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ABSTRACT

We study the panel DOLS estimator of a homogeneous cointegration vector for a balanced panel of N

individuals observed over T time periods. Allowable heterogeneity across individuals include

individual-specific time trends, individual-specific fixed effects and time-specific effects. The estimator

is fully parametric, computationally convenient, and more precise than the single equation estimator.

For fixed N as T approaches infinity, the estimator converges to a function of Brownian motions and

the Wald statistic for testing a set of linear constraints has a limiting chi-square distribution. The

estimator also has a Gaussian sequential limit distribution that is obtained first by letting T go to infinity

then letting N go to infinity. In a series of Monte Carlo experiments, we find that the asymptotic

distribution theory provides a reasonably close approximation to the exact finite sample distribution.

We use panel dynamic OLS to estimate coefficients of the long-run money demand function from a

panel of 19 countries with annual observations that span from 1957 to 1996. The estimated income

elasticity is 1.08 (asymptotic s.e.=0.26) and the estimated interest rate semi-elasticity is -0.02

(asymptotic s.e.=0.01).
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I Introduction

This paper considers the extension of the single equation dynamic ordinary least squares (DOLS)

method of Saikkonen (1991) and Stock and Watson (1993) for estimating and testing hypotheses

about a cointegrating vector to panel data. We call the estimator panel DOLS. We discuss its limit

distribution and apply it to estimate the long-run money demand function using a panel data set of

19 countries with annual observations spanning from 1957 to 1996.

Panel DOLS is fully parametric and offers a computationally convenient alternative to the panel

�fully modiÞed� OLS estimator proposed by Pedroni (1997) and Phillips and Moon (1999a). Proper-

ties of panel DOLS when there are Þxed-effects in the cointegrating regression have been discussed by

Kao and Chiang (2000). We take this to be the starting point for our analysis. In our environment,

the cointegrating vector is homogeneous across individuals but we allow for individual heterogeneity

through disparate short-run dynamics, individual-speciÞc Þxed effects and individual-speciÞc time

trends. Moreover, we permit a limited degree of cross-sectional dependence (CSD) through the

presence of time-speciÞc effects.

We present two limit distributions for panel DOLS. The Þrst one is obtained for a Þxed number

of cross-sectional units N and letting T → ∞. In this case, panel DOLS converges in distribution
to a function of Brownian motions and the Wald statistic for testing a set of s linear constraints has

2a limiting χ (s)distribution. This limit theory seems well suited for many applied macroeconomic

or international problems. Here, researchers often have available panel data sets of moderate N

but much larger T . With the passage of time, these data sets will gain time-series observations
1but they are unlikely to acquire many more cross-sectional units. We also obtain the sequential

limit distribution by Þrst letting T → ∞ for Þxed N , then letting N → ∞ as proposed by Phillips

and Moon (1999a). Here, panel DOLS has a limiting Gaussian distribution and as in the Þxed N

case the Wald statistic has a limiting chi-square distribution. In the absence of linear trends in the

cointegrating regression, the sequential limiting normality of the estimator is theoretically interesting

but has less practical import because the limit distribution of the test statistics is identical to the

T → ∞ distribution with Þxed N . However, when linear trends are present, the sequential limit

theory produces considerable simpliÞcations. Here, the estimator of the cointegration vector and

the time-trend slope coefficients remain correlated for Þxed N as T → ∞ but are asymptotically

uncorrelated when T →∞ then N →∞.
Since single equation cointegration vector estimators are super consistent, it is natural to ask

what is to be gained by using the panel estimator. The answer is that super consistency means only

that convergence towards the asymptotic distribution occurs at rate T but it says nothing about

the sampling variability of the estimator for a Þxed value of T . In fact, the statistical properties

of single-equation cointegration-vector estimators can be quite poor when applied to sample sizes

associated with macroeconomic time series typically available to researchers [e.g., Inder (1993), Stock

and Watson (1993)]. Moreover, even limited amounts of heterogeneity in the short-run dynamics

across individuals can generate considerable disparities in single-equation DOLS estimates of the

1For example, if the observational unit is a national economy, the total number of countries may ßuctuate over
time, but is unlikely to go to inÞnity. While the break-up of the Soviet Union created several new economies but the
opposite trend is at work in Europe where the EMU may eventually combine to form a single economic unit. But
beyond this, researchers typically choose to group countries into classes that share common characteristics such as
income levels, stages of development or geography which often result in panels with 5 to 20 individuals.
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true homogeneous cointegration vector. In these situations, combining cross-sectional and time-

series information in the form of a panel can provide much more precise point estimates of the

cointegration vector with reasonably accurate asymptotic approximations to the exact sampling

distribution. In a series of Monte Carlo experiments, we study the small sample performance of

panel DOLS and compare it to single-equation DOLS. Panel DOLS generally performs well under

the short-run dynamic designs that we consider and can attain a striking improvement in estimation

precision over that of single-equation DOLS with even a modest number of cross-sectional units.

We then apply panel DOLS to estimate the long-run demand for M1 money. The countries in

our study are Austria, Australia, Belgium, Canada, Denmark, France, Finland, Germany, Iceland,

Ireland, Japan, Norway, New Zealand, the Netherlands, Portugal, Spain, Switzerland, the United

Kingdom, and the United States. Here, we build on the time-series contributions by Baba, Hendry

and Starr (1992), Ball (1998), Hoffman, Rasche, and Tieslau (1995), Lucas (1988) and Stock and

Watson (1993), and the cross-sectional studies by Mulligan and Sala-i-Martin (1992), and Mulli-
2gan (1997), most of which has focused on U.S. data.

The studies cited above report conßicting results along three dimensions. First, point estimates

from time-series studies exhibit substantial dependence on the sample period of the data. Income

elasticity estimates from post WWII U.S. data typically lie well below 1�which implies existence of

economies of scale in money management�whereas estimates obtained from pre-WWII observations

or those that combine pre- and post-war observations are generally close to 1. Using annual U.S.

data spanning from 1903 to 1987, Stock and Watson�s (1993) DOLS estimate of the income elasticity

is 0.97. When the sample spans from 1903 to 1945, their estimate is 0.89 but drops to 0.27 when the

data span from 1946 to 1987. Ball (1998) extends these data and obtains an estimate of 0.42 when the

observations span from 1946 to 1996. Using annual observations from 1900 to 1958, Lucas�s (1988)

estimate of the M1 (permanent) income elasticity is 1.06 and his estimate of the (short-term) interest

rate semi-elasticity is -0.07. Using data spanning from 1958 to 1985, his income elasticity estimate

drops to 0.21 and his interest semi�elasticity estimate is -0.01. Second, there is tension generated by

the large difference between the estimates from time-series studies and those from post-war cross-

section studies. Mulligan and Sala-i-Martin�s estimates from a 1989 cross-sectional data set from

the Survey of Consumer Finances range between 0.82 to 1.37. Mulligan (1997) runs OLS on for

a panel of 12000 Þrms observed from 1961 to 1992 and obtains an income-elasticity estimate of

0.83. Third, there is substantial cross-country variation even amongst economies of similar income

levels and Þnancial market development. In our analysis, single-equation DOLS with trend gives

such disparate income elasticity estimates as -1.23 for New Zealand and 2.42 for Canada. The

corresponding interest rate semi-elasticity estimates range from 0.02 for Ireland (which has the

wrong sign) to -0.09 for the UK. When trends are omitted, the income elasticity estimates range

from 0.13 for Belgium to 2.64 for Norway and the interest semi-elasticity estimates range from range

from 0.02 for Ireland to -0.16 for Norway.

With only 40 annual observations, the heterogeneity that we observe in the point estimates may

plausibly have been generated from an underlying data generating process with a homogeneous

cointegration vector and heterogeneous short run dynamics. When we include heterogeneous linear

trends and estimate the cointegrating vector by panel DOLS, we obtain a point estimate of the

income elasticity of 1.08 (asymptotic s.e.=0.26) and a point estimate of the interest semi-elasticity

2Less recent cross-sectional studies include Meltzer (1963) and GandolÞ and Lothian (1976).
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of -0.02 (asymptotic s.e.=0.01). Moreover, these estimates, which are more in line with those from

cross-sectional studies on U.S. data, are stable as the span of the time-series dimension is varied and

are reasonably robust to the inclusion or omission of heterogeneous linear trends.

The remainder of the paper is organized as follows. The next section describes the representation

of the nonstationary panel data and regularity conditions assumed in the paper. Section III describes

the panel DOLS estimator and discusses its asymptotic properties. Section IV reports the results of

a Monte Carlo experiment to examine the small sample performance of the panel DOLS estimator

and the accuracy of the asymptotic approximations. In Section V we present our long-run money

demand study and Section VI concludes the paper. Proofs of propositions and supplementary results

from the money demand study are contained in an appendix which is available upon request from

the authors.

II Representation of Cointegrated Observations in Panel

Data

Consider a balanced panel of individuals indexed by i = 1, . . . , N observed over time periods t =

1, . . . , T . Vectors are underlined and matrices appear in bold face. W (r) is a vector standard

Brownian motion for 0 ≤ r ≤ 1, and [Tr] denotes the largest integer value of Tr for 0 ≤ r ≤ 1. AsR 1
is standard in the literature, we will drop the notational dependence on r and write W (r)dr as

0R R R1 00W and W (r)dW (r) as WdW . Scaled vector Brownian motions are denoted by B = ΛW
0 0 1/2where Λ is a scaling matrix. For any matrix A, ||A|| denotes the Euclidian norm, [Tr(A A)] .

We will be working with double indexed sums. In some instances�to deal with individual-

speciÞc Þxed effects or common time effects�these sums will involve transformations of the original

observations. To handle such situations, we generically denote the sample cross-moment matrix
2averaged over N and T as M and let the precise deÞnition depend upon the particular modelNT

under consideration. Also, we generically denote the limit of the moment matrix as T → ∞ for

given N byM . As N →∞,M need not converge to a constant and we denote this limit asM .N N N

Similarly, our generic notation for the sample cross-product vector between the regressors and the

equilibrium error is m , and the limit for Þxed N as T →∞ is m .NT N

Since the model we study allows for individual speciÞc effects, perhaps it would be more accurate

to call the estimator dynamic LSDV. However, in the interests of simplicity, we will refer to the

estimator as panel DOLS.

(i) Triangular Representation

0 0Let {(y , x ) } be a (k + 1) dimensional vector of observations where y is a scalar and x is ait it itit

k−dimensional vector. Observations on each individual i obey the triangular representation
�0y = α + λ t+ θ + γ x + u , (1)it i i t it it

∆x = v , (2)it it

0where (1,−γ ) is a cointegrating vector between y and x that is identical across individuals.it it
0The composite equilibrium error y − γ x is potentially comprised of an individual-speciÞc effectit it
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α , an individual-speciÞc linear trend λ t, and a common time-speciÞc factor θ . The remainingi i t
�idiosyncratic error u is independent across i but possibly dependent across t. An alternativeit

representation for (2) allows x to have an individual-speciÞc vector of drift terms and for the trendit

in (1) to be induced by this drift. With some minor modiÞcations, the results of this paper continue
3to hold in this alternative environment.

In addition to individual-speciÞc Þxed-effects and linear trends, potentially disparate short-run
� � 0 0dynamics of the covariance stationary error process {w } = {(u , v ) } introduces an additionalitit it

source of heterogeneous behavior across individuals. The underlying error dynamics are given in

�Assumption 1. (Error Dynamics.) {w } is independent across i = 1, . . . , N , and has the movingit

average representation
� � �w = Ψ (L)² , (3)it i it

0 P∞� � � � � � �4 jwhere {² } ∼ i.i.d. with E(² ) = 0, E(² ² ) = I, E||² || < ∞, Ψ (L) = Ψ L is ait it it it it i ijj=0P∞ �mn(k+ 1)× (k+ 1) dimensional matrix lag polynomial in the lag operator L, where j|ψ | <∞,ijj=0
�mn �and ψ is the m,n−th element of the matrix Ψ .ij ij

� � �Our assumption that w is independent across individuals (E[w w ] = 0, i 6= j,−∞ ≤it it jt−k
k ≤ ∞) follows the recent econometrics literature on nonstationary panel data [e.g., Phillips and
Moon (1999a, b), Kao and Chiang (2000), and Pedroni (1997)]. Unlike these authors, we assume

�that the coefficients in the Ψ (L) polynomial are Þxed for a given i although they can differ acrossi

individuals.

Let W be a k+ 1-dimensional standard Brownian motion. By Assumption 1, it follows that fori �each i = 1, . . . , N , {w } obeys the functional central limit theoremit

[Tr]X1 D� � �√ w → Ψ (1)W ≡ B , (4)iit i i
T t=1

� � 0 0as T →∞, where B = (B ,B ) is a scaled mixed Brownian motion andvii ui " #0 ∞� � X0 0Ω Ω� � � � � � � �0 uu,i vu,iΩ = E[B (1)B (1) ] = = Ψ (1)Ψ (1) = Γ + (Γ + Γ ),i i i � i i 0,i j,i j,iΩ Ωvv,ivu,i j=1" # " #0� � � � �00 u u u v Γ Γ� � � it−jit it−j it uu,j,i vu,j,iΓ = E(w w ) = E = .�j,i it it−j �0v u v v Γ Γvv,j,iit it it−jit vu,j,i

3The trend in (1) can be induced by a drift in {y }. If instead, there is a drift in {x } but none in {y },it it itPt
where ∆x = a + v with x given, then repeated substitution gives x = x + a t + ξ where ξ = vit i it i0 it i0 i itj=1it it

�0 0 0is a driftless vector I(1) process. The cointegrating regression becomes y = γ x + γ a t + γ ξ + u . In thisit i0 i it0 1 2 it
case, all of the ensuing analysis is to be done using the statistical properties of ξ . In computations, one can

it
follow the recommendations of Phillips and Moon (1999b) to obtain an estimate of ξ Þrst by estimating the drift

itPT1 1 �a = ∆x = (x − x ) and then use ξ = x − x − ta .it i0 iTiT it iT i1T Tt=1 it
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The issues involved in panel cointegration vector estimation and testing parallels that in the sin-

gle equation environment. For a single equation, OLS is a consistent estimator of the cointegrating
�vector but its asymptotic distribution depends on the long-run covariance between u and v . Thisitit

nuisance parameter dependency invalidates standard hypothesis testing in the OLS framework with-

out modiÞcations. DOLS, dynamic GLS, and fully modiÞed OLS are examples of such modiÞcations.

Similarly, in panel data, Phillips and Moon (1999a) and Pedroni (1997) show that for Þxed N , the

pooled OLS estimator is a consistent estimator of the cointegrating vector as T → ∞ and can be

used in a Þrst pass in getting point estimates. In panel data, however, the problems of second-order

asymptotic bias and nuisance parameter dependence are compounded and are potentially more seri-
OLSous in the sense that the bias accumulates with the size of the cross-section. In particular, if γ is
NT

the OLS estimator for the pooled cross-section time-series data, one cannot rule out the possibility√
OLSthat NT (γ − γ) diverges as T →∞ then N →∞. It follows that the distribution for a Wald
NT

statistic for testing linear restrictions becomes even less useful as the cross-sectional dimension of

the panel grows since it too can diverge.

III Panel DOLS

We consider the panel DOLS estimator of the vector of slope coefficients γ and its limit distri-

bution for various subcases of the model in (1) and (2). We take the model with individual-speciÞc
4effects as our starting point. Section (i) discusses the baseline Þxed-effects model. Once we obtain

the limit distribution for this baseline case, the limit theory for more general versions of the model

with heterogeneous linear trends and common time effects follow in an analogous manner. In section

(ii) we add heterogeneous trends to the Þxed-effects model, and section (iii) considers the model with

Þxed-effects, trends, and common time effects.

(i) Fixed Effects

In applied work, the researcher will almost always need to include individual-speciÞc constants in

the regression. To handle this situation, we begin by setting λ = 0, θ = 0 for all i and t in (1),i t

which we write as
�0y = α + γ x + u . (5)it i it it

�Assume that u is correlated with at most p leads and lags of v = ∆x . To control for thisi it itit �endogeneity, project u onto these p leads and lagsiit

p pi iX X� 0 0 0u = δ v + u = δ ∆x + u = δ z + u , (6)it it iti,s it−s i,s it−s i itit
s=−p s=−pi i

0 0 0 0where δ is a k × 1 vector of projection coefficients, δ = (δ , . . . , δ . . . , δ ) is ai,s i i,−p i,0 i,pi i0 0 0 0(2p + 1)k−dimensional vector and z = (∆x , . . . ,∆x , . . .∆x ) is a (2p + 1)k− dimen-i iit it−p it it+pi i

sional vector of leads and lags of the Þrst differences of the variables x . The projection error u isitit

4Kao and Chiang (2000) derive the sequential limit distribution (T → ∞,N → ∞) for panel DOLS in a model
with individual-speciÞc effects. They do not consider the Þxed the T → ∞ limit theory with Þxed N , nor do they
allow for time trends or time-speciÞc effects.
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by construction, orthogonal to all leads and lags of v . It follows from assumption 1 that becauseit� �w is independent across i we project u only onto leads and lags of ∆x for individual i and notitit it

onto leads and lags of the other individuals (∆x , j 6= i).jt

Substituting the projection representation for u (6) into (5) yieldsit

00y = α + γ x + δ z + u . (7)it i itit i it

0 0The projection deÞnes the new covariance stationary vector process, w = (u , v ) where for eachitit it

i, · ¸0Ψ (L) 0uu,iw = Ψ (L)² , Ψ (L) = ,i iit it 0 Ψ (L)vv,i

and w obeys the functional central limit theoremit

[Tr]X1 D√ w → B = Ψ (1)W ,iit i i
T

t=1

0 0where B = (B ,B ) , B and B are independent, andui uii vi vi· ¸ · ¸0 02Ψ (1) 0 Ω 0uu,i uu,i0Ω = E[B (1)B (1) ] = = .i i i 00 Ψ (1)Ψ (1) 0 Ωvv,i vv,i vv,i

Taking the time-series average of (7) gives

T T T TX X X X1 1 1 10 0y = α + γ x + δ z + u . (8)it i itiit itT T T T
t=1 t=1 t=1 t=1

Subtracting (8) from (7) eliminates α and givesi

00�y = γ �x + δ �z + �u , (9)it itit i it

where a �tilde� denotes the deviation of an observation from its time-series average,P P P PT T T T1 1 1 1�y = y − y , �x = x − x , �z = z − z , and �u = u − u .it it it it it itit it it it it itt=1 t=1 t=1 t=1T T T TPN
To set up the estimation problem, let �q be the 2k(1+ p ) dimensional vector whose Þrst kii=1itP Pi−1 i

elements are �x , elements k(1+ (2p +1))+1 to k(1+ (2p +1)) are �z and 0s elsewhere.j jit itj=1 j=1

That is,
0 0 0 0 0�q = (�x �z 0 . . . 0 )1t 1t1t 0 00 0 0�q = (�x 0 �z . . . 0 )2t 2t2t

.. .. .. .
0 00 0 0�q = (�x 0 0 . . . �z )Nt NtNt

0 0 0 0Let the grand coefficient vector be β = (γ , δ , . . . , δ ) and write the compact form of the regression1 N
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0as �y = β �q + �u . The panel DOLS estimator for the Þxed-effects model is β , whereit it NTit " # " #−1N T N TXX XX0(β − β) = �q �q �q �u . (10)itNT it it it
t=1 t=1i=1 i=1

We exploit the fact that the limiting behavior of the regression error �u , is identical to that of u .it itRpP P DT T1 1 � �Some algebra reveals that �x �u = �x u → Ω B dW where B = B −it it uu,i uiit it vi vi vit=1 t=1T TR pP P P DT T T1 1 1√ √ √B . We also have �u = u − (1/T ) u → B (1) = Ω W (1),it it it ui uu,i uivi t=1 t=1 t=1T T T
so we are able to use estimated values of �u to obtain a consistent estimate of Ω . The T → ∞it uu,i

limit theory with Þxed N for panel DOLS with individual-speciÞc Þxed effects is given inR
�Proposition 1 (Fixed N , T →∞ with Þxed effects.) Let B = B − B . For the panel DOLSvi vi vi

estimator (10), for Þxed N as T →∞,
√

�a. T (γ − γ) and T (δ − δ ) are independent for each i.i iNT

√ RP 0D N−1 1 � �b. NT (γ − γ)→M m , where M = B B , andNN vi viN i=1NNT h ip RPN1 �m = Ω B dW .uu,i uiN vii=1N

√ √ D0 0 −1 2c. [ NTR(γ −γ)] [RD R ] [ NTR(γ −γ)]→ χ (s), where R is an s×k restrictionNNT NT R RP P0 0N N−1 −1 1 1� � � �matrix, D =M V M , M = B B , and V = Ω B B .N N N N uuivi vi vi viN N i=1 i=1N Nh ³ ´iP Pp N T−1 −1 01 1b b bd. D −D → 0, where D = M V M , M = �x �x ,2NT N NT NT NT it itNT NT i=1 t=1N T³ ´P PN T 01 1b b bV = Ω �x �x , and Ω is a consistent estimator of Ω .NT uui 2 uui uu,iit iti=1 t=1N T

√
�The asymptotic independence of T (γ −γ) and T (δ −δ ) as T →∞ follows for the same reasonsi iNT

as in the single-equation environment and because T (γ − γ) converges in distribution to a mixed
NT

normal random vector, the limiting chi-square distribution of the quadratic form in part (c) of the

proposition also follows by the standard argument. The asymptotic covariance matrix D can beN

consistently estimated by D and it follows that under the null hypotheses Rγ = r, the WaldNT

statistic √ √ D0 0 −1 2b[ NT (Rγ − r)] [RD R ] [ NT (Rγ − r)]→ χ (s) (11)NTNT NT

as T →∞ for any given N . R 0 ∞� �The sequential limit distribution of γ is obtained by showing that the sequence { B B }vi vi i=1NT

obeys a law of large numbers for independent but heterogeneously distributed observations and thatR√ ∞�the sequence { Ω B dW } obeys a central limit theorem for independent but heteroge-uui uivi i=1

neously distributed observations. The sequential limit theory for panel DOLS is given in

7



Proposition 2 (Sequential limit distribution, Þxed effects.) For the panel DOLS estimator (10),

as T →∞ then N →∞,
√ −1 −1A−1/2 −1/2 −1/2 0a. C NT (γ − γ) ∼ N(0, I ), where C = (C )(C ) = M V M ,k N NN NN N NNTP PN N1 1M = Ω , and V = Ω Ω .N vv,i N uu,i vv,ii=1 i=16N 6N

pb bb. D −C → 0, where D is deÞned in proposition 1.d.NT N NT

Controlling for Þxed effects results in a shrinkage of the sequential limit asymptotic variance,

compared to when there are no Þxed effects. In the case without Þxed effects where α = 0 for all i,iP PN N1 1M = Ω , and V = Ω Ω .N vv,i N uu,i vv,ii=1 i=12N 2N

(ii) Fixed Effects and Heterogeneous Trends

We now admit both individual-speciÞc Þxed effects and heterogeneous time trends into the speci-

Þcation. Upon substitution of the projection representation for the equilibrium error (6) into (1)

(with θ = 0 for all t) we have,t

0y = α + λ t+ γ x + δ z + u . (12)it i i itit i it

Taking the time-series average of (12) yields

µ ¶T T T TX X X X1 T + 1 1 1 100y = α + λ + γ x + δ z + u , (13)it i i itit i itT 2 T T T
t=1 t=1 t=1 t=1PT1where we use the fact that t = (T + 1)/2. To control for the Þxed-effects subtract (13) fromt=1T

(12) to get
00��y = λ t+ γ �x + δ �z + �u , (14)it i itit i it

where again we use a �tilde� to denote the deviation of an observation from its time-series average,P P P PT T T T1 1 1 1�y = y − y , �x = x − x , �z = z − z , �u = u − u , andit it it it it it it it it it it itt=1 t=1 t=1 t=1T T T T
T+1�t = t− .
2

0To set up panel DOLS, let λ = (λ ,λ , . . . ,λ ) be the vector of trend slope coefficients,1 2 NN
0 0 00 0β = (γ ,λ , δ , . . . , δ ) be the grand coefficient vector, and deÞneN 1 N

0 0 0 0 0 0��q = (�x t 0 · · · 0 �z 0 · · · 0 )1t 1t1t0 0 00 0 0��q = (�x 0 t · · · 0 0 �z · · · 0 )2t 2t2t
. (15). .. .. .

0 0 00 0 0��q = (�x 0 0 · · · t 0 0 · · · �z )Nt NtNt

Then the panel DOLS estimator of β is,

" # " #−1N T N TXX XX0β = �q �q �q �y . (16)it itNT it it
t=1 t=1i=1 i=1
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√
3/2� bFor Þxed N , as T → ∞, T (δ − δ ) is independent of T (γ − γ) and T (λ − λ ) for thei i N NNT

3/2 bstandard reasons but T (γ − γ) and T (λ − λ ) remain correlated. The T →∞ limit theoryN NNT

with Þxed N for the Þxed effects model with trend is given in

R
�Proposition 3 (Fixed N , T →∞, Þxed effects and trends.) Let B = B − B . For the panelvi vi vi

DOLS estimator (16), for Þxed N as T →∞,
√

3/2� ba. T (δ − δ ) is independent of T (γ − γ) and T (λ − λ ) for each i.i i N NNT" # · ¸0T (γ − γ) M MD 11,N−1 21,NNTb. →M m , where M = ,NNN3/2 b M MT (λ − λ ) 21,N 22,NN N RP 0N1 1� �M = B B , M = I ,11,N 22,N Nvi vii=1N 12h ³ ´ ³ ´ iR R R R
1 1 1 10 � � � �√ √M = rB − B , · · · , rB − B , andv1 v1 vN vN21,N 2 2N N p RPN1 �√ Ω B dWuu,i uivii=1Nh h i h i i 0m = ,p R p RN W (1) W (1)u1 uNΩ rdW − · · · Ω rdW −uu,1 u1 uu,N uN2 2

When T → ∞ then N → ∞, the panel DOLS estimator of the trend slope coefficients and the
cointegration vector are independent which results in considerable simpliÞcation. The sequential

limit theory for panel DOLS in this case is given in

Proposition 4 (Sequential limits, Þxed effects and trends.) For the panel DOLS estimator (16),

as T →∞ then N →∞,
√

3/2 ba. NT (γ − γ) and T (λ − λ ) are independent.N NNT

√ −1 −1A−1/2 1/2 1/2 0b. C NT (γ − γ) ∼ N(0, I ), where C = (C )(C ) = M V M ,k N 11,N11,N 11,NN N NNTP PN N1 1M = Ω , and V = Ω Ω .11,N vv,i 11,n uu,i vv,ii=1 i=16N 6N P Pp N T−1 −1 01b b bc. D − C → 0, where D = M V M , M = �x �x ,2NT N NT NT NT it itNT NT i=1 t=1NTP PN T 01b b bV = Ω �x �x , and Ω is a consistent estimator of ΩNT 2 uui uu,i uu,iit iti=1 t=1NT

√
Notice that the sequential limit distribution for NT (γ − γ) is identical to that obtained in

NT

proposition 2 in the absence of trends. Construction of a Wald test under the sequential limit theory

can proceed as in section (i).
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(iii) Fixed Effects, Heterogeneous Trends, and Common Time Ef-

fects

The asymptotic distribution theory that we employ requires that observations are independent across

individuals but in applications, one typically encounters some degree of CSD. In this section we take

up the complete model (1) which allows us to model a limited form of CSD in which the equilibrium

error for each individual is driven in part by θ .t
�Begin by substituting the projection representation for u into (1) to getit

00y = α + λ t+ θ + γ x + δ z + u . (17)it i i t itit i it

Controlling for the common time effect requires an analysis of the cross-sectional average of the

observations. Because we admit heterogeneity in the projection coefficients δ across i, the resultingiPN 0cross-sectional averages will involve sums such as δ z which complicates estimation of thej jtj=1

δ coefficients. The estimation problem can be simpliÞed by proceeding sequentially and addressingj

the endogeneity correction separately from cointegration vector estimation.
� 0 0To do this, let y be the error from projecting each element of y onto n = (1, t, z ) andit it itit�x = x − Φ n be the vector of projection errors from projecting each element of x onto n ,iit it it itit

whereΦ is a (k+2)×p matrix of projection coefficients. Substituting the projection representationsi i

for y and x into (17) givesit it � �0y = γ x + θ + u . (18)t itit it

We now work with (18) since for the purposes of estimating and drawing inference about γ it is

equivalent to (17). Now take the cross-sectional average of (18) to get 
N N NX X X1 1 1� �0  y = γ x + θ + u . (19)t jtjt jtN N N
j=1 j=1 j=1

Subtracting (19) from (18) eliminates the common time effect giving

�∗ �∗0 ∗y = γ x + u , (20)itit it

where a �star� denotes the deviation of an observation from its cross-sectional average. That is,PN�∗ � �1y = y − y ,it it jtj=1N PN�∗ � �1x = x − x ,it it jtj=1N PN1∗u = u − u .it jtit j=1N

The panel DOLS estimator of γ is

" # " #−1N T N TXX XX0�∗ �∗ �∗ �∗γ = x x x y . (21)it it it itNT
t=1 t=1i=1 i=1

As in the case of the Þxed-effects model with linear trends, the panel DOLS estimator of the grand
3/2 bcoefficient vector converges to a mixed normal random vector but T (γ − γ) and T (λ − λ )N NNT

10



are asymptotically correlated for Þxed N as T → ∞. We omit a statement of the limit theory for
3/2 �this case. As T →∞ then N →∞, however, T (γ − γ) and T (λ − λ ) are independent andN NNT

the limit theory for this case is given in

Proposition 5 (Sequential limit distribution.) For the panel DOLS estimator (21), as T → ∞
then N →∞,

√
3/2 �a. NT (γ − γ) and T (λ − λ ) are independent.N NNT

√ −1 −1A−1/2 1/2 1/2 0b. C NT (γ − γ) ∼ N(0, I ), where C = (C )(C ) = M V M ,K N 11,N11,N 11,NN N NNTP PN N1 1M = Ω , and V = Ω Ω .11,N vv,i 11,N uu,i vv,ii=1 i=16N 6N h iP Pp N T �∗ �∗0−1 −1 1 1b b�c. D −C → 0 where D =M V M , M = x x ,NT N NT 11,NT 11,NT 2 it it11,NT 11,NT i=1 t=1N Tq h iP PN T �∗ �∗01 1b � bV = Ω x x , and Ω is a consistent estimator of Ω .211,NT uu,i uu,i uu,iit iti=1 t=1N T

Notice that the limit distribution of proposition 5 is identical to the sequential limit distribution

of proposition 4. Controlling for Þxed effects again produces a shrinkage of the asymptotic variance,

while controlling for the common time effect requires taking the deviation from the cross-sectional

average. These cross-sectional transformations have no effect on the sequential asymptotic variance

of the estimator.

If the modiÞcations to OLS are successful in removing the correlation between the equilibrium
�error u and leads and lags of ∆x for j = 1, . . . , N but the time-speciÞc effects do not fully accountjtit

for CSD, then the residual cross-sectional correlation in the projection error u changes only theit
5formula for the asymptotic standard errors. This is a feasible estimation strategy for small to

moderate N . But if there remains correlation between the equilibrium error and leads and lags

of other equation ∆x , i 6= j, then panel DOLS exhibits the same sort of second-order asymptoticjt

bias as pooled OLS as discussed in section II. For small to moderate N , a feasible solution to this

problem is to include leads and lags of ∆x , j = 1, . . . N in the projection (6).jt

We close this section by noting that for large N , modeling CSD in panel data is itself an active

area of research and one that has shown itself to be a thorny problem. What one seeks in this case

is a simple parametric structure that does an adequate job of capturing the long run covariance

structure. Bai and Ng (2001), Moon and Perron (2002), and Phillips and Sul (2002) study models in

which the error terms in dynamic panel data regressions have a factor structure, but the implications

for such factor models have not been studied in the panel cointegration context.

IV Monte Carlo Experiments

In this section, we present some Monte Carlo experiments to investigate some small sample properties

of panel DOLS and to compare them to single-equation DOLS in the presence of individual Þxed

5In this case, the asymptotic variance of panel DOLS is consistently estimated by¡ ¢ ¡ ¢ ¡ ¢P P P−1 −1T T T0 0 0X X X Ω X X X where X = (x , . . . , x ) and Ω is a consistentt t t tuu,T uu,Tt t 1t Ntt=1 t=1 t=1

estimator of the long-run covariance matrix of u , i = 1, . . . ,N .it
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6effects and CSD. Our data generating process (DGP) includes two regressors in the cointegrating

relation and is given by

y = α + γ x + γ x + η ,it i 1 1,it 2 2,it it

∆x = a + v ,1,it i 1,it

∆x = v .2,it 2,it

0 0 0Letting w = (η , v , v ) , ² = (² , ² , ² ) , and e = (e , e , e ) , the short-runit 1,it 2,it 1,it 2,it 3,it 1,it 2,it 3,itit it it

dynamics are given by

w = A w + ² ,iit it−1 itp p
² = φθ + 1− φe ,it t it

iid iid2 0 2where for j = 1, 2, 3, i = 1, . . . , N , e ∼ N(0,σ ), θ = (θ , θ , θ ) , θ ∼ N(0,σ ).j,it 1t 2t 3t jttji θj

We designed the DGP to provide a connection to the empirical work on money demand of the

next section, where the regressors are real income (which has a drift), and the nominal interest rate

(which does not). Accordingly, we induce a trend into the cointegrating relation through the drift

term a for the Þrst regressor x and specify the second regressor x to be a driftless I(1) process.i 1,it 2,it

In addition, we model the equilibrium error α + η , to admit a more general form of CSD thani it
7the common time effect model considered in the previous section. This single-factor model of the

short-run innovations is of the type considered by Phillips and Sul (2002). CSD in the equilibrium
�errors is induced by θ , while θ and θ induce cross-sectional endogeneity between x and u ,1t 2t 3t j,kt it

j 6= i, k = 1, 2. These features were not explicitly accounted for in the theoretical analysis, but

may be encountered in empirical work. In the presence of heterogeneous CSD, subtracting off the

cross-sectional average does not completely eliminate CSD. Our interest here is in evaluating the

seriousness of the resulting distortions. The degree of CSD is modulated by the size of φ.

The true value of the cointegration vector is (γ , γ ) = (1.0, 0.1). For each individual i, the1 2

values of a ,A , and σ are Þrst obtained by a draw from the uniform distribution then heldi i ji

Þxed throughout the experiment. The persistence in the short-run dynamics are controlled by

varying the support of the uniform distribution from which the elements of A are drawn. Wei

consider three levels of persistence and three alternative degrees of CSD. Persistence levels can be

low (A ∼ U ), medium (A ∼ U ), or high (A ∼ U ), and degrees of CSD are11,i 11,i 11,i[0.3,0.5] [0.5,0.7] [0.7,0.9]

either none (φ = 0), low (φ = 0.3) or high (φ = 0.7). Assignment of the remaining parameter values

6Kao and Chiang (2000) compared the small-sample performance of panel DOLS and panel fully modiÞed OLS
with Þxed effects in the case of a single regressor. They found that panel dynamic OLS performed much better
than panel fully modiÞed OLS in removing Þnite sample bias so we do not include panel fully modiÞed OLS in the
comparison.

7In the common time effect speciÞcation, the cross-sectional correlation between individuals i and j is identical
for all i, j. This homogeneous CSD is obtained here by setting A to be identical across i. That allowing for11,i

heterogeneity in A results in heterogeneous CSD can be seen in the case of an AR(1) where A = ρ and all11,i 11,i ip p
2 21−ρ 1−ρ
i jεother elements of A are set to zero. Then it can be shown that Corr(η , η ) = c = b , wherei it jt ij ij 1−ρ ρi j

2φσE ² ²( )1,it 1,jt θ1qb = =ij © ¡ ¢ ¡ ¢ª 1 ¡ ¢¡ ¢
22 2 2 2 2 2E ² E ² φσ +(1−φ)σ φσ +(1−φ)σ1,it 1,jt i jθ1 θ1
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are determined by, A ∼ U , A ∼ U , A ∼ U , A ∼ U ,21,i 12,i 23,i 22,i[−0.05,0.05] [−0.05,0.05] [−0.05,0.05] [0.0,0.4]
−3 2 −3 2 −3 2A ∼ U , a ∼ U × 10 , σ ∼ U × 10 , σ ∼ U × 10 , σ ∼ U ,33,i i[0.0,0.04] [23,53] [1,33] [0.25,1.34] [2.3,57]1i 2i 3iPN2 2and σ = (1/N) σ . The long-run variance Ω is estimated by the prewhitened quadraticuu,ijiθj i=1

spectral (QSPW) method suggested by Sul, Phillips, and Choi (2002). Each experiment consists

of 5,000 random samples of T = 40, T = 100, or T = 200 observations on N = 10 or N = 20

individuals. The number of leads and lags of ∆x included are 2 (T = 40), 3 (T = 100), and 4it

(T = 200). We organize the experiments according to the following three cases.

Case 1: (No CSD, variable persistence). Setting φ = 0 yields no CSD. Persistence levels are low,

medium, and high.

Case 2: (Homogeneous CSD and Persistence) Setting A = A yields the homogeneous CSD11,i 11,j

as in the common time effect speciÞcation. We consider high and low CSD and low, medium

and high levels of persistence.

Case 3: (Heterogeneous CSD and Persistence) Allowing A 6= A yields heterogeneous CSD.11,i 11,j

We consider high and low CSD and low, medium and high levels of persistence.

We begin with the effective size of nominal 5% and 10% sized tests of the hypothesis H : γ = 10 1

and H : γ = 0.1. To provide a point of comparison, Table 1 displays the effective size of (single-0 2

equation) DOLS tests. Table 2 shows the panel DOLS size results for Case 1. Under low and medium

levels of persistence, the tests are reasonably sized. Size accuracy is seen to improve with increasing

sample size both in the time series as well as in the cross-sectional dimensions. Under high levels of

persistence, the test for γ remains reasonably sized but the test for γ becomes slightly mis-sized.1 2

This mis-sizing worsens somewhat as the cross-section increases (e.g., for T = 100, the 5% test has

size of 16% for N = 10 and 25% for N = 20). In comparison to DOLS, the test for γ is better sized1

whereas the test for γ is roughly equivalent.2

Table 3 reports the effective size of panel DOLS tests under Case 2. For a low degree of CSD,

the size of the test for γ improves with persistence and is accurate when the level of persistence1
8is high. The size of the time-series is relatively unimportant. Similar results are obtained for the

test on γ under low CSD. Under high CSD, there is some mis-sizing of the test on γ , which is2 1

comparable to the size of the DOLS test. For the test on γ , size accuracy improves with the size of2

the cross-section and overall size distortion is modest.

Effective size performance of panel DOLS tests under case 3, shown in Table 4, is very similar

to that under case 2. Subtracting off the cross-sectional average works reasonably well as a control

for the heterogeneous CSD considered here.

Table 5 reports quantiles of �γ from DOLS and panel DOLS under Case 3. Here, it is seen1

that dramatic precision gains over single-equation DOLS can be attained in small samples. For

T = 40, N = 10 under high persistence and high CSD, the inter-95 percentile range for DOLS

is (-0.304; 2.495) while for panel DOLS is (0.883;1.152). Precision gains continue to accrue when

T = 200. For N = 10, under high persistence and high CSD, the panel DOLS inter-95 percentile

range of (0.979; 1.028) whereas for DOLS it is (0.89; 1.122). Precision advantages are also seen to

8This is largely a feature of Sul, Phillips and Choi�s QSPW estimator of the long-run variance which works well
under high persistence.
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accrue from enlarging the cross-sectional dimension. Under high persistence and high CSD, T = 40,

the inter-95 percentile range shrinks from (0.883;1.152) for N = 10 to (0.924;1.102) for N = 20.

Table 6 displays analogous quantile information for �γ . Here, the beneÞts from the cross-section2

dimension are largely obtained with N = 10. For T = 40, under high persistence and CSD, the inter-

95 percentile range of panel DOLS is (0.096;0.110), which is an improvement over the (0.054;0.170)

range for DOLS.

We summarize the Monte Carlo results with four general observations. First, for given T , the

empirical size of the panel DOLS t-tests worsens slightly when N is increased from 10 to 20. Second,

size distortion, while not particularly severe at T = 40 and is reasonably small at T = 200. Third,

subtracting the cross-sectional average to control for CSD works reasonably well even in the presence

of heterogenous CSD. Fourth, panel DOLS is much more precise than single-equation DOLS.

V Long-Run Money Demand

We now employ panel DOLS to estimate coefficients of the long-run M1 demand function.

Economists have long been interested in obtaining precise estimates of money demand for at least

two reasons. First, knowing the income elasticity of money demand helps in determining the rate

of monetary expansion that is consistent with long-run price level stability. Second, knowing the

interest elasticity of money demand aids in calculating the area under the demand curve and to

assess the welfare costs of long-run inßation [Baily (1956)]. Additionally, because a stable money

demand function is a building block of the IS-LM model, economists have historically been interested

in knowing how well this particular aspect of the model performed. While this motive has become

less important in the era of dynamic general equilibrium models, Lucas (1988) shows that such a

neoclassical model with a cash in advance constraint generates a standard money demand function.

We follow Stock and Watson (1993), Ball (1999), and Hoffman et. al. (1995) and approach long-

run money demand as a cointegrating relationship. Our analysis suggests that instability exhibited

by time-series estimates from the literature do not reßect underlying shifts in behavioral relationships

but instead indicate inherent difficulties associated with estimation using relatively short sample

spans in environments with persistent short run dynamics. Combining observations across countries

allows us to obtain relatively sharp and stable estimates of money demand elasticities and the panel

cointegration approach seems well suited to take up King�s (1988) suggestion to extend the money

demand analysis beyond the United States. In his words, �the results of such investigations would

provide us with sharper estimates of the long run values of Friedman�s (1956) �numerical constants

of monetary behavior� when we approach the difficult problem of the short run demand for money.�

The equation that we estimate is,· ¸
Mit �ln = α + λ t+ θ + γ lnY + γ R + u (22)i i t y it r it itPit

for i = 1, . . . , 19, whereM is an M1 measure of money, P is the price level, Y is real GDP, and Rit it it it

is a nominal short term interest rate. Data deÞnitions and sources are available in the unpublished

appendix. In addition to country speciÞc effects, α , we allow for possibly heterogeneous lineari

trends and common time effects. These trends are included to capture changes in the Þnancial

technology that affects money demand independently of income and the opportunity cost of holding
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money.

(i) Pre-testing: Cointegration and Homogeneity Restrictions

Panel DOLS estimation of (22) requires that the the equilibrium errors are stationary and that

the cointegrating vectors for each country must be identical. To investigate the stationarity of the

equilibrium errors, we employ Pedroni�s (1999) panel-t test. This results in the rejection of the null

hypothesis of no-cointegration at the 0.1% level whether or not heterogeneous linear trends and
9common time effects are included.

Next, we conduct a Wald test of the homogeneity restrictions on the cointegrating vector. When

trends are omitted from the regression, the evidence against homogeneity is mixed. The asymptotic

test rejects the restrictions in this case, but in some unreported Monte Carlo experiments, we found

moderate size distortion in the Wald test for sample sizes of N = 19 and T = 40. Using a size

adjustment from these experiments, the homogeneity restrictions on income is rejected at the 5%

level but not for the interest rate (p-value = 0.30). However, when we impose homogeneity on the

interest rate slope, the test for slope homogeneity on income is not rejected (p-value = 0.70). When

heterogeneous linear trends are included, the evidence supporting homogeneity strengthens. Here,

we obtain a p-value of 0.63 for the test of homogeneity on the income coefficient and a p-value of

0.22 for the test of homogeneity on the interest rate coefficient.

(ii) Comparison between single-equation and panel DOLS estimates

Our panel DOLS estimates use 2 leads and 2 lags of ∆ lnY and ∆R in the regressions. Pointit it

estimates and asymptotic standard errors are reported in table 7.

Single equation DOLS estimates are seen to display such cross-sectional variability that they are

difficult to interpret. In DOLS regressions without trend, the income elasticities are all positive,

ranging from 0.134 (Belgium) to a whopping 2.64 (Norway), but the interest semi-elasticity has the

wrong sign for Belgium, France, Ireland, and Japan. When a trend is included in the regression,

income elasticity estimates are negative for Finland, Iceland, Norway, and New Zealand, and interest

semi-elasticity estimates are positive for Finland, France, and Iceland. If we maintain an underlying

belief that the Þnancial systems and transactions technologies across modern economies are essen-

tially similar, the cross-sectional variability in these estimates must reßect the inherent difficulty of

obtaining good estimates rather than evidence of disparate economic behavior.

Panel DOLS estimates are shown at the bottom of table 7. When the panel regression omits

trends, we estimate 0.86 (asymptotic s.e.=0.09) and the interest semi-elasticity to be -0.02 (asymp-

totic s.e.=0.01). When we include heterogeneous trends, we estimate the income elasticity to be 1.08

(asymptotic s.e.=0.26) and the interest semi-elasticity to be -0.02 (asymptotic s.e.=0.01). Results

obtain from controlling for CSD are very similar.

To further illustrate the problem of estimation instability in the time dimension, we constructed

recursive single-equation DOLS coefficient estimates for the US, UK, France, and Japan and panel

9We also conÞrmed these cointegration test results by using Im, Pesaran and Shin (1997) and Maddala and
Wu (1999) panel unit root tests under the assumption that the cointegrating vector is known to be (1,−1.0, 0.05).
The justiÞcation for using these values is that 1.0 is a typical value of the income elasticity estimated in the literature
while a common estimate of the interest rate semi elasticity −0.05.
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DOLS for all 19 countries. Recursive DOLS estimates of from 1979 to 1995 for both the income

elasticity and interest semi elasticity exhibit substantially more variability than the recursive panel

DOLS estimates and in several instances even change sign. These results are also contained in the

unpublished appendix.

VI Conclusions

Heterogeneity and persistence in short run dynamics can create substantial variability in single-

equation cointegration vector point estimates. The result is that these estimators can be quite

sensitive to the particular time span of the observations as well as to the particular individual being

studied. This small sample fragility can be encountered in spite of the superconsistency of these

estimators.

In these environments, panel DOLS can provide much more precise estimates. Panel DOLS

is straightforward to compute and relevant test statistics have standard asymptotic distributions.

The asymptotic distributions were found to provide reasonably close approximations to the exact

sampling distributions in small samples.

We applied the panel DOLS method to estimate the long-run money demand function using a

panel of 19 countries with annual data from 1957 to 1996. The estimates in which we have the most

conÞdence are an income elasticity near 1 and an interest rate semi-elasticity of -0.02.
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Table 1: Effective Size of DOLS tests.

H : γ = 1 H : γ = 0.10 1 0 2

T Persistence 5% 10% 5% 10%
Low 0.097 0.152 0.093 0.148

40 Medium 0.118 0.179 0.114 0.174
High 0.179 0.241 0.175 0.239
Low 0.100 0.155 0.093 0.151

100 Medium 0.110 0.170 0.104 0.163
High 0.184 0.250 0.182 0.248
Low 0.067 0.128 0.067 0.124

200 Medium 0.071 0.132 0.074 0.127
High 0.117 0.181 0.114 0.180

Table 2: Effective size of panel DOLS tests. Case 1: No CSD, variable persistence

H : γ = 1 H : γ = 0.10 1 0 2

Persis- N=10 N=20 N=10 N=20
T tence 5% 10% 5% 10% 5% 10% 5% 10%

Low 0.092 0.154 0.087 0.142 0.096 0.156 0.082 0.142
40 Medium 0.076 0.133 0.065 0.126 0.103 0.169 0.104 0.167

High 0.056 0.098 0.039 0.074 0.110 0.180 0.155 0.237
Low 0.072 0.122 0.059 0.109 0.071 0.126 0.064 0.118

100 Medium 0.062 0.111 0.054 0.106 0.080 0.136 0.072 0.127
High 0.051 0.093 0.042 0.091 0.113 0.184 0.159 0.250
Low 0.060 0.105 0.060 0.110 0.058 0.113 0.064 0.115

200 Medium 0.059 0.102 0.058 0.108 0.062 0.121 0.067 0.117
High 0.045 0.097 0.044 0.085 0.090 0.167 0.147 0.228
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Table 3: Effective size of panel DOLS tests. Case 2: Homogeneous CSD.

H : γ = 1 H : γ = 0.10 1 0 2

Persis- N=10 N=20 N=10 N=20
T CSD tence 5% 10% 5% 10% 5% 10% 5% 10%

Low 0.103 0.160 0.111 0.182 0.106 0.165 0.091 0.157
40 Low Medium 0.087 0.147 0.088 0.150 0.127 0.201 0.083 0.142

High 0.069 0.113 0.051 0.092 0.165 0.245 0.069 0.117
Low 0.067 0.128 0.079 0.136 0.073 0.129 0.065 0.117

100 Low Medium 0.063 0.118 0.073 0.124 0.084 0.143 0.059 0.113
High 0.050 0.094 0.053 0.098 0.140 0.227 0.067 0.129
Low 0.068 0.131 0.063 0.115 0.074 0.128 0.050 0.098

200 Low Medium 0.068 0.122 0.057 0.110 0.075 0.127 0.045 0.090
High 0.047 0.098 0.046 0.097 0.120 0.204 0.053 0.103
Low 0.105 0.167 0.161 0.234 0.168 0.240 0.199 0.267

40 High Medium 0.096 0.152 0.131 0.210 0.167 0.246 0.151 0.217
High 0.065 0.112 0.082 0.139 0.155 0.230 0.088 0.135
Low 0.094 0.155 0.133 0.206 0.100 0.161 0.124 0.195

100 High Medium 0.087 0.147 0.123 0.186 0.113 0.179 0.113 0.178
High 0.064 0.115 0.107 0.173 0.150 0.241 0.098 0.161
Low 0.102 0.164 0.130 0.198 0.089 0.145 0.091 0.146

200 High Medium 0.105 0.163 0.128 0.200 0.090 0.152 0.083 0.144
High 0.087 0.147 0.124 0.191 0.134 0.216 0.080 0.144
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Table 4: Effective size of panel DOLS tests. Case 3: Heterogeneous CSD.

H : γ = 1 H : γ = 0.10 1 0 2

Persis- N=10 N=20 N=10 N=20
T CSD tence 5% 10% 5% 10% 5% 10% 5% 10%

Low 0.104 0.161 0.101 0.166 0.098 0.159 0.091 0.156
40 Low Medium 0.083 0.134 0.082 0.140 0.109 0.172 0.096 0.155

High 0.059 0.104 0.050 0.085 0.131 0.198 0.124 0.198
Low 0.075 0.134 0.082 0.140 0.071 0.128 0.068 0.123

100 Low Medium 0.069 0.121 0.076 0.131 0.085 0.144 0.077 0.132
High 0.051 0.099 0.051 0.099 0.112 0.187 0.138 0.229
Low 0.042 0.092 0.061 0.113 0.040 0.088 0.055 0.105

200 Low Medium 0.040 0.082 0.057 0.112 0.046 0.088 0.056 0.104
High 0.040 0.076 0.042 0.091 0.066 0.131 0.110 0.190
Low 0.114 0.172 0.147 0.217 0.152 0.221 0.206 0.283

40 High Medium 0.094 0.142 0.118 0.190 0.147 0.215 0.167 0.234
High 0.058 0.098 0.053 0.094 0.142 0.213 0.089 0.147
Low 0.098 0.165 0.138 0.202 0.098 0.165 0.137 0.207

100 High Medium 0.088 0.141 0.131 0.199 0.108 0.173 0.131 0.191
High 0.061 0.110 0.082 0.138 0.146 0.225 0.095 0.159
Low 0.090 0.150 0.128 0.199 0.068 0.119 0.102 0.164

200 High Medium 0.088 0.147 0.145 0.207 0.074 0.131 0.102 0.166
High 0.070 0.124 0.119 0.190 0.108 0.188 0.087 0.145

21



Table 5: Quantiles for Þrst regressor slope (Case 3): Panel DOLS and DOLS

N=10 N=10 N=20
Persis- DOLS Panel DOLS Panel DOLS

CSD tence 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%
T=40

Low 0.460 0.999 1.512 0.952 1.001 1.048 0.976 1.000 1.025
None Med 0.225 0.999 1.769 0.934 1.001 1.070 0.967 1.002 1.038

High -0.192 1.010 2.420 0.890 1.007 1.137 0.937 1.008 1.078
Low 0.456 0.999 1.529 0.951 1.000 1.052 0.973 1.000 1.029

Low Med 0.206 0.996 1.782 0.931 1.001 1.075 0.963 1.003 1.044
High -0.259 1.006 2.435 0.882 1.010 1.150 0.936 1.011 1.090
Low 0.432 0.999 1.536 0.956 1.000 1.047 0.971 1.000 1.031

High Med 0.181 0.996 1.783 0.936 1.001 1.073 0.960 1.003 1.049
High -0.304 1.004 2.495 0.883 1.011 1.152 0.924 1.012 1.102

T=100
Low 0.906 1.000 1.094 0.988 1.000 1.012 0.994 1.000 1.006

None Med 0.852 1.000 1.146 0.982 1.000 1.018 0.991 1.000 1.010
High 0.692 1.002 1.347 0.966 1.003 1.039 0.981 1.002 1.022
Low 0.904 1.000 1.095 0.985 1.000 1.016 0.991 1.000 1.009

Low Med 0.850 1.000 1.150 0.978 1.000 1.023 0.988 1.001 1.014
High 0.682 1.001 1.369 0.961 1.005 1.052 0.978 1.004 1.030
Low 0.901 1.000 1.099 0.986 1.000 1.014 0.991 1.000 1.009

High Med 0.847 0.999 1.154 0.978 1.000 1.022 0.987 1.001 1.015
High 0.666 1.000 1.378 0.957 1.005 1.056 0.974 1.004 1.036

T=200
Low 0.970 1.000 1.029 0.996 1.000 1.004 0.998 1.000 1.002

None Med 0.955 1.000 1.045 0.994 1.000 1.006 0.997 1.000 1.004
High 0.898 1.000 1.107 0.987 1.001 1.014 0.993 1.000 1.008
Low 0.970 1.000 1.030 0.993 1.000 1.007 0.996 1.000 1.004

Low Med 0.955 1.000 1.047 0.990 1.000 1.010 0.995 1.000 1.006
High 0.895 1.000 1.117 0.983 1.002 1.024 0.991 1.001 1.012
Low 0.969 1.000 1.031 0.994 1.000 1.006 0.996 1.000 1.004

High Med 0.952 1.000 1.048 0.990 1.000 1.010 0.994 1.000 1.007
High 0.890 1.001 1.122 0.979 1.002 1.028 0.987 1.002 1.018
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Table 6: Quantiles for second regressor slope (Case 3): Panel DOLS and DOLS

N=10 N=10 N=20
Persis- DOLS Panel DOLS Panel DOLS

CSD tence 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%
T=40

Low 0.072 0.100 0.129 0.098 0.100 0.102 0.099 0.100 0.101
None Med 0.065 0.101 0.142 0.098 0.100 0.103 0.098 0.100 0.101

High 0.050 0.105 0.172 0.097 0.102 0.107 0.094 0.098 0.101
Low 0.075 0.100 0.127 0.098 0.100 0.102 0.099 0.100 0.101

Low Med 0.068 0.101 0.140 0.098 0.101 0.103 0.098 0.100 0.102
High 0.052 0.105 0.172 0.097 0.102 0.108 0.094 0.098 0.102
Low 0.076 0.100 0.126 0.098 0.100 0.102 0.098 0.100 0.102

High Med 0.069 0.101 0.139 0.097 0.101 0.104 0.097 0.100 0.103
High 0.054 0.105 0.170 0.096 0.103 0.110 0.092 0.098 0.104

T=100
Low 0.093 0.100 0.107 0.099 0.100 0.101 0.100 0.100 0.100

None Med 0.091 0.100 0.111 0.099 0.100 0.101 0.099 0.100 0.100
High 0.085 0.102 0.128 0.099 0.101 0.102 0.098 0.099 0.101
Low 0.094 0.100 0.106 0.099 0.100 0.101 0.100 0.100 0.100

Low Med 0.092 0.100 0.110 0.099 0.100 0.101 0.099 0.100 0.101
High 0.086 0.102 0.125 0.099 0.101 0.103 0.098 0.099 0.101
Low 0.094 0.100 0.106 0.099 0.100 0.101 0.099 0.100 0.101

High Med 0.092 0.100 0.110 0.099 0.100 0.101 0.099 0.100 0.101
High 0.087 0.102 0.124 0.099 0.101 0.104 0.097 0.099 0.101

T=200
Low 0.097 0.100 0.103 0.100 0.100 0.100 0.100 0.100 0.100

None Med 0.096 0.100 0.105 0.100 0.100 0.100 0.100 0.100 0.100
High 0.094 0.101 0.113 0.100 0.100 0.101 0.099 0.100 0.100
Low 0.102 0.100 0.098 0.100 0.100 0.100 0.100 0.100 0.100

Low Med 0.103 0.100 0.096 0.100 0.100 0.100 0.100 0.100 0.100
High 0.105 0.099 0.089 0.100 0.100 0.099 0.101 0.100 0.100
Low 0.102 0.100 0.098 0.100 0.100 0.100 0.100 0.100 0.100

High Med 0.103 0.100 0.096 0.100 0.100 0.099 0.100 0.100 0.100
High 0.105 0.099 0.090 0.101 0.099 0.098 0.101 0.100 0.099
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Table 7: Single-equation and Panel dynamic OLS estimates of long run money demand

No Trend With Trend
Country �γ (s.e.) �γ (s.e.) �γ (s.e.) �γ (s.e.) Trendy R y R

Austria 0.901 (0.139) -0.009 (0.029) 1.552 (0.349) -0.037 (0.026) -0.001
Belgium 0.134 (0.218) 0.009 (0.039) 1.183 (0.444) -0.033 (0.026) 0.002
Denmark 1.460 (0.170) -0.043 (0.009) 0.684 (0.321) -0.036 (0.006) 0.009
Finland 1.019 (0.634) -0.006 (0.114) -0.740 (0.881) 0.009 (0.011) -0.005
France 0.677 (0.213) 0.010 (0.020) 0.842 (0.699) 0.004 (0.031) 0.003
Germany 1.548 (0.033) -0.019 (0.008) 1.691 (0.197) -0.023 (0.009) 0.003
Iceland 0.594 (0.161) -0.010 (0.005) -0.451 (1.093) -0.004 (0.008) 0.004
Ireland 0.507 (0.169) 0.022 (0.022) 1.670 (2.805) 0.015 (0.029) 0.005
Netherlands 1.112 (0.111) -0.045 (0.020) 0.309 (0.415) -0.011 (0.022) 0.003
Norway 2.641 (0.450) -0.160 (0.046) -0.676 (2.154) -0.092 (0.060) 0.013
Portugal 0.517 (0.136) -0.037 (0.017) 1.624 (0.379) -0.043 (0.011) 0.010
Spain 1.203 (0.091) -0.030 (0.008) 1.203 (0.190) -0.030 (0.009) 0.003
Switzerland 1.020 (0.208) -0.062 (0.021) 1.447 (0.482) -0.053 (0.021) 0.011
UK 1.738 (0.097) -0.089 (0.008) 2.128 (0.726) -0.089 (0.008) 0.016
Japan 0.889 (0.599) 0.009 (0.200) 1.798 (0.415) -0.076 (0.061) 0.016
Australia 0.926 (0.136) -0.043 (0.012) 0.068 (0.329) -0.048 (0.007) 0.002
New Zealand 1.349 (0.539) -0.076 (0.026) -1.233 (1.149) -0.084 (0.018) -0.001
Canada 1.245 (0.219) -0.057 (0.024) 2.420 (0.903) -0.078 (0.024) -0.013
US 0.428 (0.074) -0.035 (0.008) 1.022 (0.417) -0.039 (0.007) -0.001
Panel 0.860 (0.092) -0.020 (0.007) 1.079 (0.264) -0.022 (0.006) �

a/Panel 0.820 (0.105) -0.017 (0.005) 0.986 (0.336) -0.016 (0.005) �

a/Note: controls for common time effect.
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