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ABSTRACT

We consider the implications of a specific alternative to the classical measurement error model,
in which the data are optimal predictions based on some information set. One motivation for this model
is that if respondents are aware of their ignorance they may interpret the question “what is the value of
this variable?” as “what is your best estimate of this variable?”, and provide optimal predictions of the
variable of interest given their information set. In contrast to the classical measurement error model, this
model implies that the measurement error is uncorrelated with the reported value and, by necessity,
correlated with the true value of the variable.

In the context of the linear regression framework, we show that measurement error can lead to
over- as well as under-estimation of the coefficients of interest. Critical for determining the bias is the
model for the individual reporting the mismeasured variables, the individual’s information set, and the
correlation structure of the errors. We also investigate the implications of instrumental variables methods
in the presence of measurement error of the optimal prediction error form and show that such methods
may in fact introduce bias. Finally, we present some calculations indicating that the range of estimates
of the returns to education consistent with amounts of measurement error found in previous studies. This

range can be quite wide, especially if one allows for correlation between the measurement errors.
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1. INTRODUCTION

Many variables used in econometric analyses are recorded with error. These errors may
have occurred at various stages of the data collection. They may be the result of misreporting
by subjects, miscoding by the collectors of the data, or incorrect transformation from initial
reports into a form ready for analyses. Often such errors are ignored. In cases where explicit
attention is paid to measurement error, it is typically assumed to be “classical measurement
error”, where the error is independent, or at least uncorrelated with the true value of the
underlying variable (e.g., Klepper and Leamer (1984), Chesher (1999), Schennach (2000); see
Grilliches (1987), Angrist and Krueger (2000), and Bound, Brown and Mathiowetz (2000) for
surveys). However, when responses have been validated (Bound and Krueger, 1991; Pischke,
1995; Card and Hyslop, 1997) empirical support for classical measurement error has typically
been limited.

The implications of deviations from classical measurement error are only rarely consid-
ered. Card (1996) and Bollinger (1996) study models with measurement error in binary
variables where the classical measurement error assumptions cannot hold. Kane, Rouse and
Staiger (1998) investigate categorical response models exploiting the presence of two mea-
sures with uncorrelated errors. They do allow the errors to be correlated with both the
true and reported values. Horowitz and Manski (1995) study bounds when a fraction of
the observations is mismeasured in an unrestricted manner. Bound, Brown and Mathiowetz
(2000) survey some of these approaches.

In this paper we explore the consequences of alternative types of measurement error. We
argue that if errors occur in reports by agents based on limited information, there are specific
alternatives to the classical measurement error model based on the view that respondents
are actively choosing a response. Such models have been used before in settings where
explicit account was taken of the agent’s awareness of the limits on their knowledge and
incentives for accurate reporting. Examples include the modelling of preliminary reports
of macro-economic aggregates (Mankiw and Shapiro, 1986), in the analysis of the effect of

financial incentives on accuracy in surveys (Philipson, 1999), and the analysis of responses



to questions about future events (Manski, 1990; and Das, Dominitz and Van Soest, 1999).
The alternatives we consider assume that, in response to the question “What is the value of
X7 respondents report their best estimate of the value of interest given their information
set. In contrast, under the classical measurement error model, respondents can be viewed as
reporting an unbiased, although suboptimal, value.

We then explore the implications of the alternative models in the context of linear re-
gressions. We find that the standard argument that measurement error in regressors leads
to underestimation of the magnitude of the relationship between the true variables can be
misleading. In particular, under plausible assumptions, measurement error can lead to over-
as well as under-estimation of the underlying relationship. We derive signs of the bias for a
number of leading cases. Finally, we present some calculations showing how sensitive regres-
sion estimates can be to measurement error under different models in the context of wage
regressions, using the PSID validation study (e.g., Bound and Krueger, 1991; and Pischke,
1995) to obtain estimates of the amount of measurement error in reported earnings and the
Ashenfelter and Krueger (1994) twins study for estimates of the amount of measurement
error in reported years of education. Although in many cases one may not be able to cred-
ibly choose between the different types of measurement error, one may be able to assess
the amount of measurement error using previously collected data from validation studies.
In such cases one can explore the range of parameter values consistent with the amount of
measurement error under the various models, as we illustrate in Section 5. These analyses
are in the spirit of the sensitivity and bounds analyses of Rosenbaum and Rubin (1983),

Leamer (1987), Horowitz and Manski (1995), and Bollinger (1996).

2. A DECOMPOSITION OF MEASUREMENT ERROR
Let X* denote the true value of a variable of interest, and X the recorded value. The

measurement error is the difference between the recorded and true value:

e=X - X" (1)



We decompose € into three components:
€ = Eeme + Eope + &r.

The first component is not predictable by the true value - i.e., the classical measurement

error:
Eome = € — E[e|X*] = X — X* — E[X — X*|X*] = X — E[X|X". (2)

The second component is not predictable by the reported value, which we refer to as optimal

prediction error:
Epe =€ — E[e|X] =X — X" - F[X — X"|X] = -X"+ E[X"|X]. (3)
The third and final component ¢, is defined as the remainder of the error:
Er =€ = Eome — Eope = X — X" — (X — E[X|X"]) — (-X" + E[X"|X]) (4)
= E[X|X"] — E[X™|X].

This decomposition is definitional in that it does not require any assumptions (beyond finite-
ness of the appropriate expectations). It is unique, and any assumptions on the measurement

error can therefore be formulated as assumptions on the three components.

3. Two MODELS FOR MEASUREMENT ERROR
3.1 CrLAssICAL MEASUREMENT ERROR

The standard Classical Measurement Error (CME) model, assumes that the measurement
error is independent of the true value. Assuming that the measurement error has mean zero,
this implies Fle|X*] = 0. Since by definition €., = ¢ — E[¢|X*], it follows that for this
model to be correct, it must be that € = €., and the last two components ¢,,. and €, sum to
zero. This model is typically defended by reference to physical measurement models where
often passive recording of measurements based on imprecise measuring instruments takes

place.



3.2 OPTIMAL PREDICTION ERROR

An alternative model, which we refer to as the Optimal Prediction Error (OPE) model,
is based on the assumption that the measurement error is independent of the reported value.
This implies E[e|X]| = 0 and, since €, = € — E[e]|X], € = €4pe 80 that e + &, = 0.

An argument in support of this model views the agent reporting the data as fully aware
of the lack of precision of the measuring instrument. Suppose the agent is asked to provide
the value of some variable. The agent has no way of ascertaining the true value X* of this
variable, but has available a flawed or noisy measure, X=X*+ Nx, with the measurement
error 1)x independent of the true value of the variable, exactly as in the CME model. However,
suppose that the agent is aware of the lack of precision of the measurement, and corrects for
this by reporting the best estimate of the underlying true value X* based on this measurement
X. To operationalize this we interpret “best” in terms of a loss function. Assuming a
quadratic loss function implies the agent would report the expected value of the true value
given the the agent’s information set.> Then the error ¢ = X — X* should have mean zero
given the information set of the agent. Since the reported value is clearly in the information
set, this implies that the error has mean zero given the reported value.

Critical in this model is the active role of the respondent. Thus, in order to assess the
impact of measurement error, the researcher needs to understand how the respondent views
the survey question. If the respondent is aware of not having exact information regarding
the value of the variable requested, presumably the question “What is the value of X7” is
interpreted as “What is your best estimate of the value of X7”. In that case the answer should
not be the unbiased measurement even if that is the basic piece of information available to the
respondent. Although the respondent need not have the exact probability model underlying

the unbiased measurement and true value, it is plausible that outliers are adjusted in a way

3 An alternative would be to assume absolute value loss, in which case the agent would report the median
of X* given the information set. For most of the illustrative calculations below the mean and median will
give the same answers because we assume normality. A third possibility arises when there is a constant
loss if the reported value differs from the true value. This arises in Philipson’s (1999) survey of physicians
who, with some probability, get a reward if their response matches administrative records. In that case
respondents should report the mode of the distribution.



that leads to some correlation between the true value and the measurement error. One the
other hand, this model is less likely to be appropriate if the measurement error is the result
of miscoding of survey answers.

A crucial ingredient in the OPE model is the information set. It may be that the respon-
dent only has a single unbiased measurement of the underlying true variable. Alternatively,
other variables which themselves may enter the econometric model of interest may be used
to produce this estimate.* In the next section we consider, in the context of a linear regres-
sion model, two variations of the model that differ in the information set exploited in the
calculation of the optimal prediction of the quantity of interest.

Models similar to this OPE model have been used in other contexts where agents are asked
to provide information about variables whose values they do not know exactly. The behavior
of government agencies reporting macro-economic quantities can be viewed as predicting the
underlying variable of interest given the agency’s information set, which includes signals of
the true value. In this context, the measurement error is expected to be independent of the
information set used, which necessarily includes the reported value.’

Philipson (1999) carries out experiments to see how the reliability of survey responses
varies with incentives. Philipson asks physicians the value of a categorical variable (medical
specialization) that he can verify from administrative data. He offers some of the physicians
an incentive scheme where with some probability he will check the value of the variable and
pay some sum of money if the reported and true values agree.® He finds that such incentive
schemes increase the probability that the respondents answered the question correctly.

Manski (1990), and Das, Dominitz and Van Soest (1999) analyze data where individuals

4Tor example, Ashenfelter and Krueger (1994) survey twins and ask each sibling both their own education
and their sibling’s education. To the extent that a respondent is not fully aware of their sibling’s education
level, but has knowledge of related items, such as occupation, it is plausible that such information would be
used to infer the education level.

°For example, Mankiw and Shapiro (1986) model the revision in Gross National Product between the
preliminary and final reports, and find that the revisions are uncorrelated with the early reports. In addition,
the revisions are correlated with the final reports which, if the final reports are assumed to be the truth, is
consistent with a OPE model but not the CME model.

6As mentioned before, this implies respondents should report the mode of the distribution.



were asked about future events including future income. In that case individuals clearly can-
not know the exact value of these variables, and Manski and Dominitz model the qualitative
responses as the best predictions (modes) given current information.

Each of these examples suggest that economic agents responding to questions about un-
certain quantities can sometimes usefully be modelled as solving a prediction problem rather
than as passively reporting noisy measurements. We therefore investigate the implications

of this model for the estimation of regression coefficients in a linear model.

4. IMPLICATIONS OF MEASUREMENT ERROR IN THE LINEAR REGRESSION MODEL

Let us consider a homoskedastic linear regression model for two scalar variables Y* and

X
Y'=a+p - X"+, (5)

where v L X*, E[v|X*] =0, VAR(v|X*) = 02, and the parameter of interest, 3, is the ratio
of the covariance of Y* and X* over the variance of X*. Possibly mismeasured values Y and
X are recorded. We consider the implications for least squares estimates of 3 based on a
random sample from (Y, X) of various properties of the measurement error.

The basic piece of information available to the respondent is assumed to be a pair of

noisy measures of the underlying variables:

X:X*+77X, Yzy*+77y

We assume that the basic measurement errors (7x,ny) are independent of the true value
of the regressor X* and of v, but potentially correlated with each other. For expositional

reasons we also assume joint normality:

X Lhx 0% 0 0 0

v 0 0 o2 0 0
Nx Onx Prxny ‘;nx Ony
ny 0 0 0 poxnyTnxTny Ony

We consider three cases relating the basic measurements X and Y to the reported values

X and Y. The first case is the CME model where the reported value is identical to the

6



unbiased measurement. In addition we consider two versions of the OPE model. The first
(OPE(1)) is where the respondent reports their best estimate based only on the noisy measure
of the mismeasured variable itself. The second (OPE(2)) is where the respondent reports
their best estimate based on the noisy measures of both variables. Table 1 summarizes the

three models. In each of the three cases we consider the sign of the difference between the

Table 1: THREE MODELS FOR MEASUREMENT ERROR

Reporting Model X Y
Classical Measurement Error XomEe = X Youe = %
Optimal Prediction Error (1) | Xoppa) = E[X*|X] Yorpay = E[Y*|Y]
Optimal Prediction Error (2) | Xopg) = E[X*X,Y] Yopre@e) = E[Y*|X,Y]

probability limit of the least squares estimator (3) using the noisy measures (Y, X), and the

limit of the least squares estimator ((4*) using the true values (Y* X*): Sign(3 — %)

4.1 MEASUREMENT ERROR IN THE REGRESSOR

First we consider the case with ng = 0, where the measurement error is confined to
the regressor. Thus Y = Y = Y* under all three models. We first briefly review the CME
case. The reported value is Xoyp = X = X*+ nx. The least squares estimator therefore

underestimates the coefficient in the regression with the true values:

ﬁ . COV(Y*,XCME) . ) O'g(
CME = VAR(Xemp) 0 ok 402 ]

which is less than (3 in absolute value. This is the standard case of classical measurement
error leading to a bias towards zero.
Next consider the OPE(1) case. The reported value X is linear in the unbiased measure-

ment X with coefficient (1/02 )/(1/0% +1/02 ):

Xorray = E[X*|X] = E[X*|X* + nx]



1/0% - 1/02

nx

— ey — X X Pax
I 1% 1 102, T 1ok + 102,

To see the bias from this model consider the regression function
Y'=a+0- X"v+v=a+5-X+7,

with the composite error terms v equal to
v=v+p-(X"-X).

Since by assumption in the OPE(1) model the reporting error X — X* is independent of
the reported value X, the composite error terms 7 is independent of X and there is no bias
resulting from the measurement error, or Sopr1) = 3.

Finally, consider the case where the respondent adjusts the report to take into account

not just the unbiased measurement X but also the (accurately measured) outcome Y *:
Xorr) = EIX'|X, V] = EIX*|X, Y.

This can be interpreted as estimating X* based on two noisy measurements, X=X *+nx and
(Y*—a)/0 = X*+v/(, with uncorrelated errors nx and /3. The resulting reported value is

therefore a weighted average of the population mean p and the two unbiased measurements:

B 1/o% N 1/o?, _
Tk 1a + B2 T ek v 1/02, + o2

XoPE(2)

3%/c? Y*—a

+ .
1ok +1/o} +B%[oy B

*

Y*—«
/B 7

with all A; > 0 and A\; + A2 + A3 = 1. We can rewrite this as a linear function of the true

:)\1'/1)(4‘)\2')24‘/\3'

value and independent disturbances:

1

g

Xorr@)y =AM -px + (A2 +A3) - X"+ Xg-mx + Az



Simple but tedious calculations show that the probability limit of the least squares estimator

is equal to

/0% +1/02 + (3?/c>
Borr@) = B - <1+ o / X / >7

Pt +1/3, + 7 (1o, + B2

which is greater than 3 in absolute value.” In this case the least squares estimator over-
estimates the magnitude of the regression coefficient, due to the correlation between the
reported value and the disturbance v in the regression, which is induced by the use of Y* in

producing the best estimate of the regressor X™*.

4.2 MEASUREMENT ERROR IN THE OUTCOME VARIABLE
In this subsection we consider measurement error in the outcome variable, and assume
the regressor is accurately measured: J,%X = 0, and thus X = X = X*. Under the CME

assumption we can write the regression model as

Y=Y=Y"+npy=a+0-X+v+ny.

By assumption both components of the composite error term v + 1y are independent of X
so there is no bias, and Goyr = 0.
Next, consider the case where the agent reports Y = E[Y*|Y]. The unconditional mean

of Y*is a+ 3 - ux, with variance % - 0% + 02, so the best estimate of Y*, based on Y, is

V(@ ok+a) 4 L/om, |
ﬁ2~a§(+03)+1/0,27y 1/(52~a§(+03)+1/af7y

Yoreay = (a+ 8- px) - T

“To see the form of the coeffient in a regression of Y* on X p E(2), consider the coefficient in a regression
of a variable Z on a regressor V' when V can be written as the sum of K independent variables V; through
Vi . Simple manipulations show that this is equal to a variance weighted sum of the slope coefficients from
the K regressions of Z on Vj:

COV(Z,V)  COV(Z,S8 Vi) S5 COV(Z, V)

P4V T NARY)  VAR(SEL VL) SR VAR(VY)




The slope coefficient in a regression of Y on X* is (3, so the slope coefficient in a regression

of Yopp) on X is

1/02

ny

B%-0% +02) + l/agy’

Borr)y = B - 7

which means Sopg() is biased towards zero.

Finally, consider the case where the respondent reports the best estimate of Y given Y
and X*. Based on X* alone the best estimate of Y* would be a+ - X*. Knowledge of both
X* and Y can be interpreted as knowledge of both a + - X* and Y —a — - X* = ny + .

Hence we can write
Yorp@) = ElY|Y, X" =a+ 3 - X"+ E[v|X",Y]

=a+ - X"+ Ep| X" ny +v]=a+ - X"+ Elv|ny + 1],

1/02

14

v ny

Because v and 7y are independent of X* again there is no bias from regressing Yoppg(2) on
X*
4.3 MEASUREMENT ERROR IN BOTH THE REGRESSOR AND OUTCOME VARIABLE

In this subsection we consider the case where both regressor and outcome are measured
with error. In each case the individual reporting the variables has available an unbiased

measurement,

X:X*—i-T]X, Yzy*—i-ny,
with possibly correlated errors,

Nx ‘X* U~ N 0 O-%X pnxnygnxanx ]
Ny ’ 0 Pnxny Onx Onx Ty

We look at the bias resulting from the three models considered before, CME, OPE(1),
and OPE(2). In general, with the errors in X and Y, nx and ny respectively, potentially

correlated, the biases from measurement error cannot be signed. If the correlation between

10



Table 2: MEASUREMENT ERROR BIAS IN SLOPE COEFFICIENT

Reporting Model
CME OPE(1) OPE(2)
X=X X = E[X*|X] X =FE[X"X,Y]
Onx  Ony Y=Y Y =E[Y*Y] Y =FE[Y*X,Y]
No Error 0 0 no bias no bias no bias
Error in Regressor Only >0 0 | towards zero no bias away from zero
Error in Outcome Only 0 >0 no bias towards zero no bias
Error in Both (zero correlation) >0 > 0 | towards zero towards zero  away from zero

the measurement errors is zero, the direction of the bias follows intuitively from the previous
calculations. These results, combined with those of Sections 4.1 and 4.2 are reported in
Table 2. If the correlation between nx and 7y is close enough to one the bias will always be
upward, and if it is close enough to negative one, the bias will always be downward. To see
how big these effects can be we report in the Section 5 some numerical calculations, based

on numbers relevant for wage regressions.

4.4 INSTRUMENTAL VARIABLES ESTIMATION

One standard approach to dealing with classical measurement error is to use instrumental
variables methods (see the Bound, Brown and Mathiowetz (2000) survey for a general dis-
cussion). Here we explore what instrumental variables methods do when the measurement
error is of the OPE variety. We maintain the linear model structure above, and assume Y™ is
observed without error, but X* is measured with error and two noisy measures are available.
We also assume the two reports are optimal predictions based on unbiased and independent

measurements:
X, = E[X*|X4], X, = E[X*|Xy],

11



where X; = X* + M, Xo=X*+ n2, (m1,m2) L X* and n; L np. From Section 4.1 we know
that regressing Y* on X; (or X3) leads to unbiased estimates of 3 because the measurement
error is uncorrelated with the reported value. If instead we use the second measure as an

instrument for the first one, we estimate 3 as

b — Cov(Y*, X,) 5 o +0%
YL Cov(X, X)) o3

Instrumenting for the mismeasured regressor now leads to a bias away from zero, proportional
to the inverse of the reliability ratio of the noisy measure. Note that in this case, as before, the
data are not informative about the nature of the measurement error. The finding that, as in
the Ashenfelter-Krueger (1994) study, instrumenting leads to considerably higher estimates
that ordinary least squares estimates, is consistent with both the classical measurement error
story as well as with the optimal prediction error model. The interpretation of the results is

very different, however, under the two models.

5. MEASUREMENT ERROR IN WAGE REGRESSIONS
In this section we look at the regression of the logarithm of wages on education where
both may be measured with error, and interest is in the regression coefficients based on the

8 We calculate some of the moments of hourly wages and

regression with the true values.
education levels from NLSY data.” The earnings measure used is the logarithm of the usual
weekly wage, and the education measure is years of completed schooling. The estimated

regression function based on these data is

Y, = 516 + 0.061 X,.
(0.09) (0.006)

The standard deviations of the log wage is oy = 0.43, and the standard deviation of the

education level is ox = 2.2.

8In some cases one can arguie that interest should be in the regression on perceived values. For example,
if individuals do not know their own income with certainly, one may argue that their estimated income is
more relevant for consumption decisions than true income. Here we would argue that in answering a survey
an individual may have insufficient incentive to carefully check his or her records, and that if the value of the
variable is needed for making economically meaningful decisions, one might acquire the relevant information.
9See Hellerstein and ITmbens (1999) for a discussion of the particular subsample used.
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To find appropriate numbers for the measurement error variances we turn to some of

10 For the measurement error in the education level we take our

the validation studies.
numbers from the Ashenfelter and Krueger (1994) study. Ashenfelter and Krueger asked
twins about their own education as well as their twin sibling’s level of education. Using
those data they estimate a reliability ratio of approximately 90%, implying that the variance
of the measurement error is approximately ten percent of the variance of education. We
therefore use o,, = V0.1 x ox = 0.63. For log wages we take our numbers from Bound

and Krueger (1991) and Pischke (1995) who analyze the validation study of the PSID. Their
numbers suggest a reliability ratio of 75%, and hence o,, = v/0.25 x gy = 0.3. Based on

Table 3: RETURNS TO EDUCATION AND PERCENTAGE BIAS IN THE PRESENCE OF MEA-
SUREMENT ERROR: ESTIMATED RETURN TO EDUCATION IS 0.061

Reporting Model
CME OPE(1) OPE(2)

X=X X = E[X*|X] X =E[X*[X,Y]

G O | Y=V  Y=ENIV] Y= EYIX,Y]
No Error 0.00 0.00 - [0.061 (0%) 0.061 (0%) 0.061 (0%)
Error in Regressor 0.63 0.00 — | 0.069 (-12%) 0.061 (0%) 0.055 (9%)
Error in Outcome 0.00 0.30  — | 0.061 (0%) 0.077 (-27%) 0.061  (0%)

Error in Both 0.63 0.30 -0.90 | 0.108 (-76%) 0.109 (77%) 0.076  (24%)
0.63 0.30 -0.50 | 0.090 (-48%) 0.095 (-55%) 0.068  (-11%)
0.63 0.30 0.00 |0.069 (-12%) 0.077 (-26%) 0.057 (6%)
0.63 0.30 0.50 |0.047 (22%) 0.060 (1%) 0.046  (25%)
0.63 0.30 0.90 | 0.030 (50%) 0.046 (24%) 0.036  (40%)

10Although these validation studies are obviously different from the NLSY in the way individuals were
selected and in the formulation of the questions, and the estimates are all based on the CME assumption,
they may be informative about the relative amount of measurement error for the earnings and educations
measures.

13



these error variances and the distribution of the observed variables we calculate the true
parameter values 5*, and percentage bias, (B — %)/ 8" x 100%, under different measurement
error scenarios. Table 3 summarizes the results. The results in the first three rows, with
measurement error in at most one variable, reflect the qualitative results in Sections 4.1 and
4.2. For example, in the second row, with only measurement error in the regressor, comparing
the estimated parameter of 0.061 with the true parameter value of 0.069, implies that the
estimated value is biased downward by 12%. The largest bias in these three rows is on the
order of 27%. When both variables are measured with error and with the errors correlated
the bias can get much larger. With zero correlation the bias for the classical measurement
error model is 12%. Allowing the correlation between measurement errors to go to -0.90, the
bias goes to 76%, and with the correlation up to 0.90, the bias goes to 50%. Similarly for
the other reporting models the bias goes up considerably, also not quite as much as under
the CME model.

One conclusion is that the classical measurement error model may overstate the biases
associated with measurement error, as well as understate them. A second point is that
although classical measurement error alone in the dependent variables does not lead to bias,

if correlated with measurement error in the regressors it can affect the results considerably.

6. CONCLUSION

Whereas the classical measurement error model views the individual as passively report-
ing a flawed but unbiased measurement, the optimal prediction model implies the individual
may interpret the question “what is the value of this variable?” as “what is your best esti-
mate of the value of this variable?” and adjust the raw measurement accordingly. This leads
to measurement error that is uncorrelated with variables in the individuals’ information set,
and therefore by necessity correlated with the true value of the variable of interest.

In the linear regression framework, this implies that, under plausible alternatives to the
classical measurement error model, measurement error in the regressor can lead to over- as

well as under-estimation of the coefficients of interest. In addition, when both regressor and

14



outcome variables are measured with potentially correlated errors, biases can be away from
zero even in the classical measurement error model. Critical for determining the bias is the
model for the individual reporting the mismeasured variables, the content of the individuals’
information set, and the correlation structure of the errors. We present some calculations
indicating that the range of values consistent with amounts of measurement error found in
wages and years of schooling. This range can be quite wide, especially if the measurement
errors are correlated.

Whether the classical measurement error model, a version of the optimal prediction error
model, or a hybrid model is appropriate depends on the specific context, but there is no

reason to believe that the classical measurement error assumption is generally applicable.
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