec-
tively. The volatility function uses a constant volatility parameter,
i.e. o(T) = g¢. The average pricing error is reported as a measure of
fit. The calibration was undertaken using a genetic algorithm. Fit-
ting is undertaken each day for the cross section (across maturity) of

interest rate securities.
Date c A u ~ Average %age
(bps) | {bps) | (bps) | {bps) | Pricing Error
01-Feb-95 | 154.96 | 0.4022 | 0.07 | 32.51 4.88
02-Feb-95 | 146.24 | 0.5134 | 16.12 | 2.27 5.13
03-Feb-95 | 129.47 | 0.6925 | 20.81 | 58.03 6.20

Volatility Term Structure from fitting the Black (1976) Model
This table reports the volatility term structure from fitting the Black

model to cap prices. The volatilities are reported for the five days of
empirical investigation: 30-Jan-95 to 03-Feb-95. The volatilities are
in percentage change per annum.

Maturity (yrs) | 01-Feb-95 | 02-Feb-95 | 03-Feb-95
1 17.25 17.25 15.50
2 19.00 18.50 17.75
3 19.00 18.50 17.75
4 19.00 18.50 17.75
5 19.00 18.50 17.75
7 18.00 17.75 16.50
10 16.50 16.50 15.50
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Table 5: Empirical Fit of the Generalized Volatility Jump diffusion Model
This table reports the fit of the generalized volatility jump diffusion

enhanced model to U.K. gilt term structures and caps data. The
term structure and caps go out to a maturity of 11 years and 10
years respectively. The volatility function uses a generalized term
structure of volatilities, i.e.

o{T)= A+ Bexp(-T/D)+ C% exp(-T/D).
The average pricing error is reported as a measure of fit. The calibra-

tion was undertaken using a genetic algorithm. Fitting is undertaken
each day for the cross section (across maturity) of interest rate secu-

rities.
Date A B C D A I ¥ Average %age
(bps) | (bps) | (bps) | Pricing Error
01-Feb-95 | 99.07 | 19.96 | 117.11 | 2.93 | 0.0612 | 27.32 | 131.11 2.02
02-Feb-95 | 93.61 | 15.30 | 166.81 | 2.73 | 0.0924 | 43.09 | 33.92 0.63
03-Feb-95 | 93.23 | 6.89 | 172.67 | 2.52 | 0.0506 | 21.08 | 0.01 0.83

Table 6: Empirical Fit of the Generalized Volatility Model
This table reports the fit of the generalized volatility model (with-

out jumps) to U.K. gilt term structures and caps data. The term
structure and caps go out to a maturity of 11 years and 10 years re-
spectively. The volatility function uses a generalized term structure
of volatilities, i.e.

o(TY= A+ Bexp(-T/D) + C’% exp(-T/D}.

The average pricing error is reported as a measure of fit. The calibra-
tion was undertaken using a genetic algorithm. Fitting is undertaken

each day for the cross section (across maturity) of interest rate secu-
rities.

Date A B C D | Average %age
Pricing Error
01-Feb-95 | 109.04 | 2.77 | 14536 | 2.5 2.26
02-Feb-95 | 111.50 | 14.22 | 106.i2 | 3.53 2.81
03-Feb-95 | 137.22 | -28.36 | 42.51 | 1.35 4.57
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Figure 8: Option Prices for varil(ing Skewness - I
Presented in this graph are European call option values for a 2.5-

year option on a 5-year default free unit zero coupon bond. The plot
presents values for skewness (u) = -0.003, 0. 0.005. The instanta-
neous short rate (rp) is varied from 5% to 15%. The exercise price
is the at-the-money forward price of the underlying bond at option
maturity. The forward rate curve used obeys the following function:

f(t) =rq +0.01¢

where t is the maturity of the instantaneous forward rate. The
volatility parameter is ¢ = 0.005, the variance of the jump com-
ponent is 4% = 0.01%, volatility decay follows parameter 3 = 0.1, and
jumps arrive at a rate determined by coefficient A = 0.1.
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Figure 9: Option Price Differences for varying Skewness - 11

Option. Price Dillerence

resented in this graph are differences in European call option values
between a skewness and non-skewness mode] for a 3-year option on a
6-year default free unit zero coupon bond. There are two plots: one
for the difference in value between the positive skewness model and
the zero skewness model, and two, for the difference in value between
the negative skewness model and the zero skewness model. The plot
presents values for skewness (u) = -0.01, 0.01. The instantaneous
short rate (rg) is varied from 5% to 15%. The exercise price is the at-
the-money forward price of the underlying bond at option maturity
for a short rate of 10% (i.e., the exercise price is $72.33). The forward
rate curve used obeys the following function:

log(t)

fty=ro+ 200

where t is the maturity of the instantaneous forward rate. The
volatility parameter is ¢ = 0.005, the variance of the jump com-
ponent is 72 = 0.01%, volatility decay follows parameter § = 0.1, and
jumps arrive at a rate determined by coefficient A = 0.1.
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Figure 10: Option Price Differences for varying Skewness - II1
Presented in this graph are differences in European call option values

between a skewness and non-skewness model for a 5-year option on a
10-year default free unit zero coupon bond. There are two plots: one
for the difference in value between the positive skewness mode] and
the zero skewness model, and two, for the difference in value between
the negative skewness model and the zero skewness model. The plot
presents values for skewness (u) = -0.01, 0.01. The instantanecus
short rate (ro) is varied from 5% to 15%. The exercise price is the at-
the-money forward price of the underlying bond at option maturity
for a short rate of 10% (i.e., the exercise price is $57.60). The forward
rate curve used obeys the following function:

log(1)
200

f6)=ro+

where ¢ is the maturity of the instantaneous forward rate. The
volatility parameter is ¢ = 0.005, the variance of the jump com-
ponent is 72 = 0.01?, volatility decay follows parameter 8 = 0.1, and
jumps arrive at a rate determined by coefficient A = 0.1.
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ure 11: Option Price Differences for varying Kurtosis - I

Fi
gresented in this graph are the differences between Poisson-Gaussian

and pure-Gaussian model prices for a 3-year European call option on
a 6-vear default free unit zero coupon bond. The plot presents values
for kurtosis (4} = 10, 60 and 110 basis points. The instantaneous
short rate (rp) is varied from 5% to 15%. The exercise price is the at-
the-money forward price of the underlying bond at option maturity.
The forward rate curve used obeys the following function:

log(t)
200

J()=ro+

where ¢ is the maturity of the instantaneous forward rate. The
volatility parameter is ¢ = 0.005, the mean of the jump compo-
nent is u = 0, volatility decay follows parameter 3 = 0.0, and jumps
arrive at a rate determined by coefficient A = 0.1. In order to ensure
consistency in the comparison of prices, the diffusion volatility is ad-
justed upwards to preserve the same level of total volatility per unit
time as the Poisson-Gaussian model.
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Figure 12: Option Price Differences for varying Kurtosis - II
Presented in this graph are the differences between Poisson-Gaussian

and pure-Gaussian model prices for a 5-year European call option con
a 10-year default free zero coupon bond. The plot presents values for
kurtosis () = 10, 60 and 110 basis points. The instantaneous short
rate (ro) is varied from 5% to 15%. The exercise price is the at-the-
money forward price of the underlying bond at option maturity. The
forward rate curve used obeys the following function:
log(?)
[ty =10+ 200

where t is the maturity of the instantaneous forward rate. The
volatility parameter is ¢ = 0.005, the mean of the jump compo-
nent is u = 0, volatility decay follows parameter # = 0.0, and jumps
arrive at a rate determined by coefficient A = 0.1. In order to ensure
consistency in the comparison of prices, the diffusion volatility is ad-
justed upwards to preserve the same level of total volatility per unit
time as the Poisson-Gaussian model.
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